JP2016069444A - Soil modifier for wet soil and recovery method of soil - Google Patents

Soil modifier for wet soil and recovery method of soil Download PDF

Info

Publication number
JP2016069444A
JP2016069444A JP2014198060A JP2014198060A JP2016069444A JP 2016069444 A JP2016069444 A JP 2016069444A JP 2014198060 A JP2014198060 A JP 2014198060A JP 2014198060 A JP2014198060 A JP 2014198060A JP 2016069444 A JP2016069444 A JP 2016069444A
Authority
JP
Japan
Prior art keywords
soil
dust
modifier
sand
hydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014198060A
Other languages
Japanese (ja)
Other versions
JP6419506B2 (en
Inventor
中川 浩一
Koichi Nakagawa
浩一 中川
裕康 山本
Hiroyasu Yamamoto
裕康 山本
一義 八幡
Kazuyoshi Hachiman
一義 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2014198060A priority Critical patent/JP6419506B2/en
Publication of JP2016069444A publication Critical patent/JP2016069444A/en
Application granted granted Critical
Publication of JP6419506B2 publication Critical patent/JP6419506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil modifier for wet soil which is available in inexpensive price and can improve efficiency of screening operation and can improve bearing resistance of banking by mixing with wet soil, and a method to recycle wet soil containing debris or other foreign matters to recycled soil for banking by using the soil modifier.SOLUTION: A soil modifier is provided as a mixture of collected dust that dust from a sand processing facility of a foundry is collected by a dust collector and the mean particle diameter is 1-260 μm, and lime. The compound ratio by weight (X/Y) of the collected dust (X) and the lime (Y) is set in the range of 9/1 - 5/5.SELECTED DRAWING: Figure 1

Description

本発明は、多くの水分を含んだ土(含水土)の再生処理に使用する土壌改質材と、瓦礫その他の異物を含む含水土を盛土用の再生土に再生する方法とに関する。   The present invention relates to a soil modifying material used for regeneration treatment of soil containing a large amount of water (hydrous soil) and a method for regenerating hydrous soil containing debris and other foreign matters into reclaimed soil for embankment.

2011年3月の東日本大震災からの復興事業に関連して、津波によって生じた堆積土(「津波堆積土」と呼ばれている)の再生処理が行われている。一般に津波堆積土には、土砂だけでなく、コンクリート破片等の建築廃材や流木の根といった瓦礫や廃物も含まれているため、篩分けして再利用可能な土砂とそれ以外の異物(主に瓦礫)とに分別する必要がある。津波堆積土や残土等は概して、屋外で雨等に曝されると多量の水分を含んでベトベト又はドロドロするため、そのままでは篩分け作業を円滑に行うことができない。また、篩分けにより分別回収した土砂については、埋め戻し用の土や盛土用の土として再利用することが想定されているが、特に盛土用の土については、施工場所に盛ったときの土壌の支持力確保が必要になる。こういった事情から津波堆積土を処理する際には、津波堆積土に対し生石灰を重量比率で数%程度混合した上で、篩分け作業を行っている。ちなみに、生石灰(CaO)は水(HO)と反応して消石灰(Ca(OH))へと変化することで、堆積土中から余分な水分を取り除き、堆積土の篩分け作業を円滑化する作用がある。また、生石灰から転じた消石灰は、土砂の成分であるシリカと反応してカルシウムシリケート水和物を生成することが知られており、これが土砂間の結合能力(ひいては土壌の支持力)を高めるのに役立つ。 In connection with the reconstruction work from the Great East Japan Earthquake in March 2011, tsunami deposits (called “tsunami deposits”) are being reclaimed. In general, tsunami sediments contain not only earth and sand but also building debris such as concrete fragments and debris such as driftwood roots and debris. ) And need to be separated. In general, tsunami deposits, residual soils, and the like, when exposed to rain or the like outdoors, contain a large amount of moisture and become sticky or muddy, so the sieving operation cannot be performed smoothly as it is. In addition, it is assumed that soil collected separately by sieving will be reused as backfill soil or embankment soil, but especially for embankment soil, It is necessary to secure the support capacity. Under these circumstances, when treating tsunami deposits, quick lime is mixed with the tsunami deposits by several percent by weight, and then sieving is performed. By the way, quick lime (CaO) reacts with water (H 2 O) and changes to slaked lime (Ca (OH) 2 ), thereby removing excess moisture from the sediment and smoothing the sedimentation of the sediment. There is an action to become. In addition, slaked lime converted from quicklime is known to react with silica, which is a component of earth and sand, to produce calcium silicate hydrate, which enhances the ability to bind soil (and thus the soil support capacity). To help.

津波堆積土の処理材としての生石灰には、上述のような一石二鳥の利点がある一方で、値段が高いという欠点があり(例えば1トン当たり3万円を超えることもある)、生石灰による津波堆積土の処理はコスト的に割高なものとなっている。それ故、生石灰の使用量を減らした安価な土壌改質材が求められている。   Quick lime as a treatment material for tsunami sediments has the advantages of two birds with one stone as described above, but has the disadvantage of high price (for example, it may exceed 30,000 yen per ton). The soil treatment is expensive. Therefore, there is a need for an inexpensive soil modifier that reduces the amount of quicklime used.

なお、特許文献1は、生砂関連の工場から発生したダスト(活性粘土分を含む)と、20〜30重量%の消石灰(水酸化カルシウム)との混合物から成ると共に、粒径が1.5〜20.0mmの粒状をなし、且つ表面に凹凸が形成されてなる水質浄化材・土壌改良材を開示する(同文献の特許請求の範囲参照)。ただし、特許文献1の水質浄化材・土壌改良材は水質浄化を目的・効果とすること、及び、粒径が1.5〜20.0mmの粒状をなしていることから、その粒状材自体が(焼成されていないにもかかわらず)一定の堅牢性を有し、且つその粒状材自体が吸着材として機能する点に特徴がある水質等の浄化・改良材であると解される。少なくとも特許文献1には、堆積土の篩分け作業効率を改善することや、盛土材としての特性を改善することについての開示は認められない。   Patent Document 1 is composed of a mixture of dust (including active clay) generated from a factory related to green sand and 20 to 30% by weight of slaked lime (calcium hydroxide), and has a particle size of 1.5. Disclosed is a water purification material / soil improving material having a particle size of ˜20.0 mm and having irregularities formed on the surface (see the claims of the same document). However, since the water purification material and soil improvement material of Patent Document 1 have the purpose and effect of water purification, and the particle size is 1.5 to 20.0 mm, the granular material itself is It is understood that it is a purification / improving material such as water quality that has a certain fastness (in spite of not being baked) and is characterized in that the granular material itself functions as an adsorbent. At least Patent Literature 1 does not allow disclosure of improving the sieving work efficiency of sedimentary soil or improving the characteristics as a banking material.

特開2004−81993号公報JP 2004-81993 A

本発明の目的は、安価に入手可能であり、含水土に混ぜることで篩分け作業の効率を改善できると共に盛土の支持力を向上させることができる含水土用の土壌改質材を提供することにある。また、その土壌改質材を用いて、瓦礫その他の異物を含む含水土を盛土用の再生土に再生する方法を提供することにある。   An object of the present invention is to provide a soil conditioner for hydrous soil that can be obtained at a low cost and can improve the efficiency of sieving by mixing with hydrous soil and can improve the supporting capacity of embankment. It is in. Another object of the present invention is to provide a method for reclaiming hydrous soil containing rubble and other foreign substances into reclaimed soil for embankment using the soil modifier.

なお、本発明は、鋳物工場で生じる集塵ダスト(鋳造工程や生砂関連工程から廃出されるダストを集塵機で集めたものの総称)の新たな用途ないし再利用方法を提供するという資源リサイクルの意義をも有するものである。   In addition, this invention is the significance of the resource recycling of providing the new use thru | or the reuse method of the dust collection dust (The collective name which collects the dust discharged from a casting process or a raw sand related process) generated in a foundry. It also has.

本発明は、鋳物工場の砂処理設備で生じたダストを集塵機で集めてなる平均粒径が1〜260μmの集塵ダストと、生石灰との混合物である、ことを特徴とする含水土用の土壌改質材である。   The present invention is a soil for hydrous soil, characterized in that it is a mixture of dust collection dust having an average particle diameter of 1 to 260 μm obtained by collecting dust generated by sand treatment equipment in a foundry with a dust collector, and quicklime. It is a modifier.

本発明はまた、瓦礫その他の異物を含む含水土を盛土用の再生土に再生する方法であって、
鋳物工場の砂処理設備で生じたダストを集塵機で集めてなる平均粒径が1〜260μmの集塵ダストと、生石灰との混合物である土壌改質材を準備する改質材準備工程と、
瓦礫その他の異物を含む含水土に対し、前記土壌改質材を0.5〜20重量%の配合比率で混合する混合工程と、
前記混合工程で得られた含水土と土壌改質材との混合物を篩分け装置にかけて、予め定められた閾値粒サイズ以下の土砂と、それ以外の異物とに分別する分別工程と、
を経て、前記分別工程で得られた閾値粒サイズ以下の土砂を盛土用の再生土として回収する、ことを特徴とする土の再生方法である。
The present invention is also a method for reclaiming hydrous soil containing rubble and other foreign matter into reclaimed soil for embankment,
A modifier preparation step of preparing a soil modifier, which is a mixture of dust collection dust having an average particle size of 1 to 260 μm, which is obtained by collecting dust generated in sand processing equipment of a foundry with a dust collector, and quick lime;
A mixing step of mixing the soil modifier with a mixing ratio of 0.5 to 20% by weight with respect to the hydrous soil containing rubble and other foreign matters,
A mixture step of the hydrous soil obtained in the mixing step and the soil modifying material is passed through a sieving device, and a separation step of separating into soil and sand having a predetermined threshold grain size or less and other foreign matters,
The soil regeneration method is characterized in that the earth and sand having a size equal to or smaller than the threshold grain size obtained in the sorting step is collected as reclaimed soil for embankment.

本発明の更に好ましい態様や追加的構成要件については、後記「発明を実施するための形態」欄で説明する。   Further preferred aspects and additional constituent elements of the present invention will be described in the “Mode for Carrying Out the Invention” section below.

本発明の含水土用の土壌改質材によれば、相対的に安価な集塵ダストを生石灰と併用したことで安価に入手可能であるだけでなく、この土壌改質材を含水土に混ぜることで篩分け作業の効率を改善できると共に盛土の支持力(締固め性)を向上させることができる。また、本発明の土の再生方法によれば、前記土壌改質材を用いて、瓦礫その他の異物を含む含水土を盛土用の再生土に再生することができる。   According to the soil-improving material for hydrous soil of the present invention, not only is it available at low cost by using relatively cheap dust collection dust in combination with quick lime, but also the soil-modifying material is mixed with the hydrous soil. As a result, the efficiency of the sieving operation can be improved and the supporting force (compactability) of the embankment can be improved. Moreover, according to the soil regeneration method of the present invention, it is possible to regenerate hydrous soil containing rubble and other foreign matters into reclaimed soil for embankment using the soil modifier.

津波堆積土を盛土材に再生するまでの一連の工程に関する処理システムの概要を示す図。The figure which shows the outline | summary of the processing system regarding a series of processes until it regenerates tsunami deposit soil into embankment material. 土粒子間に働く力を説明するための概念図であって、(A)は、土壌改質材を添加する前の原土における土粒子の状況の模式図、(B)は、原土に土壌改質材を添加した後における土粒子の状況の模式図。It is a conceptual diagram for demonstrating the force which acts between soil particles, (A) is a schematic diagram of the situation of the soil particle in the raw soil before adding a soil modifier, (B) is the raw soil The schematic diagram of the condition of the soil particle after adding a soil modifier.

以下、本発明の詳細及び好ましい実施形態について説明する。   Hereinafter, details and preferred embodiments of the present invention will be described.

[土壌改質材について]
本発明の含水土用の土壌改質材は、鋳物工場で廃物として生じる集塵ダストに、生石灰を混合して得た混合物である。
[About soil modifier]
The soil modifying material for hydrous soil of the present invention is a mixture obtained by mixing quick lime with dust collection dust generated as waste in a foundry.

集塵ダストとは、具体的には、鋳物工場の砂処理設備で生じたダストを集塵機で集めたものである。砂処理設備とは、鋳物砂の調製、鋳物砂の鋳型への造型、注湯後の砂型の解砕、解砕された砂の回収などの鋳物工場内で砂を取り扱う各種工程に関する設備全般を意味する。かかる砂処理設備には一般に集塵機が設置されており、この集塵機によって、工場内に放出されがちな微粒子成分の飛散を防止して労働環境を清澄に保全している。鋳物工場の操業中に集塵機で集められたダストが、本発明の主要原料である「集塵ダスト」である。   Specifically, the dust collection dust is a collection of dust generated in a sand processing facility of a foundry with a dust collector. The sand treatment equipment includes all facilities related to various processes for handling sand in the foundry such as preparation of foundry sand, molding of cast sand into molds, crushing of sand mold after pouring, and recovery of crushed sand. means. A dust collector is generally installed in such a sand treatment facility, and this dust collector prevents the scattering of fine particle components that are apt to be released into the factory and keeps the work environment clear. The dust collected by the dust collector during the operation of the foundry is “dust collection dust” which is the main raw material of the present invention.

砂処理設備の集塵機で集められた集塵ダストは、鋳物砂に近い成分組成を有する。即ち本発明で使用する集塵ダストは、その全量(100質量%)中に、好ましくは、
67〜71質量%のSiO
10〜14質量%のAl
5〜12質量%のFeO,
を含有するものであり、これらの他にも、CaO,MgO,NaO、KO等の無機酸化物を含有するものである。また、この集塵ダストの無機成分のうちの一部(例えば30〜40質量%)は、ベントナイト等の活性粘土分を構成している。
The dust collection collected by the dust collector of the sand treatment facility has a component composition close to foundry sand. That is, the dust collection dust used in the present invention is preferably in the total amount (100% by mass),
67 to 71% by weight of SiO 2,
10-14 wt% Al 2 O 3,
5-12 mass% FeO,
In addition to these, inorganic oxides such as CaO, MgO, Na 2 O, and K 2 O are also included. Moreover, a part (for example, 30-40 mass%) of the inorganic components of the dust collection dust constitutes an active clay component such as bentonite.

本発明で使用する集塵ダストの平均粒径(好ましくは、レーザー回折散乱式粒度分布測定における体積基準平均径)は、1〜260μm、より好ましくは40〜200μmの範囲にある。集塵ダストの平均粒径が1μm未満であると、粒が細かすぎて取扱いに支障を来すため好ましくない。他方、集塵ダストの平均粒径が260μmを超えると、含水土の土粒子の表面に付着して微粉体コーティング(図2(B)参照)を形成することが困難になり、含水土の篩分け作業性を改善できなくなるおそれがある。   The average particle size (preferably, the volume-based average particle size in laser diffraction scattering type particle size distribution measurement) of the dust collection dust used in the present invention is in the range of 1 to 260 μm, more preferably 40 to 200 μm. If the average particle size of the dust collection dust is less than 1 μm, the particles are too fine, which hinders handling. On the other hand, when the average particle size of the dust collection dust exceeds 260 μm, it becomes difficult to form a fine powder coating (see FIG. 2 (B)) by adhering to the surface of the soil particles of the hydrous soil. There is a risk that the separation workability cannot be improved.

本発明において、集塵ダストと併用されるのは生石灰である。市販の生石灰を用いる場合には、CaO純度の高いものを用いることが好ましい。   In the present invention, quick lime is used in combination with dust collection dust. When using commercially available quicklime, it is preferable to use a thing with high CaO purity.

集塵ダストの配合重量をXとし、生石灰の配合重量をYとした場合、集塵ダストと生石灰との重量混合比は、X/Y=9/1〜5/5の範囲にあることが好ましい。
重量混合比:X/Yが9/1よりも集塵ダストリッチになると、生石灰の含有量が過少になって、当該土壌改質材で処理した土を盛土として再利用する場合の盛土の支持力が要求レベルに満たなくなるおそれがあり、好ましくない。他方、重量混合比:X/Yが5/5よりも生石灰リッチになると、生石灰の使用量を従来例(生石灰100%使用)に比べて劇的に減らすことにはならず、コスト面でのメリットが希薄になってしまう。ちなみに、本発明で使用する土壌改質材の単価は、生石灰の単価の数十分の1程度である。
When the mixing weight of the dust collection dust is X and the mixing weight of quick lime is Y, the weight mixing ratio of the dust collection dust and quick lime is preferably in the range of X / Y = 9/1 to 5/5. .
Weight mixing ratio: When X / Y becomes more dust-collecting dust than 9/1, the content of quicklime becomes too small, and support for embankment when reusing soil treated with the soil modifier as embankment It is not preferable because the force may not reach the required level. On the other hand, when the weight mixing ratio: X / Y is richer than quick lime than 5/5, the amount of quick lime used is not drastically reduced compared to the conventional example (use of 100% quick lime). The merit is diluted. Incidentally, the unit price of the soil modifying material used in the present invention is about one tenth of the unit price of quicklime.

[土の再生方法について]
本発明の土の再生方法は、瓦礫その他の異物を含む含水土を盛土用の再生土に再生する方法であって、改質材準備工程、混合工程および分別工程の少なくとも三工程を経る方法である。そして図1は、本方法の一連の工程を実施するのに適した処理システムの一例を示す。図1に即した説明を交えながら、本方法の概要を以下に説明する。
[About soil regeneration]
The soil regeneration method of the present invention is a method of reclaiming hydrous soil containing rubble and other foreign substances into reclaimed soil for embankment, and is a method that passes through at least three steps of a modifier preparation step, a mixing step, and a separation step. is there. FIG. 1 shows an example of a processing system suitable for performing a series of steps of the method. The outline of the present method will be described below with an explanation according to FIG.

本方法の第1ステップである改質材準備工程は、鋳物工場の砂処理設備で生じたダストを集塵機で集めてなる平均粒径が1〜260μm(より好ましくは40〜200μm)の集塵ダストと、生石灰との混合物である土壌改質材を準備する工程である。図1の処理システムでは、集塵機(図示略)から採集した集塵ダストと、生石灰とを粉粒体用の混合機11で混合することで土壌改質材を製造している。混合機11による混合操作は、鋳物工場内で行われることが好ましいが、含水土の処理現場で行われてもよい。   The reformer preparation process, which is the first step of the present method, is a dust collection dust having an average particle size of 1 to 260 μm (more preferably 40 to 200 μm) obtained by collecting dust generated in a sand treatment facility of a foundry with a dust collector. And a step of preparing a soil modifying material that is a mixture with quicklime. In the treatment system of FIG. 1, the soil-improving material is produced by mixing dust-collected dust collected from a dust collector (not shown) and quicklime with a mixer 11 for granular materials. The mixing operation by the mixer 11 is preferably performed in a foundry, but may be performed at a hydrous soil treatment site.

本方法の第2ステップである混合工程は、瓦礫その他の異物を含む含水土に対し、上記改質材準備工程で得られた土壌改質材を0.5〜20重量%の配合比率で混合する工程である。なお、この配合比率は、1〜10重量%がより好ましく、2〜5重量%が更に好ましい。また、第2ステップである混合工程の前に、異物を含む含水土から(比較的大きな)異物を除去するようにしてもよい。   The mixing step, which is the second step of this method, mixes the soil modifying material obtained in the modifying material preparation step with a mixing ratio of 0.5 to 20% by weight with respect to the hydrous soil containing rubble and other foreign matters. It is a process to do. The blending ratio is more preferably 1 to 10% by weight, and further preferably 2 to 5% by weight. Moreover, you may make it remove a (relatively large) foreign material from the hydrous soil containing a foreign material before the mixing process which is a 2nd step.

図1の処理システムでは、異物を含む含水土としての津波堆積土が第1のサイロ12にストックされると共に、土壌改質材が第2のサイロ13にストックされる。第1のサイロ12からは80〜99.5重量%に相当する量の津波堆積土が切り出され、第2のサイロ13からは0.5〜20重量%に相当する量の土壌改質材が切り出される。そして、両サイロから提供された津波堆積土及び土壌改質材は土砂用の混合機14で混合される。土砂用混合機14としては、例えばスクリュー式コンベアやニーダーが使用可能である。   In the treatment system of FIG. 1, tsunami deposit soil as a hydrous soil containing foreign substances is stocked in the first silo 12 and soil modifier is stocked in the second silo 13. An amount of tsunami sediment corresponding to 80 to 99.5% by weight is cut out from the first silo 12, and an amount of soil modifier corresponding to 0.5 to 20% by weight is extracted from the second silo 13. Cut out. And the tsunami sediment and the soil modifier provided from both silos are mixed by the mixer 14 for earth and sand. As the earth and sand mixer 14, for example, a screw type conveyor or a kneader can be used.

混合機14から排出された土壌改質材を含む土砂は、コンベア装置15によって篩分け装置16に送り込まれる。コンベア装置15としては、例えば振動コンベアやベルトコンベアが使用可能である。なお、コンベア装置15で土砂を搬送する途中において、流木片等の相対的に軽量な異物を例えば風圧によってコンベア装置の外に吹き飛ばす等して排除(つまりゴミ除去)してもよい。また、磁選機によって金属製異物を除去してもよい。   The earth and sand containing the soil modifier discharged from the mixer 14 is sent to the sieving device 16 by the conveyor device 15. As the conveyor device 15, for example, a vibration conveyor or a belt conveyor can be used. In the middle of conveying the earth and sand by the conveyor device 15, relatively light foreign matter such as driftwood pieces may be removed (that is, dust removal) by blowing it out of the conveyor device by wind pressure, for example. Moreover, you may remove a metal foreign material with a magnetic separator.

本方法の第3ステップである分別工程は、上記混合工程で得られた含水土と土壌改質材との混合物を篩分け装置にかけて、予め定められた閾値粒サイズ以下の土砂と、それ以外の異物とに分別する工程である。図1の処理システムでは、コンベア装置15を経由して篩分け装置16に投入された土砂は、粒サイズに応じて三種類に分別ないし分級される。図1の篩分け装置16は、好ましくは土砂又は砕石用の振動フルイ機16であり、相対的に粗目のフルイ網16aと、相対的に細目のフルイ網16bとを備えている。即ち、粗目のフルイ網16aによって、粒サイズが40mm以上の土砂や残存異物が捕捉され、篩分けされる。粗目のフルイ網16aを通り抜けた土砂のうち粒サイズが20mm超え40mm未満の土砂が、細目のフルイ網16bによって捕捉され、篩分けされる。そして、細目のフルイ網16bを通り抜けた土砂(つまり粒サイズが20mm以下の土砂)が、盛土用の再生土(盛土材)として回収される。つまり図1の事例では、再生土分別のための「閾値粒サイズ」は20mmということになる。   The separation step, which is the third step of the present method, applies a mixture of the hydrous soil obtained in the mixing step and the soil modifying material to a sieving device, earth and sand below a predetermined threshold grain size, and other than that It is a process of separating into foreign matters. In the processing system of FIG. 1, the earth and sand thrown into the sieving device 16 via the conveyor device 15 is classified or classified into three types according to the grain size. The sieving device 16 shown in FIG. 1 is preferably a vibrating screen 16 for earth or sand or crushed stone, and includes a relatively coarse screen 16a and a relatively fine screen 16b. That is, earth and sand and residual foreign matters having a grain size of 40 mm or more are captured and sieved by the coarse sieve net 16a. Of the earth and sand passing through the coarse sieve net 16a, the earth and sand having a grain size of more than 20 mm and less than 40 mm is captured by the fine sieve net 16b and sieved. And the earth and sand (that is, earth and sand whose grain size is 20 mm or less) that has passed through the fine sieve net 16b is collected as reclaimed earth (banking material) for banking. That is, in the case of FIG. 1, the “threshold grain size” for reclaimed soil sorting is 20 mm.

なお、本明細書において「粒サイズ」とは、篩分け装置が採用する篩分け具(例えば振動フルイ機16におけるフルイ網16b)の機械的又は構造的特徴(例えばフルイ網16bの目の粗さ)に依拠して決定されるパラメータであり、必ずしも理想的な球形状を持った粒の直径を意味するものではない。   In this specification, “grain size” means the mechanical or structural characteristics (for example, the roughness of the sieve screen 16b) of the sieving tool (eg, the sieve screen 16b in the vibration sieve 16) employed by the sieving device. ), And does not necessarily mean the diameter of a grain having an ideal spherical shape.

なお、粒サイズが20mm超え40mm未満の土砂、及び/又は、粒サイズが40mm以上の土砂については、振動フルイ機16に再度投入して土砂の解砕及び篩分けを行ってもよい。   In addition, about the earth and sand whose grain size is more than 20 mm and less than 40 mm, and / or earth and sand whose grain size is 40 mm or more, the earth and sand may be crushed and sieved again by inputting into the vibration sieve 16.

本方法によれば、分別工程に先んじた混合工程において含水土に対して土壌改質材(集塵ダストと生石灰との混合物)が混合されるため、含水土を篩分け装置にかけた場合でも、ダマにならずに円滑に篩分けを行うことができる。   According to this method, since the soil modifier (mixture of dust collection dust and quicklime) is mixed with the hydrous soil in the mixing step prior to the separation step, even when the hydrous soil is passed through a sieving device, Smooth sieving can be performed without causing lumps.

土壌改質材の添加によって篩分け作業が円滑化する理由の一つは、土壌改質材に含まれる集塵ダスト及び生石灰のそれぞれが、含水土中の水分の一部を吸収して土粒子間に介在する水分(いわば遊離水)の量を減少させることにある。生石灰について言えば、生石灰は水と反応して消石灰を生成することが知られているが、消石灰の生成過程で水分を消費する。また、集塵ダストについて言えば、上記混合工程での混合操作によって土粒子表面に集塵ダストが付着するが、その付着した集塵ダストに含まれる活性粘土分が土粒子表面の水分を吸収し、土粒子の表面から水分を取り除く働きをする。このように集塵ダスト及び生石灰のそれぞれの作用により、土粒子間及び土粒子表面の水分量が減少して篩分け作業性が改善される。   One of the reasons that the sieving work is facilitated by the addition of the soil modifier is that each of the dust collection dust and quicklime contained in the soil modifier absorbs a part of the water in the hydrous soil, and the soil particles. The purpose is to reduce the amount of interstitial water (so-called free water). Speaking of quick lime, quick lime is known to react with water to produce slaked lime, but consumes moisture during the production of slaked lime. Also, regarding dust collection dust, dust collection dust adheres to the surface of the soil particles by the mixing operation in the above mixing step, but the active clay contained in the dust collection dust that has adhered absorbs moisture on the surface of the soil particles. It works to remove moisture from the surface of the soil particles. As described above, due to the actions of the dust collection dust and quicklime, the water content between the soil particles and the surface of the soil particles is reduced, and the sieving workability is improved.

篩分け作業が円滑化する理由の二つ目として、平均粒径が1〜260μmという微粉体である集塵ダストが土粒子の表面を被覆することで土粒子の表面積が増大し、土粒子表面付近での見掛け上の水分量が低下することがあげられる。かかる表面積増大効果によって篩分け作業性が改善する理由については、後記「実施例」欄で改めて説明する。   The second reason for the smoothing of the sieving operation is that the dust particles, which are fine powder with an average particle size of 1 to 260 μm, cover the surface of the soil particles to increase the surface area of the soil particles, and the surface of the soil particles The apparent water content in the vicinity is reduced. The reason why the sieving workability is improved by the effect of increasing the surface area will be described again in the “Example” section below.

上記分別工程を経て回収された閾値粒サイズ以下の土砂は、盛土用の再生土(盛土材)として優れた適性を有している。なぜなら、この再生土には、生石灰、及び/又は、生石灰から転じた消石灰が含まれており、これらの石灰分が盛土の支持力向上に貢献するからである。なお、本方法で使用する土壌改質材は、集塵ダストに比して生石灰の含有量が相対的に少ないものであるが、回収された再生土を盛土に利用した場合でも、必要レベルの支持力を発揮し得ることは、後述するCBR試験で確認されている。   The earth and sand having a size equal to or smaller than the threshold grain size collected through the sorting step has excellent suitability as a reclaimed soil (banking material) for banking. This is because the reclaimed soil contains quick lime and / or slaked lime converted from quick lime, and these lime components contribute to the improvement of the bearing capacity of the embankment. Note that the soil conditioner used in this method has a relatively low content of quicklime compared to dust collection dust, but even when the recovered reclaimed soil is used for embankment, it is at the required level. It has been confirmed by the CBR test described later that the supporting force can be exhibited.

以下、本発明に従う実施例1及び2並びに比較対象たる比較例1について説明する。   Examples 1 and 2 according to the present invention and Comparative Example 1 to be compared will be described below.

[土壌改質材の原料]
実施例1及び2並びに比較例1で使用した生石灰は、宇部マテリアルズ株式会社製の生石灰(粒サイズを約2mm程度に調整したもの)である。この市販の生石灰におけるCaOの純度は、約93wt%であった。
[Soil modifying material]
The quicklime used in Examples 1 and 2 and Comparative Example 1 is quicklime made by Ube Materials Co., Ltd. (grain size adjusted to about 2 mm). The purity of CaO in this commercially available quicklime was about 93 wt%.

実施例1及び2で使用した集塵ダストは、本件出願人の子会社であるアイシン高丘東北株式会社の鋳物工場内にあるFCD砂処理設備に設置された集塵機で捕集したダスト(以下「集塵ダストNo.11」と呼ぶ)である。宮城県産業技術総合センターに依頼して集塵ダストの組成分析を行ったところ、集塵ダストNo.11の組成は酸化物換算で次の通りであった。
SiO:70.00wt%、Al:12.67wt%、FeO:6.97wt%、
CaO:2.66wt%、MgO:2.56wt%、
NaO:2.77wt%、KO:1.11wt%、その他:1.26wt%
The dust collection dust used in Examples 1 and 2 is the dust collected by the dust collector installed in the FCD sand treatment facility in the foundry of Aisin Takaoka Tohoku Co., Ltd., which is the subsidiary of the applicant (hereinafter “dust collection”). Called Dust No.11). The composition of dust collection dust was analyzed by requesting the Miyagi Prefectural Industrial Technology Center, and the composition of dust collection dust No. 11 was as follows in terms of oxides.
SiO 2: 70.00wt%, Al 2 O 3: 12.67wt%, FeO: 6.97wt%,
CaO: 2.66 wt%, MgO: 2.56 wt%,
Na 2 O: 2.77 wt%, K 2 O: 1.11 wt%, other: 1.26 wt%

この集塵ダストNo.11の粒度分布をレーザー回折散乱式粒度分布測定器(株式会社セイシン企業製:SKレーザーマイクロンサイザーLMS−2000eを使用)で測定したところ、その体積基準平均径は約163μmであった。また、集塵ダストNo.11の一般的特性を鋳物砂の試験方法に準じて測定したところ、その含水率は4%、強熱減量(ig.loss)は12%であった。また、JISの鋳物砂の試験方法に定められた、メチレンブルー溶液を用いた活性粘土分測定によると、集塵ダストNo.11の活性粘土分は35%であった。   The particle size distribution of the dust collection dust No. 11 was measured with a laser diffraction scattering type particle size distribution measuring instrument (manufactured by Seishin Enterprise Co., Ltd .: SK Laser Micron Sizer LMS-2000e was used), and its volume standard average diameter was about 163 μm. there were. Further, when the general characteristics of the dust collection dust No. 11 were measured according to the test method for foundry sand, the water content was 4% and the loss on ignition (ig.loss) was 12%. In addition, according to the measurement of active clay content using a methylene blue solution defined in the JIS foundry sand test method, the active clay content of dust collection dust No. 11 was 35%.

[実施例1]
実施例1の土壌改質材は、集塵ダストNo.11(X)と生石灰(Y)とを重量混合比X/Y=7/3で混合して得たものである。ちなみに、実施例1の土壌改質材を構成する主要成分の概略組成(換算予測値)は次のとおりである。SiO:49wt%、Al:9wt%、FeO:5wt%、CaO:28wt%、その他:9wt%
[Example 1]
The soil modifying material of Example 1 is obtained by mixing dust collection dust No. 11 (X) and quicklime (Y) at a weight mixing ratio X / Y = 7/3. Incidentally, the approximate composition (converted predicted value) of the main components constituting the soil modifying material of Example 1 is as follows. SiO 2 : 49 wt%, Al 2 O 3 : 9 wt%, FeO: 5 wt%, CaO: 28 wt%, others: 9 wt%

[実施例2]
実施例2の土壌改質材は、集塵ダストNo.11(X)と生石灰(Y)とを重量混合比X/Y=9/1で混合して得たものである。ちなみに、実施例2の土壌改質材を構成する主要成分の概略組成(換算予測値)は次のとおりである。SiO:63wt%、Al:12wt%、FeO:6wt%、CaO:9wt%、その他:10wt%
[Example 2]
The soil modifying material of Example 2 is obtained by mixing dust collection dust No. 11 (X) and quicklime (Y) at a weight mixing ratio X / Y = 9/1. Incidentally, the approximate composition (converted predicted value) of the main components constituting the soil modifying material of Example 2 is as follows. SiO 2 : 63 wt%, Al 2 O 3 : 12 wt%, FeO: 6 wt%, CaO: 9 wt%, others: 10 wt%

[比較例1]
比較例1の土壌改質材は、生石灰(Y)からなるもの(即ちX/Y=0/10)である。ちなみに、比較例1の土壌改質材を構成する主要成分の概略組成は次のとおりである。
CaO:93wt%、その他:7wt%
[Comparative Example 1]
The soil modifying material of Comparative Example 1 is made of quick lime (Y) (that is, X / Y = 0/10). By the way, the general composition of the main components constituting the soil modifier of Comparative Example 1 is as follows.
CaO: 93 wt%, others: 7 wt%

[評価試験に使用した原土]
東日本大震災時に宮城県内に堆積し、その後ストックヤード(一時保管場所)に集められた津波堆積土を、以下に説明する評価試験において「原土」として使用した。
[Raw earth used for evaluation test]
Tsunami sediments deposited in Miyagi Prefecture during the Great East Japan Earthquake and then collected in the stockyard (temporary storage location) were used as “raw soil” in the evaluation tests described below.

[篩分け作業性の評価(含水比試験)]
篩分け作業性の良否を直接的に数値で表すことは難しいが、原土に土壌改質材を添加することで土砂中の含水比がどの程度まで低下したかの測定値を篩分け作業性の間接的又は代替的な評価指標とすることができる。具体的には、土壌改質材を添加する前の原土の含水比と、原土に対して土壌改質材を5重量%添加した場合(即ち原土95重量%、土壌改質材5重量%)の含水比とを比較した。土壌改質材の添加によって含水比が下がるほど、篩分け作業性が良くなる傾向にあると言える。なお、含水比の測定はJIS A1203の含水比試験方法に準拠した。つまり、炉乾燥前の試料土の重さと、約105℃の恒温空気槽で炉乾燥した後の試料土の重さとに基づいて含水比(%)を測定した。
[Evaluation of sieving workability (water content ratio test)]
Although it is difficult to express numerically whether the sieving workability is good or not, the measured value of how much the moisture content in the sediment has been reduced by adding soil modifier to the raw soil Indirect or alternative evaluation indicators. Specifically, the moisture content of the raw soil before adding the soil modifier, and when 5 wt% of the soil modifier is added to the raw soil (that is, 95 wt% of the soil, the soil modifier 5) % Water content). It can be said that the sieving workability tends to improve as the water content ratio decreases due to the addition of the soil modifier. The water content was measured in accordance with the water content test method of JIS A1203. That is, the moisture content (%) was measured based on the weight of the sample soil before oven drying and the weight of the sample soil after oven drying in a constant temperature air bath at about 105 ° C.

表1に、各試験例における含水比の測定結果を示す。

Figure 2016069444
Table 1 shows the measurement results of the water content ratio in each test example.
Figure 2016069444

一般に、原土(津波堆積土)に土壌改質材を添加することで含水比を3%以上低下させることができれば、篩分け作業性を大幅に改善できると言われている。この点、原土に実施例1の土壌改質材を添加すること(試験例3)で土砂中の含水比を6%も低下させることができた。また、原土に実施例2の土壌改質材を添加すること(試験例4)で土砂中の含水比を5%も低下させることができた。いずれも、土壌改質業者の要求を十分に満たすものとなった。   In general, it is said that sieving workability can be greatly improved if the water content ratio can be reduced by 3% or more by adding a soil modifier to the raw soil (tsunami sediment). In this respect, the water content ratio in the earth and sand could be reduced by 6% by adding the soil conditioner of Example 1 to the raw soil (Test Example 3). Moreover, the water content ratio in earth and sand was able to be reduced by 5% by adding the soil modifier of Example 2 to the raw soil (Test Example 4). All of them satisfied the demands of soil conditioners.

実施例1又は2の土壌改質材を原土に添加することで篩分け作業性が改善するメカニズムのうち、特に集塵ダストが作業性改善に貢献するメカニズムについては、次のように考えられる。   Among the mechanisms in which the sieving workability is improved by adding the soil modifying material of Example 1 or 2 to the raw soil, the mechanism in which dust collection dust contributes to the workability improvement is considered as follows. .

図2(A)は土壌改質材を添加する前の原土(津波堆積土)を構成する土粒子の状況を模式的に示したものである。ドロドロの原土は多くの水分を含んでいるため、土粒子はあたかも水中に浮かんでいるような状況にあり、土粒子間に介在する水分によって過大な表面張力(粘着力)が発生する。この表面張力によって土粒子が互いに引き付けあい、相互に付着する結果、ダマを形成して篩分け作業を困難にしている。これに対し、図2(B)は本発明の土壌改質材を添加した後の土粒子の状況を模式的に示す。土壌改質材の多くを占める集塵ダストはミクロン(μm)サイズの微粉体であるため、図2(B)に示すように土粒子の表面に付着して、土粒子を微粉体でコーティング(被覆)することになる。個々の土粒子の表面を被覆する集塵ダストにはベントナイト等の活性粘土分が含まれており、この活性粘土分が土粒子表面の水分を吸収し、土粒子表面から水分を除去する働きをする。また、微粉体コーティングによる土粒子の表面積の増大に伴い、土粒子表面付近での見掛け上の水分量が低下する。このような水分の吸収除去作用および表面積増大効果により、土粒子間に介在し得る水分による表面張力が低下し、土粒子が相互付着する力が弱められる結果、篩分け作業性が改善するものと考えられる。   FIG. 2 (A) schematically shows the state of the soil particles constituting the raw soil (tsunami deposited soil) before the soil modifier is added. Since the muddy raw soil contains a lot of moisture, the soil particles are in a state of floating in the water, and excessive surface tension (adhesive force) is generated by moisture intervening between the soil particles. As a result of the surface particles attracting each other and adhering to each other due to this surface tension, lumps are formed, making sieving work difficult. On the other hand, FIG. 2 (B) schematically shows the situation of the soil particles after adding the soil modifier of the present invention. Dust collection dust, which occupies most of the soil modifier, is a micron (μm) sized fine powder, so it adheres to the surface of the soil particle as shown in FIG. Coating). Dust collection dust that covers the surface of each individual soil particle contains active clay such as bentonite, and this active clay absorbs moisture on the surface of the soil particle and removes moisture from the surface of the soil particle. To do. Further, as the surface area of the soil particles increases due to the fine powder coating, the apparent water content near the surface of the soil particles decreases. Such moisture absorption and removal effect and surface area increase effect reduce the surface tension due to moisture that can intervene between the soil particles and weaken the force with which the soil particles adhere to each other, resulting in improved sieving workability. Conceivable.

[盛土材の支持力の評価]
土木工学の分野で舗装路(路床や路盤)の支持力の評価方法として定着しているCBR試験方法(Method of Test for California Bearing Ratio)に基づいて、盛土材の支持力(締固め性)を評価した。具体的には、土壌改質材を添加する前の原土のCBR値と、原土に対して土壌改質材を5重量%添加した場合(即ち原土95重量%、土壌改質材5重量%)のCBR値とを比較した。土壌改質材の添加によってCBR値が上がるほど、盛土材としての支持力が高いと評価できる。
[Evaluation of supporting capacity of embankment material]
Based on the CBR test method (Method of Test for California Bearing Ratio) established as an evaluation method for bearing capacity of paved roads (roadbed and roadbed) in the field of civil engineering, the bearing capacity (compactability) of embankment materials is evaluated. Specifically, the CBR value of the raw soil before the soil modifier is added and the case where 5% by weight of the soil modifier is added to the raw soil (that is, 95% by weight of the soil, the soil modifier 5) % CBR value). It can be evaluated that the supporting force as the embankment material is higher as the CBR value is increased by the addition of the soil modifier.

なお、CBR値の測定はJIS A1211に準拠した。即ち、JISに定められたモールドを用いて試料土を突き固めてなる円柱状の供試体(直径150mm)を作製し、これを20日間養生した。鋼製の貫入ピストン(直径50mm)及び貫入量測定装置を用いて、養生後の供試体に対しJIS規定の貫入試験を行い、所定の貫入深さにおける荷重値から標準荷重に対するCBR(%)を算出した。   The CBR value was measured according to JIS A1211. That is, a columnar specimen (diameter 150 mm) formed by tamping the sample soil using a mold defined in JIS was prepared and cured for 20 days. Using a steel penetrating piston (diameter 50 mm) and a penetrating amount measuring device, the specimen after curing is subjected to a penetrating test specified in JIS, and the CBR (%) relative to the standard load is calculated from the load value at a predetermined penetrating depth. Calculated.

表2に、各試験例におけるCBR値の測定結果を示す。

Figure 2016069444
Table 2 shows the measurement result of the CBR value in each test example.
Figure 2016069444

原土にほぼCaOからなる改質材を添加した場合(試験例6)には劣るけれども、原土に実施例1の土壌改質材を添加すること(試験例7)でCBR値を23%に上昇させることができた。また、原土に実施例2の土壌改質材を添加すること(試験例8)でCBR値を21%に上昇させることができた。これらの値は土木工事業者の要求レベル(CBR値20%以上)を十分に満たすものである。   Although it is inferior to the case where the modifier made of almost CaO is added to the raw soil (Test Example 6), the CBR value is 23% by adding the soil modifier of Example 1 to the raw soil (Test Example 7). Was able to be raised. Moreover, the CBR value could be raised to 21% by adding the soil modifier of Example 2 to the raw soil (Test Example 8). These values sufficiently satisfy the level required by civil engineering contractors (CBR value of 20% or more).

本発明に従う含水土用の土壌改質材は、上述のように津波堆積土の処理および盛土への再生に利用できるほか、「品質上の問題により残土として長期にわたり放置されて雨水を多く含むことになった建設発生土」や「海や河川から浚渫した泥土」などの水分含有量が比較的多い土(土砂や土壌を含む)の処理、改質または再生に利用することができる。   As described above, the soil conditioner for hydrous soil according to the present invention can be used for the treatment of the tsunami sediment and the regeneration of the embankment, and “it is left as a residual soil for a long time due to quality problems and contains a lot of rainwater. It can be used for the treatment, reforming, or regeneration of soil (including earth and sand and soil) having a relatively high water content such as “construction generated soil” and “mud dredged from the sea or river”.

11 粉粒体用の混合機
12 第1のサイロ
13 第2のサイロ
14 土砂用の混合機
15 コンベア装置
16 振動フルイ機(篩分け装置)
16a 粗目のフルイ網、16b 細目のフルイ網
DESCRIPTION OF SYMBOLS 11 Mixer for granular materials 12 1st silo 13 2nd silo 14 Mixer 15 for earth and sand Conveyor apparatus 16 Vibrating fluid machine (sieving device)
16a Coarse screen, 16b Fine screen

Claims (4)

鋳物工場の砂処理設備で生じたダストを集塵機で集めてなる平均粒径が1〜260μmの集塵ダストと、生石灰との混合物である、ことを特徴とする含水土用の土壌改質材。   A soil modifying material for hydrous soil, characterized in that it is a mixture of dust collection dust having an average particle size of 1 to 260 µm, which is obtained by collecting dust generated in sand processing equipment of a foundry with a dust collector, and quicklime. 前記集塵ダスト(X)と前記生石灰(Y)との重量混合比(X/Y)が、9/1〜5/5の範囲にある、ことを特徴とする請求項1に記載の含水土用の土壌改質材。   2. The hydrous soil according to claim 1, wherein a weight mixing ratio (X / Y) of the dust collection dust (X) and the quicklime (Y) is in a range of 9/1 to 5/5. Soil modifying material. 前記集塵ダストは、
67〜71質量%のSiO
10〜14質量%のAl
5〜12質量%のFeO,
並びに、CaO,MgO,NaOおよびKOを含んでなるものである、
ことを特徴とする請求項1又は2に記載の含水土用の土壌改質材。
The dust collection dust is
67 to 71% by weight of SiO 2,
10-14 wt% Al 2 O 3,
5-12 mass% FeO,
And comprising CaO, MgO, Na 2 O and K 2 O,
The soil modifying material for hydrous soil according to claim 1 or 2.
瓦礫その他の異物を含む含水土を盛土用の再生土に再生する方法であって、
鋳物工場の砂処理設備で生じたダストを集塵機で集めてなる平均粒径が1〜260μmの集塵ダストと、生石灰との混合物である土壌改質材を準備する改質材準備工程と、
瓦礫その他の異物を含む含水土に対し、前記土壌改質材を0.5〜20重量%の配合比率で混合する混合工程と、
前記混合工程で得られた含水土と土壌改質材との混合物を篩分け装置にかけて、予め定められた閾値粒サイズ以下の土砂と、それ以外の異物とに分別する分別工程と、
を経て、前記分別工程で得られた閾値粒サイズ以下の土砂を盛土用の再生土として回収する、ことを特徴とする土の再生方法。
A method for reclaiming hydrous soil containing rubble and other foreign matter into reclaimed soil for embankment,
A modifier preparation step of preparing a soil modifier, which is a mixture of dust collection dust having an average particle size of 1 to 260 μm, which is obtained by collecting dust generated in sand processing equipment of a foundry with a dust collector, and quick lime;
A mixing step of mixing the soil modifier with a mixing ratio of 0.5 to 20% by weight with respect to the hydrous soil containing rubble and other foreign matters,
A mixture step of the hydrous soil obtained in the mixing step and the soil modifying material is passed through a sieving device, and a separation step of separating into soil and sand having a predetermined threshold grain size or less and other foreign matters,
The soil regeneration method is characterized in that the earth and sand having a size equal to or smaller than the threshold grain size obtained in the sorting step is collected as reclaimed soil for embankment.
JP2014198060A 2014-09-29 2014-09-29 Soil modifier for hydrous soil and method for regenerating soil Expired - Fee Related JP6419506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198060A JP6419506B2 (en) 2014-09-29 2014-09-29 Soil modifier for hydrous soil and method for regenerating soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198060A JP6419506B2 (en) 2014-09-29 2014-09-29 Soil modifier for hydrous soil and method for regenerating soil

Publications (2)

Publication Number Publication Date
JP2016069444A true JP2016069444A (en) 2016-05-09
JP6419506B2 JP6419506B2 (en) 2018-11-07

Family

ID=55866057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198060A Expired - Fee Related JP6419506B2 (en) 2014-09-29 2014-09-29 Soil modifier for hydrous soil and method for regenerating soil

Country Status (1)

Country Link
JP (1) JP6419506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127515A (en) * 2017-02-07 2018-08-16 株式会社サンエコセンター Modified soil and manufacturing method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121086A (en) * 1981-01-21 1982-07-28 Tokyo Gas Co Ltd Treatment for regenerating excavated soil
JPH05156251A (en) * 1991-12-10 1993-06-22 Mitsubishi Kasei Corp Improving agent for water-containing soil
JPH0617052A (en) * 1992-06-29 1994-01-25 Tokyo Kankyo Service Kk Method for amending water-containing soil
JPH0770563A (en) * 1993-09-02 1995-03-14 Mitsubishi Chem Corp Conditioner for water-containing soil
JPH07138981A (en) * 1993-11-19 1995-05-30 Tokyo Kankyo Service Kk Improvement method for construction generated soil
JPH0859365A (en) * 1994-08-19 1996-03-05 Jidosha Imono Kk Porous sintered compact and soil conditioner, water purifying agent and artificial soil for plant growth made of the same
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2003300760A (en) * 2002-04-05 2003-10-21 Yoshiaki Sato Method for reutilizing casting dust
JP2004081993A (en) * 2002-08-27 2004-03-18 Sintokogio Ltd Water cleaning material/soil conditioner and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121086A (en) * 1981-01-21 1982-07-28 Tokyo Gas Co Ltd Treatment for regenerating excavated soil
JPH05156251A (en) * 1991-12-10 1993-06-22 Mitsubishi Kasei Corp Improving agent for water-containing soil
JPH0617052A (en) * 1992-06-29 1994-01-25 Tokyo Kankyo Service Kk Method for amending water-containing soil
JPH0770563A (en) * 1993-09-02 1995-03-14 Mitsubishi Chem Corp Conditioner for water-containing soil
JPH07138981A (en) * 1993-11-19 1995-05-30 Tokyo Kankyo Service Kk Improvement method for construction generated soil
JPH0859365A (en) * 1994-08-19 1996-03-05 Jidosha Imono Kk Porous sintered compact and soil conditioner, water purifying agent and artificial soil for plant growth made of the same
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2003300760A (en) * 2002-04-05 2003-10-21 Yoshiaki Sato Method for reutilizing casting dust
JP2004081993A (en) * 2002-08-27 2004-03-18 Sintokogio Ltd Water cleaning material/soil conditioner and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127515A (en) * 2017-02-07 2018-08-16 株式会社サンエコセンター Modified soil and manufacturing method therefor

Also Published As

Publication number Publication date
JP6419506B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
Martín-Morales et al. Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08
Alam et al. Characterization of coarse fraction of red mud as a civil engineering construction material
CN105102396B (en) Aggregate and epipastic mineral material are withdrawn from waste material is removed
CN101687700B (en) Process for preparing a filler for asphalt or concrete starting from a slag material
JP5647371B1 (en) Detoxification method for contaminated soil
CN108080396B (en) Method for recycling native residue soil
JP6316626B2 (en) Civil engineering materials and methods for producing the same
Slama et al. Valorization of harbor dredged sediment activated with blast furnace slag in road layers
JP6419506B2 (en) Soil modifier for hydrous soil and method for regenerating soil
JP5378301B2 (en) Construction sludge treatment method and reclaimed sand from construction sludge
KR100710514B1 (en) A road paving materials using construction waste and method for manufacturing thereof
JP5698016B2 (en) Manufacturing method for civil engineering adjustment material and civil engineering adjustment material
Nam et al. Evaluate the use of reclaimed concrete aggregate in french drain applications.
JP4913193B2 (en) Recycled ground material and manufacturing method thereof
CN114632798B (en) Multistage pretreatment system and method for engineering muck
DE10021792C2 (en) Process for the manufacture of solidified products for the building industry
Asprone et al. Re-use of construction and demolition waste for geotechnical applications
Rajgor et al. A study on marble waste management: opportunities and challenges in current age for making value added bricks
JP5835120B2 (en) Method for producing modified soil
JP6442346B2 (en) Solidified material and method for producing the solidified material
Mohammadinia Effect of geopolymer cement stabilisation on fatigue life of pavement sub-bases with recycled demolition aggregates
Lima et al. Mechanical feasibility of using red mud as filler in asphalt mixtures to improve permanent deformation
JP3321152B1 (en) How to recycle construction sludge
Rosli et al. Physical, mechanical and chemical properties of dewatered sewage sludge and red gypsum mix as a potential recycling product
Espejel-García et al. Chemical Characterization of Slags from an Old Smelter in Chihuahua, Mexico

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6419506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees