JPH11322420A - Piezoelectric porcelain composition and its production - Google Patents

Piezoelectric porcelain composition and its production

Info

Publication number
JPH11322420A
JPH11322420A JP13638798A JP13638798A JPH11322420A JP H11322420 A JPH11322420 A JP H11322420A JP 13638798 A JP13638798 A JP 13638798A JP 13638798 A JP13638798 A JP 13638798A JP H11322420 A JPH11322420 A JP H11322420A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
sintered body
polarization
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13638798A
Other languages
Japanese (ja)
Inventor
Yuji Fujinaka
祐司 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13638798A priority Critical patent/JPH11322420A/en
Publication of JPH11322420A publication Critical patent/JPH11322420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric porcelain compsn. having a relatively high electromechanical coupling factor, hardly changing in electrical characteristics even at a soldering package temp. and hardly changing in resonance frequency due to a temp. cycle by adding a specified amt. of Cr2 O3 and/or Mn3 O4 as a subsidiary component to a principal component represented by a specified relation. SOLUTION: A mixture is prepd. by adding 0.05-0.8 wt.% Cr2 O3 and/or Mn3 O4 as a subsidiary component to 100 wt.% principal component represented by the formula Pb(1-3/2α+β) Ndα (B1 B2 )XTiYZrZO3 and mixing them. The mixture is molded and fired to obtain a sintered body. Electrodes for polarization are formed on the surface of the sintered body, the sintered body is plarized by applying a DC electric field of >=3.0 kV/mm at 130-180 deg.C and a short circuit is caused between the electrodes. The sintered body is then heat-treated at 150-250 deg.C under such conditions that the product of the heat treatment temp. ( deg.C) and heat treatment time (hr) is made >=1,800. In the formula, 0.02<=α<=0.08, 0.002<=β<=0.05, 0.02<=X<=0.05, 0.46<=Y<=0.73, 0.25<=Z<=0.49, X+Y+Z=1 and B1 and B2 are each Nb, Ta, Sb or Sn with the exception of B1 ≠B2 and a combination of (Sb, Sn).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に厚みすべりモ
ード共振を利用したフィルタに用いるもので電気機械結
合係数が比較的大きく、耐熱性および耐湿性が良好で温
度サイクル前後での共振周波数変化が少ない圧電磁器組
成物およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is particularly used for a filter utilizing thickness-shear mode resonance, and has a relatively large electromechanical coupling coefficient, good heat resistance and moisture resistance, and a change in resonance frequency before and after a temperature cycle. The present invention relates to a small piezoelectric ceramic composition and a method for producing the same.

【0002】[0002]

【従来の技術】従来より圧電磁器組成物としてはチタン
酸ジルコン酸鉛磁器、マグネシウムニオブ酸チタン酸ジ
ルコン酸鉛磁器、および亜鉛ニオブ酸チタン酸ジルコン
酸鉛磁器などがあり、使用目的に応じて種々の改良がな
されてきた。
2. Description of the Related Art Conventionally, piezoelectric ceramic compositions include lead zirconate porcelain titanate, lead zirconate porcelain magnesium niobate, and lead zirconate zinc niobate porcelain. Has been improved.

【0003】[0003]

【発明が解決しようとする課題】フィルタに用いる圧電
磁器組成物は表面実装タイプのチップ部品に対応するた
め半田付け実装温度に耐えうる耐熱性と電子機器の過酷
な環境下での使用を前提とした信頼性(特に耐湿性)が
要求されている。
SUMMARY OF THE INVENTION The piezoelectric ceramic composition used for a filter is intended to be used in a severe environment of an electronic device and a heat resistance capable of withstanding a soldering mounting temperature in order to correspond to a chip component of a surface mounting type. Reliability (especially moisture resistance) is required.

【0004】さらに従来の圧電磁器組成物は実用上に重
要な信頼性の一つである温度サイクル前後で共振周波数
が変化するという問題があり、電子機器の安定動作のた
め共振周波数の変化をできるだけ低く抑える必要があっ
た。
Further, the conventional piezoelectric ceramic composition has a problem that the resonance frequency changes before and after a temperature cycle, which is one of reliability which is important for practical use. We had to keep it low.

【0005】そこで本発明は、厚みすべりモード共振を
利用したフィルタに適した電気機械結合係数が比較的大
きく、280℃近傍の半田付け実装温度でも電気特性劣
化が少なく、高湿度雰囲気下でも電気特性劣化が少な
く、かつ温度サイクルによる共振周波数変化の少ない圧
電磁器組成物を提供することを目的とするものである。
Accordingly, the present invention has a relatively large electromechanical coupling coefficient suitable for a filter utilizing thickness-shear mode resonance, and has a small deterioration in electric characteristics even at a soldering mounting temperature near 280 ° C. It is an object of the present invention to provide a piezoelectric ceramic composition which is less deteriorated and has less change in resonance frequency due to a temperature cycle.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明の圧電磁器組成物は、一般式(化3)で表され
る主成分に、副成分としてCr23およびMn34のう
ち少なくとも一種を前記主成分100重量%に対して
0.05〜0.8重量%添加して形成したものである。
In order to achieve this object, the piezoelectric ceramic composition of the present invention comprises a main component represented by the general formula (Chemical Formula 3) and Cr 2 O 3 and Mn 3 O as subcomponents. 4 is formed by adding at least one of 0.05 to 0.8% by weight to 100% by weight of the main component.

【0007】[0007]

【化3】 Embedded image

【0008】この構成によると比較的大きな比誘電率ε
11 T/ε0と電気機械結合係数k15を実現すると同時に良
好な耐熱性、耐湿性と温度サイクルによる共振周波数変
化を低減できる。
According to this configuration, a relatively large relative dielectric constant ε
11 T / ε 0 and the electromechanical coupling coefficient k 15 can be realized, and at the same time, good heat resistance, moisture resistance, and a change in resonance frequency due to temperature cycles can be reduced.

【0009】またPb量を化学量論比より若干多くする
ことにより焼成時のPbO飛散の影響を低減すると同時
に焼結性を高め、Pbの部分Nd置換で耐湿性改善およ
び温度サイクルによる共振周波数変化を低減し、副成分
としてのCr23およびMn 34のうち少なくとも一種
の添加で圧電性を低下させることなく耐熱性を改善し
た。またPbの部分Nd置換で比誘電率ε11 T/ε0が上
昇し、フィルターで帯域幅を広くとれるという利点があ
る。
Further, the amount of Pb is made slightly larger than the stoichiometric ratio.
This reduces the effect of PbO scattering during firing and
Sinterability is improved, and Pb is partially substituted with Nd to improve moisture resistance.
Changes in resonance frequency due to temperature and temperature cycles,
Cr asTwoOThreeAnd Mn ThreeOFourAt least one of
Improves heat resistance without lowering piezoelectricity
Was. In addition, the relative dielectric constant ε11 T/ Ε0Is on
The advantage is that the bandwidth can be widened by the filter.
You.

【0010】その結果上記目的を達成することができる
のである。
As a result, the above object can be achieved.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、一般式(化4)で表される主成分に、副成分として
Cr23およびMn34の少なくとも一種を前記主成分
100重量%に対して0.05〜0.8重量%添加して
形成した圧電磁器組成物であり、厚みすべりモード共振
を利用したフィルタに適した電気機械結合係数が比較的
大きく、280℃近傍の半田付け実装温度でも電気特性
劣化の少ない、耐湿性に優れ、温度サイクルによる共振
周波数変化の少ないものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that at least one of Cr 2 O 3 and Mn 3 O 4 is added as a sub-component to the main component represented by the general formula (Formula 4). A piezoelectric ceramic composition formed by adding 0.05 to 0.8% by weight with respect to 100% by weight of a main component, and has a relatively large electromechanical coupling coefficient suitable for a filter utilizing thickness-shear mode resonance, and Even at a soldering mounting temperature of around ℃, there is little deterioration in electrical characteristics, excellent moisture resistance, and little change in resonance frequency due to temperature cycling.

【0012】[0012]

【化4】 Embedded image

【0013】請求項2に記載の発明は、一般式(化5)
で表される主成分に、副成分としてCr23およびMn
34の少なくとも一種を前記主成分100重量%に対し
て0.05〜0.8重量%添加、混合する第1の工程
と、次にこの混合物を成形して焼成し、焼結体を得る第
2の工程と、次いでこの焼結体表面に分極用電極を形成
し、130〜180℃の温度範囲において3.0kV/
mm以上の直流電界を印加して分極する第3の工程と、そ
の後この分極済み焼結体の分極用電極間を短絡して、1
50〜250℃の温度下で熱処理温度(℃)と熱処理時
間(時間)の積が1800以上となる条件下で熱処理す
る第4の工程とを備えたことを特徴とする圧電磁器組成
物の製造方法であり、厚みすべりモード共振を利用した
広帯域のフィルタに適した電気機械結合係数が比較的大
きく、280℃近傍の半田付け実装温度でも電気特性劣
化の少ない、耐湿性に優れ、温度サイクルによる共振周
波数変化の少ない圧電磁器組成物を得ることができる。
The invention according to claim 2 is a compound of the general formula (5)
And Cr 2 O 3 and Mn as accessory components
A first step of adding and mixing at least one type of 3 O 4 in an amount of 0.05 to 0.8% by weight based on 100% by weight of the main component, and then molding and firing the mixture to obtain a sintered body; A second step of obtaining the electrode, and then forming a polarization electrode on the surface of the sintered body, and setting the polarization electrode to 3.0 kV /
a third step of applying a DC electric field of at least mm and polarizing, and then short-circuiting between the polarizing electrodes of the polarized sintered body to obtain 1
Producing a piezoelectric ceramic composition comprising: a fourth step of performing a heat treatment under a condition in which a product of a heat treatment temperature (° C.) and a heat treatment time (hour) is 1800 or more at a temperature of 50 to 250 ° C. This method has a relatively large electromechanical coupling coefficient suitable for a broadband filter using thickness-shear mode resonance, has little electrical property deterioration even at a soldering mounting temperature near 280 ° C, has excellent moisture resistance, and has resonance due to temperature cycles. A piezoelectric ceramic composition with a small frequency change can be obtained.

【0014】[0014]

【化5】 Embedded image

【0015】以下本発明の一実施の形態について図面を
参照しながら説明する。 (実施の形態)図1は本実施の形態における厚みすべり
モード共振子の斜視図であり、圧電磁器1の上、下両面
に共振電極2を形成したものである。また図2(a),
(b),(c)は、焦電効果による分極済み圧電磁器熱
処理時の脱分極機構を説明するための断面図であり、3
は分極用電極、4は分極ベクトル、5は浮遊電荷、6は
表面電荷、7は反電界である。
An embodiment of the present invention will be described below with reference to the drawings. (Embodiment) FIG. 1 is a perspective view of a thickness-shear mode resonator according to the present embodiment, in which a resonance electrode 2 is formed on both upper and lower surfaces of a piezoelectric ceramic 1. In addition, FIG.
(B), (c) is sectional drawing for demonstrating the depolarization mechanism at the time of the heat treatment of the polarized piezoelectric ceramic by a pyroelectric effect.
Is a polarization electrode, 4 is a polarization vector, 5 is a floating charge, 6 is a surface charge, and 7 is an anti-electric field.

【0016】まず原料としてPbO,TiO2,Zr
2,Ta25,Sb23,SnO2,Nb25,Cr2
3,Mn34を(表1)の組成となるように正確に秤
量し、ボールミルによりよく混合した。
First, as raw materials PbO, TiO 2 , Zr
O 2 , Ta 2 O 5 , Sb 2 O 3 , SnO 2 , Nb 2 O 5 , Cr 2
O 3 and Mn 3 O 4 were accurately weighed so as to have the composition shown in Table 1 and mixed well by a ball mill.

【0017】[0017]

【表1】 [Table 1]

【0018】なお原料はこれらのみに限られるものでな
く化学反応により(化5)に示す圧電磁器組成物を生成
するものであれば他の化合物を使用しても良い。次に前
記混合物を850℃の温度で仮焼し、さらにボールミル
により粉砕した。これを乾燥した後結合剤としてのポリ
ビニールアルコール水溶液を加え、造粒した後1ton/c
m2の圧力で加圧成形し、縦50mm、横45mm、厚み7mm
の成形体を得た。ここで得られた成形体を閉炉中で11
50〜1290℃の温度で1時間焼成し、得られた圧電
磁器より厚みすべり振動共振子を以下のようにして作製
した。
The raw materials are not limited to these, and other compounds may be used as long as they produce the piezoelectric ceramic composition shown in (Chem. 5) by a chemical reaction. Next, the mixture was calcined at a temperature of 850 ° C. and further pulverized by a ball mill. After drying, an aqueous polyvinyl alcohol solution as a binder was added, and the mixture was granulated, and then 1 ton / c.
and pressing at a pressure of m 2, vertical 50 mm, lateral 45 mm, thickness 7mm
Was obtained. The molded body obtained here was placed in a closed furnace for 11 hours.
It was baked at a temperature of 50 to 1290 ° C. for 1 hour, and a thickness shear vibration resonator was produced from the obtained piezoelectric ceramic as follows.

【0019】まず圧電磁器矩形板を研磨して厚み5mmの
圧電磁器1とした後、両面に銀電極を焼き付けて分極電
極3を形成後、125〜185℃のシリコンオイル中で
2.9〜3.5kV/mmの直流電界を30分間印加して
分極処理し、ついで所定の条件で熱処理を行った。次に
厚み方向に0.5mm厚みで切断し0.05μmCr−1
μmAuの二層蒸着膜よりなる共振電極2を切断面に形
成し、分極方向に切断することにより図1に示した矩形
板状の厚みすべりモード共振子を得た。これらの試料に
つき密度ρ、比誘電率ε11 T/ε0、電気機械結合係数k
15を測定した。耐熱性は共振子を280℃のホットプレ
ート上で1分間保持した後、30分経過時点でのk15
よび共振周波数の変化率を測定した。k15≧0.3、|
15変化率|≦5%、|共振周波数変化率|≦0.3%
のものを耐熱性良好と判定した。
First, a piezoelectric ceramic rectangular plate is polished to obtain a piezoelectric ceramic 1 having a thickness of 5 mm. Then, silver electrodes are baked on both sides to form polarized electrodes 3, and then 2.9 to 3 in silicon oil at 125 to 185 ° C. A DC electric field of 0.5 kV / mm was applied for 30 minutes to perform polarization treatment, and then heat treatment was performed under predetermined conditions. Next, cut at a thickness of 0.5 mm in the thickness direction to obtain a 0.05 μm Cr-1
A resonance electrode 2 composed of a two-layer deposited film of μmAu was formed on the cut surface, and cut in the polarization direction to obtain a rectangular plate-shaped thickness-shear mode resonator shown in FIG. For these samples, the density ρ, relative permittivity ε 11 T / ε 0 , electromechanical coupling coefficient k
15 were measured. The heat resistance was measured by measuring the change rate of k 15 and the resonance frequency after 30 minutes, after holding the resonator on a hot plate at 280 ° C. for 1 minute. k 15 ≧ 0.3, |
k 15 change rate | ≦ 5%, | resonance frequency change rate | ≦ 0.3%
Was determined to be good in heat resistance.

【0020】耐湿性については上記矩形板状厚みすべり
モード共振子を温度60℃、相対湿度90〜95%の雰
囲気下に200時間さらした後の共振周波数変化率とk
15変化率を測定した。k15≧0.3、|k15変化率|≦
5%、|共振周波数変化率|≦0.2%のものを耐湿性
良好と判定した。
Regarding the moisture resistance, the resonance frequency change rate and k after exposing the rectangular plate-shaped thickness-slip mode resonator to an atmosphere at a temperature of 60 ° C. and a relative humidity of 90 to 95% for 200 hours are described.
15 rates of change were measured. k 15 ≧ 0.3, | k 15 change rate | ≦
Those having 5%, | resonance frequency change rate | ≦ 0.2% were determined to have good moisture resistance.

【0021】以上の結果を、磁器焼成温度(密度最大)
とともに(表2)、(表3)にまとめた。
Based on the above results, the porcelain firing temperature (maximum density)
(Table 2) and (Table 3).

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】(表4)に示すように、試料1〜5につい
て分極条件、分極後熱処理条件を種々に変えた場合の共
振子特性を(表5)に示す。
As shown in (Table 4), the resonator characteristics of the samples 1 to 5 when the polarization conditions and the post-polarization heat treatment conditions were variously changed are shown in (Table 5).

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】また温度サイクル(外1)前後での共振周
波数の変動((fr−fr0)/fr0の値;%)も上記共
振子により測定し(表3)、(表5)に示した。
Further temperature cycles (out 1) variations in the resonant frequency before and after ((value of f r -f r0) / f r0 ;%) was also measured by the resonator (Table 3), in (Table 5) Indicated.

【0028】[0028]

【外1】 [Outside 1]

【0029】温度サイクルによる共振周波数変動につい
ては0.3%以下のものを良品と判定した。
With respect to the variation of the resonance frequency due to the temperature cycle, those having a resonance frequency of 0.3% or less were judged to be good.

【0030】以下本実施の形態について表を参照しなが
ら説明する。(表1)〜(表5)によるとα<0.02
の試料6は耐湿試験後の共振周波数変化が大きく(0.
2%以上)、α>0.08の試料9はキューリー温度が
300℃以下に低下し、耐熱試験で脱分極したことから
本発明の範囲から除外した。
Hereinafter, the present embodiment will be described with reference to a table. According to Tables 1 to 5, α <0.02
In sample 6, the change in resonance frequency after the moisture resistance test was large (0.
Sample 9 having α> 0.08 was excluded from the scope of the present invention because the Curie temperature decreased to 300 ° C. or lower and depolarized in a heat resistance test.

【0031】β<0.002である試料10,11は温
度サイクルによる共振周波数変化が大きく(0.3%以
上)、β>0.05の試料13は圧電性が低下(k15
0.3)するため本発明の範囲から除外した。
Samples 10 and 11 with β <0.002 show large changes in resonance frequency due to temperature cycling (0.3% or more), and Sample 13 with β> 0.05 has low piezoelectricity (k 15 <
0.3) was excluded from the scope of the present invention.

【0032】X<0.02である試料14は耐熱性が低
下(|共振周波数変化率|>0.3%)しており、X>
0.05である試料16は圧電性が低下する(k15
0.3)ため本発明の範囲から除外した。
Sample 14 where X <0.02 has reduced heat resistance (| resonance frequency change rate |> 0.3%), and X>
Sample 16 having a value of 0.05 has reduced piezoelectricity (k 15 <
0.3), and thus excluded from the scope of the present invention.

【0033】Y<0.46である試料17は温度サイク
ルによる共振周波数変化率が大きく(0.3%以上)、
X,Yを本発明の範囲内としたときY≦0.73となる
ことからYは0.46≦Y≦0.73の範囲に限定し
た。
Sample 17 in which Y <0.46 has a large change rate of the resonance frequency due to the temperature cycle (0.3% or more).
Y is limited to the range of 0.46 ≦ Y ≦ 0.73 since Y ≦ 0.73 when X and Y are within the range of the present invention.

【0034】Z<0.25である試料20は焼結性およ
び圧電性が低下している(k15<0.3)ため、Z>
0.49である試料17は耐熱後の共振周波数変化率が
0.3%を超え、温度サイクルによる共振周波数変化率
が0.3%以上と大きくなっているため本発明の範囲か
ら除外した。
Sample 20 with Z <0.25 has reduced sinterability and piezoelectricity (k 15 <0.3), so that Z>
Sample 17, which was 0.49, was excluded from the scope of the present invention because the rate of change in resonance frequency after heat resistance exceeded 0.3% and the rate of change in resonance frequency due to temperature cycling was 0.3% or more.

【0035】副成分であるCr23およびMn34(少
なくとも一種)の添加量については、主成分100重量
%に対して0.05重量%未満の試料24,25,2
6,27では温度サイクルによる共振周波数変化率が
0.3%以上と大きいため、0.8重量%を超える試料
34,35,36では焼結体密度が7.5g/cm3以下
に低下するとともに圧電性が低下している(k15<0.
31)ため本発明の範囲から除外した。
Regarding the added amount of the sub-components Cr 2 O 3 and Mn 3 O 4 (at least one type), Samples 24, 25, and 2 each containing less than 0.05% by weight based on 100% by weight of the main component.
Since the resonance frequency change rate by temperature cycling in 6,27 is as large as 0.3% or more, the sintered density of the samples 34, 35, 36 falls below 7.5 g / cm 3 greater than 0.8 wt% And the piezoelectricity decreases (k 15 <0.
31) Therefore, it was excluded from the scope of the present invention.

【0036】B1,B2の内(Sn,Sb)の組み合わ
せを除いたのはSnを+2価、Sbを+3価としたとき
にSnaSb1-aが+4価となり、かつ0<a<1の範囲
にあるa値が存在しないからである。
The reason why the combination of (Sn, Sb) is excluded from B1 and B2 is that when Sn is +2 and Sb is +3, Sn a Sb 1-a becomes +4 and 0 <a <1. Is not present in the range.

【0037】分極条件については(表4)、(表5)に
示したように分極温度130℃未満(加工条件ア)では
分極未飽和で、分極温度180℃を超える(加工条件
エ)では圧電磁器1の抵抗が低下し、3.0kV/mm以
上の電圧が印加できなくなる。また、分極時の直流印加
電圧については本発明の分極温度範囲であっても3.0
kV/mm以下(加工条件オ)では分極未飽和となるため
本発明の範囲から除外した。
As shown in (Table 4) and (Table 5), the polarization condition is that the polarization is not saturated when the polarization temperature is lower than 130 ° C. (processing condition a), and the piezoelectricity is higher when the polarization temperature exceeds 180 ° C. (processing condition d). The resistance of the porcelain 1 decreases, so that a voltage of 3.0 kV / mm or more cannot be applied. Further, the DC applied voltage during polarization is 3.0 even in the polarization temperature range of the present invention.
At kV / mm or less (processing condition (e)), the polarization becomes unsaturated, so that it was excluded from the scope of the present invention.

【0038】また分極後の熱処理条件についても(表
4)、(表5)で示したように分極用電極3間の短絡な
しに熱処理した試料(加工条件キ)では脱分極が顕著で
15<0.31であった。
As to the heat treatment conditions after the polarization (Table 4), as shown in (Table 5), in the sample heat-treated without short-circuiting between the polarization electrodes 3 (processing condition G), the depolarization was remarkable and k 15 <0.31.

【0039】これは、本発明の圧電磁器1は焦電効果が
比較的大きく、図2(a)に示したように分極後は分極
用電極3の表面電荷6と浮遊電荷5とが釣り合っている
状態にあるが、圧電磁器1を150℃以上の温度で長時
間熱処理した場合には、図2(b)に示すように分極ベ
クトル4とは反対方向の分極を打ち消すような反電界7
が生じて、図2(c)に示すように圧電磁器1は安定化
するが分極は減少することになるからである。従ってこ
れを防止するため分極用電極3間を短絡させた状態で熱
処理を行うことが望ましい。
This is because the piezoelectric ceramic 1 of the present invention has a relatively large pyroelectric effect, and as shown in FIG. 2A, after polarization, the surface charge 6 of the polarization electrode 3 and the floating charge 5 are balanced. However, when the piezoelectric ceramic 1 is heat-treated at a temperature of 150 ° C. or more for a long time, as shown in FIG. 2 (b), the anti-electric field 7 cancels the polarization in the direction opposite to the polarization vector 4.
This causes the piezoelectric ceramic 1 to be stabilized but the polarization to be reduced, as shown in FIG. 2 (c). Therefore, in order to prevent this, it is desirable to perform the heat treatment in a state where the electrodes for polarization 3 are short-circuited.

【0040】熱処理温度については150℃以下(加工
条件ク)では半田耐熱後の共振周波数変化率が0.3%
以上と大きく、250℃以上(加工条件サ)では熱処理
温度×熱処理時間の積が1800(℃・時間)を超える
ような時間熱処理すると脱分極が大きく(k15<0.3
2)なるため本発明の範囲から除外した。分極後の熱処
理温度が150〜250℃の温度範囲であっても熱処理
温度と熱処理時間の積が1800(℃・Hr)以下(加
工条件ス)であれば、耐熱後の共振周波数変化もしくは
15変化が大きいため本発明の範囲から除外した。
At a heat treatment temperature of 150 ° C. or less (processing condition C), the resonance frequency change rate after solder heat resistance is 0.3%.
At 250 ° C. or higher (processing conditions), if heat treatment is performed for such a time that the product of heat treatment temperature × heat treatment time exceeds 1800 (° C. · hour), depolarization is large (k 15 <0.3).
2) Therefore, it was excluded from the scope of the present invention. Even if the heat treatment temperature after polarization is in the temperature range of 150 to 250 ° C., if the product of the heat treatment temperature and the heat treatment time is 1800 (° C. · Hr) or less (processing conditions), the resonance frequency change after heat resistance or k 15 Since the change was large, it was excluded from the scope of the present invention.

【0041】[0041]

【発明の効果】以上本発明によると、厚みすべりモード
共振を利用した発振子・フィルタ用圧電磁器で比較的低
温での焼成が可能で、電気機械結合係数が比較的大き
く、280℃近傍の半田付け実装温度でも電気特性変化
の少ない、温度サイクルによる共振周波数変化の少ない
圧電磁器組成物を提供することができる。
As described above, according to the present invention, a piezoelectric ceramic for an oscillator or a filter utilizing thickness-shear mode resonance can be fired at a relatively low temperature, has a relatively large electromechanical coupling coefficient, and has a soldering temperature of about 280 ° C. It is possible to provide a piezoelectric ceramic composition having little change in electric characteristics even at the mounting temperature and little change in resonance frequency due to a temperature cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における厚みすべりモー
ド共振子の斜視図
FIG. 1 is a perspective view of a thickness-shear mode resonator according to an embodiment of the present invention.

【図2】(a)本発明の一実施の形態における焦電効果
による分極済み圧電磁器熱処理時の脱分極機構を説明す
るための分極後の圧電磁器の断面図 (b)同熱処理時の断面図 (c)同熱処理後の断面図
FIG. 2A is a cross-sectional view of a piezoelectric ceramic after polarization for explaining a depolarization mechanism during heat treatment of a polarized piezoelectric ceramic due to a pyroelectric effect in one embodiment of the present invention; Figure (c) Sectional view after heat treatment

【符号の説明】[Explanation of symbols]

1 圧電磁器 2 共振電極 3 分極用電極 4 分極ベクトル 5 浮遊電荷 6 表面電荷 7 反電界 Reference Signs List 1 piezoelectric ceramic 2 resonant electrode 3 electrode for polarization 4 polarization vector 5 floating charge 6 surface charge 7 demagnetizing field

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(化1)で表される主成分に、副
成分としてCr23およびMn34の少なくとも一種を
前記主成分100重量%に対して0.05〜0.8重量
%添加して形成した圧電磁器組成物。 【化1】
1. A main component represented by the general formula (Chem. 1), and at least one of Cr 2 O 3 and Mn 3 O 4 as an auxiliary component is added in an amount of 0.05 to 0. A piezoelectric ceramic composition formed by adding 8% by weight. Embedded image
【請求項2】 一般式(化2)で表される主成分に、副
成分としてCr23およびMn34の少なくとも一種を
前記主成分100重量%に対して0.05〜0.8重量
%添加、混合する第1の工程と、次にこの混合物を成形
して焼成し、焼結体を得る第2の工程と、次いでこの焼
結体表面に分極用電極を形成し、130〜180℃の温
度範囲において3.0kV/mm以上の直流電界を印加し
て分極する第3の工程と、その後この分極済み焼結体の
分極用電極間を短絡して、150〜250℃の温度下で
熱処理温度(℃)と熱処理時間(時間)の積が1800
以上となる条件下で熱処理する第4の工程とを備えたこ
とを特徴とする圧電磁器組成物の製造方法。 【化2】
2. A main component represented by the general formula (Chem. 2), and at least one of Cr 2 O 3 and Mn 3 O 4 as subcomponents in an amount of 0.05 to 0. A first step of adding and mixing 8% by weight, a second step of forming and firing this mixture to obtain a sintered body, and then forming a polarizing electrode on the surface of the sintered body; A third step of applying a DC electric field of 3.0 kV / mm or more in a temperature range of -180 ° C to polarize, and then short-circuiting between the polarizing electrodes of the polarized sintered body to obtain a temperature of 150-250 ° C. Under the temperature, the product of the heat treatment temperature (° C.) and the heat treatment time (hour) is 1800.
And a fourth step of performing a heat treatment under the conditions described above. Embedded image
JP13638798A 1998-05-19 1998-05-19 Piezoelectric porcelain composition and its production Pending JPH11322420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13638798A JPH11322420A (en) 1998-05-19 1998-05-19 Piezoelectric porcelain composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13638798A JPH11322420A (en) 1998-05-19 1998-05-19 Piezoelectric porcelain composition and its production

Publications (1)

Publication Number Publication Date
JPH11322420A true JPH11322420A (en) 1999-11-24

Family

ID=15173975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13638798A Pending JPH11322420A (en) 1998-05-19 1998-05-19 Piezoelectric porcelain composition and its production

Country Status (1)

Country Link
JP (1) JPH11322420A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203477A (en) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd Method of manufacturing piezoelectric element
US7608215B2 (en) 2003-09-24 2009-10-27 Tdk Corporation Method of manufacturing a piezoelectric ceramic composition
WO2018159772A1 (en) * 2017-03-03 2018-09-07 Canon Kabushiki Kaisha Method of manufacturing piezoelectric element
JP2018148203A (en) * 2017-03-03 2018-09-20 キヤノン株式会社 Method of manufacturing piezoelectric element, method of manufacturing vibration wave motor, method of manufacturing optical device, and method of manufacturing electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608215B2 (en) 2003-09-24 2009-10-27 Tdk Corporation Method of manufacturing a piezoelectric ceramic composition
JP2005203477A (en) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd Method of manufacturing piezoelectric element
WO2018159772A1 (en) * 2017-03-03 2018-09-07 Canon Kabushiki Kaisha Method of manufacturing piezoelectric element
JP2018148203A (en) * 2017-03-03 2018-09-20 キヤノン株式会社 Method of manufacturing piezoelectric element, method of manufacturing vibration wave motor, method of manufacturing optical device, and method of manufacturing electronic device
US11450801B2 (en) 2017-03-03 2022-09-20 Canon Kabushiki Kaisha Method of manufacturing piezoelectric element, method of manufacturing oscillatory wave motor, method of manufacturing optical apparatus, and method of manufacturing electronic apparatus

Similar Documents

Publication Publication Date Title
JP2007145650A (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP2000103674A (en) Piezoelectric ceramic composition and its production
KR100685327B1 (en) Piezoelectric ceramic composition and piezoelectric device
JP2002068836A (en) Piezoelectric ceramic composition and piezoelectric ceramic device using the same
JP4726672B2 (en) Piezoelectric ceramic
JPH11322420A (en) Piezoelectric porcelain composition and its production
KR100363196B1 (en) Piezoelectric Ceramic Composition, Buzzer and Actuator using the same
JPH11349380A (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP4449331B2 (en) Piezoelectric ceramic and piezoelectric ceramic element using the same
JPH11322419A (en) Piezoelectric porcelain composition and its production
JP2007261863A5 (en)
JPH11209176A (en) Piezoelectric porcelain composition and its production
JPH06263535A (en) Piezoelectric ceramic
JP4930753B2 (en) Piezoelectric ceramic and piezoelectric parts
JP3588542B2 (en) Piezoelectric ceramic composition
JP3097217B2 (en) Piezoelectric ceramic composition
JP3550918B2 (en) Piezoelectric ceramic composition
JP3003087B2 (en) Piezoelectric ceramic composition
JP2762012B2 (en) Piezoelectric ceramic composition
JP2873656B2 (en) Piezoelectric ceramic composition
JP2910338B2 (en) Piezoelectric porcelain composition
JPH11100264A (en) Piezoelectric ceramic composition and its production
JP3106508B2 (en) Piezoelectric porcelain composition
JP3106507B2 (en) Piezoelectric porcelain composition
JP3342555B2 (en) Piezoelectric ceramic composition