JP2016066671A - 波長可変光源および温度制御初期値の決定方法 - Google Patents

波長可変光源および温度制御初期値の決定方法 Download PDF

Info

Publication number
JP2016066671A
JP2016066671A JP2014193800A JP2014193800A JP2016066671A JP 2016066671 A JP2016066671 A JP 2016066671A JP 2014193800 A JP2014193800 A JP 2014193800A JP 2014193800 A JP2014193800 A JP 2014193800A JP 2016066671 A JP2016066671 A JP 2016066671A
Authority
JP
Japan
Prior art keywords
temperature
light
wavelength
output
variable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193800A
Other languages
English (en)
Inventor
浩資 別所
Hiroshi Bessho
浩資 別所
健一 宇藤
Kenichi Uto
健一 宇藤
雄鋭 上野
Yuto Ueno
雄鋭 上野
敬太 望月
Keita Mochizuki
敬太 望月
清智 長谷川
Kiyotomo Hasegawa
清智 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014193800A priority Critical patent/JP2016066671A/ja
Publication of JP2016066671A publication Critical patent/JP2016066671A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】初期温度設定を高精度に行うことが可能な波長可変光源を得ること。【解決手段】本発明にかかる波長可変光源は、レーザーダイオード(LD)1と、LD1の前面から出力された光を増幅する光増幅器2と、LD1の温度を調整する温度可変素子3と、LD1、光増幅器2および温度可変素子3を制御する制御部9と、LD1の背面から出力された光を透過させるエタロン6と、LD1による光出力の開始時点に制御部9が温度可変素子3に出力する温度制御初期値を記憶するメモリ10と、を備え、制御部9は、光増幅器2から出力される光の波長が目標波長となるよう温度可変素子3を制御し、エタロン6を透過前の第1の光と透過後の第2の光の強度比を目標値として算出し、第1の光と第2の光の強度比が目標値から変動しないよう温度可変素子3を制御しつつ増幅動作を停止させ、停止後に温度可変素子3に出力している温度制御信号を温度制御初期値に決定する。【選択図】図1

Description

本発明は、出力する光信号の波長を任意に変更できる波長可変光源および温度制御初期値の決定方法に関する。
半導体のLD(Laser Diode)とSOA(Semiconductor Optical Amplifier)を用いた波長可変光源はLDの温度を調整することで出力される光信号の波長を変更できる。LDの温度は一般的にペルチェ素子に印加する電流を変更することにより調整する。しかし、ペルチェ素子に一定電流を印加し続けても、波長可変光源の周囲温度の変動や素子の経時変化によりLDの温度が変化し、出力される光信号の波長が変化する。そのため、ペルチェ素子に印加する電流のフィードバック制御が必要となる。ペルチェ素子に印加する電流であるペルチェ印加電流のフィードバック制御を行うには、例えば、特許文献1に記載されているような、LDより出力される光信号の波長をモニタする波長モニタが必要となる。特許文献1に記載の波長モニタはエタロンフィルタを用いた波長モニタであるため、波長に応じた周期特性があり、ペルチェ印加電流の初期値を所望の波長が出力できる電流にある程度近い値に設定しなければ、その後のフィードバック制御により所望の波長を出力させることができない。
波長可変光源は、SOAに電流を印加していない状態でLDから光を出力させる初期状態と、SOAに電流を印加している状態でLDから光を出力させる光信号出力状態を持つ。波長可変光源が動作を開始して光を出力する場合、初期状態を経てから光信号出力状態となる。初期状態ではLDから出力された光が増幅されないため、波長可変光源から出力される光信号の強度が非常に低い。一方、光信号出力状態ではLDから出力された光がSOAで増幅されるため、高い強度の光信号が波長可変光源から出力される。
ここで、LDより光を出力させているがSOAに電流を印加させていない初期状態においては、所望の波長の光信号がLDより出力されているときのペルチェ印加電流がペルチェ印加電流の最適な初期値となる。しかし、ペルチェ印加電流の初期値を決定するにはSOAに電流を印加し、波長可変光源から出力される光信号を波長計等の測定器により測定して所望の波長の光信号が出力されているか否かを確認しなければならない。一般的に、LDとSOAは近い位置に配置されており、SOAに電流を印加するとSOAが発熱するため、LDの温度が変化し、出力される波長も変化してしまう。そのため、ペルチェ印加電流の最適な初期値を探索するのは困難である。この様な問題を解決するため、特許文献2には、レーザー光の出力を開始する前に実行する、目標波長の光を出力するようにLDの温度を調整する処理において、目標波長を出力するための温度からSOAの発熱に伴うLDの温度上昇分を減じた温度にLDの温度を調整する波長可変光源装置が開示されている。
特開2012−129259号公報 特開2012−124287号公報
特許文献2にはSOAの発熱に伴うLDの温度上昇分を減じた温度にLDの温度を調整することが開示されているが、SOAに注入する電流による発熱がLDに伝搬する量を正確に把握するのは困難であり、LDの初期温度設定を適切に行って目標波長の光を出力するのが難しい、という問題があった。
本発明は、上記に鑑みてなされたものであって、LDの初期温度設定を高精度に行うことが可能な波長可変光源を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、光信号を出力する波長可変光源であって、温度調整により出力波長を変更可能なレーザーダイオードと、前記レーザーダイオードの前面から出力された光を増幅する光増幅器と、前記レーザーダイオードの温度を調整する温度可変素子と、前記レーザーダイオード、前記光増幅器および前記温度可変素子を制御する制御部と、前記レーザーダイオードの背面から出力された光を透過させるエタロンと、前記レーザーダイオードによる光出力の開始時点において前記制御部が前記温度可変素子に対して出力する温度制御信号である温度制御初期値を記憶する記憶部と、を備え、前記制御部は、前記光増幅器から出力される光の波長が目標波長となるように前記温度可変素子を制御した後、前記エタロンを透過する前の第1の光と前記エタロンを透過した後の第2の光の強度の比を目標値として算出し、さらに、前記第1の光と前記第2の光の強度の比が前記目標値から変動しないように前記温度可変素子を制御しつつ、前記光増幅器による増幅動作を停止させ、前記増幅動作の停止後に前記温度可変素子に対して出力している温度制御信号を前記温度制御初期値に決定することを特徴とする。
本発明によれば、LD(レーザーダイオード)の初期温度設定を高精度に行うことができる、という効果を奏する。
本発明にかかる波長可変光源の構成例を示す図 エタロンの透過特性の一例を示す図 初期値探索手順を示したフローチャート 初期値探索手順の各ステップにおける波長可変光源出射光およびLD前面出射光のスペクトルを示す図
以下に、本発明にかかる波長可変光源および温度制御初期値の決定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
図1は、本発明にかかる波長可変光源の構成例を示す図である。図1に示したように、波長可変光源100は、出力波長が温度によって変化するレーザーダイオード(LD)1と、入力された光を増幅する光増幅器2と、レーザーダイオード1および光増幅器2に近接して配置され、レーザーダイオード1および光増幅器2の温度を調整する温度可変素子3と、レンズ4と、入射光の強度を測定するパワーモニタ5と、エタロン6と、入射光の強度を測定する波長モニタ7と、パワーモニタ5、エタロン6および波長モニタ7に近接して配置され、パワーモニタ5、エタロン6および波長モニタ7の温度を調整する温度可変素子8と、レーザーダイオード1、光増幅器2および温度可変素子3を制御する制御部9と、制御部9が使用する各種情報を記憶する、記憶部としてのメモリ10と、を備えている。なお、以下の説明では、レーザーダイオードをLDと記載する。
LD1は、前面および背面から光を出力する構成となっており、前面にLD前面出射光11を出力するとともに背面にLD背面出射光13を出力する。LD前面出射光11およびLD背面出射光13の出力開始および停止は、制御部9から入力されるLD制御信号18により制御される。LD1は、例えば、LD制御信号18として印加される電流が一定値に達した場合に光の出力を開始する。
光増幅器2は、制御部9より入力される光増幅器制御信号19の値に応じた強度となるようにLD前面出射光11を増幅し、増幅後のLD前面出射光11である波長可変光源出射光12を出力する。
温度可変素子3は、制御部9より入力される温度制御信号17の値に応じた発熱量または冷却量で温度制御し、LD1と光増幅器2の温度を調整する。この温度可変素子3は、例えばペルチェ素子で実現する。
レンズ4は、LD背面出射光13を屈折させ、一部をパワーモニタ5の受光面へ入射させるとともに、残りをエタロン6へ入射させる。
パワーモニタ5は、レンズ4を透過したLD背面出射光13の一部を受光し、受光した光の強度に応じた値のパワーモニタ出力信号15を制御部9へ出力する。
エタロン6は、図2に示したような、波長に応じた周期的な透過特性を有する。
波長モニタ7は、LD背面出射光13がレンズ4およびエタロン6を透過した後のLD背面出射光14を受光し、受光した光の強度に応じた値の波長モニタ出力信号16を制御部9へ出力する。
温度可変素子8は、発熱量または冷却量を必要に応じて変化させながら温度制御し、パワーモニタ5、エタロン6および波長モニタ7の温度が一定の値で安定するように制御する。この温度可変素子8は、例えばペルチェ素子で実現する。
制御部9は、パワーモニタ出力信号15、波長モニタ出力信号16およびメモリ10が保持している情報に基づいて、LD制御信号18、光増幅器制御信号19および温度制御信号17を生成して出力し、LD1、光増幅器2および温度可変素子3を制御する。LD制御信号18、光増幅器制御信号19および温度制御信号17は、例えば動作を指示するための電流である。制御部9は、LD制御信号18、光増幅器制御信号19および温度制御信号17の出力値を変更することにより、LD1、光増幅器2および温度可変素子3を制御する。例えば、制御部9は、温度制御信号17として印加する電流の値を変更することにより温度可変素子3による発熱量および冷却量を調整する。また、光増幅器制御信号19として印加する電流の値を変更することにより光増幅器2が出力する波長可変光源出射光12の強度を調整する。
また、図示は省略しているが、波長可変光源100は、外部の波長測定器が接続可能な構成となっている。外部の波長測定器は、例えば、波長可変光源出射光12の波長を測定する。外部の波長測定器による測定結果である波長測定結果20が制御部9に入力されるように構成されている。
図1に示した構成の波長可変光源100は、以下に示すような初期値探索手順により、光出力の開始時点で使用する温度制御初期値を決定する。温度制御初期値とは、LD1が光を出力しかつ光増幅器2が増幅動作を行っていない状態である初期状態において、制御部9が温度可変素子3に対して出力する温度制御信号17の値である。温度制御初期値の決定は、例えば、波長可変光源100の工場出荷時に実施する。
以下、波長可変光源100における初期値探索手順を図3および図4を参照しながら説明する。図3は、初期値探索手順を示したフローチャートである。図4は、図3に示した初期値探索手順の各ステップにおける波長可変光源出射光12およびLD前面出射光11のスペクトルを示す図である。なお、図3に示した初期値探索手順は、ある特定の波長に対応する温度制御初期値を探索するためのものである。波長可変光源100は複数の波長を出力可能であるため、実際には、出力可能な波長のそれぞれについて、図3に示した初期値探索手順を実行し、波長ごとに温度制御初期値を決定する。
初期値探索手順では、まず、制御部9が、LD制御信号18の値を一定値まで上昇させることで、LD1に対して所定波長の光の出力開始を指示する(ステップS1)。この結果、LD1の前面および背面からLD前面出射光11およびLD背面出射光13がそれぞれ出力される。この時点では光増幅器2が動作を開始していないため、図4のS1に示したように、LD前面出射光11は出力されるが波長可変光源出射光12は出力されない。
次に、制御部9は、光増幅器制御信号19をゼロから一定値まで上昇させることで、光増幅器2に対して、入力されたLD前面出射光11の強度を増幅するよう指示する(ステップS2)。この結果、光増幅器2が増幅動作を開始し、光増幅器制御信号19の値に従った増幅率でLD前面出射光11の強度を増幅して波長可変光源出射光12として出力する。光増幅器2が増幅動作を開始すると、図4のS2に示したように、波長可変光源出射光12が出力される。このとき、光増幅器2の発熱によりLD1が加熱されて温度が変化するため、LD1が出力する光、すなわち、LD前面出射光11およびLD背面出射光13の波長が変化する。なお、図4のS2に示した破線の矢印は光増幅器2が増幅動作を開始する前のLD前面出射光11を示している。
次に、波長可変光源出射光12を波長測定器に入力させて波長を計測しつつ、波長可変光源出射光12が目標の波長となるように、制御部9が温度制御信号17を調整する(ステップS3)。温度制御信号17を調整することにより温度可変素子3の発熱量および冷却量が変化する。温度可変素子3は、温度制御信号17の値に従い温度制御し、LD1の温度を調整する。このステップS3において、制御部9は、波長測定器による計測結果である波長測定結果20に基づいて温度制御信号17を調整する動作を、波長可変光源出射光12が目標の波長となるまで繰り返し実行する。ステップS3において温度制御信号17の調整が完了すると、図4のS3に示したように、目標波長のLD前面出射光11および波長可変光源出射光12が出力される。なお、図4のS3に示した破線の矢印は温度制御信号17の調整を開始する前のLD前面出射光11および波長可変光源出射光12を示している。
制御部9は、温度制御信号17の調整が完了すると、波長モニタ出力信号16とパワーモニタ出力信号15の比を算出し、波長モニタ係数目標値としてメモリ10に記憶させる(ステップS4)。なお、「波長モニタ係数目標値=波長モニタ出力信号16/パワーモニタ出力信号15」である。パワーモニタ出力信号15はエタロン6を透過する前の光の強度を示し、波長モニタ出力信号16はエタロン6を透過した光の強度を示しているため、LD1から出力される光の波長が変化すると波長モニタ出力信号16とパワーモニタ出力信号15の比が変化する。よって、制御部9は、パワーモニタ出力信号15および波長モニタ出力信号16を監視することにより、波長可変光源出射光12が目標波長か否かを知ることができる。ステップS4を実行した後のLD前面出射光11の波長および波長可変光源出射光12の波長および強度は、図4のS4に示したように、ステップS3を実行した後と同様である。
次に、制御部9は、波長モニタ出力信号16とパワーモニタ出力信号15の比が波長モニタ係数目標値から変動しないように、温度制御信号17のフィードバック制御を開始する(ステップS5)。すなわち、制御部9は、周期的に波長モニタ出力信号16とパワーモニタ出力信号15の比を算出して波長モニタ係数目標値と比較し、比較結果に基づいて温度制御信号17の値を調整する。なお、波長モニタ出力信号16とパワーモニタ出力信号15の比が波長モニタ係数目標値から変動しないように温度制御信号17を制御することは、LD1より出力される光信号の波長が変動しないように制御することに相当する。ステップS5を実行した後のLD前面出射光11の波長および波長可変光源出射光12の波長および強度は、図4のS5に示したように、ステップS3,S4を実行した後と同様である。
制御部9は、ステップS5で開始したフィードバック制御、すなわち、LD1より出力される光信号の波長が変動しないようにするための温度制御信号17のフィードバック制御を動作させながら、光増幅器制御信号19を段階的に減少させる(ステップS6)。光増幅器制御信号19を減少させると、光増幅器2における増幅動作の増幅率が低下し、図4のS6に示したように、波長可変光源出射光12の強度が低下する。なお、温度制御信号17のフィードバック制御により、LD前面出射光11および波長可変光源出射光12の波長については変化しない。図4のS6に示した破線の矢印は光増幅器制御信号19を減少させる前の波長可変光源出射光12を示している。
制御部9は、光増幅器制御信号19をゼロまで減少させると、すなわち、光増幅器2による増幅動作を停止させると、ステップS5で開始したフィードバック制御により収束した温度制御信号17を、初期値探索動作の対象とした波長における温度制御信号17の初期値に決定する(ステップS7)。図4のS7に示したように、目標波長のLD前面出射光11が出力され、かつ波長可変光源出射光12が出力されていない状態における温度制御信号17を初期値に決定する。なお、光増幅器2による増幅動作を停止させた後もしばらくの間フィードバック制御を継続する。具体的には、LD1が光増幅器2による発熱の影響を受けなくなるまでフィードバック制御を継続する。LD1が光増幅器2による発熱の影響を受けなくなると、温度制御信号17がある値に収束するので、収束した値を温度制御信号17の初期値である温度制御初期値としてメモリ10が記憶する。
以上のステップS1からS7の処理を実行することにより、温度制御信号17の初期値を決定することができる。なお、上述したように、波長可変光源100は複数の波長を出力可能であるため、出力可能な波長のそれぞれについて、温度制御信号17の初期値を決定する。出力可能な波長のそれぞれについての温度制御信号17の初期値を決定する場合、ステップS2からS7の処理を繰り返し実行すればよい。
決定した温度制御信号17の初期値は、波長可変光源100がある波長の光の出力を開始する前の状態、すなわち、LD1が光を出力しているが光増幅器2が増幅動作を実行していない初期状態において使用する。初期状態においては、制御部9は、LD制御信号18を一定値まで上昇させてLD1から光の出力を開始させるとともに、温度制御信号17を上記のステップS1からS7を予め実行して決定しておいた初期値まで上昇させてLD1の温度を調整し、LD1が出力する光を所望波長に設定する。その後、制御部9が光増幅器制御信号19を一定値まで上昇させることにより、光増幅器2が増幅動作を開始して光信号出力状態となり、波長可変光源100は、所望波長の波長可変光源出射光12の出力を開始する。
本実施の形態では、LD1が前面および背面から光信号を出力し、前面から出力された光信号を光増幅器2が増幅し、背面から出力され、エタロン6を透過する前の光信号の強度および透過した後の光信号の強度に基づいて温度制御初期値を決定する場合について説明したが、LD1の前面から出力された光信号の一部を光増幅器2に入射させずにエタロン6を透過するように構成した場合も同様に、温度制御初期値を決定することができる。すなわち、光信号を前面からのみ出射するLDを備えて構成された波長可変光源であっても、最適な温度制御初期値を決定することができる。
このように、本実施の形態の波長可変光源において、制御部9は、まず、LD1および光増幅器2を動作させた状態で目標波長の光が出力されるように、温度可変素子3の制御信号である温度制御信号17の値を調整してLD1の温度を調整する。目標波長の光の出力が開始となると、次に、LD1の背面から出力された光のエタロン透過前の出力とエタロン透過後の出力の比を監視し、この比が変化しないように温度制御信号17を調整して温度可変素子3をフィードバック制御することによりLD1の温度が一定となるように調整しつつ、光増幅器2による増幅動作が停止するまで、増幅動作で使用する増幅率を段階的に低下させる。すなわち、波長可変光源100が出力する光の強度を段階的に下げる。そして、光増幅器2による増幅動作を停止させた時点における温度制御信号17の値を、温度制御初期値、すなわち、初期状態における温度制御信号17の初期値に決定する。これにより、初期状態における温度制御信号17の初期値として高精度な値を決定することができる。よって、LD1の初期温度設定を高精度に行うことができ、波長可変光源の高性能化を実現できる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 レーザーダイオード、2 光増幅器、3,8 温度可変素子、4 レンズ、5 パワーモニタ、6 エタロン、7 波長モニタ、9 制御部、10 メモリ、100 波長可変光源。

Claims (2)

  1. 光信号を出力する波長可変光源であって、
    温度調整により出力波長を変更可能なレーザーダイオードと、
    前記レーザーダイオードの前面から出力された光を増幅する光増幅器と、
    前記レーザーダイオードの温度を調整する温度可変素子と、
    前記レーザーダイオード、前記光増幅器および前記温度可変素子を制御する制御部と、
    前記レーザーダイオードの背面から出力された光を透過させるエタロンと、
    前記レーザーダイオードによる光出力の開始時点において前記制御部が前記温度可変素子に対して出力する温度制御信号である温度制御初期値を記憶する記憶部と、
    を備え、
    前記制御部は、前記光増幅器から出力される光の波長が目標波長となるように前記温度可変素子を制御した後、前記エタロンを透過する前の第1の光と前記エタロンを透過した後の第2の光の強度の比を目標値として算出し、さらに、前記第1の光と前記第2の光の強度の比が前記目標値から変動しないように前記温度可変素子を制御しつつ、前記光増幅器による増幅動作を停止させ、前記増幅動作の停止後に前記温度可変素子に対して出力している温度制御信号を前記温度制御初期値に決定することを特徴とする波長可変光源。
  2. 温度調整により出力波長を変更可能なレーザーダイオードと、前記レーザーダイオードの前面からの出力光を増幅する光増幅器と、前記レーザーダイオードの温度を調整する温度可変素子と、前記レーザーダイオード、前記光増幅器および前記温度可変素子を制御する制御部とを備えた波長可変光源において、前記制御部が、前記レーザーダイオードによる光出力の開始時点において前記温度可変素子に対して出力する温度制御信号である温度制御初期値を決定する、温度制御初期値の決定方法であって、
    前記制御部が、前記光増幅器から出力される光の波長が目標波長となるように、前記温度可変素子を制御するステップと、
    前記制御部が、前記光増幅器から目標波長の光が出力されている状態において、前記レーザーダイオードの背面から出力され、エタロンを透過する前の第1の光と、前記レーザーダイオードの背面から出力され、エタロンを透過した後の第2の光の強度の比を目標値として算出するステップと、
    前記制御部が、前記第1の光と前記第2の光の強度の比が前記目標値から変動しないように前記温度可変素子を制御しつつ、前記光増幅器による増幅動作を停止させるステップと、
    前記制御部が、前記増幅動作の停止後に前記温度可変素子に対して出力している温度制御信号を、前記温度制御初期値に決定するステップと、
    を含むことを特徴とする温度制御初期値の決定方法。
JP2014193800A 2014-09-24 2014-09-24 波長可変光源および温度制御初期値の決定方法 Pending JP2016066671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193800A JP2016066671A (ja) 2014-09-24 2014-09-24 波長可変光源および温度制御初期値の決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193800A JP2016066671A (ja) 2014-09-24 2014-09-24 波長可変光源および温度制御初期値の決定方法

Publications (1)

Publication Number Publication Date
JP2016066671A true JP2016066671A (ja) 2016-04-28

Family

ID=55805689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193800A Pending JP2016066671A (ja) 2014-09-24 2014-09-24 波長可変光源および温度制御初期値の決定方法

Country Status (1)

Country Link
JP (1) JP2016066671A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212561A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 レーザ光源装置
WO2018150584A1 (ja) * 2017-02-20 2018-08-23 三菱電機株式会社 光送信器、温度制御装置および温度制御方法
CN112397996A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 波长调整方法、装置及光模块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212561A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 レーザ光源装置
JPWO2017212561A1 (ja) * 2016-06-08 2018-08-09 三菱電機株式会社 レーザ光源装置
WO2018150584A1 (ja) * 2017-02-20 2018-08-23 三菱電機株式会社 光送信器、温度制御装置および温度制御方法
CN112397996A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 波长调整方法、装置及光模块
CN112397996B (zh) * 2019-08-16 2022-04-15 中国移动通信有限公司研究院 波长调整方法、装置及光模块

Similar Documents

Publication Publication Date Title
JP6050607B2 (ja) レーザ加工装置及びレーザ出力校正方法
JP6522772B2 (ja) 半導体レーザの発振波長及び出力パワーの独立制御
CN111801190B (zh) 激光功率控制装置、激光加工装置及激光功率控制方法
US10693276B2 (en) Optical transmitter
US8953650B2 (en) Method to control emission wavelength of tunable laser diode
CN105762635B (zh) 一种可调光模块的波长控制装置及方法
JP2016066671A (ja) 波長可変光源および温度制御初期値の決定方法
JP2010251448A (ja) 第三高調波を出力する固体パルスレーザ装置
TWI646314B (zh) 光學式溫度感測器及光學式溫度感測器之控制方法
US8902940B2 (en) Light source control method
CN115473111A (zh) 针对光纤放大器进行脉冲能量控制的系统及其光纤放大器
US7529285B2 (en) Frequency stabilised gas laser
US9083146B1 (en) Solid state laser device
US10630046B2 (en) Laser light source device and laser light adjusting method
US8982917B2 (en) Solid-state laser device
US10170885B2 (en) Current control device and laser device
US11942752B2 (en) Method and laser system for generating output laser pulses with an optical component with temperature-dependent power efficiency and associated computer program product
JP2013523037A (ja) 光増幅器のase補正
JP2008135640A (ja) ゲインクランプ型光増幅器
JP2018010951A (ja) 光トランシーバおよび光トランシーバの光出力安定化方法
JP2017175030A (ja) 光源制御方法および光源制御装置
JP2015204106A (ja) 温度調節システム及び温度調節方法
JP2019140271A (ja) レーザ装置およびレーザ装置の制御方法
JP2014158058A (ja) 波長可変レーザ素子の制御方法および波長可変レーザ装置
JP2014116442A (ja) 外部共振器型半導体レーザ装置