WO2015182589A1 - Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method - Google Patents

Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method Download PDF

Info

Publication number
WO2015182589A1
WO2015182589A1 PCT/JP2015/065056 JP2015065056W WO2015182589A1 WO 2015182589 A1 WO2015182589 A1 WO 2015182589A1 JP 2015065056 W JP2015065056 W JP 2015065056W WO 2015182589 A1 WO2015182589 A1 WO 2015182589A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
aluminum
mass
ratio
solder
Prior art date
Application number
PCT/JP2015/065056
Other languages
French (fr)
Japanese (ja)
Inventor
聡太郎 秋山
西尾 佳高
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201580008188.7A priority Critical patent/CN106029922B/en
Priority to US15/109,760 priority patent/US10706985B2/en
Priority to JP2016520707A priority patent/JP6105815B2/en
Priority to EP15799656.2A priority patent/EP3150731B1/en
Priority to KR1020167022523A priority patent/KR101807452B1/en
Publication of WO2015182589A1 publication Critical patent/WO2015182589A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to an aluminum foil, an electronic component wiring board using the aluminum foil, and a method for producing the aluminum foil.
  • Aluminum usually has an oxide film formed on its surface. Since this oxide film has low adhesion to the solder, it cannot be soldered using a general copper solder for aluminum. For this reason, when soldering to a base material made of aluminum, a special flux having such a high activity that the oxide film can be removed is used, or as disclosed in JP-A-2004-263210 (Patent Document 1). In addition, it is necessary to use aluminum whose surface is plated with a different metal as a base material.
  • aluminum foil is expected to be used as wiring for electronic components, but for example, when a special flux with high activity for aluminum is used, a cleaning process is required after mounting electronic components. There is a concern that the process becomes complicated and that the electronic components are defective.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an aluminum foil having high adhesion to general copper solder, and an electronic component using the same. It is providing the manufacturing method of a wiring board and aluminum foil.
  • the present inventors have used an aluminum foil itself without using a special flux with high activity developed for general aluminum or plating the aluminum foil.
  • the inventors In order to have high adhesion to the solder, the inventors have intensively studied the composition.
  • the aluminum foil according to one embodiment of the present invention is an aluminum foil containing at least one of Sn and Bi, and the ratio of the total mass of Sn and Bi to the total mass of the aluminum foil is 0.0075% by mass or more. It is 15 mass% or less.
  • the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is 0.01% or more and 65% or less, and the ratio of the total surface area is the total volume of Sn and Bi with respect to the volume of Al.
  • the ratio is preferably 5 times or more.
  • the aluminum foil is preferably tempered in the range of O to 1 / 4H defined by JIS-H0001.
  • the aluminum foil can be used as an aluminum foil for soldering.
  • one aspect of the present invention extends to an electronic component wiring board manufactured using the aluminum foil.
  • the step of preparing the molten aluminum and adding at least one of Sn and Bi to the molten aluminum has a total mass ratio of Sn and Bi of 0.0075 mass. % Of the total mass of Sn and Bi by producing a mixed molten metal of not less than 15% and not more than 15% by mass, forming an ingot or cast plate using the mixed molten metal, and rolling the ingot or cast plate Of aluminum foil tempered in the range of 3 / 4H to H specified by JIS-H0001, and the tempered aluminum foil On the other hand, a heat treatment is performed at a temperature of 230 ° C. or higher for tempering.
  • the aluminum foil according to the present embodiment is an aluminum foil containing at least one of Sn and Bi, and the ratio of the total mass of Sn and Bi to the total mass of the aluminum foil is 0.0075% by mass or more and 15% by mass or less. It is.
  • aluminum means “pure aluminum” in which 99.0% by mass or more is made of Al, “aluminum” made of less than 99.0% by mass of Al, and any additive element of 1.0% by mass or more. Alloy ".
  • the optional additive element include silicon (Si), iron (Fe), and copper (Cu). The upper limit of the total amount of the optional additive element is 2.0% by mass.
  • the “aluminum foil” of the present invention includes “aluminum alloy foil”, and from the viewpoint of containing Sn or Bi or both of the above contents, it can also be referred to as “aluminum alloy foil”. .
  • the content (mass) of Sn, Bi, optional additive elements and inevitable impurities in the aluminum foil is determined by total reflection X-ray fluorescence (TXRF) method, ICP emission spectroscopic analysis (ICP) method, inductively coupled plasma mass spectrometry (ICP- MS) method or the like.
  • TXRF total reflection X-ray fluorescence
  • ICP ICP emission spectroscopic analysis
  • ICP- MS inductively coupled plasma mass spectrometry
  • the aluminum foil according to this embodiment has higher adhesion to solder than conventional aluminum foil, a special flux with high activity developed for general aluminum is used when soldering. It is not necessary to apply plating to the aluminum foil. For this reason, soldering with high accuracy is possible.
  • the “solder” used for soldering the aluminum foil according to this embodiment is not particularly limited, and a known solder generally used for copper can be used, and lead (Pb) and Sn are mainly used. Examples thereof include leaded solder and lead-free solder. From the viewpoint of environmental conservation, it is preferable that the aluminum foil according to this embodiment is soldered using lead-free lead-free solder.
  • the ratio of the total mass of Sn and Bi with respect to the total mass of the aluminum foil is 0.0075% by mass or more and 15% by mass or less, the reason why the adhesion with the solder is improved is clear.
  • the present inventors infer as follows.
  • the aluminum foil contains at least one of Sn and Bi, Sn, Bi, or both exist in the vicinity of the surface of the aluminum foil. Since the adhesion between the part where these are present and the solder is better than the adhesion between the part where the solder is not present (ie, the conventional aluminum foil) and the solder, the adhesion between the aluminum foil and the solder is improved as a result. To do. Such an improvement in adhesion is considered to be related to the fact that Sn is a general component of leaded solder and Sn and Bi are components of lead-free solder.
  • the ratio of the total mass is preferably 0.01% by mass or more and 10% by mass or less.
  • the total mass corresponds to the mass of Sn contained in the aluminum foil, and the aluminum foil does not contain Sn and contains Bi.
  • the total mass corresponds to the mass of Bi contained in the aluminum foil. The same applies to the total surface area and total volume described later.
  • the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is 0.01% or more and 65% or less, and the ratio of the total surface area is Sn and the volume of Al. It is preferably 5 times or more of the ratio of the total volume of Bi.
  • the ratio of the total surface area is less than 0.01%, the adhesiveness with the solder tends to be low, and when it exceeds 65%, Sn and Bi easily fall off from the soldered aluminum foil. Tend to be.
  • the ratio of the said total surface area is less than 5 times the ratio of the said total volume, there exists a tendency for adhesiveness with a solder to become low.
  • the ratio of the total surface area of Sn and Bi with respect to the total surface area of the aluminum foil means that Sn and O in the area of the image observed when the aluminum foil is observed visually or using an optical microscope. It means the ratio of the total surface area that is the sum of each area of Bi. Specifically, when an aluminum foil is observed using an optical microscope, a two-dimensional area extending vertically and horizontally in a visually observed image is defined as the surface of the aluminum foil, and the total of Sn and Bi occupying the surface area. The ratio of the surface area is the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil.
  • the ratio of the total surface area is calculated by binarization processing based on the contrast of the image obtained by imaging using a scanning electron microscope (SEM) to a depth that can be observed visually or with an optical microscope. can do.
  • the “ratio of the total volume of Sn and Bi with respect to the volume of Al” in the aluminum foil is defined as follows. When Sn is contained in the aluminum foil and Bi is not contained, the specific gravity of Al (2.7) is added to the ratio of the mass of Sn to the mass of Al contained in the aluminum foil (Sn / Al ⁇ 100) (%). The value obtained by multiplying by the specific gravity of Sn (7.3) is the ratio of the total volume.
  • the ratio of Bi to the mass of Al contained in the aluminum foil (Bi / Al ⁇ 100) (%) is multiplied by the specific gravity of Al to obtain the specific gravity of Bi ( The value divided by 9.8) is the ratio of the total volume.
  • the ratio of the total mass of Sn and Bi to the mass of Al contained in the aluminum foil ⁇ (Sn + Bi) / Al ⁇ 100 ⁇ (%) is multiplied by the specific gravity of Al, Sn and Bi
  • the value divided by the specific gravity of the Bi mixture (between 7.3 and 9.8, depending on the mixing ratio of Sn and Bi) is the ratio of the total volume.
  • the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is at least five times the ratio of the total volume of Sn and Bi to the volume of Al” means “the ratio of the total surface area” to “ It means that the numerical value (surface area / volume) divided by “ratio” is 5 times or more.
  • the ratio of the total surface area is preferably 0.1% by mass or more and 63.5% by mass or less.
  • the numerical value obtained by dividing the ratio of the total surface area by the ratio of the total volume is preferably 30 times or less, and more preferably 10 times or more and 20 times or less.
  • the quality of the aluminum foil according to this embodiment is preferably tempered in the range of O to 1 / 4H defined by JIS-H0001.
  • the present inventors have confirmed that the adhesion to solder is sufficiently high when tempered in this way.
  • symbols such as “1 / 4H” and “O” defined in JIS-H0001 indicate the degree of tempering of the aluminum foil.
  • the aluminum foil according to the present embodiment is manufactured by rolling an ingot or cast plate as a raw material of the aluminum foil and heat-treating the ingot or cast-plate, but the degree of tempering is changed depending on the temperature condition of the heat treatment. Therefore, the hardness can be adjusted.
  • the aluminum foil tempered to “range from O to 1 / 4H” is a soft aluminum foil tempered to O, an aluminum foil tempered to 1 ⁇ 4H, and the degree of tempering is from O to 1 It is intended to include an aluminum foil that falls within the range of / 4H.
  • the aluminum foil tempered in the range of “3 / 4H to H” is an aluminum foil tempered to 3 / 4H, a hard aluminum foil tempered to H, and the degree of tempering is 3 / It is intended to include an aluminum foil that falls within the range of 4H to H.
  • the aluminum foil according to this embodiment has high adhesion to solder, it can be suitably used for soldering.
  • the thickness of the aluminum foil is 3 ⁇ m or more and 200 ⁇ m or less, it can be suitably used for soldering to a precision electronic component or the like.
  • a method of utilizing an aluminum foil as a component or wiring of an electronic device or a semiconductor device can be mentioned.
  • the thickness of the aluminum foil according to the present embodiment is more preferably 30 ⁇ m or more and 200 ⁇ m or less, and further preferably 30 ⁇ m or more and 100 ⁇ m or less, in view of exhibiting higher adhesion.
  • the ratio of the total mass of Sn and Bi is obtained by adding at least one of Sn and Bi to the process of preparing the molten aluminum (aluminum melt preparing process) and the molten aluminum.
  • a step of producing a mixed molten metal of 0.0075% by mass or more and 15% by mass or less (mixed molten metal producing step), a step of forming an ingot or cast plate using the mixed molten metal (casting step), an ingot or cast plate Aluminum foil in which the ratio of the total mass of Sn and Bi is 0.0075 mass% or more and 15 mass% or less and is tempered in the range of 3 / 4H to H defined by JIS-H0001. And a step of heat-treating the tempered aluminum foil (heat treatment step).
  • each process is demonstrated in order.
  • molten aluminum is prepared.
  • the molten aluminum is made of the above-described pure aluminum or aluminum alloy melt.
  • an ingot or a cast plate is formed using the mixed molten metal.
  • the mixed molten metal is poured into a mold and cooled to produce an ingot as a rectangular parallelepiped lump, or rapidly cooled by a method in which the mixed molten metal is passed between two cooling rolls.
  • a homogeneous ingot or cast plate can be formed by performing a degassing process, a filter process, or the like of the mixed molten metal before forming the ingot or cast plate.
  • the tempered aluminum foil subjected to the above steps is subjected to heat treatment at a temperature of 230 ° C. or higher to produce an aluminum foil tempered from O to 1 ⁇ 4H.
  • a tempered aluminum foil is placed in a furnace, and the temperature in the furnace is raised from room temperature (25 ° C.) to a target temperature of 230 ° C. or higher.
  • the rate of temperature rise is not particularly limited, but it is preferable to gradually raise the temperature to the target temperature over a period of about 1 to 24 hours.
  • the target temperature is maintained for 10 minutes to 168 hours, and then the furnace temperature is lowered to room temperature (25 ° C.) by natural cooling.
  • the aluminum foil tempered in the range of 3 / 4H to H specified by JIS-H0001 is tempered, and the hardness is tempered in the range of O to 1 / 4H. That is, the aluminum foil of the present invention is obtained.
  • the inventors have found that when the temperature of the heat treatment is less than 230 ° C., there is little segregation of Sn and / or Bi on the surface of the aluminum foil after the heat treatment, and the total surface area of the aluminum foil after the heat treatment It has been confirmed that the ratio of the total surface area of Sn and Bi is not more than 0.01% and not more than 65%, and that the ratio of the total surface area is less than 5 times the ratio of the total volume. From this, the ratio of the total surface area in the surface area of the aluminum foil, the distribution state of Sn or Bi or both on the surface, etc. are involved in the adhesion of the aluminum foil to the solder, and these depend on the heat treatment temperature. Presumed to change. In addition, when the temperature of heat processing exceeds 500 degreeC, since capital investment and energy cost become high, it is not recommended.
  • Aluminum foil was manufactured as follows. First, a molten aluminum melted with aluminum (purity 99.98 mass% or more) made of JIS-A1N90 material was prepared (aluminum melt preparation step). Next, Sn was introduced into the molten aluminum to produce a mixed molten metal having a Sn content of 10% by mass (mixed molten metal production step). And the ingot was formed using this mixed molten metal (casting process). Next, after cutting and removing the surface of the ingot, this was cold-rolled at room temperature (25 ° C.) to produce aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m (rolling step). Next, the aluminum foil was heat-treated at 400 ° C. in an air atmosphere. This aluminum foil was tempered to O.
  • the thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were changed in the same manner as in Example 1 except that the mixing ratio of Sn in the mixed molten metal was changed as shown in Table 1.
  • An aluminum foil was produced.
  • Comparative Example 3 produced aluminum foils with thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m by the same method as in Example 1 except that Sn was not mixed.
  • Comparative Example 4 and Comparative Example 5 use aluminum (purity 99.3 mass%) made of JIS-A1N30 material and aluminum alloy (purity 98.9 mass%) made of JIS-A8079 material, respectively, and Sn was used.
  • Aluminum foils having a thickness of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were produced in the same manner as in Example 1 except that they were not mixed.
  • the aluminum foils of Examples 2 to 7 and Comparative Examples 1 to 5 were aluminum foils that were tempered to O.
  • Table 1 shows the kind of aluminum used as a raw material used in Examples 1 to 7 and Comparative Examples 1 to 5, the content ratio of Sn in the aluminum foil, the degree of tempering, and the thickness. In Table 1, “-” is shown when the relevant item is not included.
  • Chip resistors were soldered to the aluminum foils of Examples 1 to 7 and Comparative Examples 1 to 5, and the adhesion between the aluminum foil and the chip resistors was evaluated.
  • solder paste (trade name: “BI57 LRA-5 AMQ”, manufactured by Nippon Superior Co., Ltd.) was prepared. This solder paste was applied on an aluminum foil so that the distance between the centers was 3.5 mm, each diameter was 2 mm, and each weight was 1.5 mg, and a 3216 type chip resistor was placed so as to evenly spread over two points. . This was heated and soldered using a near-infrared image furnace (“IR-HP2-6” manufactured by Yonekura Seisakusho Co., Ltd.). The heating conditions were a nitrogen flow rate of 1 L / min, a maximum temperature reached 175 ° C. ⁇ 1 ° C., and a set time from 50 ° C. to the maximum temperature reached 2 minutes 31 seconds. Further, after heating, natural cooling was performed until the solder solidified, but the cooling rate was about ⁇ 13 ° C./min.
  • a shear strength measurement was performed on the chip resistor soldered on the aluminum foil, and the adhesion between the aluminum foil and the chip resistor joined via the solder was evaluated.
  • the shear strength was measured using a bond tester (Nordson age series 4000). Specifically, an aluminum foil soldered with a chip resistor was fixed to a smooth substrate with double-sided tape, and measurement was performed at a tool moving distance of 0.3 mm / second.
  • the shear strength was measured three times for each sample, and the average value of 30N or more was designated as “A”, and the chip resistance, solder, and aluminum foil were not peeled off during the shear strength measurement, and the aluminum foil was broken.
  • “B” was defined as "C” when the aluminum foil was not broken and the average value of the shear strength was less than 30N. That is, A is excellent in adhesion, B is strong enough to break the aluminum foil and excellent in adhesion, and C has the lowest adhesion.
  • Table 1 The results are shown in Table 1.
  • the ratio (%) of Sn in the surface area of the aluminum foils of Examples 1 to 7 and Comparative Examples 1 to 5 was measured.
  • the surface of the aluminum foil was imaged at a magnification of 100 using a scanning electron microscope, and binarization processing based on the contrast of the obtained image was performed.
  • the thickness (depth) of the aluminum foil observed with a scanning electron microscope was made to the depth of the grade observed with an optical microscope.
  • the ratio (%) of Sn in the surface area of the aluminum foil was calculated with the white or light gray area as the area occupied by Sn and the dark gray or black area as the area occupied by aluminum.
  • the actual area of the aluminum foil contained in the obtained image is 1.28 mm ⁇ 0.96 mm. The results are shown in Table 1.
  • Example 8> In the molten aluminum preparation step, aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were manufactured by the same method as in Example 1 except that 1% by mass of Cu was further added to aluminum. Aluminum foil was produced.
  • Example 8 the aluminum foil and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil was visually observed, in Example 8, the solder spread and adhered to both the aluminum foil surface and the chip resistor.
  • Example 9 In the mixed molten metal preparation step, aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were manufactured by the same method as in Example 2 except that 5 mass% Bi was added to aluminum instead of Sn. The aluminum foil of Example 9 was produced.
  • Example 9 the aluminum foil and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil was visually observed, in Example 9, the solder spread and adhered to both the aluminum foil surface and the chip resistor.
  • aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were manufactured in the same manner as in Example 3 except that the annealing temperature was changed to 250 ° C., and the aluminum foil of Example 10 was manufactured. Further, in the heat treatment step, aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were manufactured by the same method as in Example 3 except that the annealing temperature was changed to 300 ° C., and the aluminum foil of Example 11 was manufactured. .
  • aluminum foils having thicknesses of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m were manufactured by the same method as in Example 3 except that the annealing temperature was changed to 200 ° C., and the aluminum foil of Comparative Example 6 was manufactured. .
  • Example 12 The aluminum foil having a thickness of 30 ⁇ m in Example 6 was bonded to a polyimide film having a thickness of 35 ⁇ m via an adhesive, and a resist pattern was printed on the surface of the aluminum foil.
  • the resist pattern had a line width of 1 mm and a line spacing of 2 mm.
  • the bonded product of the printed aluminum foil and polyimide film is dipped in an acid-based etching solution, and the aluminum foil in a portion where there is no resist printing is removed by etching, followed by washing with water and drying. Manufactured.
  • Example 12 To the aluminum foil structure of Example 12, 1.5 mg of the above solder paste was applied to each of the two aluminum lines remaining after etching, and the above chip resistor was disposed. Furthermore, the chip resistance was soldered by the same method as in Example 1, and the shear strength was measured. The results are shown in Table 5.
  • Example 12 the aluminum foil structure and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil structure was visually observed, in Example 12, the solder spread and adhered to both the aluminum foil surface and the chip resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Metal Rolling (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

 The purpose of the present invention is to provide aluminum foil having excellent adhesion to solder. This aluminum foil contains Sn and/or Bi, and the ratio of the total mass of Sn and Bi to the overall mass of the aluminum foil is 0.0075 mass% to 15 mass%, inclusive.

Description

アルミニウム箔、これを用いた電子部品配線基板、およびアルミニウム箔の製造方法Aluminum foil, electronic component wiring board using the same, and method for producing aluminum foil
 本発明は、アルミニウム箔、これを用いた電子部品配線基板、およびアルミニウム箔の製造方法に関する。 The present invention relates to an aluminum foil, an electronic component wiring board using the aluminum foil, and a method for producing the aluminum foil.
 アルミニウムは、通常、その表面に酸化被膜が形成されている。この酸化被膜は、はんだとの密着性が低いため、アルミニウムに一般的な銅用のはんだを用いてはんだ付けをすることができない。このため、アルミニウムからなる基材にはんだ付けする場合には、酸化皮膜を除去できる程度に活性が高い特殊なフラックスを用いたり、特開2004-263210号公報(特許文献1)に開示されるように、表面に異種金属がめっきされたアルミニウムを基材として用いたりする必要がある。 Aluminum usually has an oxide film formed on its surface. Since this oxide film has low adhesion to the solder, it cannot be soldered using a general copper solder for aluminum. For this reason, when soldering to a base material made of aluminum, a special flux having such a high activity that the oxide film can be removed is used, or as disclosed in JP-A-2004-263210 (Patent Document 1). In addition, it is necessary to use aluminum whose surface is plated with a different metal as a base material.
特開2004-263210号公報JP 2004-263210 A
 しかし、上記の活性が高い特殊なフラックスを用いる場合、はんだ付け後の基材に対して洗浄処理等を行うことにより、フラックスを除去する必要がある。これは、はんだ付け後に残ったフラックスがアルミニウムを腐食する傾向があるためである。また、異種金属がめっきされたアルミニウムを用いるためには、予めアルミニウムに対してめっき処理を実施する必要がある。このため、従来、アルミニウムにはんだ付けをするためには、銅、銀などの他の金属に比して処理に要する工程数や時間が増加する傾向があった。 However, when using a special flux with high activity as described above, it is necessary to remove the flux by performing a cleaning process or the like on the substrate after soldering. This is because the flux remaining after soldering tends to corrode aluminum. In addition, in order to use aluminum plated with a different metal, it is necessary to perform a plating process on the aluminum in advance. For this reason, conventionally, in order to solder to aluminum, the number of processes and time required for the treatment tend to increase as compared with other metals such as copper and silver.
 また、アルミニウム箔を電子部品の配線等として利用することが期待されるが、たとえば上記のアルミニウム用の活性が高い特殊なフラックスを用いた場合、電子部品の実装後に洗浄工程が必要となり、これによって工程が複雑になるとともに、電子部品の不具合を引き起こすことが懸念される。 Also, aluminum foil is expected to be used as wiring for electronic components, but for example, when a special flux with high activity for aluminum is used, a cleaning process is required after mounting electronic components. There is a concern that the process becomes complicated and that the electronic components are defective.
 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは、一般的な銅用のはんだに対しても高い密着性を有するアルミニウム箔、これを用いた電子部品配線基板、およびアルミニウム箔の製造方法を提供することにある。 The present invention has been made in view of the above situation, and an object of the present invention is to provide an aluminum foil having high adhesion to general copper solder, and an electronic component using the same. It is providing the manufacturing method of a wiring board and aluminum foil.
 上記の課題を解決するために、本発明者らは、一般的なアルミニウム用に開発された活性が高い特殊なフラックスを使用したり、アルミニウム箔にめっき処理を施したりすることなく、アルミニウム箔そのものがはんだに対して高い密着性を有することができるように、その組成について鋭意検討を重ねた。 In order to solve the above-mentioned problems, the present inventors have used an aluminum foil itself without using a special flux with high activity developed for general aluminum or plating the aluminum foil. In order to have high adhesion to the solder, the inventors have intensively studied the composition.
 そして、アルミニウム箔を製造する際に、アルミニウム溶湯内にSnおよびBiの少なくとも一方を混合させることによって、製造されるアルミニウム箔のはんだに対する密着性が向上し得ることを知見し、さらに鋭意検討を重ねることによって、本発明を完成させた。 And when manufacturing aluminum foil, it discovered that the adhesiveness with respect to the solder of the aluminum foil manufactured could be improved by mixing at least one of Sn and Bi in molten aluminum, and repeated earnest examination. Thus, the present invention has been completed.
 すなわち、本発明の一態様に係るアルミニウム箔は、SnおよびBiの少なくとも一方を含有するアルミニウム箔であって、アルミニウム箔の全質量に対するSnおよびBiの合計質量の割合は、0.0075質量%以上15質量%以下である。 That is, the aluminum foil according to one embodiment of the present invention is an aluminum foil containing at least one of Sn and Bi, and the ratio of the total mass of Sn and Bi to the total mass of the aluminum foil is 0.0075% by mass or more. It is 15 mass% or less.
 上記アルミニウム箔において、アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合は、0.01%以上65%以下であり、かつ合計表面積の割合は、Alの体積に対するSnおよびBiの合計体積の割合の5倍以上であることが好ましい。 In the aluminum foil, the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is 0.01% or more and 65% or less, and the ratio of the total surface area is the total volume of Sn and Bi with respect to the volume of Al. The ratio is preferably 5 times or more.
 また、上記アルミニウム箔は、JIS-H0001で規定されるOから1/4Hの範囲に調質されていることが好ましい。 The aluminum foil is preferably tempered in the range of O to 1 / 4H defined by JIS-H0001.
 さらに、上記アルミニウム箔は、はんだ付け用のアルミニウム箔に用いることができる。 Furthermore, the aluminum foil can be used as an aluminum foil for soldering.
 また、本発明の一態様は、上記アルミニウム箔を用いて製造された電子部品配線基板にも及ぶ。 Also, one aspect of the present invention extends to an electronic component wiring board manufactured using the aluminum foil.
 本発明の一態様に係るアルミニウム箔の製造方法は、アルミニウム溶湯を準備する工程と、アルミニウム溶湯にSnおよびBiの少なくとも一方を添加することによって、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下の混合溶湯を作製する工程と、混合溶湯を用いて鋳塊または鋳造板を形成する工程と、鋳塊または鋳造板を圧延することにより、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下であり、かつJIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔を製造する工程と、該調質されたアルミニウム箔に対して230℃以上の温度で熱処理を実施して調質する工程を備える。 In the method for producing an aluminum foil according to one embodiment of the present invention, the step of preparing the molten aluminum and adding at least one of Sn and Bi to the molten aluminum has a total mass ratio of Sn and Bi of 0.0075 mass. % Of the total mass of Sn and Bi by producing a mixed molten metal of not less than 15% and not more than 15% by mass, forming an ingot or cast plate using the mixed molten metal, and rolling the ingot or cast plate Of aluminum foil tempered in the range of 3 / 4H to H specified by JIS-H0001, and the tempered aluminum foil On the other hand, a heat treatment is performed at a temperature of 230 ° C. or higher for tempering.
 本発明によれば、一般的な銅用のはんだに対しても高い密着性を有するアルミニウム箔を提供することができる。 According to the present invention, it is possible to provide an aluminum foil having high adhesion to general copper solder.
 <アルミニウム箔>
 本実施形態に係るアルミニウム箔は、SnおよびBiの少なくとも一方を含有するアルミニウム箔であって、アルミニウム箔の全質量に対するSnおよびBiの合計質量の割合は、0.0075質量%以上15質量%以下である。
<Aluminum foil>
The aluminum foil according to the present embodiment is an aluminum foil containing at least one of Sn and Bi, and the ratio of the total mass of Sn and Bi to the total mass of the aluminum foil is 0.0075% by mass or more and 15% by mass or less. It is.
 ここで、「アルミニウム」とは、99.0質量%以上がAlからなる「純アルミニウム」と、99.0質量%未満のAlと、1.0質量%以上の任意の添加元素からなる「アルミニウム合金」とを含む。任意の添加元素としては、ケイ素(Si)、鉄(Fe)、銅(Cu)などが挙げられ、任意の添加元素の全量の上限値は2.0質量%である。 Here, “aluminum” means “pure aluminum” in which 99.0% by mass or more is made of Al, “aluminum” made of less than 99.0% by mass of Al, and any additive element of 1.0% by mass or more. Alloy ". Examples of the optional additive element include silicon (Si), iron (Fe), and copper (Cu). The upper limit of the total amount of the optional additive element is 2.0% by mass.
 したがって、本発明の「アルミニウム箔」には、「アルミニウム合金箔」が含まれ、上記のような含有量のSnまたはBiまたはその両方を含むという観点からは、「アルミニウム合金箔」ということもできる。 Therefore, the “aluminum foil” of the present invention includes “aluminum alloy foil”, and from the viewpoint of containing Sn or Bi or both of the above contents, it can also be referred to as “aluminum alloy foil”. .
 アルミニウム箔中のSn、Bi、任意の添加元素および不可避不純物の含有量(質量)は、全反射蛍光X線(TXRF)法、ICP発光分光分析(ICP)法、誘導結合プラズマ質量分析(ICP-MS)法等により測定することができる。 The content (mass) of Sn, Bi, optional additive elements and inevitable impurities in the aluminum foil is determined by total reflection X-ray fluorescence (TXRF) method, ICP emission spectroscopic analysis (ICP) method, inductively coupled plasma mass spectrometry (ICP- MS) method or the like.
 本実施形態に係るアルミニウム箔は、はんだに対する密着性が従来のアルミニウム箔と比して高いため、はんだ付けする場合に、一般的なアルミニウム用に開発された活性が高い特殊なフラックスを使用したり、アルミニウム箔にめっき処理を施したりする必要がない。このため、高い精度でのはんだ付けが可能となる。 Since the aluminum foil according to this embodiment has higher adhesion to solder than conventional aluminum foil, a special flux with high activity developed for general aluminum is used when soldering. It is not necessary to apply plating to the aluminum foil. For this reason, soldering with high accuracy is possible.
 なお、本実施形態に係るアルミニウム箔のはんだ付けに用いる「はんだ」は特に制限されず、一般的に銅用として用いられている公知のはんだを用いることができ、鉛(Pb)とSnを主成分とした有鉛はんだ、鉛フリーのはんだ等が例示される。環境保全の観点からは、鉛フリーの無鉛はんだを用いて、本実施形態に係るアルミニウム箔のはんだ付けが実施されることが好ましい。 The “solder” used for soldering the aluminum foil according to this embodiment is not particularly limited, and a known solder generally used for copper can be used, and lead (Pb) and Sn are mainly used. Examples thereof include leaded solder and lead-free solder. From the viewpoint of environmental conservation, it is preferable that the aluminum foil according to this embodiment is soldered using lead-free lead-free solder.
 本実施形態に係るアルミニウム箔において、アルミニウム箔の全質量に対するSnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下である場合に、はんだとの密着性が向上する理由は明確ではないが、本発明者らは、次のように推察する。 In the aluminum foil according to this embodiment, when the ratio of the total mass of Sn and Bi with respect to the total mass of the aluminum foil is 0.0075% by mass or more and 15% by mass or less, the reason why the adhesion with the solder is improved is clear. However, the present inventors infer as follows.
 アルミニウム箔がSnおよびBiの少なくとも一方を含むことにより、アルミニウム箔の表面近傍にSn、またはBi、またはその両方が存在することとなる。これらが存在する部分とはんだとの密着性が、存在しない部分(すなわち従来のアルミニウム箔)とはんだとの密着性よりも良好であるために、結果的にアルミニウム箔とはんだとの密着性が向上する。このような密着性の向上は、Snが一般的な有鉛はんだの成分であり、SnおよびBiが鉛フリーはんだの成分であることが関係していると考えられる。 When the aluminum foil contains at least one of Sn and Bi, Sn, Bi, or both exist in the vicinity of the surface of the aluminum foil. Since the adhesion between the part where these are present and the solder is better than the adhesion between the part where the solder is not present (ie, the conventional aluminum foil) and the solder, the adhesion between the aluminum foil and the solder is improved as a result. To do. Such an improvement in adhesion is considered to be related to the fact that Sn is a general component of leaded solder and Sn and Bi are components of lead-free solder.
 本実施形態に係るアルミニウム箔において、上記合計質量の割合は、0.01質量%以上10質量%以下であることが好ましい。 In the aluminum foil according to this embodiment, the ratio of the total mass is preferably 0.01% by mass or more and 10% by mass or less.
 なお、アルミニウム箔がSnを含有し、Biを含有しない場合には、上記合計質量は、アルミニウム箔に含有されるSnの質量に相当し、アルミニウム箔がSnを含有せず、Biを含有する場合には、上記合計質量は、アルミニウム箔に含有されるBiの質量に相当する。後述する合計表面積および合計体積についても同様である。 When the aluminum foil contains Sn and does not contain Bi, the total mass corresponds to the mass of Sn contained in the aluminum foil, and the aluminum foil does not contain Sn and contains Bi. The total mass corresponds to the mass of Bi contained in the aluminum foil. The same applies to the total surface area and total volume described later.
 本実施形態に係るアルミニウム箔において、アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合は、0.01%以上65%以下であり、かつこの合計表面積の割合は、Alの体積に対するSnおよびBiの合計体積の割合の5倍以上であることが好ましい。上記合計表面積の割合が0.01%未満の場合には、はんだとの密着性が低くなる傾向があり、65%を超える場合には、はんだ付けされたアルミニウム箔からSnおよびBiが脱落し易くなる傾向がある。また、上記合計表面積の割合が、上記合計体積の割合の5倍未満の場合には、はんだとの密着性が低くなる傾向がある。 In the aluminum foil according to the present embodiment, the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is 0.01% or more and 65% or less, and the ratio of the total surface area is Sn and the volume of Al. It is preferably 5 times or more of the ratio of the total volume of Bi. When the ratio of the total surface area is less than 0.01%, the adhesiveness with the solder tends to be low, and when it exceeds 65%, Sn and Bi easily fall off from the soldered aluminum foil. Tend to be. Moreover, when the ratio of the said total surface area is less than 5 times the ratio of the said total volume, there exists a tendency for adhesiveness with a solder to become low.
 ここで、「アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合」とは、目視により、または光学顕微鏡を用いてアルミニウム箔を観察した場合に、観察される画像の面積中に占めるSnおよびBiの各面積の合計である合計表面積の割合を意味する。具体的には、アルミニウム箔を光学顕微鏡を用いて観察した際に、目視される画像中に縦横に拡がる二次元の面積をアルミニウム箔の表面とし、この表面の面積中に占めるSnおよびBiの合計表面積の割合が、アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合となる。このような合計表面積の割合は、目視または光学顕微鏡により観察される程度の深さまでを走査型電子顕微鏡(SEM)を用いて撮像し、得られた画像のコントラストに基づいた二値化処理によって算出することができる。
また、アルミニウム箔における「Alの体積に対するSnおよびBiの合計体積の割合」とは、次のように規定される。アルミニウム箔にSnが含まれ、Biが含まれない場合、アルミニウム箔に含まれるAlの質量に対するSnの質量の割合(Sn/Al×100)(%)に、Alの比重(2.7)を乗じ、Snの比重(7.3)で除した数値が、上記合計体積の割合となる。アルミニウム箔にSnが含まれず、Biが含まれる場合、アルミニウム箔に含まれるAlの質量に対するBiの質量の割合(Bi/Al×100)(%)に、Alの比重を乗じ、Biの比重(9.8)で除した数値が、上記合計体積の割合となる。アルミニウム箔にSnおよびBiが含まれる場合、アルミニウム箔に含まれるAlの質量に対するSnおよびBiの合計質量の割合{(Sn+Bi)/Al×100}(%)に、Alの比重を乗じ、SnおよびBiの混合物の比重(7.3から9.8の間で、SnとBiの混合比率によって変化する)で除した数値が、上記合計体積の割合となる。
Here, “the ratio of the total surface area of Sn and Bi with respect to the total surface area of the aluminum foil” means that Sn and O in the area of the image observed when the aluminum foil is observed visually or using an optical microscope. It means the ratio of the total surface area that is the sum of each area of Bi. Specifically, when an aluminum foil is observed using an optical microscope, a two-dimensional area extending vertically and horizontally in a visually observed image is defined as the surface of the aluminum foil, and the total of Sn and Bi occupying the surface area. The ratio of the surface area is the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil. The ratio of the total surface area is calculated by binarization processing based on the contrast of the image obtained by imaging using a scanning electron microscope (SEM) to a depth that can be observed visually or with an optical microscope. can do.
The “ratio of the total volume of Sn and Bi with respect to the volume of Al” in the aluminum foil is defined as follows. When Sn is contained in the aluminum foil and Bi is not contained, the specific gravity of Al (2.7) is added to the ratio of the mass of Sn to the mass of Al contained in the aluminum foil (Sn / Al × 100) (%). The value obtained by multiplying by the specific gravity of Sn (7.3) is the ratio of the total volume. When Sn is not contained in the aluminum foil and Bi is contained, the ratio of Bi to the mass of Al contained in the aluminum foil (Bi / Al × 100) (%) is multiplied by the specific gravity of Al to obtain the specific gravity of Bi ( The value divided by 9.8) is the ratio of the total volume. When the aluminum foil contains Sn and Bi, the ratio of the total mass of Sn and Bi to the mass of Al contained in the aluminum foil {(Sn + Bi) / Al × 100} (%) is multiplied by the specific gravity of Al, Sn and Bi The value divided by the specific gravity of the Bi mixture (between 7.3 and 9.8, depending on the mixing ratio of Sn and Bi) is the ratio of the total volume.
 また、「アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合が、Alの体積に対するSnおよびBiの合計体積の割合の5倍以上」とは、「合計表面積の割合」を「合計体積の割合」で除した数値(表面積/体積)が5倍以上であることを意味する。 Further, “the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is at least five times the ratio of the total volume of Sn and Bi to the volume of Al” means “the ratio of the total surface area” to “ It means that the numerical value (surface area / volume) divided by “ratio” is 5 times or more.
 本実施形態に係るアルミニウム箔において、上記合計表面積の割合は、0.1質量%以上63.5質量%以下であることが好ましい。また、上記合計表面積の割合を上記合計体積の割合で除した数値は、30倍以下であることが好ましく、10倍以上20倍以下であることがより好ましい。 In the aluminum foil according to this embodiment, the ratio of the total surface area is preferably 0.1% by mass or more and 63.5% by mass or less. The numerical value obtained by dividing the ratio of the total surface area by the ratio of the total volume is preferably 30 times or less, and more preferably 10 times or more and 20 times or less.
 本実施形態に係るアルミニウム箔の質別は、JIS-H0001で規定されるOから1/4Hの範囲に調質されていることが好ましい。本発明者らは、このように調質された場合に、はんだに対する密着性が十分に高いことを確認している。 The quality of the aluminum foil according to this embodiment is preferably tempered in the range of O to 1 / 4H defined by JIS-H0001. The present inventors have confirmed that the adhesion to solder is sufficiently high when tempered in this way.
 ここで、JIS-H0001で規定される「1/4H」および「O」等の記号(アルファベット、またはアルファベットと数字を併記したもの)は、アルミニウム箔の調質の程度を示すものであり、これにより、アルミニウム箔の硬度を知ることができる。本実施形態に係るアルミニウム箔は、アルミニウム箔の原料となる鋳塊または鋳造板を圧延し、これを熱処理することによって製造されるが、この熱処理の温度条件によって、調質の程度を変更することができ、もってその硬度を調整することができる。 Here, symbols such as “1 / 4H” and “O” defined in JIS-H0001 (alphabetic characters, or a combination of alphabets and numbers) indicate the degree of tempering of the aluminum foil. Thus, the hardness of the aluminum foil can be known. The aluminum foil according to the present embodiment is manufactured by rolling an ingot or cast plate as a raw material of the aluminum foil and heat-treating the ingot or cast-plate, but the degree of tempering is changed depending on the temperature condition of the heat treatment. Therefore, the hardness can be adjusted.
 「Oから1/4Hの範囲」に調質されたアルミニウム箔とは、Oに調質された軟質のアルミニウム箔、1/4Hに調質されたアルミニウム箔、および調質の程度がOから1/4Hの範囲内に含まれるアルミニウム箔を含む意図である。また、「3/4HからHの範囲」に調質されたアルミニウム箔とは、3/4Hに調質されたアルミニウム箔、Hに調質された硬質アルミニウム箔、および調質の程度が3/4HからHの範囲内に含まれるアルミニウム箔を含む意図である。 The aluminum foil tempered to “range from O to 1 / 4H” is a soft aluminum foil tempered to O, an aluminum foil tempered to ¼H, and the degree of tempering is from O to 1 It is intended to include an aluminum foil that falls within the range of / 4H. In addition, the aluminum foil tempered in the range of “3 / 4H to H” is an aluminum foil tempered to 3 / 4H, a hard aluminum foil tempered to H, and the degree of tempering is 3 / It is intended to include an aluminum foil that falls within the range of 4H to H.
 本実施形態に係るアルミニウム箔は、はんだに対する密着性が高いため、はんだ付けに好適に利用することができる。特に、アルミニウム箔の厚さが3μm以上200μm以下の場合、精密な電子部品等へのはんだ付けに好適に利用することができる。具体的な利用方法としては、アルミニウム箔を電子デバイスや半導体デバイスの部品や配線として利用する方法が挙げられる。本実施形態に係るアルミニウム箔の厚さは、より高い密着性を発揮する点で、30μm以上200μm以下がより好ましく、30μm以上100μm以下がさらに好ましい。 Since the aluminum foil according to this embodiment has high adhesion to solder, it can be suitably used for soldering. In particular, when the thickness of the aluminum foil is 3 μm or more and 200 μm or less, it can be suitably used for soldering to a precision electronic component or the like. As a specific utilization method, a method of utilizing an aluminum foil as a component or wiring of an electronic device or a semiconductor device can be mentioned. The thickness of the aluminum foil according to the present embodiment is more preferably 30 μm or more and 200 μm or less, and further preferably 30 μm or more and 100 μm or less, in view of exhibiting higher adhesion.
 <アルミニウム箔の製造方法>
 本実施形態に係るアルミニウム箔の製造方法は、アルミニウム溶湯を準備する工程(アルミニウム溶湯準備工程)と、アルミニウム溶湯にSnおよびBiの少なくとも一方を添加することによって、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下の混合溶湯を作製する工程(混合溶湯作製工程)と、混合溶湯を用いて鋳塊または鋳造板を形成する工程(鋳造工程)と、鋳塊または鋳造板を圧延することにより、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下であり、かつJIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔を製造する工程(圧延工程)と、該調質されたアルミニウム箔を熱処理する工程(熱処理工程)、とを備える。以下、各工程について順に説明する。
<Method for producing aluminum foil>
In the method for producing an aluminum foil according to the present embodiment, the ratio of the total mass of Sn and Bi is obtained by adding at least one of Sn and Bi to the process of preparing the molten aluminum (aluminum melt preparing process) and the molten aluminum. A step of producing a mixed molten metal of 0.0075% by mass or more and 15% by mass or less (mixed molten metal producing step), a step of forming an ingot or cast plate using the mixed molten metal (casting step), an ingot or cast plate Aluminum foil in which the ratio of the total mass of Sn and Bi is 0.0075 mass% or more and 15 mass% or less and is tempered in the range of 3 / 4H to H defined by JIS-H0001. And a step of heat-treating the tempered aluminum foil (heat treatment step). Hereinafter, each process is demonstrated in order.
 (アルミニウム溶湯準備工程)
 まず、アルミニウム溶湯を準備する。アルミニウム溶湯は、上述の純アルミニウムまたはアルミニウム合金の融液からなる。
(Aluminum melt preparation process)
First, a molten aluminum is prepared. The molten aluminum is made of the above-described pure aluminum or aluminum alloy melt.
 (混合溶湯準備工程)
 次に、アルミニウム溶湯にSnおよびBiの少なくとも一方を添加することによって、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下の混合溶湯を作製する。具体的には、アルミニウム溶湯に対して、アルミニウム溶湯の質量とSnおよびBiの合計質量との和に対するSnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下となるように、アルミニウム溶湯内にSnまたはBiまたはその両方の粉末または塊または母合金を投入し、SnまたはBiまたはその両方を溶け込ませる。このとき、アルミニウム溶湯は撹拌されていることが好ましい。なお、この混合溶湯準備工程は、前記のアルミニウム溶湯準備工程と同時に実施することもできる。
(Mixed melt preparation process)
Next, by adding at least one of Sn and Bi to the molten aluminum, a mixed molten metal having a total mass ratio of Sn and Bi of 0.0075% by mass to 15% by mass is produced. Specifically, the ratio of the total mass of Sn and Bi to the sum of the mass of the molten aluminum and the total mass of Sn and Bi is 0.0075% by mass to 15% by mass with respect to the molten aluminum. A powder or lump or master alloy of Sn and / or Bi or both is put into the molten aluminum, and Sn or Bi or both are melted. At this time, the molten aluminum is preferably stirred. In addition, this mixed molten metal preparation process can also be implemented simultaneously with the said aluminum molten metal preparation process.
 (鋳造工程)
 次に、混合溶湯を用いて鋳塊または鋳造板を形成する。具体的には、混合溶湯を鋳型に流し込み、これを冷却することによって直方体の塊としての鋳塊を製造する、または混合溶湯を2本の冷却ロール間を通す方法などで急速冷却し、これによって鋳造板を製造する。鋳塊または鋳造板を形成する前に、混合溶湯の脱ガス処理、フィルタ処理等を実施することにより、均質な鋳塊または鋳造板を形成することができる。
(Casting process)
Next, an ingot or a cast plate is formed using the mixed molten metal. Specifically, the mixed molten metal is poured into a mold and cooled to produce an ingot as a rectangular parallelepiped lump, or rapidly cooled by a method in which the mixed molten metal is passed between two cooling rolls. Manufacture cast plates. A homogeneous ingot or cast plate can be formed by performing a degassing process, a filter process, or the like of the mixed molten metal before forming the ingot or cast plate.
 (圧延工程)
 次に、鋳塊または鋳造板を圧延することにより、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下であり、かつJIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔を製造する。具体的には、上記工程を経て得られた鋳塊の表面を切削除去した後にこれを圧延し、または上記工程を経て得られた鋳造板を圧延し、上記のJIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔を製造する。
(Rolling process)
Next, by rolling the ingot or cast plate, the ratio of the total mass of Sn and Bi is 0.0075 mass% or more and 15 mass% or less, and 3 / 4H to H defined by JIS-H0001. Produces a range of tempered aluminum foil. Specifically, after cutting and removing the surface of the ingot obtained through the above-mentioned process, this is rolled, or the cast plate obtained through the above-mentioned process is rolled, and 3 specified by the above JIS-H0001. An aluminum foil tempered in the range of / 4H to H is manufactured.
 (熱処理工程)
 次に、以上の工程を経た、調質されたアルミニウム箔に対して230℃以上の温度で熱処理を実施して、Oから1/4Hに調質したアルミニウム箔を製造する。具体的には、まず、調質されたアルミニウム箔を炉の中に配置し、炉内の温度を室温(25℃)から230℃以上の目的の温度にまで昇温させる。この昇温速度は特に制限されないが、1時間~24時間程度の時間をかけて徐々に目的の温度にまで昇温させることが好ましい。昇温後、目的の温度を10分~168時間維持し、その後、自然冷却により炉内温度を室温(25℃)にまで低下させる。ただし、必ずしも調質されたアルミニウム箔が配置された炉の炉内温度を室温まで下げる必要はなく、目的の温度を所定時間保持した直後に、炉内からアルミニウム箔を取り出してもよい。
(Heat treatment process)
Next, the tempered aluminum foil subjected to the above steps is subjected to heat treatment at a temperature of 230 ° C. or higher to produce an aluminum foil tempered from O to ¼H. Specifically, first, a tempered aluminum foil is placed in a furnace, and the temperature in the furnace is raised from room temperature (25 ° C.) to a target temperature of 230 ° C. or higher. The rate of temperature rise is not particularly limited, but it is preferable to gradually raise the temperature to the target temperature over a period of about 1 to 24 hours. After the temperature rise, the target temperature is maintained for 10 minutes to 168 hours, and then the furnace temperature is lowered to room temperature (25 ° C.) by natural cooling. However, it is not always necessary to lower the furnace temperature of the furnace in which the tempered aluminum foil is arranged to room temperature, and the aluminum foil may be taken out from the furnace immediately after holding the target temperature for a predetermined time.
 上記熱処理により、JIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔が調質され、その硬度がOから1/4Hの範囲に調質されたものとなる。すなわち、本発明のアルミニウム箔となる。 By the above heat treatment, the aluminum foil tempered in the range of 3 / 4H to H specified by JIS-H0001 is tempered, and the hardness is tempered in the range of O to 1 / 4H. That is, the aluminum foil of the present invention is obtained.
 上記熱処理において、熱処理の温度が230℃未満の場合、得られるアルミニウム箔のはんだに対する密着性は、上記の熱処理後のアルミニウム箔と比して低くなる。この理由は明確ではないが、本発明者らは、以下のように推測する。 In the heat treatment, when the temperature of the heat treatment is less than 230 ° C., the adhesion of the obtained aluminum foil to the solder is lower than that of the aluminum foil after the heat treatment. The reason for this is not clear, but the present inventors presume as follows.
 本発明者らは、種々の検討により、熱処理の温度が230℃未満の場合は、熱処理後のアルミニウム箔表面へのSnまたはBiまたはその両方の偏析が少なく、熱処理後のアルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合が0.01%以上65%以下となり難く、かつこの合計表面積の割合が、上記合計体積の割合の5倍以上となり難いことを確認している。このことから、アルミニウム箔の表面積における上記合計表面積の割合や、表面でのSnまたはBiまたはその両方の分布状態等が、アルミニウム箔のはんだに対する密着性に関与しており、これらは熱処理の温度によって変化すると推察される。なお、熱処理の温度が500℃を超える場合は、設備投資やエネルギーコストが高くなるため推奨されない。 As a result of various studies, the inventors have found that when the temperature of the heat treatment is less than 230 ° C., there is little segregation of Sn and / or Bi on the surface of the aluminum foil after the heat treatment, and the total surface area of the aluminum foil after the heat treatment It has been confirmed that the ratio of the total surface area of Sn and Bi is not more than 0.01% and not more than 65%, and that the ratio of the total surface area is less than 5 times the ratio of the total volume. From this, the ratio of the total surface area in the surface area of the aluminum foil, the distribution state of Sn or Bi or both on the surface, etc. are involved in the adhesion of the aluminum foil to the solder, and these depend on the heat treatment temperature. Presumed to change. In addition, when the temperature of heat processing exceeds 500 degreeC, since capital investment and energy cost become high, it is not recommended.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 以下のようにしてアルミニウム箔を製造した。まず、JIS-A1N90材からなるアルミニウム(純度99.98質量%以上)を溶融させたアルミニウム溶湯を準備した(アルミニウム溶湯準備工程)。次に、アルミニウム溶湯にSnを投入し、Snの含有量が10質量%である混合溶湯を作製した(混合溶湯作製工程)。そして、この混合溶湯を用いて鋳塊を形成した(鋳造工程)。次に、鋳塊の表面を切削除去した後、これを室温(25℃)にて冷間圧延し、厚さ30μm、50μm、100μmそれぞれのアルミニウム箔を製造した(圧延工程)。次に、アルミニウム箔を空気雰囲気中で400℃で熱処理を実施した。なお、このアルミニウム箔は、その質別がOに調質されたものであった。
<Example 1>
Aluminum foil was manufactured as follows. First, a molten aluminum melted with aluminum (purity 99.98 mass% or more) made of JIS-A1N90 material was prepared (aluminum melt preparation step). Next, Sn was introduced into the molten aluminum to produce a mixed molten metal having a Sn content of 10% by mass (mixed molten metal production step). And the ingot was formed using this mixed molten metal (casting process). Next, after cutting and removing the surface of the ingot, this was cold-rolled at room temperature (25 ° C.) to produce aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm (rolling step). Next, the aluminum foil was heat-treated at 400 ° C. in an air atmosphere. This aluminum foil was tempered to O.
 <実施例2~7および比較例1~5>
 実施例2~7、比較例1および2は、混合溶湯におけるSnの混合割合を表1に示すように変更した以外は、実施例1と同様の方法により、厚さ30μm、50μm、100μmのそれぞれのアルミニウム箔を製造した。
<Examples 2 to 7 and Comparative Examples 1 to 5>
In Examples 2 to 7 and Comparative Examples 1 and 2, the thicknesses of 30 μm, 50 μm, and 100 μm were changed in the same manner as in Example 1 except that the mixing ratio of Sn in the mixed molten metal was changed as shown in Table 1. An aluminum foil was produced.
 比較例3は、Snを混合しなかった以外は、実施例1と同様の方法により、厚さ30μm、50μm、100μmそれぞれのアルミニウム箔を製造した。また、比較例4および比較例5は、それぞれJIS-A1N30材からなるアルミニウム(純度99.3質量%)およびJIS-A8079材からなるアルミニウム合金(純度98.9質量%)を用い、かつSnを混合しなかった以外は、実施例1と同様の方法により、厚さ30μm、50μm、100μmのそれぞれのアルミニウム箔を製造した。なお、実施例2~7、比較例1~5のアルミニウム箔は、その質別がOに調質されたアルミニウム箔であった。 Comparative Example 3 produced aluminum foils with thicknesses of 30 μm, 50 μm, and 100 μm by the same method as in Example 1 except that Sn was not mixed. Comparative Example 4 and Comparative Example 5 use aluminum (purity 99.3 mass%) made of JIS-A1N30 material and aluminum alloy (purity 98.9 mass%) made of JIS-A8079 material, respectively, and Sn was used. Aluminum foils having a thickness of 30 μm, 50 μm, and 100 μm were produced in the same manner as in Example 1 except that they were not mixed. The aluminum foils of Examples 2 to 7 and Comparative Examples 1 to 5 were aluminum foils that were tempered to O.
 実施例1~7および比較例1~5で用いた原料となるアルミニウムの種類、アルミニウム箔におけるSnの含有割合、調質の程度、厚さについて表1に示す。なお、表1において該当のものを含まない場合には「-」を表記した。 Table 1 shows the kind of aluminum used as a raw material used in Examples 1 to 7 and Comparative Examples 1 to 5, the content ratio of Sn in the aluminum foil, the degree of tempering, and the thickness. In Table 1, “-” is shown when the relevant item is not included.
 <評価>
 実施例1~7および比較例1~5のアルミニウム箔に対してチップ抵抗をはんだ付けし、アルミニウム箔とチップ抵抗との密着性を評価した。
<Evaluation>
Chip resistors were soldered to the aluminum foils of Examples 1 to 7 and Comparative Examples 1 to 5, and the adhesion between the aluminum foil and the chip resistors was evaluated.
 具体的には、はんだペースト(商品名:「BI57 LRA-5 A M Q」、株式会社日本スペリア社製)を準備した。このはんだペーストを、アルミニウム箔上に、中心間距離3.5mm、それぞれの直径が2mm、それぞれの重量が1.5mgとなるよう塗布し、2点に均一にまたがるよう3216型チップ抵抗を配置した。これを、近赤外線イメージ炉(「IR-HP2-6」、株式会社米倉製作所製)を用いて加熱しはんだ付けを実施した。加熱時の条件は、窒素流量を1L/分、最高到達温度を175℃±1℃、50℃から最高到達温度までの設定時間を2分31秒とした。また加熱後ははんだが凝固するまで自然冷却としたが、約-13℃/分の冷却速度であった。 Specifically, a solder paste (trade name: “BI57 LRA-5 AMQ”, manufactured by Nippon Superior Co., Ltd.) was prepared. This solder paste was applied on an aluminum foil so that the distance between the centers was 3.5 mm, each diameter was 2 mm, and each weight was 1.5 mg, and a 3216 type chip resistor was placed so as to evenly spread over two points. . This was heated and soldered using a near-infrared image furnace (“IR-HP2-6” manufactured by Yonekura Seisakusho Co., Ltd.). The heating conditions were a nitrogen flow rate of 1 L / min, a maximum temperature reached 175 ° C. ± 1 ° C., and a set time from 50 ° C. to the maximum temperature reached 2 minutes 31 seconds. Further, after heating, natural cooling was performed until the solder solidified, but the cooling rate was about −13 ° C./min.
 続いて、アルミニウム箔上にはんだ付けされたチップ抵抗に対し、シェア強度測定を実施し、アルミニウム箔とはんだを介して接合されたチップ抵抗との密着性を評価した。評価方法は、ボンドテスター(Nordson dageシリーズ4000)を使用してシェア強度を測定した。具体的には、チップ抵抗をはんだ付けしたアルミニウム箔を平滑な基板に両面テープで固定し、ツール移動距離0.3mm/秒で測定を実施した。 Subsequently, a shear strength measurement was performed on the chip resistor soldered on the aluminum foil, and the adhesion between the aluminum foil and the chip resistor joined via the solder was evaluated. As the evaluation method, the shear strength was measured using a bond tester (Nordson age series 4000). Specifically, an aluminum foil soldered with a chip resistor was fixed to a smooth substrate with double-sided tape, and measurement was performed at a tool moving distance of 0.3 mm / second.
 シェア強度は各サンプルで3回測定しその平均値が30N以上のものを「A」とし、またシェア強度測定中にチップ抵抗とはんだとアルミニウム箔がそれぞれ剥離せずにアルミニウム箔が破断したものを「B」とし、アルミニウム箔が破断せずに、かつシェア強度の平均値が30N未満であったものを「C」とした。すなわち、Aは密着性に優れており、Bはアルミニウム箔が破断する程度に充分な強度で密着性に優れており、Cが最も密着性が低いことになる。その結果を表1に示す。 The shear strength was measured three times for each sample, and the average value of 30N or more was designated as “A”, and the chip resistance, solder, and aluminum foil were not peeled off during the shear strength measurement, and the aluminum foil was broken. "B" was defined as "C" when the aluminum foil was not broken and the average value of the shear strength was less than 30N. That is, A is excellent in adhesion, B is strong enough to break the aluminum foil and excellent in adhesion, and C has the lowest adhesion. The results are shown in Table 1.
 また、実施例1~7および比較例1~5のアルミニウム箔に対し、その表面積に占めるSnの割合(%)を測定した。表面積に占めるSnの割合に関しては、走査型電子顕微鏡を用いて100倍の倍率でアルミニウム箔の表面を撮像し、得られた画像のコントラストに基づいた二値化処理を行った。なお、走査型電子顕微鏡により観察するアルミニウム箔の厚み(深さ)は、光学顕微鏡により観察される程度の深さまでとした。そして、白色または明灰色の領域をSnが占める面積とし、暗灰色または黒色の領域をアルミニウムが占める面積として、アルミニウム箔の表面積に占めるSnの割合(%)を算出した。なお、得られた画像に含まれるアルミニウム箔の実際の面積は、1.28mm×0.96mmである。その結果を表1に示す。 Further, the ratio (%) of Sn in the surface area of the aluminum foils of Examples 1 to 7 and Comparative Examples 1 to 5 was measured. Regarding the ratio of Sn to the surface area, the surface of the aluminum foil was imaged at a magnification of 100 using a scanning electron microscope, and binarization processing based on the contrast of the obtained image was performed. In addition, the thickness (depth) of the aluminum foil observed with a scanning electron microscope was made to the depth of the grade observed with an optical microscope. Then, the ratio (%) of Sn in the surface area of the aluminum foil was calculated with the white or light gray area as the area occupied by Sn and the dark gray or black area as the area occupied by aluminum. In addition, the actual area of the aluminum foil contained in the obtained image is 1.28 mm × 0.96 mm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1を参照し、実施例1~7において、アルミニウム箔とチップ抵抗がはんだを介して充分な強度で接合されていたのに対し、比較例1~5において、チップ抵抗はアルミニウム箔と充分な強度で接合されていなかった。また、アルミニウム箔上にはんだ付けされたはんだを目視により観察したところ、比較例1~5において、はんだはチップ抵抗の側面にのみ付着していたのに対し、実施例1~7においては、はんだはアルミニウム箔面およびチップ抵抗の双方に拡がって密着していた。また、アルミニウム箔の表面積に占めるSnの割合(%)は、比較例1では65%を超えており、比較例2では0.01%未満であることが確認された。 Referring to Table 1, in Examples 1 to 7, the aluminum foil and the chip resistance were joined with sufficient strength via solder, whereas in Comparative Examples 1 to 5, the chip resistance was sufficient with the aluminum foil. It was not joined with strength. Further, when the solder soldered on the aluminum foil was visually observed, in Comparative Examples 1 to 5, the solder adhered only to the side surface of the chip resistor, whereas in Examples 1 to 7, the solder was adhered. Spread and adhered to both the aluminum foil surface and the chip resistor. In addition, it was confirmed that the ratio (%) of Sn to the surface area of the aluminum foil exceeded 65% in Comparative Example 1 and less than 0.01% in Comparative Example 2.
 <実施例8>
 アルミニウム溶湯準備工程において、アルミニウムに対してさらに1質量%のCuを添加した以外は、実施例1と同様の方法により、厚さ30μm、50μm、100μmのアルミニウム箔を製造して、実施例8のアルミニウム箔を製造した。
<Example 8>
In the molten aluminum preparation step, aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm were manufactured by the same method as in Example 1 except that 1% by mass of Cu was further added to aluminum. Aluminum foil was produced.
 <評価>
 実施例8のアルミニウム箔に対し、実施例1と同様の方法により、チップ抵抗をはんだ付けし、シェア強度を測定した。その結果を表2に示す。また、実施例8のアルミニウム箔に対し、その表面積に占めるSnの割合(%)を測定した。その結果を表2に示す。
<Evaluation>
The chip resistance was soldered to the aluminum foil of Example 8 by the same method as in Example 1, and the shear strength was measured. The results are shown in Table 2. Moreover, the ratio (%) of Sn in the surface area of the aluminum foil of Example 8 was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2を参照し、実施例8において、アルミニウム箔とチップ抵抗がはんだを介して充分な強度で接合されていた。また、アルミニウム箔上にはんだ付けされたはんだを目視により観察したところ、実施例8においては、はんだはアルミニウム箔面およびチップ抵抗の双方に拡がって密着していた。 Referring to Table 2, in Example 8, the aluminum foil and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil was visually observed, in Example 8, the solder spread and adhered to both the aluminum foil surface and the chip resistor.
 <実施例9>
 混合溶湯作製工程において、Snに代えてアルミニウムに対して5質量%のBiを添加した以外は、実施例2と同様の方法により、厚さ30μm、50μm、100μmのアルミニウム箔を製造して、実施例9のアルミニウム箔を製造した。
<Example 9>
In the mixed molten metal preparation step, aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm were manufactured by the same method as in Example 2 except that 5 mass% Bi was added to aluminum instead of Sn. The aluminum foil of Example 9 was produced.
 <評価>
 実施例9のアルミニウム箔に対し、実施例1と同様の方法により、チップ抵抗をはんだ付けし、シェア強度を測定した。その結果を表3に示す。また、実施例9のアルミニウム箔に対し、その表面積に占めるBiの割合(%)を測定した。その結果を表3に示す。なお、走査型電子顕微鏡により撮像された画像において、白色または明灰色の領域をBiが占める面積とし、暗灰色または黒色の領域をアルミニウムが占める面積として、アルミニウム箔の表面積に占めるBiの割合(%)を算出した。
<Evaluation>
The chip resistance was soldered to the aluminum foil of Example 9 by the same method as in Example 1, and the shear strength was measured. The results are shown in Table 3. Further, the ratio (%) of Bi in the surface area of the aluminum foil of Example 9 was measured. The results are shown in Table 3. In the image captured by the scanning electron microscope, the white or light gray area is the area occupied by Bi, and the dark gray or black area is the area occupied by aluminum, and the ratio of Bi to the surface area of the aluminum foil (% ) Was calculated.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3を参照し、実施例9において、アルミニウム箔とチップ抵抗がはんだを介して充分な強度で接合されていた。また、アルミニウム箔上にはんだ付けされたはんだを目視により観察したところ、実施例9においては、はんだはアルミニウム箔面およびチップ抵抗の双方に拡がって密着していた。 Referring to Table 3, in Example 9, the aluminum foil and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil was visually observed, in Example 9, the solder spread and adhered to both the aluminum foil surface and the chip resistor.
 <実施例10、11および比較例6>
 熱処理工程において、焼鈍温度を250℃に変更した以外は、実施例3と同様の方法により、厚さ30μm、50μm、100μmのアルミニウム箔を製造して、実施例10のアルミニウム箔を製造した。また、熱処理工程において、焼鈍温度を300℃に変更した以外は、実施例3と同様の方法により、厚さ30μm、50μm、100μmのアルミニウム箔を製造して、実施例11のアルミニウム箔を製造した。また、熱処理工程において、焼鈍温度を200℃に変更した以外は、実施例3と同様の方法により、厚さ30μm、50μm、100μmのアルミニウム箔を製造して、比較例6のアルミニウム箔を製造した。
<Examples 10 and 11 and Comparative Example 6>
In the heat treatment step, aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm were manufactured in the same manner as in Example 3 except that the annealing temperature was changed to 250 ° C., and the aluminum foil of Example 10 was manufactured. Further, in the heat treatment step, aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm were manufactured by the same method as in Example 3 except that the annealing temperature was changed to 300 ° C., and the aluminum foil of Example 11 was manufactured. . Further, in the heat treatment step, aluminum foils having thicknesses of 30 μm, 50 μm, and 100 μm were manufactured by the same method as in Example 3 except that the annealing temperature was changed to 200 ° C., and the aluminum foil of Comparative Example 6 was manufactured. .
 <評価>
 実施例10、11および比較例6のアルミニウム箔に対し、実施例1と同様の方法により、チップ抵抗をはんだ付けし、シェア強度を測定した。その結果を表4に示す。また、実施例10、11および比較例6のアルミニウム箔に対し、その表面積に占めるSnの表面積の割合(%)と、Alの体積に対するSnの体積の割合(%)とを算出し、Snの表面積の割合が、Alの体積に対するSnの体積の割合(%)の5倍以上であるか否かを評価した。その結果を表4に示す。Snの表面積の割合が、Alの体積に対するSnの体積の割合(%)の5倍以上のものについてXと表記し、5倍未満のものをYと表記した。
<Evaluation>
The chip resistance was soldered to the aluminum foils of Examples 10 and 11 and Comparative Example 6 in the same manner as in Example 1, and the shear strength was measured. The results are shown in Table 4. Further, for the aluminum foils of Examples 10 and 11 and Comparative Example 6, the ratio (%) of the surface area of Sn to the surface area and the ratio (%) of the volume of Sn to the volume of Al were calculated. It was evaluated whether or not the ratio of the surface area was 5 times or more of the ratio (%) of the volume of Sn to the volume of Al. The results are shown in Table 4. When the surface area ratio of Sn is 5 times or more of the volume ratio (%) of Sn to the volume of Al, X is indicated, and less than 5 times is indicated as Y.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4を参照し、実施例10および11において、アルミニウム箔とチップ抵抗がはんだを介して充分な強度で接合されていたのに対し、比較例6において、チップ抵抗はアルミニウム箔と充分な強度で接合されていなかった。また、アルミニウム箔上にはんだ付けされたはんだを目視により観察したところ、比較例6において、はんだはチップ抵抗の側面にのみ付着していたのに対し、実施例10および11においては、はんだはアルミニウム箔面およびチップ抵抗の双方に拡がって密着していた。また、アルミニウム箔の表面積に占めるSnの表面積の割合(%)と、アルミニウム箔のAlの体積に占めるSnの体積の割合(%)とを比較したところ、比較例6ではSnの表面積の割合(%)が、Alの体積に占めるSnの体積の割合(%)の5倍未満であることが確認された。 Referring to Table 4, in Examples 10 and 11, the aluminum foil and the chip resistance were joined with sufficient strength via solder, whereas in Comparative Example 6, the chip resistance was sufficient with the aluminum foil. It was not joined. Further, when the solder soldered on the aluminum foil was visually observed, in Comparative Example 6, the solder adhered only to the side surface of the chip resistor, whereas in Examples 10 and 11, the solder was aluminum. It spread and adhered to both the foil surface and the chip resistor. Further, when the ratio (%) of the surface area of Sn to the surface area of the aluminum foil and the ratio (%) of the volume of Sn to the Al volume of the aluminum foil were compared, in Comparative Example 6, the ratio of the surface area of Sn ( %) Was confirmed to be less than 5 times the ratio (%) of the volume of Sn to the volume of Al.
 <実施例12>
 実施例6の厚さ30μmのアルミニウム箔を、厚さ35μmのポリイミドフィルムに接着剤を介して貼り合わせを行い、さらにアルミニウム箔の表面に、レジストパターンを印刷した。レジストパターンは、線幅1mm、線間2mmとした。印刷したアルミニウム箔とポリイミドフィルムの貼り合わせ品を、酸系エッチング液に浸漬し、レジスト印刷がない部分のアルミニウム箔をエッチングにより除去した後に水洗して乾燥し、実施例12のアルミニウム箔構成体を製造した。
<Example 12>
The aluminum foil having a thickness of 30 μm in Example 6 was bonded to a polyimide film having a thickness of 35 μm via an adhesive, and a resist pattern was printed on the surface of the aluminum foil. The resist pattern had a line width of 1 mm and a line spacing of 2 mm. The bonded product of the printed aluminum foil and polyimide film is dipped in an acid-based etching solution, and the aluminum foil in a portion where there is no resist printing is removed by etching, followed by washing with water and drying. Manufactured.
 <評価>
 実施例12のアルミニウム箔構成体に対し、エッチングで残ったアルミニウムの2本の線にそれぞれ上記のハンダペーストを1.5mgずつ塗布し、上記のチップ抵抗を配置した。さらに実施例1と同様の方法でチップ抵抗をはんだ付けし、シェア強度を測定した。その結果を表5に示す。
<Evaluation>
To the aluminum foil structure of Example 12, 1.5 mg of the above solder paste was applied to each of the two aluminum lines remaining after etching, and the above chip resistor was disposed. Furthermore, the chip resistance was soldered by the same method as in Example 1, and the shear strength was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表5を参照し、実施例12において、アルミニウム箔構成体とチップ抵抗がはんだを介して充分な強度で接合されていた。また、アルミニウム箔構成体上にはんだ付けされたはんだを目視により観察したところ、実施例12においては、はんだはアルミニウム箔面およびチップ抵抗の双方に拡がって密着していた。 Referring to Table 5, in Example 12, the aluminum foil structure and the chip resistor were joined with sufficient strength via solder. Moreover, when the solder soldered on the aluminum foil structure was visually observed, in Example 12, the solder spread and adhered to both the aluminum foil surface and the chip resistance.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (6)

  1.  SnおよびBiの少なくとも一方を含有するアルミニウム箔であって、
     前記アルミニウム箔の全質量に対するSnおよびBiの合計質量の割合は、0.0075質量%以上15質量%以下である、アルミニウム箔。
    An aluminum foil containing at least one of Sn and Bi,
    The ratio of the total mass of Sn and Bi with respect to the total mass of the said aluminum foil is 0.0075 mass% or more and 15 mass% or less.
  2.  前記アルミニウム箔において、前記アルミニウム箔の全表面積に対するSnおよびBiの合計表面積の割合は、0.01%以上65%以下であり、かつ前記合計表面積の割合は、Alの体積に対するSnおよびBiの合計体積の割合の5倍以上である、請求項1に記載のアルミニウム箔。 In the aluminum foil, the ratio of the total surface area of Sn and Bi to the total surface area of the aluminum foil is 0.01% or more and 65% or less, and the ratio of the total surface area is the sum of Sn and Bi with respect to the volume of Al. The aluminum foil according to claim 1, wherein the aluminum foil is at least 5 times the volume ratio.
  3.  前記アルミニウム箔は、JIS-H0001で規定されるOから1/4Hの範囲に調質されている、請求項1または2に記載のアルミニウム箔。 The aluminum foil according to claim 1 or 2, wherein the aluminum foil is tempered in a range of O to 1 / 4H defined by JIS-H0001.
  4.  前記アルミニウム箔は、はんだ付け用のアルミニウム箔である、請求項1から3のいずれかに記載のアルミニウム箔。 The aluminum foil according to any one of claims 1 to 3, wherein the aluminum foil is an aluminum foil for soldering.
  5.  請求項1から4のいずれかのアルミニウム箔を用いて製造された、電子部品配線基板。 An electronic component wiring board manufactured using the aluminum foil according to any one of claims 1 to 4.
  6.  アルミニウム溶湯を準備する工程と、
     前記アルミニウム溶湯にSnおよびBiの少なくとも一方を添加することによって、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下の混合溶湯を作製する工程と、
     前記混合溶湯を用いて鋳塊または鋳造板を形成する工程と、
     前記鋳塊または鋳造板を圧延することにより、SnおよびBiの合計質量の割合が0.0075質量%以上15質量%以下であり、かつJIS-H0001で規定される3/4HからHの範囲に調質されたアルミニウム箔を製造する工程と、
     前記調質されたアルミニウム箔に対して230℃以上の温度で熱処理を実施して調質する工程と、を備えるアルミニウム箔の製造方法。
    Preparing a molten aluminum; and
    Adding at least one of Sn and Bi to the molten aluminum to produce a mixed molten metal having a total mass ratio of Sn and Bi of 0.0075% by mass to 15% by mass;
    Forming an ingot or cast plate using the mixed molten metal;
    By rolling the ingot or cast plate, the ratio of the total mass of Sn and Bi is 0.0075 mass% or more and 15 mass% or less, and in the range of 3 / 4H to H defined by JIS-H0001. Producing a tempered aluminum foil;
    And a step of tempering the tempered aluminum foil by performing a heat treatment at a temperature of 230 ° C. or higher.
PCT/JP2015/065056 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method WO2015182589A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580008188.7A CN106029922B (en) 2014-05-30 2015-05-26 The manufacture method of aluminium foil, the electronic unit circuit board for having used it and aluminium foil
US15/109,760 US10706985B2 (en) 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board manufactured using the same, and method of manufacturing aluminum foil
JP2016520707A JP6105815B2 (en) 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board using the same, and method for producing aluminum foil
EP15799656.2A EP3150731B1 (en) 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method
KR1020167022523A KR101807452B1 (en) 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112549 2014-05-30
JP2014-112549 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182589A1 true WO2015182589A1 (en) 2015-12-03

Family

ID=54698914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065056 WO2015182589A1 (en) 2014-05-30 2015-05-26 Aluminum foil, electronic component wiring board, and aluminum foil manufacturing method

Country Status (7)

Country Link
US (1) US10706985B2 (en)
EP (1) EP3150731B1 (en)
JP (1) JP6105815B2 (en)
KR (1) KR101807452B1 (en)
CN (2) CN107805744B (en)
TW (1) TWI629365B (en)
WO (1) WO2015182589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081934A (en) * 2017-10-31 2019-05-30 東洋アルミニウム株式会社 Aluminum foil, and electronic component wiring board including the same, and method for producing the same
JP2021070831A (en) * 2019-10-29 2021-05-06 東洋アルミニウム株式会社 Aluminum laminate and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991304B (en) * 2017-12-29 2022-07-08 东莞东阳光科研发有限公司 Method for measuring lead contents of different thicknesses of surface layer of high-voltage electronic optical foil
CN111263513A (en) * 2020-01-21 2020-06-09 荆门市诺维英新材料科技有限公司 Electronic composite material substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033896A (en) * 1983-08-06 1985-02-21 Taira Okamoto Aluminum alloy
JP2001525488A (en) * 1997-12-02 2001-12-11 ザ ウィタカー コーポレーション Solderable aluminum
JP2004521190A (en) * 2001-04-04 2004-07-15 ハイドロ アルミニウム ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing AlMn strip or sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014430A1 (en) * 1990-05-05 1991-11-07 Metallgesellschaft Ag METHOD FOR PRODUCING CONTINUOUS TAPES AND WIRE
US5518823A (en) 1990-12-11 1996-05-21 Showa Aluminum Kabushiki Aluminum foil as electrolytic condenser electrodes
CN1027718C (en) * 1990-12-11 1995-02-22 昭和铝株式会社 Aluminum foil as electrolytic condenser electrodes
JP4159897B2 (en) 2003-02-26 2008-10-01 東洋鋼鈑株式会社 Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JP5158759B2 (en) * 2007-07-31 2013-03-06 日本製箔株式会社 Entry sheet for drilling
JP2014050861A (en) 2012-09-07 2014-03-20 Uacj Corp Aluminum-alloy-made brazing sheet
CN104357711B (en) 2014-10-17 2016-06-01 江阴新仁科技有限公司 A kind of intelligence freezer heat radiation aluminum foil and manufacture method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033896A (en) * 1983-08-06 1985-02-21 Taira Okamoto Aluminum alloy
JP2001525488A (en) * 1997-12-02 2001-12-11 ザ ウィタカー コーポレーション Solderable aluminum
JP2004521190A (en) * 2001-04-04 2004-07-15 ハイドロ アルミニウム ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing AlMn strip or sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150731A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081934A (en) * 2017-10-31 2019-05-30 東洋アルミニウム株式会社 Aluminum foil, and electronic component wiring board including the same, and method for producing the same
JP7000120B2 (en) 2017-10-31 2022-02-04 東洋アルミニウム株式会社 Aluminum foil and electronic component wiring boards using it, and their manufacturing methods
JP2021070831A (en) * 2019-10-29 2021-05-06 東洋アルミニウム株式会社 Aluminum laminate and method for producing the same
JP7316906B2 (en) 2019-10-29 2023-07-28 東洋アルミニウム株式会社 Aluminum laminate and its manufacturing method

Also Published As

Publication number Publication date
EP3150731A4 (en) 2017-11-15
US10706985B2 (en) 2020-07-07
KR20160111958A (en) 2016-09-27
TW201600614A (en) 2016-01-01
CN106029922B (en) 2017-11-21
JPWO2015182589A1 (en) 2017-04-20
US20160358684A1 (en) 2016-12-08
EP3150731A1 (en) 2017-04-05
KR101807452B1 (en) 2017-12-08
TWI629365B (en) 2018-07-11
JP6105815B2 (en) 2017-03-29
CN106029922A (en) 2016-10-12
CN107805744A (en) 2018-03-16
CN107805744B (en) 2019-10-11
EP3150731B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
CN105452501B (en) The manufacture method of copper alloy, copper alloy thin plate and copper alloy
JP6105815B2 (en) Aluminum foil, electronic component wiring board using the same, and method for producing aluminum foil
CN105452500B (en) The manufacture method of copper alloy, copper alloy thin plate and copper alloy
JP6155405B2 (en) Copper alloy material and method for producing the same
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JP2007301570A (en) Solder alloy
JP2008127606A (en) High-strength copper alloy sheet having oxide film superior in adhesiveness
JP6210910B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2015134955A (en) Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP7000120B2 (en) Aluminum foil and electronic component wiring boards using it, and their manufacturing methods
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP4197717B2 (en) Copper alloy plate for electrical and electronic parts with excellent plating properties
JP7451964B2 (en) Cu alloy plate and its manufacturing method
JP5236973B2 (en) Copper alloy plate for QFN package with excellent dicing workability
JPS63293130A (en) Lead frame material made of cu alloy for semiconductor device
JP7316906B2 (en) Aluminum laminate and its manufacturing method
WO2022196489A1 (en) Aluminum alloy foil, aluminum layered body, and method for producing aluminum alloy foil
JPH07116536B2 (en) High strength Cu alloy
JP2010229517A (en) Copper alloy sheet for electronic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520707

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015799656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15109760

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167022523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE