JP2016061396A - Electric linear actuator and electric disc brake device - Google Patents

Electric linear actuator and electric disc brake device Download PDF

Info

Publication number
JP2016061396A
JP2016061396A JP2014191148A JP2014191148A JP2016061396A JP 2016061396 A JP2016061396 A JP 2016061396A JP 2014191148 A JP2014191148 A JP 2014191148A JP 2014191148 A JP2014191148 A JP 2014191148A JP 2016061396 A JP2016061396 A JP 2016061396A
Authority
JP
Japan
Prior art keywords
planetary roller
planetary
planetary rollers
axial
ring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014191148A
Other languages
Japanese (ja)
Other versions
JP6478540B2 (en
Inventor
雅章 江口
Masaaki Eguchi
雅章 江口
山崎 達也
Tatsuya Yamazaki
達也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014191148A priority Critical patent/JP6478540B2/en
Priority to PCT/JP2015/075704 priority patent/WO2016043114A1/en
Publication of JP2016061396A publication Critical patent/JP2016061396A/en
Application granted granted Critical
Publication of JP6478540B2 publication Critical patent/JP6478540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/30Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/04Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders
    • F16D55/06Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders without self-tightening action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Braking Arrangements (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce costs by reducing kinds of planetary rollers.SOLUTION: Circumferential grooves 23 which are engaged with spiral protrusions 6 formed at an inside diameter face of an outer ring member 5 are formed at outside diameter faces of a plurality of planetary rollers 21 which are supported by a carrier rotatable with a rotating shaft arranged on an axial core of the outer ring member 5 as a center. The outer ring member 5 is linearly moved to an axial direction by making the planetary rollers 21 rotate and revolve by friction contact with the rotating shaft. Axial force to a press-in direction which is applied to the planetary rollers 21 is received by a thrust bearing 24. Small-diameter parts 21b are arranged at one-end faces of the planetary rollers 21, and the axial force having equal magnitudes is applied to the thrust bearing 24 by differentiating axial lengths of the small-diameter parts 21b. Small-diameter parts 21c whose axial lengths are not shorter than zero are arranged at other end faces of the planetary rollers 21. An axial length which is obtained by adding the axial length of the small-diameter part 21c at the other end face and the axial length of the small-diameter part 21b at one end face is made equal with those of a plurality of the planetary rollers 21, and the axial lengths of the plurality of planetary rollers 21 are made to be the same.SELECTED DRAWING: Figure 5

Description

この発明は、ブレーキパッド等の被駆動部材を直線駆動する電動式直動アクチュエータおよびその電動式直動アクチュエータを用いた電動式ディスクブレーキ装置に関する。   The present invention relates to an electric linear actuator that linearly drives a driven member such as a brake pad, and an electric disc brake device using the electric linear actuator.

電動モータを駆動源とする電動式直動アクチュエータとして、特許文献1に記載されたものが従来から知られている。   As an electric linear actuator using an electric motor as a drive source, one described in Patent Document 1 has been conventionally known.

上記特許文献1に記載された電動式直動アクチュエータにおいては、電動モータによって回転駆動される回転軸とハウジング内において軸方向に移動自在に支持された外輪部材との間に遊星ローラを組込み、上記回転軸の回転により、その回転軸との接触摩擦によって遊星ローラを自転させつつ公転させ、その遊星ローラの外径面に形成された円周溝と外輪部材の内径面に設けられた螺旋突条との噛み合いによって外輪部材を軸方向に直線移動させるようにしている。   In the electric linear actuator described in Patent Document 1, a planetary roller is incorporated between a rotating shaft that is rotationally driven by an electric motor and an outer ring member that is movably supported in the axial direction in the housing. The rotation of the rotating shaft causes the planetary roller to revolve while rotating by contact friction with the rotating shaft, and the circumferential groove formed on the outer diameter surface of the planetary roller and the spiral protrusion provided on the inner diameter surface of the outer ring member The outer ring member is linearly moved in the axial direction.

また、上記電動式直動アクチュエータにおいては、遊星ローラとその遊星ローラを回転自在に支持するキャリアのインナ側ディスクとの間にスラスト軸受を組込み、そのスラスト軸受によって外輪部材から遊星ローラに負荷される軸方向の押し込み荷重を受けて、遊星ローラの回転の円滑化を図るようにしている。   In the electric linear actuator, a thrust bearing is incorporated between the planetary roller and the inner disk of the carrier that rotatably supports the planetary roller, and the planetary roller is loaded from the outer ring member by the thrust bearing. The rotation of the planetary roller is made smooth by receiving the axial pushing load.

そして、外輪部材から複数の遊星ローラのそれぞれに負荷される軸方向の押し込み荷重がスラスト軸受のそれらに均等に負荷されるようにするため、図7に示すように、複数の遊星ローラR〜Rのスラスト軸受Bに支持される支持端面101から円周溝102の所定の基準位置までの距離l〜lを各々異なる寸法に設定して、円周溝102に嵌まり込む外輪部材103の螺旋突条104の軸方向位置に一致させるようにしている。 Then, in order to ensure that the axial pushing load applied from the outer ring member to each of the plurality of planetary rollers is equally applied to those of the thrust bearing, as shown in FIG. 7, the plurality of planetary rollers R 1 to R 1 . The outer ring member fitted into the circumferential groove 102 by setting the distances l 1 to l 4 from the support end surface 101 supported by the thrust bearing B of R 4 to the predetermined reference position of the circumferential groove 102 to different dimensions. It is made to correspond to the axial position of 103 spiral protrusions 104.

特開2011−74950号公報JP 2011-74950 A

ところで、特許文献1に記載された電動式直動アクチュエータにおいては、上記のように、複数の遊星ローラR〜Rのスラスト軸受Bに支持される支持端面101から円周溝102の所定の基準位置までの距離l〜lを、円周溝102と嵌まり込む螺旋突条104の軸方向位置が一致するよう各々異なる寸法に設定して、スラスト軸受Bに対する荷重の均一化を図るようしているため、遊星ローラR〜Rの形状が全てで異なることになり、多くの種類の遊星ローラを必要として部品点数が多くなり、コスト的に不利である。 By the way, in the electric linear actuator described in Patent Document 1, as described above, the predetermined circumferential groove 102 is formed from the support end surface 101 supported by the thrust bearings B of the plurality of planetary rollers R 1 to R 4 . The distances l 1 to l 4 to the reference position are set to different dimensions so that the axial positions of the spiral ridges 104 fitted into the circumferential groove 102 coincide with each other, so that the load on the thrust bearing B is made uniform. As a result, the planetary rollers R 1 to R 4 are all different in shape, which requires many kinds of planetary rollers, increases the number of parts, and is disadvantageous in terms of cost.

ここで、遊星ローラR〜Rのスラスト軸受Bと対向する端面に長さの相違する小径部を設け、あるいは、厚さの異なるスペーサを介在させることによってスラスト軸受に対する荷重の均一化を図ることもできるが、この場合においても、部品点数が多くなり、上記と同様に、コスト的に不利である。 Here, the end faces of the planetary rollers R 1 to R 4 facing the thrust bearing B are provided with small-diameter portions having different lengths, or spacers having different thicknesses are interposed to make the load on the thrust bearing uniform. However, even in this case, the number of parts increases, which is disadvantageous in cost as described above.

この発明の課題は、遊星ローラの種類を削減してコストの低減を図ることである。   An object of the present invention is to reduce the cost by reducing the types of planetary rollers.

上記の課題を解決するため、この発明に係る電動式直動アクチュエータにおいては、ハウジング内に円筒状の外輪部材を組込み、その外輪部材の軸心上に電動モータによって回転駆動される回転軸を設け、その回転軸の外径面と前記外輪部材の内径面間に組み込まれて周方向に等間隔に配置された複数の遊星ローラを前記回転軸を中心にして回転自在に支持されたキャリアによって回転自在に支持し、各遊星ローラの外径面には前記外輪部材の内径面に設けられた螺旋突条に噛合する円周溝を、螺旋突条と同一ピッチで形成し、前記回転軸の回転により、その回転軸との摩擦接触により遊星ローラを自転および公転させて外輪部材もしくは遊星ローラを軸方向に直線移動させ、その遊星ローラとキャリアのインナ側ディスクとの間に組み込まれたスラスト軸受で軸方向力を支持し、前記複数の遊星ローラの前記スラスト軸受と対向する一端面のそれぞれに小径部を設けた電動式直動アクチュエータにおいて、前記複数の遊星ローラにおける有効円周溝長さを同一とし、各遊星ローラの他端面に軸方向長さが0以上とされる小径部を設け、その他端面の小径部と一端面の小径部の足し合わせた軸方向長さを複数の遊星ローラのそれぞれで等しくして、複数の遊星ローラの軸方向長さを同一長さとした構成を採用したのである。   In order to solve the above-described problems, in the electric linear actuator according to the present invention, a cylindrical outer ring member is incorporated in the housing, and a rotation shaft that is rotationally driven by an electric motor is provided on the axis of the outer ring member. A plurality of planetary rollers incorporated between the outer diameter surface of the rotation shaft and the inner diameter surface of the outer ring member and arranged at equal intervals in the circumferential direction are rotated by a carrier rotatably supported around the rotation shaft. A circumferential groove that meshes with a spiral protrusion provided on the inner diameter surface of the outer ring member is formed on the outer diameter surface of each planetary roller at the same pitch as the spiral protrusion, and the rotation shaft rotates. Thus, the planetary roller rotates and revolves by frictional contact with the rotating shaft to linearly move the outer ring member or the planetary roller in the axial direction, and is incorporated between the planetary roller and the inner disk of the carrier. An effective linear groove in the plurality of planetary rollers in an electric linear motion actuator that supports an axial force with a plurality of thrust bearings and has a small-diameter portion on each end surface of the plurality of planetary rollers facing the thrust bearing. The same length is provided, a small-diameter portion having an axial length of 0 or more is provided on the other end surface of each planetary roller, and the axial length obtained by adding the small-diameter portion of the other end surface and the small-diameter portion of the one end surface is plural. A configuration is adopted in which the planetary rollers are made equal to each other, and the plurality of planetary rollers have the same axial length.

また、この発明に係る電動式ディスクブレーキ装置においては、電動式直動アクチュエータによりブレーキパッドを直線駆動し、そのブレーキパッドでブレーキディスクを押圧して、そのブレーキディスクに制動力を付与するようにした電動式ディスクブレーキ装置において、前記電動式直動アクチュエータとしてこの発明に係る電動式直動アクチュエータを用いた構成を採用したのである。   Further, in the electric disc brake device according to the present invention, the brake pad is linearly driven by the electric linear actuator, and the brake disc is pressed by the brake pad to apply a braking force to the brake disc. In the electric disc brake device, a configuration using the electric linear actuator according to the present invention is adopted as the electric linear actuator.

上記の構成からなる電動式直動アクチュエータのように、複数の遊星ローラの相互において、遊星ローラの有効円周溝長さを同一とし、両端面に形成された小径部を足し合わせた軸方向長さを同一とすることによって同一形状の遊星ローラが少なくとも1組以上形成されることになり、遊星ローラの種類を削減することができる。   As in the electric linear actuator having the above configuration, in the plurality of planetary rollers, the effective circumferential groove length of the planetary rollers is the same, and the axial length is obtained by adding the small diameter portions formed on both end faces. By making the thicknesses equal, at least one or more sets of planetary rollers having the same shape are formed, and the types of planetary rollers can be reduced.

ここで、遊星ローラのスラスト軸受と対向する小径部の端面を研削加工すると、その端面をスラスト軸受の軌道面とすることができ、スラスト軸受の軌道輪の一方を省略して部品点数を削減し、キャリアの軸方向長さのコンパクト化を図ることができる。   Here, if the end surface of the small-diameter portion facing the thrust bearing of the planetary roller is ground, that end surface can be used as the raceway surface of the thrust bearing, and the number of parts can be reduced by omitting one of the bearing rings of the thrust bearing. Thus, the axial length of the carrier can be reduced.

また、遊星ローラの両端面に設けられた一対の小径部のそれぞれにおける端面を研削加工すると、上記と同様に、スラスト軸受の軌道輪の一方を省略して部品点数を削減し、少なくとも1組以上ある同一形状の遊星ローラについては軸方向の向きを反転させることで相互に入れ替えて組立することが可能となり、キャリアの軸方向長さのコンパクト化を図ることができると共に、スラスト軸受の軌道輪をなす遊星ローラの端面の研削加工面の向きを誤ることなく組立てが可能となる。これにより、組立て時に遊星ローラの軸端面の研削面向きを選別する工数を削減することができる。   In addition, when the end surfaces of each of the pair of small diameter portions provided on both end surfaces of the planetary roller are ground, similarly to the above, one of the bearing rings of the thrust bearing is omitted to reduce the number of parts, and at least one set or more Some planetary rollers of the same shape can be reassembled by reversing the axial direction, and the axial length of the carrier can be made compact. Assembling is possible without mistaking the direction of the grinding surface of the end surface of the planetary roller. Thereby, the man-hour for selecting the grinding surface direction of the shaft end surface of the planetary roller at the time of assembly can be reduced.

この発明に係る電動式直動アクチュエータにおいては、上記のように、スラスト軸受と対向する一端面に軸方向長さが異なる小径部を設けてスラスト軸受に均一大きさの軸方向荷重が負荷されるようにした複数の遊星ローラの他端面に軸方向長さが0以上とされた小径部を設け、両端面の小径部を足し合わせた軸方向長さを同一とすると共に、有効円周溝長さを同一として複数の遊星ローラの軸方向長さを同一とすることにより、同一形状となる遊星ローラが少なくとも1組以上形成されることになり、遊星ローラの種類の削減によってコストの低減を図ることができる。   In the electric linear actuator according to the present invention, as described above, a small-diameter portion having a different axial length is provided on one end surface facing the thrust bearing, and a uniform axial load is applied to the thrust bearing. Provided with a small-diameter portion having an axial length of 0 or more on the other end surfaces of the plurality of planetary rollers, the axial length obtained by adding the small-diameter portions of both end surfaces is the same, and the effective circumferential groove length By making the axial lengths of the plurality of planetary rollers the same, at least one set of planetary rollers having the same shape is formed, and the cost is reduced by reducing the types of planetary rollers. be able to.

この発明に係る電動式直動アクチュエータの実施の形態を示す縦断面図A longitudinal sectional view showing an embodiment of an electric linear actuator according to the present invention 図1の一部を拡大して示す断面図Sectional drawing which expands and shows a part of FIG. 図2のIII−III線に沿った断面図Sectional view along line III-III in FIG. (a)および(b)は遊星ローラを示す一部切欠正面図(a) And (b) is a partially cutaway front view showing a planetary roller 外輪部材の螺旋突条と遊星ローラの円周溝の噛み合い状態を示す展開図Development view showing meshing state of spiral protrusion of outer ring member and circumferential groove of planetary roller この発明に係る電動式ディスクブレーキ装置の実施の形態を示す縦断面図A longitudinal sectional view showing an embodiment of an electric disc brake device according to the present invention 従来の電動式直動アクチュエータにおける外輪部材の螺旋突条と遊星ローラの円周溝の噛み合い状態を示す展開図Development view showing meshing state of spiral protrusion of outer ring member and circumferential groove of planetary roller in conventional electric linear actuator

以下、この発明の実施の形態を図面に基づいて説明する。図1乃至図3に示すように、この発明に係る電動式直動アクチュエータAはハウジング1を有する。ハウジング1は、円筒状をなし、その一端には径方向外方に張り出すベースプレート2が設けられ、そのベースプレート2の外側面はハウジング1の一端部にボルト止めされたカバー3によって覆われている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the electric linear actuator A according to the present invention has a housing 1. The housing 1 has a cylindrical shape, and a base plate 2 projecting radially outward is provided at one end thereof, and an outer surface of the base plate 2 is covered with a cover 3 bolted to one end of the housing 1. .

ハウジング1の内部には円筒状の外輪部材5が組込まれている。外輪部材5は回り止めされ、かつ、ハウジング1の内径面に沿って軸方向に移動自在とされ、その内径面には、図2に示すように、断面V字形の螺旋突条6が設けられている。   A cylindrical outer ring member 5 is incorporated in the housing 1. The outer ring member 5 is prevented from rotating and is movable in the axial direction along the inner diameter surface of the housing 1, and a spiral protrusion 6 having a V-shaped cross section is provided on the inner diameter surface as shown in FIG. ing.

図1に示すように、ハウジング1内には、外輪部材5の軸方向一端側に軸受ハウジング7が組込まれている。軸受ハウジング7は円盤状をなし、その中央部にはボス部7aが設けられている。軸受ハウジング7は、ハウジング1の内径面に取付けた止め輪8によってカバー3側に移動するのが防止されている。   As shown in FIG. 1, a bearing housing 7 is incorporated in the housing 1 on one end side in the axial direction of the outer ring member 5. The bearing housing 7 has a disk shape, and a boss portion 7a is provided at the center thereof. The bearing housing 7 is prevented from moving to the cover 3 side by a retaining ring 8 attached to the inner diameter surface of the housing 1.

軸受ハウジング7のボス部7a内には一対の転がり軸受9が軸方向に間隔をおいて組込まれ、その転がり軸受9によって外輪部材5の軸心上に配置された回転軸10が回転自在に支持されている。   A pair of rolling bearings 9 is incorporated in the boss portion 7a of the bearing housing 7 with an axial interval, and the rotating shaft 10 disposed on the axis of the outer ring member 5 is rotatably supported by the rolling bearings 9. Has been.

ハウジング1のベースプレート2には電動モータ11が支持され、その電動モータ11のロータ軸12の回転は、カバー3内に組込まれたギヤ減速機構13により減速されて回転軸10に伝達されるようになっている。   An electric motor 11 is supported on the base plate 2 of the housing 1, and the rotation of the rotor shaft 12 of the electric motor 11 is decelerated by a gear reduction mechanism 13 incorporated in the cover 3 and transmitted to the rotary shaft 10. It has become.

外輪部材5の内側には回転軸10を中心にして回転可能なキャリア14が組込まれている。図2および図3に示すように、キャリア14は、軸方向で対向する一対のディスク14a、14bを有し、一方のディスク14bに設けられた複数の間隔調整用柱部15によって一対のディスク14a、14bの対向間隔が一定に保持されている。   A carrier 14 that is rotatable about the rotation shaft 10 is incorporated inside the outer ring member 5. As shown in FIG. 2 and FIG. 3, the carrier 14 has a pair of discs 14a and 14b facing each other in the axial direction, and a pair of discs 14a is provided by a plurality of interval adjusting column portions 15 provided on one disc 14b. , 14b is kept constant.

キャリア14は、一対のディスク14a、14bの内径面に組み込まれたすべり軸受16により回転軸10を中心にして回転自在に、かつ、軸方向にスライド自在に支持され、上記回転軸10の軸端部に取付けられた止め輪17により回転軸10の軸端から抜け出るのが防止されている。   The carrier 14 is supported by a slide bearing 16 incorporated in the inner surface of the pair of disks 14a and 14b so as to be rotatable about the rotary shaft 10 and slidable in the axial direction. The retaining ring 17 attached to the portion prevents the rotating shaft 10 from coming off the shaft end.

キャリア14における一対のディスク14a、14bのそれぞれには、軸方向で対向する一対の軸挿入孔18が周方向に間隔をおいて形成され、その対向一対の軸挿入孔18のそれぞれ内部にローラ軸19の軸端部が挿入されており、それぞれのローラ軸19に対向一対の軸受20が嵌合され、その軸受20によって遊星ローラ21が回転自在に支持されている。   Each of the pair of disks 14a and 14b in the carrier 14 is formed with a pair of axial insertion holes 18 opposed in the axial direction at intervals in the circumferential direction, and a roller shaft is formed inside each of the opposed pair of shaft insertion holes 18. 19 shaft end portions are inserted, and a pair of opposed bearings 20 are fitted to the respective roller shafts 19, and planetary rollers 21 are rotatably supported by the bearings 20.

ここで、一対のディスク14a、14bに形成された軸挿入孔18は径方向に長い長孔とされており、ローラ軸19はその長孔の両端に当接する範囲において移動自在とされ、それぞれのローラ軸19の軸端部を包み込むようにかけ渡された径方向に弾性変形可能な弾性リング22によりローラ軸19が内向きに付勢されて、遊星ローラ21が回転軸10の外径面に押し付けられている。このため、回転軸10が回転すると、その回転軸10の外径面に対する摩擦接触によって遊星ローラ21が回転するようになっている。   Here, the shaft insertion holes 18 formed in the pair of disks 14a and 14b are elongated holes that are long in the radial direction, and the roller shaft 19 is movable within a range where both ends of the elongated holes are in contact with each other. The roller shaft 19 is urged inward by an elastic ring 22 that is elastically deformable in the radial direction and is wrapped so as to wrap around the end portion of the roller shaft 19, so that the planetary roller 21 is pressed against the outer diameter surface of the rotating shaft 10. It has been. For this reason, when the rotating shaft 10 rotates, the planetary roller 21 rotates by frictional contact with the outer diameter surface of the rotating shaft 10.

遊星ローラ21の外径面には、複数の円周溝23が外輪部材5に設けられた螺旋突条6と同一のピッチで形成され、それぞれの円周溝23に螺旋突条6が噛合している。   A plurality of circumferential grooves 23 are formed on the outer diameter surface of the planetary roller 21 at the same pitch as the spiral protrusions 6 provided in the outer ring member 5, and the spiral protrusions 6 mesh with the respective circumferential grooves 23. ing.

キャリア14の一対のディスク14a、14bのうち、軸受ハウジング7側に位置するインナ側ディスク14aと遊星ローラ21間には、遊星ローラ21側より順に、スラスト軸受24、加圧座板25および受圧座板26が組み込まれている。   Among the pair of disks 14a and 14b of the carrier 14, between the inner disk 14a located on the bearing housing 7 side and the planetary roller 21, the thrust bearing 24, the pressure seat plate 25, and the pressure seat plate are arranged in this order from the planetary roller 21 side. 26 is incorporated.

図4に示すように、スラスト軸受24は、軌道輪24aと、その軌道輪24aと遊星ローラ21の対向面に沿って転動可能な複数の転動体24bと、その転動体24bを保持する保持器24cからなっている。   As shown in FIG. 4, the thrust bearing 24 holds a raceway ring 24 a, a plurality of rolling elements 24 b that can roll along the facing surfaces of the raceway ring 24 a and the planetary roller 21, and a holder that holds the rolling element 24 b. 24 c.

図2に示すように、加圧座板25と受圧座板26の対向面には調心座27が形成されている。調心座27は、加圧座板25に形成された凸形球面27aと受圧座板26に形成されてその凸形球面27aを接触案内する凹面27bとからなっている。   As shown in FIG. 2, a centering seat 27 is formed on the opposing surface of the pressure seat plate 25 and the pressure receiving seat plate 26. The aligning seat 27 includes a convex spherical surface 27a formed on the pressure seat plate 25 and a concave surface 27b formed on the pressure receiving seat plate 26 to contact and guide the convex spherical surface 27a.

加圧座板25および受圧座板26のそれぞれの中心部にはローラ軸19が挿通される軸挿入孔25a、26aが形成され、受圧座板26に形成された軸挿入孔26aとローラ軸19との間には隙間28が設けられている。   Shaft insertion holes 25 a and 26 a through which the roller shaft 19 is inserted are formed at the center of each of the pressure seat plate 25 and the pressure receiving seat plate 26, and the shaft insertion hole 26 a and the roller shaft 19 formed in the pressure receiving seat plate 26 are formed. A gap 28 is provided between them.

一方、加圧座板25に形成された軸挿入孔25aの内径はローラ軸19の外径とほぼ同径とされ、上記隙間28の範囲内において加圧座板25は傾動自在とされている。   On the other hand, the inner diameter of the shaft insertion hole 25 a formed in the pressure seat plate 25 is substantially the same as the outer diameter of the roller shaft 19, and the pressure seat plate 25 is tiltable within the gap 28.

図2に示すように、キャリア14におけるインナ側ディスク14aと軸受ハウジング7の対向面間には、環状のサポート部材30と、スラスト軸受31とが組み込まれ、上記スラスト軸受31はキャリア14およびサポート部材30に負荷される軸方向のスラスト荷重を受けるようになっている。   As shown in FIG. 2, an annular support member 30 and a thrust bearing 31 are incorporated between the inner disk 14 a of the carrier 14 and the facing surface of the bearing housing 7, and the thrust bearing 31 includes the carrier 14 and the support member. The axial thrust load applied to 30 is received.

