JP2016069206A - Piezoelectric ceramic composition and piezoelectric resonator - Google Patents

Piezoelectric ceramic composition and piezoelectric resonator Download PDF

Info

Publication number
JP2016069206A
JP2016069206A JP2014198611A JP2014198611A JP2016069206A JP 2016069206 A JP2016069206 A JP 2016069206A JP 2014198611 A JP2014198611 A JP 2014198611A JP 2014198611 A JP2014198611 A JP 2014198611A JP 2016069206 A JP2016069206 A JP 2016069206A
Authority
JP
Japan
Prior art keywords
piezoelectric
mass
ceramic composition
piezoelectric ceramic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014198611A
Other languages
Japanese (ja)
Other versions
JP6313177B2 (en
Inventor
俊介 毎原
Shunsuke Maibara
俊介 毎原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014198611A priority Critical patent/JP6313177B2/en
Publication of JP2016069206A publication Critical patent/JP2016069206A/en
Application granted granted Critical
Publication of JP6313177B2 publication Critical patent/JP6313177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition and a piezoelectric resonator capable suppressing variation of resonance frequency of a piezoelectric element and making stable frequency.SOLUTION: A piezoelectric ceramic composition contains a composite perovskite type compound represented by (PbBaSrCa)(NbSbMn)(TiZr)O, where a, b, c, d, e and f satisfy 0.97≤a+d+e+f≤1.03, 0.02≤b≤0.25, 0.51≤c≤0.61 and 0≤d+e+f≤0.2 as a main component and Al of 0.001 to 0.3 pts.mass, Fe of 0.001 to 0.5 pts.mass and Si of 0.005 to 0.058 pts.mass based on 100 pts.mass of the main component.SELECTED DRAWING: Figure 1

Description

本発明は、圧電共振子として用いられる圧電磁器組成物および圧電共振子に関するものである。   The present invention relates to a piezoelectric ceramic composition used as a piezoelectric resonator and a piezoelectric resonator.

従来より圧電素子を用いた圧電共振子が知られている。圧電素子を構成する圧電体の材料としては、発振の安定性を確保するための圧電特性(例えば電気機械結合係数kや機械的品質係数Qm)が大きく、また、温度変化に対する共振周波数の変化が小さいといった理由で、主にチタン酸ジルコン酸鉛やチタン酸鉛が用いられている(例えば特許文献1を参照)。   Conventionally, piezoelectric resonators using piezoelectric elements are known. The piezoelectric material constituting the piezoelectric element has a large piezoelectric characteristic (for example, an electromechanical coupling coefficient k and a mechanical quality factor Qm) for ensuring oscillation stability, and changes in the resonance frequency with respect to temperature changes. Because of its small size, lead zirconate titanate and lead titanate are mainly used (see, for example, Patent Document 1).

特開2002−60269号公報Japanese Patent Laid-Open No. 2002-60269

圧電素子を構成する圧電体として一般的なチタン酸ジルコン酸鉛系材料やチタン酸鉛系材料を用いた圧電共振子においては、高温高湿下での共振周波数の変動、温度変化(冷熱サイクル)および機械的衝撃(落下衝撃)による共振周波数の変動が大きいという問題がある。   In piezoelectric resonators that use general lead zirconate titanate materials and lead titanate materials as piezoelectric elements that make up piezoelectric elements, fluctuations in resonance frequency and temperature changes under high temperature and high humidity (cooling cycle) In addition, there is a problem that the resonance frequency varies greatly due to mechanical impact (drop impact).

本発明は上記の事情に鑑みてなされたもので、圧電素子の共振周波数の変動を抑え、安定した周波数とすることのできる圧電磁器組成物および圧電共振子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a piezoelectric ceramic composition and a piezoelectric resonator that can suppress fluctuations in the resonance frequency of the piezoelectric element and achieve a stable frequency.

本発明の圧電磁器組成物は、(Pba−d−e−fBaSrCa)(Nb19/30Sb1/10Mn4/15(TiZr1−c1−bで表わされ、前記a、b、c、d、e、fが0.97≦a+d+e+f≦1.03、0.02≦b≦0.25、0.51≦c≦0.61、0≦d+e+f≦0.2を満足する複合ペロブスカイト型化合物を主成分として含むとともに、該主成分100質量部に対してAlを0.001〜0.3質量部、Feを0.001〜0.5質量部およびSiを0.005〜0.058質量部含むことを特徴とする。 The piezoelectric ceramic composition of the present invention, (Pb a-d-e -f Ba d Sr e Ca f) (Nb 19/30 Sb 1/10 Mn 4/15) b (Ti c Zr 1-c) 1- b O 3 and a, b, c, d, e, f are 0.97 ≦ a + d + e + f ≦ 1.03, 0.02 ≦ b ≦ 0.25, 0.51 ≦ c ≦ 0.61 , 0 ≦ d + e + f ≦ 0.2 as a main component, and 0.001 to 0.3 parts by mass of Al and 0.001 to 0% of Fe with respect to 100 parts by mass of the main component. .5 parts by mass and Si are contained in an amount of 0.005 to 0.058 parts by mass.

また本発明の圧電共振子は、支持基板と、該支持基板の主面上に搭載され、上記の圧電磁器組成物からなる圧電体の一方主面および他方主面に互いに対向する振動電極が設けられた圧電素子とを備えることを特徴とする。   The piezoelectric resonator of the present invention includes a support substrate and vibration electrodes mounted on the main surface of the support substrate and facing each other on one main surface and the other main surface of the piezoelectric body made of the piezoelectric ceramic composition. The piezoelectric element is provided.

本発明の圧電磁器組成物によれば、高温高湿下での共振周波数の変動、温度変化(冷熱サイクル)および機械的衝撃(落下衝撃)による共振周波数の変動を抑制できる。また、本発明の圧電共振子によれば、圧電磁器組成物からなる圧電体を用いた圧電素子の共振周波数の変動を抑え、安定した周波数とすることができる。   According to the piezoelectric ceramic composition of the present invention, it is possible to suppress fluctuations in the resonance frequency due to changes in the resonance frequency under high temperature and high humidity, temperature changes (cooling cycle), and mechanical shocks (dropping shock). In addition, according to the piezoelectric resonator of the present invention, it is possible to suppress the fluctuation of the resonance frequency of the piezoelectric element using the piezoelectric body made of the piezoelectric ceramic composition and to obtain a stable frequency.

本発明の圧電共振子の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of the piezoelectric resonator of this invention.

以下、本発明の圧電磁器組成物の実施形態の一例を説明する。   Hereinafter, an example of an embodiment of the piezoelectric ceramic composition of the present invention will be described.

本実施形態の圧電磁器組成物は、(Pba−d−e−fBaSrCa)(Nb19/30Sb1/10Mn4/15(TiZr1−c1−bで表わされ、前記a、b、c、d、e、fが0.97≦a+d+e+f≦1.03、0.02≦b≦0.25、0.51≦c≦0.61、0≦d+e+f≦0.2を満足する複合ペロブスカイト型化合物を主成分として含むとともに、該主成分100質量部に対してAlを0.001〜0.3質量部、Feを0.001〜0.5質量部およびSiを0.005〜0.058質量部含む。 The piezoelectric ceramic composition of the present embodiment, (Pb a-d-e -f Ba d Sr e Ca f) (Nb 19/30 Sb 1/10 Mn 4/15) b (Ti c Zr 1-c) 1 represented by -b O 3, wherein a, b, c, d, e, f are 0.97 ≦ a + d + e + f ≦ 1.03,0.02 ≦ b ≦ 0.25,0.51 ≦ c ≦ 0. 61, a composite perovskite compound that satisfies 0 ≦ d + e + f ≦ 0.2 as a main component, 0.001 to 0.3 parts by mass of Al, and 0.001 to Fe for 100 parts by mass of the main component 0.5 part by mass and 0.005 to 0.058 part by mass of Si are included.

本実施形態の圧電磁器組成物における主成分としての複合ペロブスカイト型化合物は、金属元素として少なくともPb、Ti、Nb、Sb、Mn、Zrを含むチタン酸ジルコン酸鉛系の材料であり、モル比による組成式を、Pb(Nb19/30Sb1/10Mn4/15(TiZr1−c1−bと表わすことができる。 The composite perovskite type compound as the main component in the piezoelectric ceramic composition of the present embodiment is a lead zirconate titanate-based material containing at least Pb, Ti, Nb, Sb, Mn, and Zr as a metal element, depending on the molar ratio. The composition formula can be expressed as Pb a (Nb 19/30 Sb 1/10 Mn 4/15 ) b (Ti c Zr 1-c ) 1-b O 3 .

ここで、後述する一部置換される場合を除いて、複合ペロブスカイト型化合物のAサイトにおけるPbの量が少なくなると落下衝撃で共振しなくなる傾向があり、Pbの量が多くなると冷熱サイクル後の共振周波数の変化率が大きくなる傾向がある。   Here, except for the case of partial replacement described later, when the amount of Pb at the A site of the composite perovskite compound decreases, there is a tendency that resonance does not occur due to a drop impact, and when the amount of Pb increases, the resonance after the thermal cycle The frequency change rate tends to increase.

また、Pbの一部はBa、Sr、Caのうちの少なくとも一種で置換されてもよく、この置換により、結晶格子に歪を設けることができ、チタン酸ジルコン酸鉛系材料の分極反転を誘発し易くなり、電気機械結合係数などの圧電特性を向上できる効果がある。なお、Ba、Sr、Caのうちの一種乃至すべての元素でPbの一部が置換される場合の置換量(Ba、Sr、Caのモル比)が多くなると、高温高湿後の共振周波数の変化率と温度サイクルの共振周波数の変化率が大きくなる傾向がある。   Moreover, a part of Pb may be substituted with at least one of Ba, Sr, and Ca, and this substitution can give strain to the crystal lattice and induce polarization inversion of the lead zirconate titanate-based material. This has the effect of improving the piezoelectric characteristics such as the electromechanical coupling coefficient. In addition, when the substitution amount (Molar ratio of Ba, Sr, Ca) when a part of Pb is substituted with one or all of Ba, Sr, and Ca increases the resonance frequency after high temperature and high humidity. The rate of change and the rate of change of the resonance frequency of the temperature cycle tend to increase.

以上のことから、本実施形態における主成分である複合ペロブスカイト型化合物は、モル比による組成式として、(Pba−d−e−fBaSrCa)(Nb19/30Sb1/10Mn4/15(TiZr1−c1−bで表わされ、この複合ペロブスカイト型化合物のAサイトにおけるa、d、e、fについては、0.97≦a+d+e+f≦1.03、0≦d+e+f≦0.2を満足するものである。 From the above, the composite perovskite compound is the main component in this embodiment, as the composition formula by molar ratio, (Pb a-d-e -f Ba d Sr e Ca f) (Nb 19/30 Sb 1 / 10 Mn 4/15 ) b (Ti c Zr 1-c ) 1-b O 3 , and a, d, e, f at the A site of this composite perovskite compound are 0.97 ≦ a + d + e + f ≦ 1.03, 0 ≦ d + e + f ≦ 0.2 is satisfied.

なお、PbがBa、Sr、Caのうちの少なくとも一つで置換されない場合(d+e+f=0の場合)は0.97≦a≦1.03となり、PbがBa、Sr、Caのうちの少なくとも一つにより、例えばモル比0.2で置換される場合(d+e+f=0.2の場合)は0.77≦a≦1.03となる。   When Pb is not substituted with at least one of Ba, Sr, and Ca (when d + e + f = 0), 0.97 ≦ a ≦ 1.03, and Pb is at least one of Ba, Sr, and Ca. Thus, for example, when the molar ratio is 0.2 (d + e + f = 0.2), 0.77 ≦ a ≦ 1.03.

一方、この複合ペロブスカイト型化合物のBサイトにおいて、bが0.02未満であると、冷熱サイクル後の共振周波数の変化率が大きくなる傾向がある。一方、bが0.25を超えると高温高湿後の共振周波数の変化率が大きくなる傾向がある。また、cが0.51未満であると、冷熱サイクル後の共振周波数の変化率が大きくなる傾向がある。一方、cが0.61を超えると高温高湿後の共振周波数の変化率が大きくなる傾向がある。したがって、0.02≦b≦0.25、0.51≦c≦0.61も満足する必要がある。   On the other hand, when B is less than 0.02 at the B site of this composite perovskite type compound, the rate of change in resonance frequency after the thermal cycle tends to increase. On the other hand, if b exceeds 0.25, the rate of change in resonance frequency after high temperature and high humidity tends to increase. Moreover, when c is less than 0.51, the change rate of the resonance frequency after the cooling / heating cycle tends to increase. On the other hand, if c exceeds 0.61, the rate of change in resonance frequency after high temperature and high humidity tends to increase. Therefore, it is necessary to satisfy 0.02 ≦ b ≦ 0.25 and 0.51 ≦ c ≦ 0.61.

さらに、本実施形態の圧電磁器組成物は、上記の複合ペロブスカイト型化合物からなる主成分100質量部に対してAlを0.001〜0.3質量部、Feを0.001〜0.5質量部およびSiを0.005〜0.058質量部含有している。   Furthermore, the piezoelectric ceramic composition of the present embodiment has 0.001 to 0.3 parts by mass of Al and 0.001 to 0.5 parts by mass of Fe with respect to 100 parts by mass of the main component composed of the composite perovskite compound. And 0.005 to 0.058 parts by mass of Si.

Fe量に関して、主成分100質量部に対して0.001質量部より少ない場合は、高温高湿後、冷熱サイクルでの共振周波数の変化率が大きくなる傾向があり、0.5質量部を超える場合も同様に高温高湿後、温度サイクルでの共振周波数の変化率が大きくなる傾向がある。   When the Fe content is less than 0.001 part by mass with respect to 100 parts by mass of the main component, the rate of change of the resonance frequency in the cooling cycle tends to increase after high temperature and high humidity, exceeding 0.5 part by mass. In the same manner, the rate of change of the resonance frequency in the temperature cycle tends to increase after high temperature and high humidity.

また、Al量に関して、主成分100質量部に対して0.001質量部より少ない場合は、高温高湿後、冷熱サイクルでの共振周波数の変化率が大きくなる傾向があり、0.3質量部を超える場合も同様に高温高湿後、冷熱サイクルでの共振周波数の変化率が大きくなる傾向がある。   Further, when the amount of Al is less than 0.001 part by mass with respect to 100 parts by mass of the main component, the rate of change of the resonance frequency in the cooling cycle tends to increase after high temperature and high humidity, 0.3 parts by mass Similarly, when the temperature exceeds 50%, the rate of change of the resonance frequency in the cooling / heating cycle tends to increase after high temperature and high humidity.

また、Si量に関し、主成分100質量部に対して0.005質量部より少ない場合は、高温高湿後で共振周波数の変化率が大きくなる傾向があり、0.058質量部を超えると冷熱サイクルでの共振周波数の変化率が大きくなる傾向があり、さらには共振しなくなる傾向もある。   Further, when the amount of Si is less than 0.005 parts by mass with respect to 100 parts by mass of the main component, the change rate of the resonance frequency tends to increase after high temperature and high humidity, and when it exceeds 0.058 parts by mass, There is a tendency for the rate of change of the resonance frequency in the cycle to increase, and there is also a tendency for resonance not to occur.

なお、上記FeおよびAlは、少なくともその一部が、複合ペロブスカイト型化合物に固溶してもよい。例えば、Feが2価または3価イオンとして複合ペロブスカイト型化合物のBサイトに固溶することで、酸素空孔が生じ焼結が促進する。また、Alが3価イオンとして複合ペロブスカイト型化合物のBサイトに固溶することで、酸素空孔が生じ焼結が促進する。   Note that at least a part of the Fe and Al may be dissolved in the composite perovskite compound. For example, when Fe is dissolved as a divalent or trivalent ion at the B site of the composite perovskite compound, oxygen vacancies are generated and sintering is promoted. Further, Al is dissolved as a trivalent ion at the B site of the composite perovskite compound, whereby oxygen vacancies are generated and sintering is promoted.

また、Feが2価または3価イオンとして固溶する、またはAlが3価イオンとして固溶することで酸素空孔が生じると、ドメインウォール(分域壁)にピン止め効果が働き、ドメインウォール(分域壁)の変動を抑制できる。よって、冷熱サイクル、落下衝撃での共振周波数の変動を抑制することができるものと思われる。   In addition, when Fe is dissolved as divalent or trivalent ions, or Al is dissolved as trivalent ions, oxygen vacancies are generated, and a pinning effect acts on the domain wall (domain wall). (Domain wall) fluctuations can be suppressed. Therefore, it seems that the fluctuation | variation of the resonant frequency by a thermal cycle and a drop impact can be suppressed.

また、SiがSiOとして粒界で液相化することで、拡散速度が向上して焼結が促進する。よって、本実施形態の圧電磁器組成物により作製される圧電磁器の焼結性が向上し、粒界からの水分の侵入を防止できるため、高温高湿下での共振周波数の変動を抑制することができるものと思われる。 さらに、Siは粒界にSiOとして存在しているのがよい。SiOの熱伝導率はチタン酸ジルコン酸鉛系材料の熱伝導率よりも低いことから、このような構成とすることで、チタン酸ジルコン酸鉛系材料で構成される結晶粒子への熱伝導を低減できるため、冷熱サイクルによる共振周波数の変動をさらに小さくできる。 In addition, Si becomes a liquid phase at the grain boundary as SiO 2 , so that the diffusion rate is improved and sintering is promoted. Therefore, since the sinterability of the piezoelectric ceramic produced by the piezoelectric ceramic composition of the present embodiment is improved and moisture can be prevented from entering from the grain boundary, the fluctuation of the resonance frequency under high temperature and high humidity is suppressed. Seems to be able to. Furthermore, Si is preferably present as SiO 2 at the grain boundary. Since the thermal conductivity of SiO 2 is lower than the thermal conductivity of lead zirconate titanate-based materials, such a configuration makes it possible to conduct heat to crystal particles composed of lead zirconate titanate-based materials. Therefore, the fluctuation of the resonance frequency due to the cooling / heating cycle can be further reduced.

なお、Siが粒界にSiOとして存在していることは、透過型電子顕微鏡(TEM)を用い、電子線回折パターンを用いた構造分析、電子線照射によって発生した特性X線を用いた元素分析にて測定することができる。 The fact that Si is present at the grain boundary as SiO 2 is an element that uses a transmission electron microscope (TEM), structural analysis using an electron beam diffraction pattern, and characteristic X-rays generated by electron beam irradiation. It can be measured by analysis.

本実施形態の圧電磁器組成物によれば、圧電磁器組成物からなる圧電体を用いた圧電素子の共振周波数の変動を抑え、安定した周波数とすることができる。   According to the piezoelectric ceramic composition of the present embodiment, fluctuations in the resonance frequency of a piezoelectric element using a piezoelectric body made of the piezoelectric ceramic composition can be suppressed and a stable frequency can be obtained.

上述の圧電磁器組成物は圧電共振子(レゾネータ)として使用することができる。   The above-described piezoelectric ceramic composition can be used as a piezoelectric resonator (resonator).

本実施形態の圧電共振子は、支持基板2と、支持基板2の主面上に搭載され、上記の圧電磁器組成物からなる圧電体11の一方主面および他方主面に互いに対向する振動電極12が設けられた圧電素子1とを備えている。   The piezoelectric resonator according to the present embodiment is mounted on the main surface of the support substrate 2 and the support substrate 2, and the vibrating electrode is opposed to the one main surface and the other main surface of the piezoelectric body 11 made of the piezoelectric ceramic composition. And a piezoelectric element 1 provided with 12.

支持基板2は、例えば、長さが2.5mm〜7.5mm、幅が1.0mm〜3.0mm、厚みが0.1mm〜1mmの長方形状の平板として形成された誘電体の両主面に端子電極や容量形成電極などの電極が設けられたものである。電極材料としては、例えば金,銀
,銅,アルミニウム,タングステン等の金属粉末を樹脂中に分散させてなる導電性樹脂や、それら金属粉末にガラス等の添加物を加えて焼き付けた厚膜導体等を用いることができる。必要に応じてNi/Au、Ni/Sn等のめっきを形成したものでもよい。
The support substrate 2 is, for example, both main surfaces of a dielectric formed as a rectangular flat plate having a length of 2.5 mm to 7.5 mm, a width of 1.0 mm to 3.0 mm, and a thickness of 0.1 mm to 1 mm. Are provided with electrodes such as terminal electrodes and capacitance forming electrodes. Examples of electrode materials include conductive resins in which metal powders such as gold, silver, copper, aluminum, and tungsten are dispersed in resins, and thick film conductors that are baked by adding additives such as glass to these metal powders. Can be used. If necessary, Ni / Au or Ni / Sn plating may be formed.

支持基板2の上には、圧電素子1が搭載されている。具体的には、圧電素子1の両端部が支持部3および導電性接合材4によって支持基板2上に振動可能に固定されている。   On the support substrate 2, the piezoelectric element 1 is mounted. Specifically, both end portions of the piezoelectric element 1 are fixed on the support substrate 2 by the support portion 3 and the conductive bonding material 4 so as to vibrate.

圧電素子1において、圧電体の11の上側の主面に設けられた振動電極12は長手方向の一方の端部から他方の端部に向けて延びるように設けられ、圧電体11の下側の主面に設けられた振動電極12は長手方向の他方の端部から一方の端部に向けて延びるように設けられ、それぞれ互いに対向する領域を有している。この振動電極12は、例えば金,銀,銅,アルミニウム等の金属を用いることができ、それぞれ圧電体11の表面に例えば0.1μm〜3μmの厚みに被着される。   In the piezoelectric element 1, the vibration electrode 12 provided on the upper main surface of the piezoelectric body 11 is provided so as to extend from one end portion in the longitudinal direction toward the other end portion. The vibration electrode 12 provided on the main surface is provided so as to extend from the other end portion in the longitudinal direction toward the one end portion, and has regions facing each other. The vibrating electrode 12 can be made of metal such as gold, silver, copper, or aluminum, and is attached to the surface of the piezoelectric body 11 to a thickness of, for example, 0.1 μm to 3 μm.

そして、支持部3および導電性接合材4を介して圧電素子1の振動電極12が支持基板1上の電極と電気的に接続されている。この支持部3および導電性接合材4は、支持基板2と圧電素子1との間に所定の空間(間隙)を確保する機能も有している。   The vibration electrode 12 of the piezoelectric element 1 is electrically connected to the electrode on the support substrate 1 through the support portion 3 and the conductive bonding material 4. The support portion 3 and the conductive bonding material 4 also have a function of ensuring a predetermined space (gap) between the support substrate 2 and the piezoelectric element 1.

支持部3は、例えば導電性ペーストにより形成されたものである。また、導電性接合材4としては、例えばはんだや導電性接着剤等が用いられる。はんだであれば、例えば銅,錫,銀からなる鉛を含まない材料等を用いることができ、導電性接着剤であれば、銀,銅,ニッケル等の導電性粒子を75〜95質量%含有したエポキシ系の導電性樹脂またはシリコーン系の樹脂を用いることができる。   The support part 3 is formed of, for example, a conductive paste. Moreover, as the conductive bonding material 4, for example, solder, a conductive adhesive, or the like is used. If it is a solder, for example, a lead-free material such as copper, tin, or silver can be used. If it is a conductive adhesive, it contains 75 to 95% by mass of conductive particles such as silver, copper, and nickel. Epoxy conductive resin or silicone resin can be used.

このようにして支持基板2上に搭載された圧電素子1は、上側の振動電極12および下側の振動電極12との間に電圧を印加したとき、これらが対向する領域において、特定の周波数で厚み縦振動もしくは厚みすべり振動の圧電振動を発生させるようになっているものである。   When the piezoelectric element 1 mounted on the support substrate 2 in this way is applied with a voltage between the upper vibrating electrode 12 and the lower vibrating electrode 12, the piezoelectric element 1 has a specific frequency in a region where they face each other. A piezoelectric vibration of thickness longitudinal vibration or thickness shear vibration is generated.

なお、支持基板2の上には圧電素子1を覆うように蓋体5が設けられている。この蓋体5は、支持基板2の上面の周縁部に接着剤などで接合されていて、これにより、支持基板2とともに形成した空間に収容されている圧電素子1を外部からの物理的な影響や化学的な影響から保護する機能と、支持基板2とともに形成した空間内への水等の異物の浸入を防ぐための気密封止機能を有している。なお、蓋体5の材料として、例えば、SUSなどの金属、アルミナなどのセラミックス,樹脂,ガラス等を用いることができる。また、エポキシ樹脂等の絶縁性樹脂材料に無機フィラーを25〜80質量%の割合で含有させて容量基板1との熱膨張係数の差を小さくするようにしたものでもよい。   A lid 5 is provided on the support substrate 2 so as to cover the piezoelectric element 1. The lid 5 is bonded to the peripheral edge of the upper surface of the support substrate 2 with an adhesive or the like, thereby causing the piezoelectric element 1 accommodated in the space formed together with the support substrate 2 to physically influence from the outside. And a function of protecting from chemical influences, and a hermetic sealing function for preventing entry of foreign matters such as water into the space formed together with the support substrate 2. In addition, as a material of the lid 5, for example, a metal such as SUS, ceramics such as alumina, resin, glass, or the like can be used. In addition, an insulating resin material such as an epoxy resin may contain an inorganic filler in a proportion of 25 to 80% by mass so as to reduce the difference in thermal expansion coefficient from the capacitive substrate 1.

このような構成とすることで、安定した周波数の圧電共振子とすることができる。   With such a configuration, a piezoelectric resonator having a stable frequency can be obtained.

次に、本実施形態の圧電共振子の製造方法について説明する。   Next, a method for manufacturing the piezoelectric resonator of this embodiment will be described.

まず、圧電素子1を構成する上記の圧電磁器組成物からなる圧電体11を作製する。
原料粉末として高純度のPbO、ZrO、TiO、Nb、Sb、MnO、Fe、AlおよびSiOの各原料粉末を所定量秤量し、ZrOボールを用いたボールミルで例えば10時間湿式混合し、次いで、この混合物を脱水、乾燥した後、仮焼し、当該仮焼物を再びボールミルで湿式粉砕する。
First, a piezoelectric body 11 made of the piezoelectric ceramic composition constituting the piezoelectric element 1 is produced.
Predetermined amounts of high-purity PbO, ZrO 2 , TiO 2 , Nb 2 O 5 , Sb 2 O 5 , MnO 2 , Fe 2 O 3 , Al 2 O 3 and SiO 2 are used as raw material powders, and ZrO For example, wet mixing is performed for 10 hours in a ball mill using two balls, then the mixture is dehydrated and dried, calcined, and the calcined product is wet pulverized again by the ball mill.

その後、この粉砕物に有機バインダーを混合し、造粒する。   Thereafter, an organic binder is mixed into the pulverized product and granulated.

得られた粉末を例えば1.5ton/cmの圧力で所定の形状となるようにプレス成形を行い、焼成する。そして、焼結体を研磨加工し、両端面にそれぞれ例えば銀電極を焼き付け、この電極間に直流電界を印加することで分極処理を行う。分極処理された試料をオーブン中で、例えば100℃、1時間の熱処理を加えた後、24時間放置して圧電体11を作製する。 The obtained powder is press-molded so as to have a predetermined shape at a pressure of 1.5 ton / cm 2 and fired. Then, the sintered body is polished, for example, silver electrodes are baked on both end faces, and a polarization process is performed by applying a direct current electric field between the electrodes. The sample subjected to the polarization treatment is subjected to a heat treatment at 100 ° C. for 1 hour in an oven, and then left for 24 hours to produce the piezoelectric body 11.

次に、圧電体11の上下両主面に振動電極12を設ける。圧電体11の上下両主面に形成される振動電極12は、真空蒸着法,PVD法,スパッタリング法等を用いて金属膜を被着させ、厚みが例えば1μm〜10μmのフォトレジスト膜をそれぞれの金属膜上にスクリーン印刷等を用いて形成した後に、フォトエッチングによってパターニングすることによって、形成することができる。振動電極12のパターンニングされた圧電体11を所定のサイズにダイシング等でカットすることにより圧電素子1が作製される。   Next, the vibrating electrodes 12 are provided on the upper and lower main surfaces of the piezoelectric body 11. The vibrating electrodes 12 formed on the upper and lower main surfaces of the piezoelectric body 11 are coated with a metal film by using a vacuum deposition method, a PVD method, a sputtering method, or the like, and a photoresist film having a thickness of, for example, 1 μm to 10 μm is used. It can be formed by patterning by photoetching after it is formed on the metal film by screen printing or the like. The piezoelectric element 1 is manufactured by cutting the patterned piezoelectric body 11 of the vibration electrode 12 into a predetermined size by dicing or the like.

次に、支持基板2を作製するための多数個取り基板を作製する。例えばチタン酸鉛、チタン酸ジルコン酸鉛、チタン酸バリウムなどの原料粉末を水や分散剤と共にボールミルを用いて混合した後に、バインダー、可塑剤等を加え、乾燥、整粒する。このようにして得られた原料をプレス成型し、必要により孔加工を施した後、所定温度で脱脂後、例えば900℃〜1600℃のピーク温度で焼成し、所定の厚みに研磨加工を実施する。その後、例えば、銀、ニッケル等の金属粉末とガラスを含む導電性ペーストを印刷し、所定の温度で焼成し、電極などを形成して支持基板2を得る。   Next, a multi-piece substrate for producing the support substrate 2 is produced. For example, raw powders such as lead titanate, lead zirconate titanate, and barium titanate are mixed together with water and a dispersant using a ball mill, and then a binder, a plasticizer, and the like are added, followed by drying and sizing. The raw material thus obtained is press-molded and, if necessary, subjected to hole processing, degreased at a predetermined temperature, fired at a peak temperature of, for example, 900 ° C. to 1600 ° C., and polished to a predetermined thickness . Thereafter, for example, a conductive paste containing a metal powder such as silver or nickel and glass is printed and baked at a predetermined temperature to form an electrode or the like to obtain the support substrate 2.

得られた支持基板2に、スクリーン印刷等を用いて導電性ペーストによる支持部3を例えば厚み1μm〜100μmに形成する。   A support portion 3 made of a conductive paste is formed on the obtained support substrate 2 with a thickness of 1 μm to 100 μm, for example, using screen printing or the like.

そして、導電性接合材4を用いて、圧電素子1を支持基板2の支持部3の上に搭載し、固定する。ここで、導電性接合材4が金属粉末を樹脂中に分散させてなる導電性接着剤の場合は、ディスペンサ等を用いてこの導電性接着剤を支持部3の上に塗布しておいて、圧電素子1を支持部3の上に載せ、加熱または紫外線照射により導電性接着剤の樹脂を硬化させればよい。   Then, the piezoelectric element 1 is mounted on the support portion 3 of the support substrate 2 and fixed using the conductive bonding material 4. Here, in the case where the conductive bonding material 4 is a conductive adhesive in which metal powder is dispersed in a resin, the conductive adhesive is applied on the support portion 3 using a dispenser or the like, The piezoelectric element 1 may be placed on the support portion 3 and the conductive adhesive resin may be cured by heating or ultraviolet irradiation.

そして、圧電素子1を覆うようにして、蓋体5の開口周縁面を支持基板2の上面の周縁部に接合する。蓋体5としては複数の凹部を有する多数個取りの集合蓋体シートを用いて、凹部が圧電素子1を覆うようにして集合蓋体シートを多数個取り基板の上に乗せ、蓋体5の開口周縁面となる集合蓋体シートの凸部を支持基板2の上面の周縁部に接合する。例えば、準備しておいた蓋体5の開口周縁面となる集合蓋体シートの凸部に熱硬化性の絶縁性接着剤を塗布し、蓋体5を支持基板の上面に載せる。しかる後に、蓋体5または支持基板2を加熱することにより絶縁性接着剤を100〜150℃に温度上昇させて硬化させ、蓋体5を支持基板2の上面に接合する。   Then, the opening peripheral surface of the lid 5 is joined to the peripheral portion of the upper surface of the support substrate 2 so as to cover the piezoelectric element 1. As the lid 5, a multi-piece collective cover sheet having a plurality of concave portions is used, and the multi-piece collective cover sheet is placed on the pick-up substrate so that the concave portions cover the piezoelectric elements 1. The convex portion of the collective cover sheet serving as the opening peripheral surface is joined to the peripheral portion of the upper surface of the support substrate 2. For example, a thermosetting insulating adhesive is applied to the convex portion of the collective lid sheet that is the peripheral edge of the opening of the prepared lid 5, and the lid 5 is placed on the upper surface of the support substrate. Thereafter, the lid 5 or the support substrate 2 is heated to raise the temperature of the insulating adhesive to 100 to 150 ° C., and the lid 5 is bonded to the upper surface of the support substrate 2.

最後に、各圧電共振子(個片)の境界にそってダイシング等で切断する。以上の方法により、本例の圧電共振子が作製される。   Finally, it cut | disconnects by dicing etc. along the boundary of each piezoelectric resonator (piece | piece). The piezoelectric resonator of this example is manufactured by the above method.

圧電共振子の実施例について説明する。   Examples of the piezoelectric resonator will be described.

本実施形態の圧電磁器組成物による圧電体を備えた圧電素子を搭載した圧電共振子を、以下のように作製した。   A piezoelectric resonator equipped with a piezoelectric element including a piezoelectric body made of the piezoelectric ceramic composition of the present embodiment was manufactured as follows.

具体的には、原料粉末として高純度のPbO、ZrO、TiO、Nb、Sb、MnO、Fe、AlおよびSiOの各原料粉末を、焼結体の各
成分の割合が表1に示す割合となるように所定量秤量し、圧電素子を構成する圧電体の原料を作製した。
Specifically, high-purity PbO, ZrO 2 , TiO 2 , Nb 2 O 5 , Sb 2 O 5 , MnO 2 , Fe 2 O 3 , Al 2 O 3 and SiO 2 are used as raw material powders. A predetermined amount was weighed so that the ratio of each component of the sintered body would be the ratio shown in Table 1, and a piezoelectric material constituting the piezoelectric element was produced.

この原料を用い顆粒を作製し、プレス成形後脱脂、焼成して圧電体を作製した。   Granules were produced using this raw material, and depressurized and fired after press molding to produce a piezoelectric body.

この圧電体を加工し、分極し、ラッピング加工で厚み調整した後、両主面に金属膜を形成した。その後、パターンエッチングして振動電極を形成し、長さ2.5mm、幅0.5mmにカットして厚み0.15mmの矩形状の圧電素子を作製した。   The piezoelectric body was processed, polarized, and the thickness was adjusted by lapping, and then metal films were formed on both main surfaces. Thereafter, pattern etching was performed to form a vibrating electrode, which was cut into a length of 2.5 mm and a width of 0.5 mm to produce a rectangular piezoelectric element having a thickness of 0.15 mm.

また、所定の容量電極、端子電極を形成した厚み0.3mmの支持基板を準備し、上述の圧電素子を搭載、接合後、蓋体を接着剤で接合した。この基板を長さ3.2mm、幅1.3mmにカットし、製品厚み1.0mmの圧電共振子を作製した。   In addition, a support substrate having a thickness of 0.3 mm on which predetermined capacitance electrodes and terminal electrodes were formed was prepared, the above-described piezoelectric element was mounted, and after joining, the lid was joined with an adhesive. This substrate was cut into a length of 3.2 mm and a width of 1.3 mm to produce a piezoelectric resonator having a product thickness of 1.0 mm.

このようにして作製した圧電共振子について、85℃、85%、耐久時間1000hの高温高湿試験、−55℃にて30min、105℃にて30min、1000サイクルの冷熱サイクル試験、および試験基板に圧電共振子を半田付けし、高さ1.8mから18回落下させる衝撃試験を行った。これらの結果を表1に示す。なお、数値は試験前後での共振周波数の変化率を示す。   The piezoelectric resonator thus fabricated was applied to a high-temperature and high-humidity test at 85 ° C., 85% and a durability time of 1000 h, a thermal cycle test of 1000 cycles at −55 ° C. for 30 min, 105 ° C. for 30 min, and a test substrate. An impact test was performed in which the piezoelectric resonator was soldered and dropped 18 times from a height of 1.8 m. These results are shown in Table 1. In addition, a numerical value shows the change rate of the resonant frequency before and behind a test.

Figure 2016069206
Figure 2016069206

表1によれば、本実施形態の圧電磁器組成物による圧電体を備えた圧電素子を搭載した圧電共振子では、高温高湿下、冷熱サイクル下および落下衝撃に対しても、安定した周波数を維持することができることがわかる。   According to Table 1, the piezoelectric resonator equipped with the piezoelectric element including the piezoelectric body of the piezoelectric ceramic composition of the present embodiment has a stable frequency even under high temperature and high humidity, under a cooling cycle, and with respect to a drop impact. It can be seen that it can be maintained.

1・・・圧電素子
11・・・圧電体
12・・・振動電極
2・・・支持基板
3・・・支持部
4・・・導電性接合材
5・・・蓋体
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element 11 ... Piezoelectric body 12 ... Vibration electrode 2 ... Support substrate 3 ... Support part 4 ... Conductive joining material 5 ... Cover

Claims (3)

(Pba−d−e−fBaSrCa)(Nb19/30Sb1/10Mn4/15(TiZr1−c1−bで表わされ、前記a、b、c、d、e、fが0.97≦a+d+e+f≦1.03、0.02≦b≦0.25、0.51≦c≦0.61、0≦d+e+f≦0.2を満足する複合ペロブスカイト型化合物を主成分として含むとともに、
該主成分100質量部に対してAlを0.001〜0.3質量部、Feを0.001〜0.5質量部およびSiを0.005〜0.058質量部含むことを特徴とする圧電磁器組成物。
Represented by (Pb a-d-e- f Ba d Sr e Ca f) (Nb 19/30 Sb 1/10 Mn 4/15) b (Ti c Zr 1-c) 1-b O 3, wherein a, b, c, d, e, f are 0.97 ≦ a + d + e + f ≦ 1.03, 0.02 ≦ b ≦ 0.25, 0.51 ≦ c ≦ 0.61, 0 ≦ d + e + f ≦ 0.2 Containing a satisfactory composite perovskite compound as the main component,
0.001 to 0.3 parts by mass of Al, 0.001 to 0.5 parts by mass of Fe, and 0.005 to 0.058 parts by mass of Si with respect to 100 parts by mass of the main component Piezoelectric ceramic composition.
前記複合ペロブスカイト型化合物の結晶粒界に、SiOが存在していることを特徴とする請求項1に記載の圧電磁器組成物。 2. The piezoelectric ceramic composition according to claim 1, wherein SiO 2 exists in a crystal grain boundary of the composite perovskite compound. 支持基板と、該支持基板の主面上に搭載され、請求項1または請求項2に記載の圧電磁器組成物からなる圧電体の一方主面および他方主面に互いに対向する振動電極が設けられた圧電素子とを備えることを特徴とする圧電共振子。
A supporting substrate and vibration electrodes mounted on the main surface of the supporting substrate and facing each other on one main surface and the other main surface of the piezoelectric body made of the piezoelectric ceramic composition according to claim 1 or 2 are provided. And a piezoelectric element.
JP2014198611A 2014-09-29 2014-09-29 Piezoelectric ceramic composition and piezoelectric resonator Active JP6313177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014198611A JP6313177B2 (en) 2014-09-29 2014-09-29 Piezoelectric ceramic composition and piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014198611A JP6313177B2 (en) 2014-09-29 2014-09-29 Piezoelectric ceramic composition and piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2016069206A true JP2016069206A (en) 2016-05-09
JP6313177B2 JP6313177B2 (en) 2018-04-18

Family

ID=55866001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014198611A Active JP6313177B2 (en) 2014-09-29 2014-09-29 Piezoelectric ceramic composition and piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP6313177B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833725B (en) * 2017-04-01 2018-08-21 中国石油大学(北京) Magnetic processing device for improving waxy crude oil mobility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068834A (en) * 2000-08-25 2002-03-08 Murata Mfg Co Ltd Piezoelectric ceramic composition and piezoelectric device
JP2002316871A (en) * 2001-02-19 2002-10-31 Murata Mfg Co Ltd Piezoelectric ceramics composition and piezoelectric element using the composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068834A (en) * 2000-08-25 2002-03-08 Murata Mfg Co Ltd Piezoelectric ceramic composition and piezoelectric device
JP2002316871A (en) * 2001-02-19 2002-10-31 Murata Mfg Co Ltd Piezoelectric ceramics composition and piezoelectric element using the composition

Also Published As

Publication number Publication date
JP6313177B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
US9105845B2 (en) Piezoelectric ceramic comprising an oxide and piezoelectric device
US10418542B2 (en) Piezoelectric ceramic speaker using vibration sheet formed with piezoelectric ceramic
US7541716B2 (en) Resonator
JP5192737B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP5129067B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP2005008516A (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP6313177B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2009078964A (en) Method for producing piezoelectric ceramic
JP2000044336A (en) Piezoelectric ceramic composition and piezoelectric element produced by using the piezoelectric ceramic composition
TWI262512B (en) Piezoelectric ceramic composition and piezoelectric ceramic device composed of same
JP5462759B2 (en) Piezoelectric ceramics and piezoelectric element
JP6026883B2 (en) Piezoelectric parts
US7383621B2 (en) Method of producing a piezoelectric ceramic
JP6272143B2 (en) Piezoelectric parts
JP2010235345A (en) Dielectric ceramic composition and oscillator
JP2007217233A (en) Piezoelectric ceramic
JPH11209176A (en) Piezoelectric porcelain composition and its production
JP5018648B2 (en) Piezoelectric ceramic and resonator using the same
JPH11322420A (en) Piezoelectric porcelain composition and its production
JP2910338B2 (en) Piezoelectric porcelain composition
JPH11322419A (en) Piezoelectric porcelain composition and its production
JP4497301B2 (en) Resonator
JP6321562B2 (en) Piezoelectric ceramic composition, piezoelectric element, and piezoelectric vibration device
JP2014209642A (en) Lamination type electronic part, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180322

R150 Certificate of patent or registration of utility model

Ref document number: 6313177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150