JP2016176664A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2016176664A
JP2016176664A JP2015058218A JP2015058218A JP2016176664A JP 2016176664 A JP2016176664 A JP 2016176664A JP 2015058218 A JP2015058218 A JP 2015058218A JP 2015058218 A JP2015058218 A JP 2015058218A JP 2016176664 A JP2016176664 A JP 2016176664A
Authority
JP
Japan
Prior art keywords
oil
compressor
refrigerating machine
refrigeration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015058218A
Other languages
Japanese (ja)
Other versions
JP6187514B2 (en
Inventor
誠 高柳
Makoto Takayanagi
誠 高柳
千織 藤田
Chiori Fujita
千織 藤田
知久 竹内
Tomohisa Takeuchi
知久 竹内
拓也 小谷
Takuya Kotani
拓也 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015058218A priority Critical patent/JP6187514B2/en
Publication of JP2016176664A publication Critical patent/JP2016176664A/en
Application granted granted Critical
Publication of JP6187514B2 publication Critical patent/JP6187514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration device which stores a proper amount of refrigeration machine oil in a compressor, and which can achieve improvement of performance by suppressing outflow into a refrigerant circuit.SOLUTION: A refrigeration device includes a compressor 11, an oil separator 21 connected to a discharge side of the compressor 11, and a first oil return pipeline 33 provided between the suction side of the compressor 11 and the oil separator 21 and for returning a refrigeration machine oil in the oil separator 21 to the compressor 11, and it performs a vapor compression type refrigeration cycle operation. The first oil return pipeline 33 includes an oil adjustment container 23 capable of storing oil, and a throttle member 24 for stabilizing an amount of the refrigeration machine oil in the compressor 11 at a predetermined amount by limiting a flow rate of the refrigeration machine oil returning to the compressor 11 from the oil adjustment container 23 at a constant rate.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和装置等の冷凍装置に関する。   The present invention relates to a refrigeration apparatus such as an air conditioner.

蒸気圧縮式の冷凍サイクル運転を行う空気調和装置等の冷凍装置においては、冷媒を圧縮する圧縮機の駆動部品を潤滑にするために冷凍機油が封入されている。この冷凍機油の一部は、圧縮機から吐出される冷媒とともに、冷媒回路中に流出する。流出した冷凍機油の大部分は、油分離器により分離されて圧縮機に戻されるが、一部の冷凍機油は、冷媒とともに冷媒回路内を循環してから圧縮機に戻されるようになっている(例えば、特許文献1参照)。   In a refrigeration apparatus such as an air conditioner that performs a vapor compression refrigeration cycle operation, refrigeration oil is enclosed in order to lubricate drive parts of a compressor that compresses refrigerant. A part of the refrigerating machine oil flows out into the refrigerant circuit together with the refrigerant discharged from the compressor. Most of the refrigeration oil that has flowed out is separated by the oil separator and returned to the compressor, but some of the refrigeration oil is circulated in the refrigerant circuit together with the refrigerant and then returned to the compressor. (For example, refer to Patent Document 1).

特開平11−316058号公報Japanese Patent Laid-Open No. 11-316058

圧縮機内の冷凍機油は、冷媒回路中に流出したとしても不足が生じないように、実際の冷媒配管長に関係なく最大配管長を想定して多めに封入されている。そのため、圧縮機内には、適正量よりも多い冷凍機油が貯留される場合がある。
しかし、圧縮機内の冷凍機油は、その量が多いほど冷媒と共に吐出されやすくなり、冷媒回路中に多くの冷凍機油が流出する。冷媒回路中に流出した冷凍機油は熱交換器等における熱交換の妨げとなるため、冷凍装置の性能が低下する可能性がある。
The refrigerating machine oil in the compressor is encapsulated in a large amount assuming the maximum pipe length regardless of the actual refrigerant pipe length so that shortage does not occur even if it flows into the refrigerant circuit. Therefore, there may be a case where more refrigeration oil than the appropriate amount is stored in the compressor.
However, as the amount of the refrigerating machine oil in the compressor increases, it becomes easier to be discharged together with the refrigerant, and more refrigerating machine oil flows out into the refrigerant circuit. The refrigerating machine oil that has flowed out into the refrigerant circuit hinders heat exchange in a heat exchanger or the like, which may reduce the performance of the refrigeration apparatus.

本発明は、圧縮機内に保有された冷凍機油の冷媒回路中への流出を抑制して性能の向上を図ることができる冷凍装置を提供することを目的とする。   An object of the present invention is to provide a refrigeration apparatus capable of suppressing the outflow of refrigerating machine oil held in a compressor into a refrigerant circuit and improving performance.

(1)本発明の冷凍装置は、圧縮機と、この圧縮機の吐出側に接続される油分離器と、前記圧縮機の吸入側と前記油分離器との間に設けられ、前記油分離器内の冷凍機油を前記圧縮機に戻すための第1の油戻し配管と、を有し、蒸気圧縮式の冷凍サイクル運転を行う冷凍装置であって、
前記第1の油戻し配管には、
冷凍機油を貯留可能な油調整容器と、
前記油調整容器から前記圧縮機へ戻る冷凍機油の流量を一定量に制限することによって、前記圧縮機内の冷凍機油の量を所定量に安定させる絞り部材と、が設けられている。
(1) The refrigeration apparatus of the present invention is provided between a compressor, an oil separator connected to a discharge side of the compressor, and a suction side of the compressor and the oil separator. A first oil return pipe for returning the refrigeration oil in the container to the compressor, and a refrigeration apparatus that performs a vapor compression refrigeration cycle operation,
In the first oil return pipe,
An oil adjustment container capable of storing refrigerating machine oil;
There is provided a throttle member that stabilizes the amount of the refrigerating machine oil in the compressor to a predetermined amount by limiting the flow rate of the refrigerating machine oil returning from the oil adjusting container to the compressor.

上記の構成によれば、油調整容器が第1の油戻し配管に設けられているので、油分離器から圧縮機に戻る途中の余剰の冷凍機油を油調整容器に貯留することができる。したがって、圧縮機内の冷凍機油の余剰量を少なくすることができ、圧縮機から冷媒とともに吐出される冷凍機油量を可及的に少なくし、熱交換効率の低下等を抑制することができる。
一方、絞り部材は、油調整容器から圧縮機へ戻る冷凍機油の流量を一定量に制限し、圧縮機内の冷凍機油の量を所定量に安定させる。例えば、圧縮機内の適正な量の冷凍機油が保有させているときは、絞り部材によって、圧縮機から吐出される冷凍機油とほぼ同量の冷凍機油を油調整容器から圧縮機に戻し、圧縮機内の冷凍機油を適正量に安定させることができる。圧縮機内に保有された冷凍機油が適正量よりも多い場合は、圧縮機から吐出される冷凍機油の流量が多くなるが、キャピラリによって制限された流量で油調整容器から圧縮機に冷凍機油を戻し、余剰分は油調整容器に貯留することによって、圧縮機内の冷凍機油を適正量に安定させることができる。逆に、圧縮機内に保有された冷凍機油が適正量よりも少ない場合は、圧縮機から吐出される冷凍機油の流量が少なくなるが、圧縮機から吐出される冷凍機油に加えて油調整容器内に貯留された冷凍機油もキャピラリを介して圧縮機に戻すことができるので、次第に圧縮機内の冷凍機油を適正量に安定させることができる。したがって、本発明においては、第1の油戻し配管に絞り部材を設けることによって、開閉弁等の電気部品を用いなくても圧縮機内の冷凍機油の量を安価に制御することができる。また、絞り部材として、故障等の少ない部品を用いることができるので信頼性を高めることができる。
なお、冷凍機油を安定させる所定量とは、特定の1つの値であってもよいし、一定幅を有する範囲であってもよい。また、圧縮機が容量可変型(運転回転数可変型)である場合には、その容量(運転回転数)に応じて所定量は変化する。
According to said structure, since the oil adjustment container is provided in the 1st oil return piping, the surplus refrigeration oil in the middle of returning from an oil separator to a compressor can be stored in an oil adjustment container. Therefore, the surplus amount of refrigeration oil in the compressor can be reduced, the amount of refrigeration oil discharged from the compressor together with the refrigerant can be reduced as much as possible, and a decrease in heat exchange efficiency or the like can be suppressed.
On the other hand, the throttle member limits the flow rate of the refrigerating machine oil returning from the oil adjusting container to the compressor to a certain amount, and stabilizes the amount of the refrigerating machine oil in the compressor to a predetermined amount. For example, when an appropriate amount of refrigeration oil in the compressor is held, the squeezing member returns almost the same amount of refrigeration oil discharged from the compressor from the oil adjustment container to the compressor, It is possible to stabilize the refrigeration oil in an appropriate amount. When the amount of refrigerating machine oil held in the compressor is larger than the appropriate amount, the flow of refrigerating machine oil discharged from the compressor increases, but the refrigerating machine oil is returned from the oil adjustment container to the compressor at a flow rate limited by the capillary. By storing the surplus in the oil adjustment container, the refrigerating machine oil in the compressor can be stabilized to an appropriate amount. Conversely, if the amount of refrigerating machine oil held in the compressor is less than the appropriate amount, the flow rate of refrigerating machine oil discharged from the compressor will decrease, but in addition to the refrigerating machine oil discharged from the compressor, Since the refrigeration oil stored in the compressor can be returned to the compressor via the capillary, the refrigeration oil in the compressor can be gradually stabilized to an appropriate amount. Therefore, in the present invention, by providing the throttle member in the first oil return pipe, the amount of refrigerating machine oil in the compressor can be controlled at low cost without using an electrical component such as an on-off valve. Moreover, since parts with few failures etc. can be used as the diaphragm member, the reliability can be improved.
The predetermined amount for stabilizing the refrigerating machine oil may be one specific value or a range having a certain width. When the compressor is a variable capacity type (variable operating speed), the predetermined amount varies depending on the capacity (operating speed).

(2)前記油調整容器と、前記圧縮機との間には、前記第1の油戻し配管と並列に第2の油戻し配管が設けられ、この第2の油戻し配管に流量を調整する調整弁が設けられていることが好ましい。
この構成によれば、例えば、絞り部材の上流側と下流側の差圧が小さく、絞り部材を一定の流量の冷凍機油が流れない場合や、複数の圧縮機の間で冷凍機油の偏りを解消するために油調整容器を空にしたい場合には、必要に応じて調整弁を開くことによって油調整容器内の冷凍機油を全て排出し、圧縮機に戻すことができる。
なお、ここでいう調整弁は、流量を無段階又は多段階に調整できるものに限らず、単に第2の油戻し配管を開閉するだけのもの(冷凍機油の流れをオンオフする開閉弁)も含む。
(2) A second oil return pipe is provided in parallel with the first oil return pipe between the oil adjustment container and the compressor, and the flow rate is adjusted in the second oil return pipe. It is preferable that a regulating valve is provided.
According to this configuration, for example, when the differential pressure between the upstream side and the downstream side of the throttle member is small and the refrigerating machine oil at a constant flow rate does not flow through the throttle member, or the refrigerating machine oil is unevenly distributed among a plurality of compressors. When it is desired to empty the oil adjusting container, all the refrigerating machine oil in the oil adjusting container can be discharged and returned to the compressor by opening the adjusting valve as necessary.
The regulating valve here is not limited to one that can adjust the flow rate steplessly or in multiple stages, but also includes one that simply opens and closes the second oil return pipe (an on-off valve that turns on and off the flow of the refrigeration oil). .

(3)上記冷凍装置は、前記絞り部材の上流側と下流側との差圧が所定値以下の場合に、前記調整弁を開くように制御する制御部を備えていてもよい。
絞り部材の上流側と下流側との差圧が所定値以下の場合には、圧縮機内の冷凍機油を所定量に安定させるために必要な冷凍機油の量を圧縮機に戻すことができない可能性がある。したがって、このような場合には、必要量の冷凍機油が圧縮機に戻るように調整弁を制御することができる。
(3) The refrigeration apparatus may include a control unit that controls to open the adjustment valve when the differential pressure between the upstream side and the downstream side of the throttle member is equal to or less than a predetermined value.
When the differential pressure between the upstream side and the downstream side of the throttle member is less than or equal to a predetermined value, there is a possibility that the amount of refrigerating machine oil necessary to stabilize the refrigerating machine oil in the compressor to a predetermined amount cannot be returned to the compressor. There is. Therefore, in such a case, the regulating valve can be controlled so that the required amount of refrigeration oil returns to the compressor.

(4)前記制御部は、前記圧縮機へ冷凍機油を戻す油戻し運転を行う際に前記調整弁を開くように制御することが好ましい。
このような構成によって、冷媒回路内に存在する冷凍機油を圧縮機に戻す油戻し運転を行う際に、絞り部材による流量の制限に影響されることなく、油調整容器内の冷凍機油を第2の油戻し配管を介して圧縮機に戻すことができる。
(4) It is preferable that the control unit performs control so as to open the adjustment valve when performing an oil return operation for returning the refrigeration oil to the compressor.
With such a configuration, when performing the oil return operation for returning the refrigeration oil existing in the refrigerant circuit to the compressor, the second refrigeration oil in the oil adjustment container is not affected by the restriction of the flow rate by the throttle member. It can be returned to the compressor via the oil return pipe.

本発明によれば、圧縮機内に保有された冷凍機油の冷媒回路中への流出を抑制し、性能の向上を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the outflow to the refrigerant circuit of the refrigerating machine oil stored in the compressor can be suppressed, and a performance improvement can be aimed at.

本発明の一実施の形態における空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus in one embodiment of this invention. 空気調和装置の要部(圧縮機回り)を詳細に示す概略構成図である。It is a schematic block diagram which shows the principal part (compressor periphery) of an air conditioning apparatus in detail. 圧縮機内の冷凍機油の油面高さと油上がり率との関係を説明するグラフである。It is a graph explaining the relationship between the oil level height of the refrigerating machine oil in a compressor, and an oil rising rate. 圧縮機の回転数と油上がり率とキャピラリの抵抗との関係を説明するグラフである。It is a graph explaining the relationship between the rotation speed of a compressor, an oil rising rate, and resistance of a capillary. 圧縮機の回転数と、圧縮機内、油調整容器内、及び冷媒回路の配管内における冷凍機油量との関係を説明するグラフである。It is a graph explaining the relationship between the rotation speed of a compressor and the amount of refrigeration oil in a compressor, the oil adjustment container, and the piping of a refrigerant circuit.

図1は、本発明の一実施の形態に係る冷凍装置としての空気調和装置を示す模式図である。
空気調和装置1は、例えばビル用のマルチタイプの空気調和装置であり、複数の室外機2に対して複数の室内機3が並列に接続され、冷媒が流通できるように、冷媒回路10が形成されている。
FIG. 1 is a schematic diagram showing an air conditioner as a refrigeration apparatus according to an embodiment of the present invention.
The air conditioner 1 is a multi-type air conditioner for buildings, for example, and a refrigerant circuit 10 is formed so that a plurality of indoor units 3 are connected in parallel to a plurality of outdoor units 2 and refrigerant can flow. Has been.

室外機2には、圧縮機11、四路切換弁12、室外熱交換器13、室外膨張弁14、アキュムレータ20、油分離器21等が設けられている。これらは冷媒配管によって接続されている。また、室外機2には、送風ファン22が設けられている。室内機3には、室内膨張弁15及び室内熱交換器16等が設けられている。   The outdoor unit 2 is provided with a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an outdoor expansion valve 14, an accumulator 20, an oil separator 21, and the like. These are connected by refrigerant piping. The outdoor unit 2 is provided with a blower fan 22. The indoor unit 3 is provided with an indoor expansion valve 15, an indoor heat exchanger 16, and the like.

四路切換弁12と室内熱交換器16とはガス側冷媒連絡配管17aにより接続されている。室外膨張弁14と室内膨張弁15とは液側冷媒連絡配管17bにより接続されている。室外機2の内部冷媒回路の端末部には、ガス側閉鎖弁18と液側閉鎖弁19とが設けられている。ガス側閉鎖弁18は四路切換弁12側に配置されており、液側閉鎖弁19は室外膨張弁14側に配置されている。ガス側閉鎖弁18にはガス側冷媒連絡配管17aが接続され、液側閉鎖弁19には液側冷媒連絡配管17bが接続される。   The four-way switching valve 12 and the indoor heat exchanger 16 are connected by a gas side refrigerant communication pipe 17a. The outdoor expansion valve 14 and the indoor expansion valve 15 are connected by a liquid side refrigerant communication pipe 17b. A gas side shut-off valve 18 and a liquid side shut-off valve 19 are provided at a terminal portion of the internal refrigerant circuit of the outdoor unit 2. The gas side closing valve 18 is arranged on the four-way switching valve 12 side, and the liquid side closing valve 19 is arranged on the outdoor expansion valve 14 side. A gas side refrigerant communication pipe 17 a is connected to the gas side shutoff valve 18, and a liquid side refrigerant communication pipe 17 b is connected to the liquid side shutoff valve 19.

図2にも示すように、油分離器21は、圧縮機11の吐出側と四路切換弁12との間の吐出配管31に設けられている。また、油分離器21は、四路切換弁12と圧縮機11の吸入側とを接続する吸入配管32に、第1の油戻し配管33を介して接続されている。   As shown also in FIG. 2, the oil separator 21 is provided in the discharge pipe 31 between the discharge side of the compressor 11 and the four-way switching valve 12. The oil separator 21 is connected to a suction pipe 32 that connects the four-way switching valve 12 and the suction side of the compressor 11 via a first oil return pipe 33.

上記構成の空気調和装置1において、冷房運転を行う場合には、四路切換弁12が図1において実線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス状冷媒は、油分離器21及び四路切換弁12を経て室外熱交換器13に流入し、送風ファン22の作動により室外空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態の室外膨張弁14を通過し、液側冷媒連絡配管17bを通って各室内機3に流入する。室内機3において、冷媒は、室内膨張弁15で所定の低圧に減圧され、さらに室内熱交換器16で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室内空気は、図示しない室内ファンによって室内に吹き出され、当該室内を冷房する。また、室内熱交換器16で蒸発して気化した冷媒は、ガス側冷媒連絡配管17aを通って室外機2に戻り、四路切換弁12及びアキュムレータ20を経て圧縮機11に吸い込まれる。   In the air conditioner 1 having the above-described configuration, when the cooling operation is performed, the four-way switching valve 12 is held in a state indicated by a solid line in FIG. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 through the oil separator 21 and the four-way switching valve 12, and is condensed by exchanging heat with outdoor air by the operation of the blower fan 22.・ Liquefy. The liquefied refrigerant passes through the fully-expanded outdoor expansion valve 14 and flows into each indoor unit 3 through the liquid side refrigerant communication pipe 17b. In the indoor unit 3, the refrigerant is decompressed to a predetermined low pressure by the indoor expansion valve 15, and further evaporates by exchanging heat with indoor air in the indoor heat exchanger 16. The room air cooled by the evaporation of the refrigerant is blown into the room by an indoor fan (not shown) to cool the room. The refrigerant evaporated and vaporized in the indoor heat exchanger 16 returns to the outdoor unit 2 through the gas side refrigerant communication pipe 17a, and is sucked into the compressor 11 through the four-way switching valve 12 and the accumulator 20.

他方、暖房運転を行う場合には、四路切換弁12が図1において破線で示す状態に保持される。圧縮機11から吐出された高温高圧のガス状冷媒は、油分離器21及び四路切換弁12を経て各室内機3の室内熱交換器16に流入し、室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内ファンによって室内に吹き出され、当該室内を暖房する。室内熱交換器16において液化した冷媒は、目標の過冷却度となるように開度調節された室内膨張弁15から液側冷媒連絡配管17bを通って室外機2に戻る。室外機2に戻った冷媒は、室外膨張弁14で所定の低圧に減圧され、さらに室外熱交換器13で室外空気と熱交換して蒸発する。そして、室外熱交換器13で蒸発して気化した冷媒は、四路切換弁12及びアキュムレータ20を経て圧縮機11に吸い込まれる。   On the other hand, when the heating operation is performed, the four-way switching valve 12 is held in a state indicated by a broken line in FIG. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 16 of each indoor unit 3 through the oil separator 21 and the four-way switching valve 12, and exchanges heat with indoor air to condense / Liquefaction. The indoor air heated by the condensation of the refrigerant is blown into the room by an indoor fan to heat the room. The refrigerant liquefied in the indoor heat exchanger 16 returns to the outdoor unit 2 through the liquid side refrigerant communication pipe 17b from the indoor expansion valve 15 whose opening degree is adjusted so as to achieve the target degree of supercooling. The refrigerant that has returned to the outdoor unit 2 is decompressed to a predetermined low pressure by the outdoor expansion valve 14, and further evaporates by exchanging heat with outdoor air in the outdoor heat exchanger 13. The refrigerant evaporated and vaporized in the outdoor heat exchanger 13 is sucked into the compressor 11 through the four-way switching valve 12 and the accumulator 20.

圧縮機11は、容量可変型であり、インバータ制御によってモータの回転数が調整される。また、圧縮機11の内部には、駆動部品を潤滑するための冷凍機油が貯留されており、この冷凍機油は、冷媒とともに僅かな量が圧縮機11から吐出される。吐出された冷凍機油は、油分離器21において冷媒から分離され、第1の油戻し配管33を介して圧縮機11の吸入側に戻される。
また、第1の油戻し配管33には、油調整容器23と、キャピラリチューブ(絞り部材)24とが設けられている。油調整容器23は、内部に冷凍機油を貯留可能に構成されている。キャピラリチューブ24は、第1の油戻し配管33を流れる冷凍機油に抵抗を与え、内部を流れる冷凍機油の流量を略一定に制限する。さらに、油調整容器23と吸入配管32との間には、第1の油戻し配管33と並列に第2の油戻し配管34が設けられている。そして、第2の油戻し配管34には、電磁弁(開閉弁)26が設けられている。
The compressor 11 is a variable capacity type, and the rotational speed of the motor is adjusted by inverter control. In addition, refrigeration oil for lubricating drive components is stored inside the compressor 11, and a small amount of this refrigeration oil is discharged from the compressor 11 together with the refrigerant. The discharged refrigerating machine oil is separated from the refrigerant in the oil separator 21 and returned to the suction side of the compressor 11 through the first oil return pipe 33.
The first oil return pipe 33 is provided with an oil adjustment container 23 and a capillary tube (throttle member) 24. The oil adjustment container 23 is configured to store refrigeration oil therein. The capillary tube 24 provides resistance to the refrigerating machine oil flowing through the first oil return pipe 33 and restricts the flow rate of the refrigerating machine oil flowing through the inside to be substantially constant. Further, a second oil return pipe 34 is provided between the oil adjustment container 23 and the suction pipe 32 in parallel with the first oil return pipe 33. The second oil return pipe 34 is provided with an electromagnetic valve (open / close valve) 26.

油分離器21によって分離された冷凍機油は、そのまま油調整容器23に流入し、キャピラリチューブ24によって制限された流量で圧縮機11に戻される。油分離器21から油調整容器23に流入する冷凍機油の流量が、キャピラリチューブ24を流れる冷凍機油の流量よりも多い場合は、流量差に相当する量の冷凍機油が油調整容器23内に貯留される。逆に油分離器21から油調整容器23に流入する冷凍機油の流量が、キャピラリチューブ24を流れる冷凍機油の流量よりも少ない場合は、油分離器21から油調整容器23に流入する冷凍機油の全量が圧縮機11に戻され、さらに元々油分離器21内に貯留されていた冷凍機油も圧縮機11に戻される。油分離器21から油調整容器23に流入する冷凍機油の量は、圧縮機11から吐出される冷凍機油の量に依存する。   The refrigerating machine oil separated by the oil separator 21 flows into the oil adjustment container 23 as it is, and is returned to the compressor 11 at a flow rate limited by the capillary tube 24. When the flow rate of the refrigerating machine oil flowing from the oil separator 21 into the oil adjustment container 23 is larger than the flow rate of the refrigerating machine oil flowing through the capillary tube 24, an amount of refrigerating machine oil corresponding to the flow rate difference is stored in the oil adjustment container 23. Is done. Conversely, when the flow rate of the refrigerating machine oil flowing from the oil separator 21 into the oil adjustment container 23 is smaller than the flow rate of the refrigerating machine oil flowing through the capillary tube 24, the refrigerating machine oil flowing into the oil adjustment container 23 from the oil separator 21 The entire amount is returned to the compressor 11, and the refrigeration oil originally stored in the oil separator 21 is also returned to the compressor 11. The amount of refrigerating machine oil flowing from the oil separator 21 into the oil regulating container 23 depends on the amount of refrigerating machine oil discharged from the compressor 11.

図3は、圧縮機内の冷凍機油の油面高さと油上がり率との関係を説明するグラフである。油上がり率とは、圧縮機11から吐出される冷媒に含まれる冷凍機油の割合であり、その値が高いほど圧縮機11から吐出される冷凍機油の量が多くなる。図3によると、油上がり率は、圧縮機11内の冷凍機油の油面高さが高いほど、つまり冷凍機油の量が多いほど、高くなることが分かる。また、図3には、複数の回転数毎に冷凍機油の量と油上がり率との関係が示されている。これによると、回転数が高いほど油上がり率が高くなる傾向にあることが分かる。   FIG. 3 is a graph for explaining the relationship between the oil level height of the refrigeration oil in the compressor and the oil rising rate. The oil rising rate is the ratio of refrigerating machine oil contained in the refrigerant discharged from the compressor 11, and the higher the value, the larger the amount of refrigerating machine oil discharged from the compressor 11. According to FIG. 3, it can be seen that the oil rising rate increases as the oil level height of the refrigerating machine oil in the compressor 11 increases, that is, as the amount of refrigerating machine oil increases. Further, FIG. 3 shows the relationship between the amount of refrigerating machine oil and the oil rising rate for each of a plurality of rotation speeds. According to this, it turns out that there exists a tendency for oil rising rate to become high, so that rotation speed is high.

本実施の形態において、キャピラリチューブ24によって制限される冷凍機油の流量(抵抗)は、例えば以下のように設定することができる。
図4は、圧縮機の回転数と油上がり率とキャピラリチューブの抵抗との関係を説明するグラフである。キャピラリチューブ24の抵抗を設定するにあたって、まず、圧縮機11が定格回転数で運転されているときに、圧縮機11内の潤滑が適切に行われる油面高さを「規定油面高さ」に設定する。例えば、図2に示すように、定格回転数を140rpsとしたとき、油上がり率が3%となる油面高さを「規定油面高さ」に設定する。
In the present embodiment, the flow rate (resistance) of the refrigerating machine oil limited by the capillary tube 24 can be set as follows, for example.
FIG. 4 is a graph for explaining the relationship among the rotational speed of the compressor, the oil rising rate, and the resistance of the capillary tube. In setting the resistance of the capillary tube 24, first, when the compressor 11 is operated at the rated rotational speed, the oil level height at which the lubrication in the compressor 11 is appropriately performed is defined as the “specified oil level height”. Set to. For example, as shown in FIG. 2, when the rated rotational speed is 140 rps, the oil level height at which the oil rising rate is 3% is set to the “specified oil level height”.

そして、図4に示すように、圧縮機11を定格回転数で運転しているときに圧縮機11から吐出される冷凍機油の量、すなわち油上がり率3%で吐出される冷凍機油の量(規定の吐出油量)が、そのまま油調整容器23から圧縮機11に戻されるようにキャピラリチューブ24の抵抗を選定する。したがって、圧縮機11内に規定油面高さの冷凍機油が保有されている場合、定格回転数による運転中は、圧縮機11内の冷凍機油は規定の油面高さで維持されることになる。   Then, as shown in FIG. 4, when the compressor 11 is operated at the rated speed, the amount of refrigerating machine oil discharged from the compressor 11, that is, the amount of refrigerating machine oil discharged at an oil rising rate of 3% ( The resistance of the capillary tube 24 is selected so that the specified discharge oil amount) is directly returned from the oil adjustment container 23 to the compressor 11. Therefore, when the compressor 11 has a refrigeration oil having a specified oil level, the refrigeration oil in the compressor 11 is maintained at the specified oil level during operation at the rated speed. Become.

圧縮機11内に保有される冷凍機油が規定油面高さを超えている場合(図4の「油面(高)」参照)、定格回転数で圧縮機11を駆動すると3%を超える油上がり率で冷凍機油が吐出されて油調整容器23に流入する。しかし、圧縮機11には、キャピラリチューブ24によって油上がり率3%相当の冷凍機油しか戻らないので、図3に矢印aで示すように、圧縮機11内に保有される冷凍機油が次第に減り、規定油面高さで安定する。そして、圧縮機11に戻されなかった冷凍機油は油調整容器23に貯留される。   When the refrigeration oil held in the compressor 11 exceeds the specified oil level height (see “oil level (high)” in FIG. 4), the compressor 11 is driven at the rated rotational speed and the oil exceeds 3%. The refrigerating machine oil is discharged at a rising rate and flows into the oil adjustment container 23. However, since only the refrigerating machine oil corresponding to the oil rising rate of 3% is returned to the compressor 11 by the capillary tube 24, the refrigerating machine oil held in the compressor 11 gradually decreases as shown by the arrow a in FIG. Stable at the specified oil level. The refrigerating machine oil that has not been returned to the compressor 11 is stored in the oil adjustment container 23.

したがって、圧縮機11から吐出される冷凍機油の量が規定よりも多い場合であっても、余剰分を油調整容器23内に貯留することができる。そのため、圧縮機11に戻されなかった冷凍機油が冷媒回路10内に排出されるのを防止し、冷凍装置1の性能の低下を抑制することができる。   Therefore, even if the amount of refrigerating machine oil discharged from the compressor 11 is larger than the specified amount, the surplus can be stored in the oil adjustment container 23. Therefore, it is possible to prevent the refrigerating machine oil that has not been returned to the compressor 11 from being discharged into the refrigerant circuit 10, and to suppress a decrease in the performance of the refrigerating apparatus 1.

逆に、圧縮機11内に保有される冷凍機油が規定油面高さに満たない場合(図3の「油面(低)」参照)、定格回転数で運転すると3%未満の油上がり率で冷凍機油が吐出され、油調整容器23に流入する。しかし、油調整容器23から圧縮機11には、キャピラリチューブ24により、油調整容器23に元々貯留されていた冷凍機油も含めて油上がり率3%相当の冷凍機油が戻される。すなわち、油調整容器23に流入する冷凍機油よりも流出する冷凍機油の方が多くなる。そのため、図3に矢印bで示すように、圧縮機11内に保有される冷凍機油が次第に増え、規定油面高さで安定する。   Conversely, when the refrigeration oil held in the compressor 11 is less than the specified oil level (see “Oil level (low)” in FIG. 3), the oil rise rate is less than 3% when operated at the rated speed. The refrigeration oil is discharged and flows into the oil adjustment container 23. However, refrigeration oil corresponding to an oil rising rate of 3% including the refrigeration oil originally stored in the oil adjustment container 23 is returned from the oil adjustment container 23 to the compressor 11 through the capillary tube 24. That is, the amount of refrigerating machine oil that flows out from the refrigerating machine oil that flows into the oil adjustment container 23 increases. Therefore, as indicated by an arrow b in FIG. 3, the refrigeration oil held in the compressor 11 gradually increases and stabilizes at the specified oil level.

したがって、圧縮機11内の冷凍機油が規定よりも少ない場合であっても、油調整容器23内の冷凍機油に用いて規定油面高さまで冷凍機油を増量することができる。そのため、定格運転時の油切れを防止し、圧縮機11の信頼性を高め、安定した冷凍サイクル運転を行うことができる。   Therefore, even if the amount of refrigeration oil in the compressor 11 is less than the specified amount, the amount of refrigeration oil can be increased to the specified oil level using the refrigeration oil in the oil adjustment container 23. Therefore, it is possible to prevent oil shortage during rated operation, increase the reliability of the compressor 11, and perform stable refrigeration cycle operation.

一方、圧縮機11が定格回転数よりも低い回転数で運転される場合、例えば、図4における回転数Aで圧縮機11が運転される場合について説明する。圧縮機11内に保有される冷凍機油の量が規定油面高さである場合、圧縮機11からは3%に満たない冷凍機油の量が吐出されるが、キャピラリチューブ24によって、油調整容器23に貯留されていた冷凍機油も含めて油上がり率3%の相当の冷凍機油が圧縮機11に戻される。したがって、圧縮機11内に保有される冷凍機油が次第に増え、規定油面高さよりも高い油面(図3における油面(高))で安定する。この場合、定格運転時の規定油面高さよりも多い冷凍機油が圧縮機11内に保有されることになるが、圧縮機11から吐出される冷凍機油の量は定格運転時からは増えないため、冷媒回路10内に排出される冷媒の量が増えることもない。   On the other hand, a case where the compressor 11 is operated at a rotational speed lower than the rated rotational speed, for example, a case where the compressor 11 is operated at the rotational speed A in FIG. 4 will be described. When the amount of the refrigerating machine oil held in the compressor 11 is the specified oil level height, the compressor 11 discharges an amount of the refrigerating machine oil that is less than 3%. The refrigerating machine oil corresponding to the oil rising rate of 3% including the refrigerating machine oil stored in 23 is returned to the compressor 11. Therefore, the refrigerating machine oil held in the compressor 11 gradually increases and stabilizes at an oil level (oil level (high) in FIG. 3) higher than the specified oil level. In this case, more refrigeration oil than the specified oil level height during rated operation is retained in the compressor 11, but the amount of refrigeration oil discharged from the compressor 11 does not increase from during rated operation. The amount of refrigerant discharged into the refrigerant circuit 10 does not increase.

なお、キャピラリチューブ24の抵抗は、冷凍装置1の定常運転(冷房運転及び暖房運転)で、キャピラリチューブ24の上流側と下流側の差圧も考慮して設定される。具体的には、定常運転における最低差圧の条件で、油調整容器23から圧縮機11に戻される冷凍機油の流量が圧縮機11から吐出される冷凍機油の流量よりも大きくなるように設定される。   The resistance of the capillary tube 24 is set in consideration of the differential pressure between the upstream side and the downstream side of the capillary tube 24 in the steady operation (cooling operation and heating operation) of the refrigeration apparatus 1. Specifically, the flow rate of the refrigerating machine oil returned from the oil adjustment container 23 to the compressor 11 is set to be larger than the flow rate of the refrigerating machine oil discharged from the compressor 11 under the condition of the lowest differential pressure in the steady operation. The

図5は、圧縮機の回転数と、圧縮機内、油調整容器内、及び冷媒回路の配管内における冷凍機油量との関係を説明するグラフである。
図5によると、回転数が低い領域αでは、圧縮機11に保有される冷凍機油の量が多くなり、逆に油調整容器23内の冷凍機油の貯留量や配管に保持される冷凍機油量は少ない。また、領域βのように回転数が上昇すると、圧縮機11から吐出される冷凍機油量が増大するため、圧縮機11の保有量は減少するが、その分油調整容器23に貯留される冷凍機油量が増え、冷媒回路10の配管に排出される冷凍機油量はそれほど増加しない。そして、回転数が高い領域γでは、圧縮機11、油調整容器23、及び配管で保持される冷凍機油量が安定する。
FIG. 5 is a graph for explaining the relationship between the rotation speed of the compressor and the amount of refrigeration oil in the compressor, the oil adjustment container, and the piping of the refrigerant circuit.
According to FIG. 5, in the region α where the rotational speed is low, the amount of refrigerating machine oil held in the compressor 11 increases, and conversely, the refrigerating machine oil storage amount in the oil adjustment container 23 and the refrigerating machine oil amount held in the piping There are few. Further, when the rotational speed is increased as in the region β, the amount of refrigerating machine oil discharged from the compressor 11 is increased, so that the amount held by the compressor 11 is decreased, but the refrigerating oil stored in the oil adjustment container 23 is reduced. The amount of machine oil increases and the amount of refrigeration oil discharged to the piping of the refrigerant circuit 10 does not increase so much. And in the area | region (gamma) where a rotation speed is high, the amount of refrigeration oil hold | maintained with the compressor 11, the oil adjustment container 23, and piping is stabilized.

図2に示すように、第2の油戻し配管34に設けられた電磁弁26は、冷凍装置1の定常運転の際は閉じた状態とされ、特定の運転状態のときに開いた状態とされることによって油調整容器23内の冷凍機油を圧縮機11に戻すように構成されている。
例えば、キャピラリチューブ24の上流側と下流側の差圧が所定値以下であり、キャピラリチューブ24を介して油調整容器23内の冷凍機油を圧縮機11に戻せない場合には、電磁弁26を開き、第2の油戻し配管34を経由して冷凍機油を圧縮機11に戻すことができる。
As shown in FIG. 2, the electromagnetic valve 26 provided in the second oil return pipe 34 is closed during the steady operation of the refrigeration apparatus 1 and opened during a specific operation state. Thus, the refrigeration oil in the oil adjustment container 23 is returned to the compressor 11.
For example, when the differential pressure between the upstream side and the downstream side of the capillary tube 24 is equal to or less than a predetermined value and the refrigeration oil in the oil adjustment container 23 cannot be returned to the compressor 11 via the capillary tube 24, the electromagnetic valve 26 is turned on. Opening and refrigerating machine oil can be returned to the compressor 11 via the second oil return pipe 34.

また、冷凍装置1の起動時、デフロスト運転時、又は油戻し運転時等の定常運転以外の運転状態の場合にも、圧縮機11内の油切れが生じないように電磁弁26を開き、油調整容器23内の冷凍機油を第2の油戻し配管34を介して圧縮機11に戻すことができる。
なお、油戻し運転とは、例えば、複数台の室外ユニット間で圧縮機11に保有される冷凍機油の偏り(偏油)を解消するために定期的に行われる運転であり、電磁弁26を開くことによって油調整容器23内の冷凍機油を全て排出し、各圧縮機11に均等に冷凍機油が保有されるようにする運転である。
The solenoid valve 26 is opened so that the oil in the compressor 11 does not run out even in the operation state other than the steady operation such as the start-up of the refrigeration apparatus 1, the defrost operation, or the oil return operation. The refrigerating machine oil in the adjustment container 23 can be returned to the compressor 11 via the second oil return pipe 34.
The oil return operation is, for example, an operation that is periodically performed in order to eliminate the bias of the refrigerating machine oil held in the compressor 11 between a plurality of outdoor units (an oil bias). By opening, all the refrigerating machine oil in the oil adjusting container 23 is discharged, and the refrigerating machine oil is evenly held in each compressor 11.

電磁弁26は、制御部40によって動作制御される。特に、キャピラリチューブ24の上流側と下流側の差圧に応じて電磁弁26を開閉する場合には、制御部40は、キャピラリチューブ24の上流側圧力(圧縮機11の吐出圧力)と下流側圧力(圧縮機11の吸入圧力)とを測定する圧力センサ28,29(図2参照)の検出値に基づいて電磁弁26を制御することができる。   The operation of the solenoid valve 26 is controlled by the control unit 40. In particular, when opening and closing the solenoid valve 26 according to the differential pressure between the upstream side and the downstream side of the capillary tube 24, the control unit 40 determines the upstream side pressure (discharge pressure of the compressor 11) and the downstream side of the capillary tube 24. The electromagnetic valve 26 can be controlled based on the detected values of the pressure sensors 28 and 29 (see FIG. 2) that measure the pressure (the suction pressure of the compressor 11).

本発明は、上記実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において適宜変更可能である。
例えば、上記実施の形態において説明した定格運転の回転数や、規定油面の基準となる油上がり率等は、冷凍装置1の種類や設置状況等に応じて適宜変更することができるものである。
The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the invention described in the claims.
For example, the rotational speed of the rated operation described in the above embodiment, the oil rising rate as a reference for the specified oil level, and the like can be appropriately changed according to the type and installation status of the refrigeration apparatus 1. .

第2の油戻し配管34に設けられた電磁弁26は、冷凍機油の流量を調整可能な調整弁とされていてもよい。
冷媒回路の構成も上記実施の形態に限定されるものではない。例えば、冷媒回路中に他の付属機器が含まれていてもよい。
The electromagnetic valve 26 provided in the second oil return pipe 34 may be an adjustment valve capable of adjusting the flow rate of the refrigerating machine oil.
The configuration of the refrigerant circuit is not limited to the above embodiment. For example, another accessory device may be included in the refrigerant circuit.

上記実施形態では、キャピラリチューブ24の上流側圧力と下流側圧力とを測定するために圧力センサ28,29が用いられていたが、凝縮器における凝縮温度又は蒸発器における蒸発温度を温度センサによって測定し、その温度を圧力に換算してもよい。   In the above embodiment, the pressure sensors 28 and 29 are used to measure the upstream pressure and the downstream pressure of the capillary tube 24. However, the condensation temperature in the condenser or the evaporation temperature in the evaporator is measured by the temperature sensor. The temperature may be converted into pressure.

上記実施形態の室外熱交換器13は、空気と熱交換を行う空気熱源式とされていたが、水と熱交換を行う水熱源式とされていてもよい。   Although the outdoor heat exchanger 13 of the above embodiment is an air heat source type that exchanges heat with air, it may be a water heat source type that exchanges heat with water.

1 :空気調和装置(冷凍装置)
10 :冷媒回路
11 :圧縮機
21 :油分離器
23 :油調整容器
24 :キャピラリチューブ(絞り部材)
26 :電磁弁(調整弁)
33 :第1の油戻し配管
34 :第2の油戻し配管
40 :制御部
1: Air conditioner (refrigeration unit)
10: Refrigerant circuit 11: Compressor 21: Oil separator 23: Oil adjusting container 24: Capillary tube (throttle member)
26: Solenoid valve (regulating valve)
33: 1st oil return piping 34: 2nd oil return piping 40: Control part

Claims (4)

圧縮機(11)と、この圧縮機(11)の吐出側に接続される油分離器(21)と、前記圧縮機(11)の吸入側と前記油分離器(21)との間に設けられ、前記油分離器(21)内の冷凍機油を前記圧縮機(11)に戻すための第1の油戻し配管(33)と、を有し、蒸気圧縮式の冷凍サイクル運転を行う冷凍装置であって、
前記第1の油戻し配管(33)には、
油を貯留可能な油調整容器(23)と、
前記油調整容器(23)から前記圧縮機(11)へ戻る冷凍機油の流量を一定量に制限することによって、前記圧縮機(11)内の冷凍機油の量を所定量に安定させる絞り部材(24)と、が設けられている、冷凍装置。
Provided between the compressor (11), the oil separator (21) connected to the discharge side of the compressor (11), and the suction side of the compressor (11) and the oil separator (21) And a first oil return pipe (33) for returning the refrigeration oil in the oil separator (21) to the compressor (11), and performing a vapor compression refrigeration cycle operation. Because
In the first oil return pipe (33),
An oil adjustment container (23) capable of storing oil;
A throttle member that stabilizes the amount of refrigerating machine oil in the compressor (11) to a predetermined amount by limiting the flow rate of refrigerating machine oil returning from the oil adjusting container (23) to the compressor (11) to a certain amount. 24).
前記油調整容器(23)と前記圧縮機(11)との間には、前記第1の油戻し配管(33)と並列に第2の油戻し配管(34)が設けられ、この第2の油戻し配管(34)に流量を調整する調整弁(26)が設けられている、請求項1に記載の冷凍装置。   Between the oil adjustment container (23) and the compressor (11), a second oil return pipe (34) is provided in parallel with the first oil return pipe (33). The refrigerating apparatus according to claim 1, wherein an adjustment valve (26) for adjusting a flow rate is provided in the oil return pipe (34). 前記絞り部材(24)の上流側と下流側との差圧が所定値以下の場合に、前記調整弁(26)を開くように制御する制御部(40)を備えている、請求項2に記載の冷凍装置。   The control part (40) which controls to open the said adjustment valve (26) when the differential pressure | voltage of the upstream and downstream of the said throttle member (24) is below a predetermined value is provided. The refrigeration apparatus described. 前記制御部(40)は、前記圧縮機(11)へ冷凍機油を戻す油戻し運転を行う際に前記調整弁(26)を開くように制御する、請求項2に記載の冷凍装置。   The said control part (40) is a freezing apparatus of Claim 2 controlled to open the said adjustment valve (26) when performing the oil return operation | movement which returns refrigerating machine oil to the said compressor (11).
JP2015058218A 2015-03-20 2015-03-20 Refrigeration equipment Expired - Fee Related JP6187514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015058218A JP6187514B2 (en) 2015-03-20 2015-03-20 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058218A JP6187514B2 (en) 2015-03-20 2015-03-20 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2016176664A true JP2016176664A (en) 2016-10-06
JP6187514B2 JP6187514B2 (en) 2017-08-30

Family

ID=57069815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058218A Expired - Fee Related JP6187514B2 (en) 2015-03-20 2015-03-20 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP6187514B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
WO2018116407A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device
CN108431520A (en) * 2016-01-14 2018-08-21 三菱电机株式会社 Refrigerating circulatory device
WO2018207274A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Oil separation device and refrigeration cycle device
CN109236626A (en) * 2018-08-13 2019-01-18 珠海格力电器股份有限公司 For detecting compressor oil return line system dirty plugging, method and electric equipment products
CN109442788A (en) * 2018-10-08 2019-03-08 珠海格力电器股份有限公司 The defrosting method and air-conditioning of air-conditioning
CN111006353A (en) * 2019-11-06 2020-04-14 宁波奥克斯电气股份有限公司 Oil return control method and device of fixed-frequency air conditioner and fixed-frequency air conditioner
CN111288694A (en) * 2019-10-23 2020-06-16 珠海格力电器股份有限公司 Air conditioner capable of continuously heating and control method thereof
JP2020165315A (en) * 2019-03-28 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner with the same, control method for air conditioner and control program for air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140755A (en) * 1984-12-11 1986-06-27 三菱電機株式会社 Air conditioner
JPS62138157U (en) * 1986-02-25 1987-08-31
JPS6458970A (en) * 1987-08-31 1989-03-06 Mitsubishi Electric Corp Heat pump type air conditioner
JPH0674579A (en) * 1992-08-26 1994-03-15 Daikin Ind Ltd Refrigerating apparatus
JP2000146324A (en) * 1998-11-12 2000-05-26 Mitsubishi Electric Corp Refrigerating machine
JP2002174463A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Refrigerating apparatus
JP2011153784A (en) * 2010-01-28 2011-08-11 Panasonic Corp Refrigerating cycle apparatus
WO2013099047A1 (en) * 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140755A (en) * 1984-12-11 1986-06-27 三菱電機株式会社 Air conditioner
JPS62138157U (en) * 1986-02-25 1987-08-31
JPS6458970A (en) * 1987-08-31 1989-03-06 Mitsubishi Electric Corp Heat pump type air conditioner
JPH0674579A (en) * 1992-08-26 1994-03-15 Daikin Ind Ltd Refrigerating apparatus
JP2000146324A (en) * 1998-11-12 2000-05-26 Mitsubishi Electric Corp Refrigerating machine
JP2002174463A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Refrigerating apparatus
JP2011153784A (en) * 2010-01-28 2011-08-11 Panasonic Corp Refrigerating cycle apparatus
WO2013099047A1 (en) * 2011-12-27 2013-07-04 三菱電機株式会社 Air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108431520A (en) * 2016-01-14 2018-08-21 三菱电机株式会社 Refrigerating circulatory device
CN110023692B (en) * 2016-11-24 2021-08-06 大金工业株式会社 Refrigerating device
WO2018097154A1 (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Refrigeration device
JP2018084375A (en) * 2016-11-24 2018-05-31 ダイキン工業株式会社 Freezing device
CN110023692A (en) * 2016-11-24 2019-07-16 大金工业株式会社 Refrigerating plant
WO2018116407A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device
JPWO2018116407A1 (en) * 2016-12-21 2019-10-24 三菱電機株式会社 Refrigeration cycle equipment
WO2018207274A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Oil separation device and refrigeration cycle device
CN110573809B (en) * 2017-05-10 2022-04-05 三菱电机株式会社 Oil separator and refrigeration cycle device
CN110573809A (en) * 2017-05-10 2019-12-13 三菱电机株式会社 Oil separator and refrigeration cycle device
JPWO2018207274A1 (en) * 2017-05-10 2020-02-27 三菱電機株式会社 Oil separation equipment and refrigeration cycle equipment
US11199347B2 (en) 2017-05-10 2021-12-14 Mitsubishi Electric Corporation Oil separation device and refrigeration cycle apparatus
CN109236626A (en) * 2018-08-13 2019-01-18 珠海格力电器股份有限公司 For detecting compressor oil return line system dirty plugging, method and electric equipment products
CN109236626B (en) * 2018-08-13 2020-03-24 珠海格力电器股份有限公司 System and method for detecting dirty blockage of oil return pipeline of compressor and electric appliance product
CN109442788B (en) * 2018-10-08 2021-02-23 珠海格力电器股份有限公司 Defrosting method of air conditioner and air conditioner
CN109442788A (en) * 2018-10-08 2019-03-08 珠海格力电器股份有限公司 The defrosting method and air-conditioning of air-conditioning
JP2020165315A (en) * 2019-03-28 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner control device, air conditioner with the same, control method for air conditioner and control program for air conditioner
CN111288694A (en) * 2019-10-23 2020-06-16 珠海格力电器股份有限公司 Air conditioner capable of continuously heating and control method thereof
WO2021169541A1 (en) * 2019-10-23 2021-09-02 珠海格力电器股份有限公司 Air conditioning system and control method therefor
CN111006353A (en) * 2019-11-06 2020-04-14 宁波奥克斯电气股份有限公司 Oil return control method and device of fixed-frequency air conditioner and fixed-frequency air conditioner

Also Published As

Publication number Publication date
JP6187514B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187514B2 (en) Refrigeration equipment
KR100833441B1 (en) Freezing apparatus
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
US9151522B2 (en) Air conditioner and control method thereof
JP6292480B2 (en) Refrigeration equipment
JP5402027B2 (en) Air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2010175190A (en) Air conditioner
JP2017053598A (en) Refrigeration device
JP5593905B2 (en) Refrigeration equipment
JP6005002B2 (en) Air conditioner
JP2011007482A (en) Air conditioner
JP6400223B2 (en) Air conditioner and control method of air conditioner
WO2019021464A1 (en) Air conditioning device
JPWO2021038852A1 (en) Refrigeration cycle device
JP2007155143A (en) Refrigerating device
CN108027178B (en) Heat pump
JP2015014372A (en) Air conditioner
JP6010294B2 (en) Air conditioner
JP6786965B2 (en) Refrigeration equipment
JP2007147228A (en) Refrigerating device
JP6750388B2 (en) Refrigeration equipment
JP2002228284A (en) Refrigerating machine
JP2013122361A (en) Air conditioning device
JP7179445B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6187514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees