JP2016065655A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016065655A
JP2016065655A JP2014193666A JP2014193666A JP2016065655A JP 2016065655 A JP2016065655 A JP 2016065655A JP 2014193666 A JP2014193666 A JP 2014193666A JP 2014193666 A JP2014193666 A JP 2014193666A JP 2016065655 A JP2016065655 A JP 2016065655A
Authority
JP
Japan
Prior art keywords
oil
compressor
pipe
return
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193666A
Other languages
Japanese (ja)
Inventor
賢 三浦
Masaru Miura
賢 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2014193666A priority Critical patent/JP2016065655A/en
Publication of JP2016065655A publication Critical patent/JP2016065655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of simplifying a pipe design around compressors, restricting unbalanced state of lubricant oil at the compressors even if the piping design around the compressors is simplified and performing an efficient distribution of lubricant oil to the compressors.SOLUTION: An air conditioner 10 comprises an outdoor unit 11 including a plurality of compressors 13, 14, an outdoor heat exchanger 17 and an expansion valve 18. A freezing cycle 31 of the air conditioner 10 is carried out in such a way that discharging pipes 35a, 35b of each of the compressors 13, 14 are connected to a high-pressure side refrigerant pipe 35; the suction pipes 38a, 38b of each of the compressors 13, 14 are connected to a low pressure side refrigerant pipe 38 at a merging point through a suction pipe branch part 40; suction pipes 38a, 38b branched from the suction pipe branched part 40 are connected to one compressor 13 where oil is easily returned and the other compressor 14 where oil is hardly returned back to form a returned oil displacing structure and an oil supplying pipe 46 for supplying a surplus oil from a prescribed height position of one compressor 13 where oil is easily returned back to a refrigerant suction side of the other compressor 14 where oil is hardly returned back is connected.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、室外ユニットに複数の圧縮機を備えた空気調和装置に関する。   Embodiments described herein relate generally to an air conditioner that includes a plurality of compressors in an outdoor unit.

室外ユニットに複数の圧縮機を備えた空気調和装置では、これら圧縮機の吐出配管および吸込配管をそれぞれ相互に接続して冷凍サイクル装置を構成している。冷凍サイクル装置では、各圧縮機から吐出される潤滑油の量と各圧縮機に戻る潤滑油の量との間でアンバランスが生じ、圧縮機において油不足が生じることがある。油不足が生じると圧縮機に油切れの状態が発生し、圧縮機の寿命に悪影響を及ぼす虞がある。   In an air conditioner provided with a plurality of compressors in an outdoor unit, the discharge pipe and the suction pipe of these compressors are connected to each other to constitute a refrigeration cycle apparatus. In the refrigeration cycle apparatus, an imbalance occurs between the amount of lubricating oil discharged from each compressor and the amount of lubricating oil returning to each compressor, which may cause a shortage of oil in the compressor. When oil shortage occurs, the compressor runs out of oil, which may adversely affect the life of the compressor.

このため、圧縮機に油切れが生じないように、各圧縮機にはケース側面の所定高さ位置に均油管を備えた油面検出回路をそれぞれ接続し、各油面検出回路の各温度センサとバイパス管の温度センサとの温度比較により、各圧縮機のケース内潤滑油の油面を検出している。ケース内潤滑油の油面レベルがいずれかの圧縮機で低下している場合には、オイルセパレータ内の潤滑油を圧縮機吸込配管に均等に戻す油戻し制御を行なって、各圧縮機に油切れが生じるのを防止している。   Therefore, in order to prevent running out of oil in the compressor, each compressor is connected with an oil level detection circuit having an oil leveling pipe at a predetermined height position on the side of the case, and each temperature sensor of each oil level detection circuit is connected. And the temperature sensor of the bypass pipe, the oil level of the lubricating oil in the case of each compressor is detected. If the oil level of the lubricating oil in the case is lowered in any of the compressors, oil return control is performed to return the lubricating oil in the oil separator evenly to the compressor suction pipe, and the oil is supplied to each compressor. Prevents cutting.

特許第4323484号公報Japanese Patent No. 4323484

特許文献1に記載の冷凍サイクル装置では、圧縮機からの吐出冷媒は、吐出配管から室外ユニット、渡り配管、室内ユニット、渡り配管を経由して吸込配管から各圧縮機の冷媒吸込口に戻される。複数の圧縮機を備えた冷凍サイクルでは、配管設計や吸込配管の取付角度、冷媒循環量の影響により油戻りバランスが崩れ、各圧縮機はケース内循環油の油戻りに偏りが生じる場合がある。   In the refrigeration cycle apparatus described in Patent Literature 1, the refrigerant discharged from the compressor is returned from the suction pipe to the refrigerant suction port of each compressor via the outdoor unit, the transition pipe, the indoor unit, and the transition pipe from the discharge pipe. . In a refrigeration cycle with multiple compressors, the oil return balance may be lost due to the effects of piping design, suction pipe mounting angle, and refrigerant circulation rate, and each compressor may be biased in the oil return of the circulating oil in the case. .

潤滑油の油戻りに偏りが生じた場合には、圧縮機間の油戻りバランスが崩れ、油戻りの偏りに起因していずれかの圧縮機に潤滑油不足による悪影響が生じる虞がある。   If there is a bias in the oil return of the lubricating oil, the oil return balance between the compressors is lost, and there is a risk that any compressor will be adversely affected by the lack of lubricating oil due to the bias in the oil return.

また、冷凍サイクル装置には、各圧縮機にケース内潤滑油の液面高さを検出する油面検出回路が設けられる。しかし、油面検出回路は、各圧縮機に接続される各第1均油管に逆止弁、減圧器、油温センサがそれぞれ設けられてバッファタンクに接続される一方、バッファタンクに減圧管、温度センサを備えた第2均油管や、バッファタンクを圧縮機の高圧側冷媒配管に接続するバイパス管に減圧器、温度センサを備える必要があり、圧縮機廻りの配管構成が複雑となる。しかも、油面検出回路は部品点数が非常に多い。このため、油面検出回路は、各圧縮機廻りに各均油管等の配管取廻しが複雑で、その上吐出冷媒がバイパス量により低減するため、冷凍サイクルの性能低下が発生する等の課題があった。   In the refrigeration cycle apparatus, each compressor is provided with an oil level detection circuit that detects the level of the lubricant level in the case. However, the oil level detection circuit is provided with a check valve, a pressure reducer, and an oil temperature sensor in each first oil leveling pipe connected to each compressor and connected to the buffer tank, while the buffer tank has a pressure reducing pipe, The second oil leveling pipe provided with the temperature sensor and the bypass pipe connecting the buffer tank to the high-pressure side refrigerant pipe of the compressor need to be provided with a decompressor and a temperature sensor, and the piping configuration around the compressor becomes complicated. Moreover, the oil level detection circuit has a large number of parts. For this reason, the oil level detection circuit has complicated piping operation such as oil equalizing pipes around each compressor, and the discharge refrigerant is reduced by the bypass amount. there were.

本発明の実施形態は、上述した事情を考慮してなされたもので、圧縮機廻りの配管設計を簡素化し、簡素化しても圧縮機間の潤滑油アンバランスを抑制し、圧縮機間に均油を効率よく行なうことができる空気調和装置を提供することを目的とする。   The embodiment of the present invention has been made in consideration of the above-described circumstances, and simplifies the piping design around the compressor. Even if the simplification is performed, the lubricant unbalance between the compressors is suppressed, and the compressors are evenly distributed. It aims at providing the air conditioning apparatus which can perform oil efficiently.

本発明の実施形態は、上述した課題を解決するため、複数の圧縮機と室外熱交換器と膨張弁とを有する室外ユニットを備え、前記各圧縮機の吐出配管が高圧側冷媒配管に接続される一方、前記各圧縮機の吸込配管が吸込配管分岐部を介して合流側の低圧側冷媒配管に接続され、前記吸込配管分岐部から分岐される吸込配管は、油戻りし易い一方の圧縮機と油戻りしにくい他方の圧縮機にそれぞれ接続されて油戻り偏油構造に構成され、前記油戻りし易い一方の圧縮機の所定の高さ位置から前記油戻りしにくい他方の圧縮機の冷媒吸込側に余剰分の油を供給する油供給管が接続されたことを特徴とするものである。   In order to solve the above-described problems, an embodiment of the present invention includes an outdoor unit having a plurality of compressors, an outdoor heat exchanger, and an expansion valve, and a discharge pipe of each compressor is connected to a high-pressure side refrigerant pipe. On the other hand, the suction pipe of each compressor is connected to the low pressure side refrigerant pipe on the merging side via the suction pipe branching section, and the suction pipe branched from the suction pipe branching section is one compressor that is easy to return oil. Are connected to the other compressor that is hard to return to oil and are configured to have an oil return eccentric structure, and the refrigerant of the other compressor that is hard to return to oil from a predetermined height position of the one compressor that easily returns to oil An oil supply pipe for supplying surplus oil is connected to the suction side.

第1の実施形態を示す空気調和装置の冷凍サイクル図。The refrigeration cycle figure of the air conditioning apparatus which shows 1st Embodiment. (A),(B)および(C)は、(空気調和装置の室外ユニットに配設される)圧縮機吸込配管の吸込配管分岐部の各構成例をそれぞれ示す図。(A), (B) and (C) are figures which show each example of composition of a suction piping branch part of a compressor suction piping (arranged in an outdoor unit of an air harmony device), respectively. 第1の実施形態の空気調和装置をp−h線図上に表わした冷凍サイクル図。The refrigeration cycle figure which represented the air conditioning apparatus of 1st Embodiment on the ph diagram. 第2の実施形態の空気調和装置の室外ユニット側の冷凍サイクル図。The refrigeration cycle figure by the side of the outdoor unit of the air conditioning apparatus of 2nd Embodiment.

以下、本発明に係る実施形態を添付図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the accompanying drawings.

[第1の実施形態]
図1は、空気調和装置の第1の実施形態を示す冷凍サイクル図である。
[First Embodiment]
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of an air conditioner.

空気調和装置10は、室外ユニット11と室内ユニット12とから構成され、室外ユニット11に複数、例えば2台の圧縮機13,14が備えられる。室外ユニット11は、各圧縮機13,14、オイルセパレータ15、四方弁16、室外熱交換器17、膨張弁18、アキュムレータ19および室外ファン20を有する。   The air conditioner 10 includes an outdoor unit 11 and an indoor unit 12, and the outdoor unit 11 includes a plurality of, for example, two compressors 13 and 14. The outdoor unit 11 includes compressors 13 and 14, an oil separator 15, a four-way valve 16, an outdoor heat exchanger 17, an expansion valve 18, an accumulator 19, and an outdoor fan 20.

また、室外ユニット11は、その運転を制御する室外制御部22、圧縮機13,14の運転を周波数制御するインバータ23,24を備える。インバータ23,24は、商用交流電源25の電圧を整流し、整流後の電圧を室外制御部22の指令に応じた周波数に変換して出力する。圧縮機13,14は、容量可変型でインバータ23,24の出力により周波数制御されて運転される。   The outdoor unit 11 includes an outdoor control unit 22 that controls the operation thereof, and inverters 23 and 24 that perform frequency control of the operation of the compressors 13 and 14. The inverters 23 and 24 rectify the voltage of the commercial AC power supply 25, convert the rectified voltage into a frequency according to a command from the outdoor control unit 22, and output the converted voltage. The compressors 13 and 14 are variable capacity type and are operated with frequency controlled by the outputs of the inverters 23 and 24.

さらに、室内ユニット12は、膨張弁27、室内熱交換器28、室内ファン29および室内ユニット12を運転制御する図示しない室内制御部を備える。室内ユニット12の膨張弁27および室外ユニット11の膨張弁18は、弁開度調整が容易な電子膨張弁等の膨張機構で構成され、膨張弁は室外ユニット11および室内ユニット12の少なくとも一方に設けたものでもよい。   Further, the indoor unit 12 includes an indoor control unit (not shown) that controls the operation of the expansion valve 27, the indoor heat exchanger 28, the indoor fan 29, and the indoor unit 12. The expansion valve 27 of the indoor unit 12 and the expansion valve 18 of the outdoor unit 11 are configured by an expansion mechanism such as an electronic expansion valve that can easily adjust the valve opening degree. The expansion valve is provided in at least one of the outdoor unit 11 and the indoor unit 12. May be good.

室外ユニット11の各圧縮機13,14、オイルセパレータ15、四方弁16、室外熱交換器17、膨張弁18および室内ユニット12の膨張弁27および室内熱交換器28、さらに、室外ユニット12のオイルセパレータ15は、冷媒配管30で順次接続され、冷凍サイクル31が構成される。室外ユニット11と室内ユニット12とを接続する冷媒配管30は、液側またはガス側の渡り配管であり、この渡り配管にパックドバルブ32,33が設けられる。   The compressors 13 and 14 of the outdoor unit 11, the oil separator 15, the four-way valve 16, the outdoor heat exchanger 17, the expansion valve 18, the expansion valve 27 and the indoor heat exchanger 28 of the indoor unit 12, and the oil of the outdoor unit 12 The separators 15 are sequentially connected by a refrigerant pipe 30 to constitute a refrigeration cycle 31. The refrigerant pipe 30 that connects the outdoor unit 11 and the indoor unit 12 is a liquid-side or gas-side transition pipe, and packed valves 32 and 33 are provided in the transition pipe.

[圧縮機周りの配管]
複数の圧縮機13,14は、その運転中にケース内が高圧になる圧縮機であり、ケース内に潤滑用の冷凍機油(潤滑油)が収容されている。各圧縮機13,14の冷媒吐出口に吐出配管35a,35bがそれぞれ接続され、これらの吐出配管35a,35bは合流して高圧側冷媒配管35に接続される。高圧側冷媒配管35にはガス冷媒と潤滑油の油分とを分離するオイルセパレータ15を経て四方弁16が接続される。高圧側冷媒配管35には、吐出温度センサ36および高圧圧力センサ37が設けられている。
[Piping around the compressor]
The plurality of compressors 13 and 14 are compressors in which the inside of the case becomes high pressure during operation, and the refrigerator oil (lubricating oil) for lubrication is accommodated in the case. Discharge pipes 35 a and 35 b are respectively connected to the refrigerant discharge ports of the compressors 13 and 14, and these discharge pipes 35 a and 35 b are joined and connected to the high-pressure side refrigerant pipe 35. A four-way valve 16 is connected to the high-pressure side refrigerant pipe 35 via an oil separator 15 that separates the gas refrigerant and the oil content of the lubricating oil. The high pressure side refrigerant pipe 35 is provided with a discharge temperature sensor 36 and a high pressure sensor 37.

また、各圧縮機13,14の冷媒吸込口に吸込配管38a,38bがそれぞれ接続され、これらの吸込配管38a,38bに低圧側冷媒配管38が接続される。低圧側冷媒配管38には低圧圧力センサ39および気液分離器であるアキュムレータ19を経て四方弁16に接続される。   Further, suction pipes 38a and 38b are connected to the refrigerant suction ports of the compressors 13 and 14, respectively, and a low-pressure side refrigerant pipe 38 is connected to the suction pipes 38a and 38b. The low-pressure refrigerant pipe 38 is connected to the four-way valve 16 via a low-pressure sensor 39 and an accumulator 19 that is a gas-liquid separator.

逆に、各圧縮機13,13への冷媒の戻りに着目すると、四方弁16からの低圧側冷媒(合流吸込)配管38は、ガス冷媒配管であり、アキュムレータ19を経て吸込配管分岐部40で分岐され、各分岐吸込配管38a,38bに導かれる。分岐吸込配管38a,38bはサクションパイプ41,41をそれぞれ経て各圧縮機13,14の冷媒吸込口に接続される。   On the contrary, when attention is paid to the return of the refrigerant to the compressors 13, 13, the low-pressure side refrigerant (merged suction) pipe 38 from the four-way valve 16 is a gas refrigerant pipe, and passes through the accumulator 19 at the suction pipe branch 40. It branches and is guide | induced to each branch suction piping 38a, 38b. The branch suction pipes 38a and 38b are connected to the refrigerant suction ports of the compressors 13 and 14 through suction pipes 41 and 41, respectively.

吸込配管分岐部40は、片側の一方の圧縮機13に接続される分岐吸込配管38aが、他方の圧縮機14に接続される分岐吸込配管38bより、(圧縮機への)戻り冷媒量、ひいては油戻り量が多くなるように、油戻り偏油構造に構成される。具体的には、吸込配管分岐部40は、図2(A),(B)または(C)に示すように油戻り偏油構造に構成され、一方の分岐吸込配管38aが他方の分岐吸込配管38bより、冷媒量、ひいては油戻り量が多くなる冷媒分岐構造に構成される。   In the suction pipe branching section 40, the branch suction pipe 38a connected to one compressor 13 on one side is more than the branch suction pipe 38b connected to the other compressor 14, and the return refrigerant amount (to the compressor) is extended. The oil return eccentric structure is configured to increase the amount of oil return. Specifically, the suction pipe branching section 40 is configured in an oil return eccentric structure as shown in FIG. 2 (A), (B) or (C), and one branch suction pipe 38a is the other branch suction pipe. From 38b, it is comprised in the refrigerant | coolant branch structure which increases a refrigerant | coolant amount and by extension, an oil return amount.

図2(A)は、慣性力を利用した配管分岐構造であり、吸込配管分岐部40は、アキュムレータ19側の低圧側冷媒(合流吸込)配管38から一方の分岐吸込配管38aがほぼ直線状に滑らかに延び、他方の分岐吸込配管38bが所定以上の角度、例えば直角に接続された冷媒分岐流路43が形成される。吸込配管分岐部40は、慣性力を利用した冷媒分岐流路43とすることで、冷凍サイクル31の運転状態如何に関わらず、片側の一方の圧縮機13が他方の圧縮機14(ガス)冷媒量が多く、ひいては、油が戻り易い油戻り偏油構造に構成される。   FIG. 2A shows a pipe branching structure using inertial force, and the suction pipe branching section 40 is configured such that one branch suction pipe 38a is substantially linear from the low-pressure side refrigerant (merged suction) pipe 38 on the accumulator 19 side. A refrigerant branch passage 43 is formed which extends smoothly and has the other branch suction pipe 38b connected at an angle of a predetermined angle or more, for example, a right angle. The suction pipe branch section 40 is a refrigerant branch flow path 43 that uses inertial force, so that one compressor 13 on one side is the refrigerant of the other compressor 14 (gas) regardless of the operating state of the refrigeration cycle 31. The amount is large, and as a result, an oil return eccentric structure is formed in which oil is easy to return.

図2(B)は、重力を利用した配管分岐構造であり、吸込配管分岐部40は、アキュムレータ19から合流側の低圧側冷媒(合流吸込)配管38に対し、分岐を重力方向に上下に分け、油戻りし易い配管を一方の分岐吸込配管38aとして下側に、また、油戻りしにくい配管を他方の分岐吸込配管38bとして上側を向くように配設された重力利用の冷媒分岐流路44である。   FIG. 2B shows a pipe branching structure using gravity, and the suction pipe branching section 40 divides the branch from the accumulator 19 into the low pressure side refrigerant (merged suction) pipe 38 on the merging side up and down in the direction of gravity. A gravity-use refrigerant branch flow path 44 is arranged such that the pipe that is easy to return oil is directed downward as one branch suction pipe 38a and the pipe that is difficult to return oil is directed upward as the other branch suction pipe 38b. It is.

また、図2(C)は、吸込配管分岐部40から分岐吸込配管38a,38bの内管径に大小を持たせた冷媒分岐流路45を構成した配管分岐構造であり、アキュムレータ19からの合流側の低圧側冷媒(合流吸込)配管38に対し、油戻りし易い配管を一方の分岐吸込配管38aとして、流路抵抗が小さく、内管径の大きな配管とし、油戻りしにくい配管を他方の分岐吸込配管38bとして、流路抵抗が大きく、内管径の小さな配管としたものである。   FIG. 2C shows a pipe branching structure in which a refrigerant branching channel 45 is formed in which the inner pipe diameters of the branching suction pipes 38 a and 38 b are increased or decreased from the suction pipe branching portion 40, and the merging from the accumulator 19. For the low-pressure side refrigerant (combined suction) pipe 38 on the side, the pipe that is easy to return oil is used as one branch suction pipe 38a, the pipe that has a small flow resistance and a large inner pipe diameter, and the pipe that is difficult to return oil is the other pipe. The branch suction pipe 38b is a pipe having a large flow path resistance and a small inner pipe diameter.

[圧縮機の油面調整]
図2(A),(B)または(C)に示すように、冷凍サイクル31の吸込配管分岐部40は、片側の一方の圧縮機13が油戻りし易く、他方の圧縮機14が油戻りしにくい油戻り偏油構造に構成される。油戻り偏油構造の圧縮機13,14のうち、油戻りし易い一方の圧縮機13に余剰分の油を供給する油供給管として余剰油排出管46が設けられる。余剰油排出管46は、一方の圧縮機13のケース側面の所定高さ位置に接続され、一方の圧縮機13内潤滑油の油面高さを最適な一定に保つ均油管の機能を果している。
[Compressor oil level adjustment]
As shown in FIGS. 2A, 2B, or 2C, in the suction pipe branching portion 40 of the refrigeration cycle 31, one compressor 13 on one side is easy to return to oil, and the other compressor 14 is returned to oil. Constructed in an oil-returning oil structure that is difficult to perform. An excess oil discharge pipe 46 is provided as an oil supply pipe for supplying excess oil to one of the compressors 13 and 14 having an oil return eccentric structure, which easily returns to oil. The surplus oil discharge pipe 46 is connected to a predetermined height position on the case side surface of the one compressor 13, and functions as an oil equalizing pipe that keeps the oil level height of the lubricating oil in the one compressor 13 at an optimum constant level. .

一方の圧縮機13に接続される余剰油排出管46は油供給管を兼ねており、途中に逆止弁47、キャピラリチューブ等の圧力降下手段である減圧器48、その下流側に温度検出手段の温度センサ49が設けられて、圧縮機油面高さ検出手段50を構成している。余剰油排出管46は、他方の圧縮機14の冷媒吸込口側である分岐吸込配管38bに接続される。   A surplus oil discharge pipe 46 connected to one compressor 13 also serves as an oil supply pipe. A decompressor 48 which is a pressure drop means such as a check valve 47 and a capillary tube is provided on the way, and a temperature detection means downstream thereof. The temperature sensor 49 is provided to constitute the compressor oil level detection means 50. The surplus oil discharge pipe 46 is connected to a branch suction pipe 38b which is the refrigerant suction port side of the other compressor 14.

本実施形態では、冷凍サイクル31の圧縮機13,14の冷媒吸込側に設置される吸込配管分岐部40に油戻り偏油構造が採用され、一方の圧縮機13にガス冷媒とともに戻る油を他方の圧縮機14より油戻りし易い油戻り偏油構造に構成される。油戻りし易い一方の圧縮機13のケース側面に余剰油排出管46が接続され、流入される余剰分の油を他方の圧縮機14に供給している。一方の圧縮機13の余剰分の油を他方の圧縮機14に供給することで、圧縮機13,14間の均油を図るように油面調整を行なうことができる。   In the present embodiment, an oil return eccentric structure is adopted in the suction pipe branching portion 40 installed on the refrigerant suction side of the compressors 13 and 14 of the refrigeration cycle 31, and the oil returning to the one compressor 13 together with the gas refrigerant is supplied to the other. The compressor 14 is configured to have an oil return eccentric structure that is easier to return oil than the compressor 14 of. A surplus oil discharge pipe 46 is connected to the case side surface of one compressor 13 that is easy to return oil, and the surplus oil that flows in is supplied to the other compressor 14. By supplying the surplus oil from one compressor 13 to the other compressor 14, the oil level can be adjusted so as to achieve leveling between the compressors 13,14.

[圧縮機の油面検出]
圧縮機油面高さ検出手段50による圧縮機13内の油面検出については、一方の圧縮機13に設置された余剰油排出管46にキャピラリチューブの圧力減圧手段である減圧器48を設置し、その下流に温度検出手段である温度センサ49を設置し、この温度センサ49により余剰油排出管46を通る余剰油や冷媒の温度を実測値として検出している。
[Compressor oil level detection]
For oil level detection in the compressor 13 by the compressor oil level detection means 50, a pressure reducer 48, which is a pressure reduction means for the capillary tube, is installed in the surplus oil discharge pipe 46 installed in one compressor 13, A temperature sensor 49, which is a temperature detection means, is installed downstream of the temperature sensor 49. The temperature sensor 49 detects the temperature of excess oil or refrigerant passing through the excess oil discharge pipe 46 as an actual measurement value.

また、冷凍サイクル31の吐出側の吐出温度センサ36、高圧圧力センサ37および吸込側の低圧圧力センサ39に検出される吐出ガス温度、凝縮(飽和)温度、蒸発(飽和)温度から低圧過熱ガス温度Tgasの推測値を推測しており、この低圧過熱ガス温度Tgasの推測値と余剰油排出管46設置の温度センサ49からの実測値とを比較することで、一方の圧縮機13内の潤滑油の油面高さを検出することができる。 Further, from the discharge gas temperature, the condensation (saturation) temperature, and the evaporation (saturation) temperature detected by the discharge temperature sensor 36, the high pressure sensor 37 and the suction low pressure sensor 39 of the refrigeration cycle 31, the low pressure superheated gas temperature. The estimated value of T gas is estimated, and the estimated value of the low pressure superheated gas temperature T gas is compared with the actually measured value from the temperature sensor 49 installed in the surplus oil discharge pipe 46, so that The oil level of the lubricating oil can be detected.

例えば、一方の圧縮機13のケース内潤滑油が所要の高さ以上である場合には、冷凍機油である潤滑油の余剰分が余剰油排出管46内を流れる。余剰分の油がキャピラリチューブの減圧器48を通っても、減圧による温度変化が小さく、温度センサ49で検出される実測値の検出温度は、一方の圧縮機13のケース内潤滑油の温度Toil1とほぼ等しく、この油温度Toil1は、冷凍サイクル31の吐出温度センサ36で検出される吐出ガス温度とほぼ等しくなる。したがって、温度センサ49の実測値が油温度Toil1を検出しているときは、一方の圧縮機13のケース内の潤滑油は適性な油面高さにより、所要の潤滑流量が存在することを検出できる。 For example, when the in-case lubricating oil of one compressor 13 has a required height or more, surplus lubricating oil that is refrigeration oil flows in the surplus oil discharge pipe 46. Even if surplus oil passes through the capillary tube decompressor 48, the temperature change due to decompression is small, and the actually detected temperature detected by the temperature sensor 49 is the temperature T of the lubricating oil in the case of one compressor 13. The oil temperature T oil1 is substantially equal to the oil1 and is substantially equal to the discharge gas temperature detected by the discharge temperature sensor 36 of the refrigeration cycle 31. Therefore, when the measured value of the temperature sensor 49 detects the oil temperature Toil1 , the lubricating oil in the case of the one compressor 13 has a proper lubricating flow rate and the required lubricating flow rate exists. It can be detected.

一方、圧縮機13のケース内潤滑油の油面が低下し、余剰油排出管46内に潤滑油が流れないときは、圧縮機13内のガス冷媒が余剰油排出管46内を流れることになる。冷媒が余剰油排出管46内に流入し、流入した冷媒がキャピラリチューブの減圧器48を通ると、冷媒は圧力降下して大きな温度低下が生じる。冷媒の温度降下は温度センサ49に実測値として検出される。   On the other hand, when the oil level of the lubricating oil in the case of the compressor 13 decreases and the lubricating oil does not flow into the surplus oil discharge pipe 46, the gas refrigerant in the compressor 13 flows through the surplus oil discharge pipe 46. Become. When the refrigerant flows into the surplus oil discharge pipe 46 and the refrigerant flows through the pressure reducer 48 of the capillary tube, the refrigerant drops in pressure and a large temperature drop occurs. The temperature drop of the refrigerant is detected by the temperature sensor 49 as an actual measurement value.

一方、図3に示すように、冷凍サイクル31の高圧圧力センサ37で検出される凝縮(飽和)温度、低圧圧力センサ39で検出される蒸発(飽和)温度および吐出温度センサ36で検出される吐出ガス温度から低圧過熱ガス温度Tgasを推測することができ、余剰油排出管46に設置の温度センサ49による実測値を冷凍サイクル31で推測の低圧過熱ガス温度Tgasの推測値と比較することで、一方の圧縮機13のケース内潤滑油の油面高さを検出することができる。 On the other hand, as shown in FIG. 3, the condensation (saturation) temperature detected by the high pressure sensor 37 of the refrigeration cycle 31, the evaporation (saturation) temperature detected by the low pressure sensor 39, and the discharge detected by the discharge temperature sensor 36. The low pressure superheated gas temperature T gas can be estimated from the gas temperature, and the actual measured value by the temperature sensor 49 installed in the surplus oil discharge pipe 46 is compared with the estimated value of the low pressure superheated gas temperature T gas estimated in the refrigeration cycle 31. Thus, the oil level of the in-case lubricating oil of one compressor 13 can be detected.

したがって、余剰油排出管46に設置された温度検出手段である温度センサ49により実測値を温度検出することにより、一方の圧縮機13のケース内潤滑油の油面高さを検出することができる。   Therefore, by detecting the temperature of the actually measured value by the temperature sensor 49 that is a temperature detecting means installed in the surplus oil discharge pipe 46, the oil level of the lubricating oil in the case of one compressor 13 can be detected. .

そして、複数の圧縮機13,14のうち、一方の圧縮機13から余剰油排出管46内に余剰分の油が流れているとき、一方の圧縮機13のケース内潤滑油の油面高さは所要の油面高さに保たれている。このとき、他方の圧縮機14は、一方の圧縮機13の余剰分の油が他方の分岐吸込配管38bの吸込冷媒に加算されて供給されるため、各圧縮機13,14のケース内潤滑油の油面高さは、所要量が有効に保たれることになり、問題は生じない。   And when the excess oil flows into the surplus oil discharge pipe 46 from one compressor 13 among the plurality of compressors 13, 14, the oil level height of the lubricating oil in the case of one compressor 13 Is kept at the required oil level. At this time, the other compressor 14 is supplied with the excess oil of one compressor 13 added to the suction refrigerant of the other branch suction pipe 38b, and therefore the in-case lubricating oil of each of the compressors 13 and 14 is supplied. As for the oil level, the required amount is kept effective, and no problem occurs.

また、各圧縮機13,14のケース内潤滑油の油面検出は、油戻りし易い一方の圧縮機13に、均油管や油供給管を兼ねる単一の余剰油排出管46を設け、この余剰油排出管46に圧力降下手段である減圧器48および温度検出手段である温度センサ49を設置して下流側を他方の圧縮機14の冷媒吸込側に接続するだけの簡単な配管構成で、圧縮機油面高さ検出手段50を構成することができる。この圧縮機油面高さ検出手段50は、一方の圧縮機13側の油面検出回路を構成するだけで、各圧縮機13,14間の均油を調整することができる。   In addition, the detection of the oil level of the in-case lubricating oil of each of the compressors 13 and 14 is provided with a single surplus oil discharge pipe 46 that also serves as an oil equalizing pipe and an oil supply pipe in one of the compressors 13 that easily returns to the oil. With a simple piping configuration in which a pressure reducer 48 as a pressure drop means and a temperature sensor 49 as a temperature detection means are installed in the surplus oil discharge pipe 46 and the downstream side is connected to the refrigerant suction side of the other compressor 14, The compressor oil level detection means 50 can be configured. The compressor oil level detection means 50 can adjust the oil leveling between the compressors 13 and 14 only by constituting an oil level detection circuit on the one compressor 13 side.

特許文献1に開示の従来の空気調和装置の冷凍サイクルのように、圧縮機廻りに複雑な配管構成の油面検出回路やバイパス管を必要としない。   Unlike the refrigeration cycle of the conventional air conditioner disclosed in Patent Document 1, an oil level detection circuit or bypass pipe having a complicated piping configuration is not required around the compressor.

したがって、本実施形態では、複数の圧縮機13,14を備えた冷凍サイクル31に、一方の圧縮機13が他方の圧縮機14より油戻りし易い油戻り偏油構造を採用することで、一方の圧縮機13に敢えて油戻りを偏らせて潤滑油を多く戻すことにより、各圧縮機13,14毎に油面検出回路を設ける必要がなく、バイパス管も不要となるので、部品点数が少なく、圧縮機13,14廻りの配管構成が大幅に簡素化することができる。   Therefore, in the present embodiment, the refrigeration cycle 31 including the plurality of compressors 13 and 14 employs an oil return eccentric structure in which one compressor 13 is more likely to return oil than the other compressor 14. By deviating the oil return to the compressor 13 and returning a large amount of lubricating oil, there is no need to provide an oil level detection circuit for each of the compressors 13 and 14, and a bypass pipe is not required, so the number of parts is small. The piping configuration around the compressors 13 and 14 can be greatly simplified.

[圧縮機への潤滑油の油戻し]
余剰油排出管46内に余剰分の油が流入しないときは、各圧縮機13,14はケース内油面高さが低下する虞がある。この場合には、余剰分の油が流入しないことを温度センサ49が検出して、オイルセパレータ15から油戻し配管52の常閉の制御弁53が開制御される。オイルセパレータ15内の潤滑油は油戻し配管52から一方の圧縮機13の冷媒吸込側に戻される。オイルセパレータ15はタンク底壁側に第1の油戻し配管52aが、そのケース側壁に第2の油戻し配管52bがそれぞれ接続されており、両油戻し配管52a,52bは、キャピラリチューブ等の圧力降下手段の減圧器54a,54bを介して単一の油戻し配管52に合流した後、一方の圧縮機13への分岐吸込配管38に潤滑油を供給し、潤滑油の油戻しを行なっている。
[Returning lubricating oil to the compressor]
When the excess oil does not flow into the excess oil discharge pipe 46, there is a risk that the oil level in the case of each of the compressors 13 and 14 is lowered. In this case, the temperature sensor 49 detects that excess oil does not flow, and the normally closed control valve 53 of the oil return pipe 52 is controlled to open from the oil separator 15. The lubricating oil in the oil separator 15 is returned from the oil return pipe 52 to the refrigerant suction side of one compressor 13. The oil separator 15 has a first oil return pipe 52a connected to the tank bottom wall side and a second oil return pipe 52b connected to the case side wall, and both oil return pipes 52a and 52b are pressures of capillary tubes or the like. After joining the single oil return pipe 52 via the pressure reducers 54a and 54b of the descending means, the lubricating oil is supplied to the branch suction pipe 38 to the one compressor 13 to return the lubricating oil. .

そして、本実施形態では、油戻りし易い一方の圧縮機13に油供給管である余剰油排出管46を設け、この余剰油排出管46を他方の圧縮機14の冷媒吸込側に接続して、余剰分の油を他方の圧縮機14へ給油することで、圧縮機13,14間の均油を行なうものである。   And in this embodiment, the surplus oil discharge pipe 46 which is an oil supply pipe is provided in one compressor 13 which is easy to return oil, and this surplus oil discharge pipe 46 is connected to the refrigerant suction side of the other compressor 14. In addition, by supplying the excess oil to the other compressor 14, the oil leveling between the compressors 13 and 14 is performed.

[冷凍サイクルにおける冷媒の流れ]
図1に示される冷凍サイクル31は四方弁16の切換操作により、冷房運転と暖房運転が選択される。
[Refrigerant flow in refrigeration cycle]
In the refrigeration cycle 31 shown in FIG. 1, the cooling operation and the heating operation are selected by the switching operation of the four-way valve 16.

冷房運転時には各圧縮機13,14から吐出される冷媒は、冷凍サイクル31内を実線矢印Aで示すように流れる。   During the cooling operation, the refrigerant discharged from the compressors 13 and 14 flows in the refrigeration cycle 31 as indicated by a solid arrow A.

冷房運転時に圧縮機13,14が運転されると、圧縮機13,14で図3のa点から圧縮された高温高圧のガス冷媒は高温高圧となってb点から吐出される。吐出冷媒は、吐出配管35a,35bを経て高圧側冷媒配管35に導かれ、オイルセパレータ15で冷媒と油に分離され、分離された潤滑油はオイルセパレータ15内に貯留される。オイルセパレータ15内冷媒は、四方弁16を経て室外熱交換器17に流れ、この室外熱交換器17で室外空気と熱交換して凝縮され、液冷媒となってはc点に至る。   When the compressors 13 and 14 are operated during the cooling operation, the high-temperature and high-pressure gas refrigerant compressed from the point a in FIG. 3 by the compressors 13 and 14 becomes high temperature and pressure and is discharged from the point b. The discharged refrigerant is guided to the high-pressure side refrigerant pipe 35 through the discharge pipes 35a and 35b, and is separated into refrigerant and oil by the oil separator 15, and the separated lubricating oil is stored in the oil separator 15. The refrigerant in the oil separator 15 flows through the four-way valve 16 to the outdoor heat exchanger 17 and is condensed by exchanging heat with the outdoor air in the outdoor heat exchanger 17 and reaches a point c as a liquid refrigerant.

室外熱交換器17で凝縮された液冷媒は、続いて膨張弁18に送られる。この膨張弁18は例えば電子膨張弁であり、膨張弁18で液冷媒の凝縮度が調整され、過冷却の液冷媒となる。液冷媒は、続いて室内ユニット12側の膨張弁27で再び絞られて膨張し、温度降下してd点で低温低圧の冷媒になる。低温低圧となった気液二相の冷媒は、室内熱交換器28に送られ、ここで室内空気と熱交換して室内を冷却させる。   The liquid refrigerant condensed in the outdoor heat exchanger 17 is then sent to the expansion valve 18. The expansion valve 18 is an electronic expansion valve, for example, and the degree of condensation of the liquid refrigerant is adjusted by the expansion valve 18 to become a supercooled liquid refrigerant. The liquid refrigerant is subsequently throttled again by the expansion valve 27 on the indoor unit 12 side to expand, and the temperature drops to become a low-temperature and low-pressure refrigerant at point d. The gas-liquid two-phase refrigerant that has become low-temperature and low-pressure is sent to the indoor heat exchanger 28, where it heat-exchanges with room air to cool the room.

一方、室内空気との熱交換により吸熱し、蒸発した冷媒はガス冷媒となる。このガス冷媒は、四方弁16、アキュムレータ19から吸込配管分岐部40を通り、さらに各分岐吸込配管38a,38bからa点で圧縮機13,14に吸い込まれる。吸い込まれたガス冷媒は圧縮機13,14によりa点からb点に圧縮され、次の冷凍サイクル31に備えられる。   On the other hand, the refrigerant that absorbs heat and evaporates by heat exchange with room air becomes a gas refrigerant. The gas refrigerant passes from the four-way valve 16 and the accumulator 19 through the suction pipe branching section 40, and is further sucked into the compressors 13 and 14 from the branch suction pipes 38a and 38b at the point a. The sucked gas refrigerant is compressed from the point a to the point b by the compressors 13 and 14 and provided in the next refrigeration cycle 31.

また、暖房運転は、四方弁16を切り換えることにより行なわれ、反対方向に冷媒が流れる。暖房運転時には圧縮機13,14からの吐出冷媒は破線矢印Bで示すように案内される。   The heating operation is performed by switching the four-way valve 16, and the refrigerant flows in the opposite direction. During the heating operation, the refrigerant discharged from the compressors 13 and 14 is guided as indicated by the broken line arrow B.

なお、図3に示す冷凍サイクルのモリエル線図(p−h線図)において、符号Cは飽和液線であり、符号Dは飽和蒸気線、符号Eは臨界点である。   In the Mollier diagram (ph diagram) of the refrigeration cycle shown in FIG. 3, the symbol C is a saturated liquid line, the symbol D is a saturated vapor line, and the symbol E is a critical point.

また、a−b間は圧縮機13,14での冷媒の状態変化を示し、点b−c間は(冷房運転時に凝縮器となる)室外熱交換器の冷媒状態変化、点c−d間は膨張弁18,27における冷媒状態の変化、点d−a間は、(冷房運転時に蒸発器となる)室内熱交換器の冷媒状態変化、をそれぞれ示している。   Also, between a and b, the refrigerant state change in the compressors 13 and 14 is shown. Between the points b and c, the refrigerant state change in the outdoor heat exchanger (which becomes a condenser during cooling operation), between the points cd Shows the change in the refrigerant state in the expansion valves 18 and 27, and the change in the refrigerant state of the indoor heat exchanger (which becomes an evaporator during the cooling operation) is shown between points da.

さらに、符号Tは過冷却液の等温線(垂直線)、符号Tは湿り蒸気の等温線(水平線)、符号Tは過熱蒸気の等温線である。符号Tgasは、低圧過熱ガス温度の推測値である。この低圧過熱ガス温度Tgasは、(高圧圧力センサ37、低圧圧力センサ39、吐出温度センサ36で検出される)凝縮飽和温度、蒸発飽和温度、吐出ガス温度から推測され、この推測値は余剰油排出管46設置の温度センサ69による実測値と比較され、一方の圧縮機13内の潤滑油の液面高さを求めることができる。 Further, reference numeral T 1 is the supercooled liquid isotherm (vertical lines), symbols T 2 are isotherms wet steam (horizontal lines), reference numeral T 3 is the isotherm of superheated steam. The symbol T gas is an estimated value of the low pressure superheated gas temperature. The low-pressure superheated gas temperature T gas is estimated from the condensation saturation temperature, the evaporation saturation temperature, and the discharge gas temperature (detected by the high-pressure sensor 37, the low-pressure sensor 39, and the discharge temperature sensor 36). The level of the lubricating oil in one of the compressors 13 can be obtained by comparison with the actually measured value by the temperature sensor 69 installed in the discharge pipe 46.

[第1の実施形態の効果]
本実施形態の空気調和装置10は、複数の圧縮機13,14を備えた冷凍サイクル31において、油戻し易い一方の圧縮機13を油戻りしにくい他方の圧縮機14より潤滑油の油戻りを敢えて偏らせて多く戻す油戻し偏油構造を採用し、油戻りし易い一方の圧縮機13の所定高さ位置から油戻りしにくい他方の圧縮機14の冷媒吸込側に、余剰分の油を供給する油供給管46を設けたので、一方の圧縮機13への油戻りを他方の圧縮機14より敢えて多くして偏らせ、一方の圧縮機の潤滑油の余剰分を他方の圧縮機の冷媒吸込側に供給することで、圧縮機13,14間の均油を図ることができる。
[Effect of the first embodiment]
In the refrigeration cycle 31 including the plurality of compressors 13 and 14, the air conditioner 10 of the present embodiment returns the oil of the lubricating oil from the other compressor 14 that is less likely to return the oil to the one compressor 13 that is more likely to return the oil. Employing an oil return bias structure that deliberately returns a large amount of oil, excessive oil is supplied to the refrigerant suction side of the other compressor 14 that is difficult to return from a predetermined height position of one compressor 13 that is easy to return oil. Since the oil supply pipe 46 to be supplied is provided, the oil return to the one compressor 13 is deliberately biased more than the other compressor 14, and the surplus amount of lubricating oil in one compressor is increased in the other compressor. By supplying the refrigerant to the refrigerant suction side, oil leveling between the compressors 13 and 14 can be achieved.

また、油が戻り易い一方の圧縮機13からの油供給管を単一の余剰油排出管46とすることができ、この余剰油排出管46を途中に圧力降下手段48とその下流側に温度検出手段49とを設けて他方の圧縮機14の冷媒吸込側に接続しただけであり、圧縮機廻りの配管構成を簡素化することができ、コストの低減が図れる。また、従来技術のようなバイパス管を不要とするので、バイパス量が不要となり、冷凍サイクルの性能低下抑制を図ることができる。   In addition, the oil supply pipe from one compressor 13 where the oil is easy to return can be made into a single surplus oil discharge pipe 46, and the surplus oil discharge pipe 46 is moved to the pressure drop means 48 and a temperature downstream thereof. Only the detection means 49 is provided and connected to the refrigerant suction side of the other compressor 14, the piping configuration around the compressor can be simplified, and the cost can be reduced. Further, since the bypass pipe as in the prior art is not required, the amount of bypass is not required, and the performance deterioration of the refrigeration cycle can be suppressed.

さらに、油戻し偏油構造を構成する吸込配管分岐部40は、慣性力を利用したり、重力を利用したり、冷媒流路抵抗の大小を利用した冷媒分岐構造として油戻し易い吸込配管38aと油戻りしにくい吸込配管38bとに分けて各圧縮機13,14にそれぞれ接続したので、冷媒流量を制御する制御弁等の動的機器が不要で、静的な配管構成によりどのような運転条件でも片側の一方の圧縮機13に潤滑油が戻り易く、さらに、潤滑油の余剰分を他方の圧縮機14の冷媒吸込側に供給して、圧縮機13,14間の均油を図ることができる。   Further, the suction pipe branching portion 40 constituting the oil return eccentric structure uses the suction pipe 38a that is easy to return oil as a refrigerant branch structure that uses inertial force, uses gravity, or uses the magnitude of the refrigerant flow resistance. Since it is connected to each of the compressors 13 and 14 separately from the suction pipe 38b that is hard to return to oil, dynamic equipment such as a control valve for controlling the refrigerant flow rate is unnecessary, and any operating condition is determined by a static pipe configuration. However, it is easy to return the lubricating oil to one compressor 13 on one side, and to supply the surplus amount of lubricating oil to the refrigerant suction side of the other compressor 14 so as to equalize the oil between the compressors 13 and 14. it can.

加えて、圧縮機13内の潤滑油の油面は、油供給管46に圧力降下手段48とその下流側に設けた温度検出手段49より構成される油面高さ検出手段50により検出でき、しかも、油面高さ検出手段50は、冷凍サイクル31の吐出温度センサ36、高圧圧力センサ37、低圧圧力センサ39で検出される吐出ガス温度、凝縮(飽和)温度、蒸発(飽和)温度から低圧過熱ガス温度Tgasを推定することができ、この低圧過熱ガス温度Tgasの推定値と温度検出手段49の実測値を比較して、圧縮機13内の潤滑油の液面レベルを検出できる。従来技術のように各圧縮機毎に油面検出回路やバイパス管を設けたり、バイパス管に温度センサを設けることが不要となり、圧縮機廻りの配管構成が簡素化され、部品点数も少なく、コストダウンを図ることができる。 In addition, the oil level of the lubricating oil in the compressor 13 can be detected by an oil level height detecting unit 50 including a pressure drop unit 48 in the oil supply pipe 46 and a temperature detecting unit 49 provided downstream thereof, In addition, the oil level height detection means 50 is low pressure from the discharge gas temperature, the condensation (saturation) temperature, and the evaporation (saturation) temperature detected by the discharge temperature sensor 36, the high pressure sensor 37, and the low pressure sensor 39 of the refrigeration cycle 31. The superheated gas temperature Tgas can be estimated, and the estimated value of the low pressure superheated gas temperature Tgas and the actually measured value of the temperature detecting means 49 can be compared to detect the level of the lubricating oil in the compressor 13. It is not necessary to provide an oil level detection circuit or bypass pipe for each compressor as in the conventional technology, or to provide a temperature sensor for the bypass pipe, simplifying the piping configuration around the compressor, reducing the number of parts, and cost. You can go down.

[第2の実施形態]
次に、空気調和装置の第2の実施形態を、図4を参照して説明する。
[Second Embodiment]
Next, a second embodiment of the air conditioner will be described with reference to FIG.

第2の実施形態は、圧縮機容量が異なる空気調和装置10Aの例を示すもので、この空気調和装置10Aは第1の実施形態に示された空気調和装置10とは複数の圧縮機13A,14Aの圧縮機容量が異なる構成としただけで、全体の冷凍サイクル31の構成は異ならないので、同じ構成には、同一符号を付して重複説明を省略する。   The second embodiment shows an example of an air conditioner 10A having different compressor capacities, and this air conditioner 10A includes a plurality of compressors 13A, which are different from the air conditioner 10 shown in the first embodiment. Since the configuration of the entire refrigeration cycle 31 is not different only by adopting a configuration in which the compressor capacity of 14A is different, the same configuration is denoted by the same reference numeral, and redundant description is omitted.

図4は、空気調和装置10Aの室外ユニット11Aを示すもので、この室外ユニット11Aには、冷凍サイクル31Aの最小能力運転を拡大するため、圧縮機容量がそれぞれ異なる複数の圧縮機13A,14Aを備えたものである。   FIG. 4 shows an outdoor unit 11A of the air conditioner 10A. The outdoor unit 11A includes a plurality of compressors 13A and 14A having different compressor capacities in order to expand the minimum capacity operation of the refrigeration cycle 31A. It is provided.

第2の実施形態では、油戻りし易い圧縮機を圧縮機容量の大きい一方の圧縮機13Aとし、他方の圧縮機14Aの圧縮機容量より大きく構成する。そして、油が戻り易い一方の圧縮機13Aは、除霜時や起動時等の過渡運転時に、液冷媒が戻り易くなる。この場合、一方の圧縮機13Aに液冷媒も偏って多く戻るため、液バックによる圧縮機13Aの信頼性悪化の虞がある。   In the second embodiment, the compressor that easily returns to oil is configured as one compressor 13A having a large compressor capacity, and is configured to be larger than the compressor capacity of the other compressor 14A. And one compressor 13A where oil is easy to return becomes easy to return liquid refrigerant at the time of transient operation, such as at the time of defrosting or starting. In this case, since the liquid refrigerant is also biased and returned to the one compressor 13A, the reliability of the compressor 13A may be deteriorated due to the liquid back.

このため、液冷媒の戻り易い一方の圧縮機13Aを圧縮機容量の大きい圧縮機とすることで、液バックのバッファとなるサクションカップ41の容量も大きくなり、液冷媒バッファを大きくすることができる。このため、液バックに対する信頼性を向上させることができる。   For this reason, the capacity of the suction cup 41 serving as a liquid back buffer is increased and the liquid refrigerant buffer can be enlarged by making the one compressor 13A that is easy to return the liquid refrigerant into a compressor having a large compressor capacity. . For this reason, the reliability with respect to the liquid bag can be improved.

サクションカップ41の容量の小さな他方の圧縮機14Aへは液冷媒が流れにくくなるため、他方の圧縮機14Aは、液バックに対する信頼性を確保することができる。   Since it becomes difficult for the liquid refrigerant to flow to the other compressor 14A having a small capacity of the suction cup 41, the other compressor 14A can ensure reliability against the liquid back.

ところで、冷凍サイクル31の運転時には、各圧縮機13A,14Aへの吸込配管38a,38bへは、油が混じった冷媒ガスが流れるため、冷凍機油の油戻り量はそれぞれ各圧縮機13A,14A毎に偏りが生じるが、冷媒ガスの偏りは(液冷媒が存在する場合とは異なり)、問題とならない。   By the way, during the operation of the refrigeration cycle 31, since the refrigerant gas mixed with oil flows into the suction pipes 38a and 38b to the compressors 13A and 14A, the oil return amount of the refrigeration oil is different for each compressor 13A and 14A, respectively. However, the bias of the refrigerant gas (unlike the case where liquid refrigerant is present) does not cause a problem.

その他、空気調和装置10Aにおける室外ユニット11Aや室内ユニット12の冷凍サイクル31Aの構成や、冷房運転時や暖房運転時の冷凍サイクル31A内の冷媒の流れは、第1の実施形態の空気調和装置10と同様であり、異ならないので説明を省略する。   In addition, the configuration of the refrigeration cycle 31A of the outdoor unit 11A and the indoor unit 12 in the air conditioner 10A, and the flow of the refrigerant in the refrigeration cycle 31A during the cooling operation and the heating operation are the air conditioner 10 of the first embodiment. The description is omitted because it is the same as that of FIG.

[第2の実施形態の効果]
第2の実施形態の空気調和装置10Aにおいても、第1の実施形態の空気調和装置10と同じ作用効果を奏する他、第2の実施形態では、複数の圧縮機13A,14Aを備えた冷凍サイクル31Aにおいて、油が戻り易い一方の圧縮機13Aの容量を他方の圧縮機14Aの容量より大きくしたので、油戻りし易い一方の圧縮機13Aの圧縮機容量を大きくすることができ、液冷媒バッファも拡大可能となり、液冷媒の戻り(液バック)に対する圧縮機13A,14Aの信頼性を向上させることができる。
[Effects of Second Embodiment]
In the air conditioner 10A of the second embodiment, the same effect as that of the air conditioner 10 of the first embodiment is achieved. In the second embodiment, a refrigeration cycle including a plurality of compressors 13A and 14A. In 31A, since the capacity of one compressor 13A in which oil easily returns is larger than the capacity of the other compressor 14A, the compressor capacity of one compressor 13A in which oil easily returns can be increased, and the liquid refrigerant buffer And the reliability of the compressors 13A and 14A against the return of the liquid refrigerant (liquid back) can be improved.

以上、本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、本発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of this invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the present invention. These embodiments and modifications thereof are included in the scope and gist of the present invention, and are included in the invention described in the claims and the equivalents thereof.

10,10A…空気調和装置、11,11A…室外ユニット、12…室内ユニット、13,13A,14,14A…圧縮機、15…オイルセパレータ、16…四方弁、17…室外熱交換器、18…膨張弁、19…アキュムレータ、20…室外ファン、22…室外制御部、23,24…インバータ、25…商用交流電源、27…膨張弁、28…室内熱交換器、29…室内ファン、30…冷媒配管、31,31A…冷凍サイクル、32,33…パックドバルブ、35…高圧側冷媒配管、35a,35b…吐出配管、36…吐出温度センサ、37…高圧圧力センサ、38…低圧側冷媒配管(合流吸込配管)、38a,38b…吸込配管(分岐吸込配管)、39…低圧圧力センサ、40…吸込配管分岐部、41,41a,41b…サクションパイプ、43…慣性力を利用した冷媒分岐流路、44…重力を利用した冷媒分岐流路、45…配管内管径の大小を利用した冷媒分岐流路、46…余剰油排出管(油供給管、均油管)、47…逆止弁、48…減圧器(圧力降下手段、キャピラリチューブ)、49…温度センサ(温度検出手段)、50…圧縮機油面高さ検出手段、52…油戻し配管、53…制御弁、54a,54b…減圧器(圧力降下手段、キャピラリチューブ)。   DESCRIPTION OF SYMBOLS 10,10A ... Air conditioning apparatus 11, 11A ... Outdoor unit, 12 ... Indoor unit, 13, 13A, 14, 14A ... Compressor, 15 ... Oil separator, 16 ... Four-way valve, 17 ... Outdoor heat exchanger, 18 ... Expansion valve, 19 ... Accumulator, 20 ... Outdoor fan, 22 ... Outdoor control unit, 23, 24 ... Inverter, 25 ... Commercial AC power supply, 27 ... Expansion valve, 28 ... Indoor heat exchanger, 29 ... Indoor fan, 30 ... Refrigerant Piping, 31, 31A ... Refrigeration cycle, 32, 33 ... Packed valve, 35 ... High pressure side refrigerant piping, 35a, 35b ... Discharge piping, 36 ... Discharge temperature sensor, 37 ... High pressure sensor, 38 ... Low pressure side refrigerant piping (confluence) Suction pipe), 38a, 38b ... suction pipe (branch suction pipe), 39 ... low pressure sensor, 40 ... suction pipe branch, 41, 41a, 41b ... suction pipe, 3 ... Refrigerant branch flow path using inertial force, 44 ... Refrigerant branch flow path using gravity, 45 ... Refrigerant branch flow path using pipe diameter in pipe, 46 ... Surplus oil discharge pipe (oil supply pipe, 48 ... Check valve, 48 ... Pressure reducer (pressure drop means, capillary tube), 49 ... Temperature sensor (temperature detection means), 50 ... Compressor oil level detection means, 52 ... Oil return pipe, 53 ... control valve, 54a, 54b ... pressure reducer (pressure drop means, capillary tube).

Claims (7)

複数の圧縮機と室外熱交換器と膨張弁とを有する室外ユニットを備え、
前記各圧縮機の吐出配管が高圧側冷媒配管に接続される一方、前記各圧縮機の吸込配管が吸込配管分岐部を介して合流側の低圧側冷媒配管に接続され、
前記吸込配管分岐部から分岐される吸込配管は、油戻りし易い一方の圧縮機と油戻りしにくい他方の圧縮機にそれぞれ接続されて油戻り偏油構造に構成され、
前記油戻りし易い一方の圧縮機の所定の高さ位置から前記油戻りしにくい他方の圧縮機の冷媒吸込側に余剰分の油を供給する油供給管が接続されたことを特徴とする空気調和装置。
An outdoor unit having a plurality of compressors, an outdoor heat exchanger, and an expansion valve;
The discharge pipe of each compressor is connected to the high pressure side refrigerant pipe, while the suction pipe of each compressor is connected to the low pressure side refrigerant pipe on the merging side via the suction pipe branching section,
The suction pipe branched from the suction pipe branch part is connected to one compressor that is easy to return to oil and the other compressor that is difficult to return to oil, and is configured in an oil return eccentric structure,
An air characterized in that an oil supply pipe for supplying excess oil is connected to a refrigerant suction side of the other compressor that is hard to return oil from a predetermined height position of the one compressor that is easy to return oil. Harmony device.
前記吸込配管分岐部は、合流側の低圧側冷媒配管に対し、戻り冷媒流れの慣性力の差を利用した冷媒分岐流路により前記油戻り偏油構造が構成された請求項1に記載の空気調和装置。 2. The air according to claim 1, wherein the suction pipe branch portion is configured such that the oil return eccentric structure is configured by a refrigerant branch flow path using a difference in inertia force of a return refrigerant flow with respect to a low-pressure refrigerant pipe on a merging side. Harmony device. 前記吸込配管分岐部は、合流側の低圧側冷媒配管に対し、戻り冷媒の流れを重力方向に上下に分け、油戻りし易い配管を下側に、油戻りしにくい配管を上側を向くように分岐させ、重力を利用した油戻り偏油構造が構成された請求項1に記載の空気調和装置。 The suction pipe branching section divides the flow of return refrigerant up and down in the direction of gravity with respect to the low-pressure refrigerant pipe on the merge side so that the pipe that is easy to return oil faces downward and the pipe that does not easily return oil faces upward The air conditioning apparatus according to claim 1, wherein an oil return bias oil structure that is branched and uses gravity is configured. 前記吸込配管分岐部から分岐される吸込配管に流路抵抗の違いを形成し、前記流路抵抗の小さい吸込配管を油戻りし易い配管に、前記流路抵抗の大きい吸込配管を油戻りしにくい配管として前記油戻り偏油構造が構成された請求項1に記載の空気調和装置。 A difference in flow resistance is formed in the suction pipe branched from the suction pipe branching section, and the suction pipe having a low flow resistance is easily returned to the pipe, and the suction pipe having a large flow resistance is difficult to return to the oil. The air conditioner according to claim 1, wherein the oil return eccentric structure is configured as a pipe. 前記油供給管に圧力降下手段と、圧力降下手段の下流側の温度検出手段とを設け、前記温度検出手段により前記圧縮機内の潤滑油の油面高さを検出する油面高さ検出手段が設けられた請求項1に記載の空気調和装置。 The oil supply pipe is provided with a pressure drop means and a temperature detection means downstream of the pressure drop means, and an oil level detection means for detecting the oil level height of the lubricating oil in the compressor by the temperature detection means. The air conditioner according to claim 1 provided. 前記油面高さ検出手段は、前記温度検出手段による実測値と、前記高圧側冷媒配管に設けられた吐出温度センサ、高圧圧力センサの吐出ガス温度、凝縮温度および前記低圧側冷媒配管に設けられた低圧圧力センサの蒸発温度から推測される低圧過熱ガス温度の推測値とを比較することにより前記圧縮機内の油面高さが検出される請求項5に記載の空気調和装置。 The oil level detection means is provided in the measured value by the temperature detection means, the discharge temperature sensor provided in the high pressure side refrigerant pipe, the discharge gas temperature of the high pressure sensor, the condensation temperature, and the low pressure side refrigerant pipe. The air conditioner according to claim 5, wherein the oil level in the compressor is detected by comparing with an estimated value of the low pressure superheated gas temperature estimated from the evaporation temperature of the low pressure sensor. 前記油戻りし易い一方の圧縮機は前記油戻りしにくい他方の圧縮機より圧縮機容量を大きくした請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein one compressor that easily returns to oil has a larger compressor capacity than the other compressor that does not easily return to oil.
JP2014193666A 2014-09-24 2014-09-24 Air conditioner Pending JP2016065655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193666A JP2016065655A (en) 2014-09-24 2014-09-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193666A JP2016065655A (en) 2014-09-24 2014-09-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016065655A true JP2016065655A (en) 2016-04-28

Family

ID=55804037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193666A Pending JP2016065655A (en) 2014-09-24 2014-09-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2016065655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165545A (en) * 2019-03-28 2020-10-08 株式会社富士通ゼネラル Air conditioner
JP7275754B2 (en) 2019-03-28 2023-05-18 株式会社富士通ゼネラル air conditioner

Similar Documents

Publication Publication Date Title
US9746212B2 (en) Refrigerating and air-conditioning apparatus
US9163864B2 (en) Air-conditioning apparatus with oil return in a transcritical cycle
EP3088819B1 (en) Air conditioning device
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JP5263522B2 (en) Refrigeration equipment
EP3163217A1 (en) Refrigeration cycle device
JP6223469B2 (en) Air conditioner
JP2010127531A (en) Refrigeration air conditioner
JP2009198099A (en) Air conditioner
JPWO2014068967A1 (en) Refrigeration equipment
JP2013257121A (en) Refrigerating device
JP4726845B2 (en) Refrigeration air conditioner
KR101901540B1 (en) Air conditioning device
JP7122507B2 (en) refrigeration cycle equipment
JP2016176664A (en) Refrigeration device
US9689589B2 (en) Refrigeration apparatus
JPWO2016194143A1 (en) Refrigeration cycle system
JP5436375B2 (en) Air conditioner
JP2010127481A (en) Air conditioner
JP2016205729A (en) Refrigeration cycle device
JP2016065655A (en) Air conditioner
JPWO2021038852A1 (en) Refrigeration cycle device
JP2014119146A (en) Air conditioner
GB2555063A (en) Air-conditioning apparatus
JP2017110820A (en) Air conditioning device