サポート部材30にはインナ側ディスク14aと対向する面に環状溝32が形成され、その環状溝32内に前述の弾性リング22が収容されている。   An annular groove 32 is formed on the support member 30 on the surface facing the inner disk 14 a, and the aforementioned elastic ring 22 is accommodated in the annular groove 32.

外輪部材5のハウジング1の端部開口から外部に位置する他端の開口はシールカバー33の取付けにより閉塞されて内部に異物が侵入するのが防止されている。一方、ハウジング1の他端開口は、その他端部と外輪部材5の他端部間に取付けられたブーツ34により閉塞されて内部に異物が侵入するのが防止されている。   The opening at the other end located outside the end opening of the housing 1 of the outer ring member 5 is closed by the attachment of the seal cover 33 to prevent foreign matter from entering the inside. On the other hand, the other end opening of the housing 1 is blocked by a boot 34 attached between the other end and the other end of the outer ring member 5 to prevent foreign matter from entering the inside.

図6は、上記の構成からなる電動式直動アクチュエータAを採用した電動式ディスクブレーキ装置Bを示す。この電動式ディスクブレーキ装置Bにおいては、電動式直動アクチュエータAにおけるハウジング1の他端部にキャリパボディ部40を一体に設け、そのキャリパボディ部40内に外周部の一部が配置されたブレーキディスク41の両側に固定ブレーキパッド42と可動ブレーキパッド43を設け、その可動ブレーキパッド43を外輪部材5の他端部に連結一体化している。   FIG. 6 shows an electric disc brake device B employing the electric linear actuator A having the above-described configuration. In this electric disc brake device B, a caliper body portion 40 is integrally provided at the other end portion of the housing 1 of the electric linear actuator A, and a part of the outer peripheral portion is disposed in the caliper body portion 40. A fixed brake pad 42 and a movable brake pad 43 are provided on both sides of the disk 41, and the movable brake pad 43 is connected and integrated with the other end of the outer ring member 5.

図6に示すような電動式ディスクブレーキ装置Bへの電動式直動アクチュエータAの使用状態において、図1に示す電動モータ11の駆動により回転軸10が回転すると、遊星ローラ21が回転軸10との摩擦接触により自転しつつ公転する。   When the electric linear actuator A is used for the electric disc brake device B as shown in FIG. 6, when the rotating shaft 10 is rotated by the drive of the electric motor 11 shown in FIG. 1, the planetary roller 21 is moved to the rotating shaft 10. Revolves while rotating by frictional contact.

このとき、図2に示すように、遊星ローラ21の外径面には複数の円周溝23が形成され、その円周溝23に外輪部材5の内径面に設けられた螺旋突条6が係合しているため、遊星ローラ21の自転および公転により外輪部材5が軸方向に移動し、図6に示すように、可動ブレーキパッド43がブレーキディスク41に押し付けられ、ブレーキディスク41に制動力が付与される。   At this time, as shown in FIG. 2, a plurality of circumferential grooves 23 are formed on the outer diameter surface of the planetary roller 21, and the spiral ridges 6 provided on the inner diameter surface of the outer ring member 5 are formed in the circumferential grooves 23. Because of the engagement, the outer ring member 5 moves in the axial direction due to the rotation and revolution of the planetary roller 21, and the movable brake pad 43 is pressed against the brake disc 41 as shown in FIG. Is granted.

上記のような制動力の付与時、図2に示すように、外輪部材5から遊星ローラ21に軸方向荷重が負荷される。その軸方向荷重はスラスト軸受24で支持される。各遊星ローラ21の円周溝23に噛合する螺旋突条6の軸方向位置は、周方向の公転位置の違いによって少しずつずれるが、この実施の形態では、スラスト軸受24で支持される各遊星ローラ21の一端面から円周溝23の所定の基準位置までの距離を各々異なる寸法に設定する手段によって各円周溝23と嵌まり込む螺旋突条6の軸方向位置が一致するよう円周溝位置が調整されている。   When the braking force is applied as described above, an axial load is applied from the outer ring member 5 to the planetary roller 21 as shown in FIG. The axial load is supported by the thrust bearing 24. Although the axial position of the helical ridge 6 meshing with the circumferential groove 23 of each planetary roller 21 is slightly shifted due to the difference in the revolution position in the circumferential direction, in this embodiment, each planet supported by the thrust bearing 24 is shifted. The circumferential positions of the spiral ridges 6 fitted into the respective circumferential grooves 23 coincide with each other by means for setting different distances from one end face of the roller 21 to the predetermined reference position of the circumferential groove 23. The groove position is adjusted.

上記円周溝位置の調整に際し、図4および図5においては、各遊星ローラ21のスラスト軸受24で支持される一端面21aから最も近くに形成される円周溝23の中心を基準位置xとし、その基準位置xから一端面21aまでの長さdが、遊星ローラ21毎で異なる所定の寸法となるよう、軸方向長さαの異なる小径部21bを設けている。   When adjusting the position of the circumferential groove, in FIGS. 4 and 5, the center of the circumferential groove 23 formed closest to the one end surface 21a supported by the thrust bearing 24 of each planetary roller 21 is defined as a reference position x. The small-diameter portion 21b having a different axial length α is provided so that the length d from the reference position x to the one end surface 21a has a predetermined dimension that differs for each planetary roller 21.

上記のような軸方向長さαの異なる小径部21bの形成によってそれぞれのスラスト軸受24に均一な軸方向力が負荷される。ここで、小径部21bは螺旋突条6との干渉を避けるため、円周溝23の底面径以下の大きさとされている。   A uniform axial force is applied to each thrust bearing 24 by forming the small diameter portions 21b having different axial lengths α as described above. Here, the small-diameter portion 21 b has a size equal to or smaller than the bottom diameter of the circumferential groove 23 in order to avoid interference with the spiral protrusion 6.

実施の形態では、図4(a)、(b)で示される遊星ローラ21の有効円周溝長さcを複数の遊星ローラ21のそれぞれで同一とし、かつ、各遊星ローラ21の他端面に軸方向長さが0以上とされた小径部21cを設け、その小径部21cの軸方向長さβと一端面に形成された小径部21bの軸方向長さαを足し合わせた長さ(α+β)を全ての遊星ローラ21で同一として、各遊星ローラ21の軸方向長さLを同じとしている。   In the embodiment, the effective circumferential groove length c of the planetary roller 21 shown in FIGS. 4A and 4B is the same for each of the plurality of planetary rollers 21, and is provided on the other end surface of each planetary roller 21. A small diameter portion 21c having an axial length of 0 or more is provided, and the axial length β of the small diameter portion 21c is added to the axial length α of the small diameter portion 21b formed on one end surface (α + β) is the same for all planetary rollers 21, and the length L in the axial direction of each planetary roller 21 is the same.

上記のように、遊星ローラ21の他端面にも軸方向長さが0以上とされた小径部21cを設け、その小径部21cの軸方向長さβと一端面に形成された小径部21bの軸方向長さαを足し合わせた長さ(α+β)を全ての遊星ローラ21で同一として、各遊星ローラ21の軸方向長さLを同じとすることにより、以下の説明のように、同一形状の遊星ローラ21を1組以上形成することができる。   As described above, the other end surface of the planetary roller 21 is also provided with the small-diameter portion 21c having an axial length of 0 or more, and the axial length β of the small-diameter portion 21c and the small-diameter portion 21b formed on the one end surface. By making the length (α + β) obtained by adding the axial length α the same for all the planetary rollers 21 and making the axial length L of each planetary roller 21 the same, as described below, One or more sets of planetary rollers 21 having the same shape can be formed.

(I);図5では遊星ローラ21を4個使用した場合を説明すると、α+βが一定となる4個の遊星ローラ21(A1、A2、A3、A4)が周方向に等間隔に配置されるとき、各遊星ローラ21(A1、A2、A3、A4)の基準位置xから一端面21aまでの各々の長さd(d1、d2、d3、d4)の位置は、遊星ローラ21の円周溝23が外輪部材5の内径面に形成された螺旋突条6と嵌まり込むのに沿って(α+β)/4ずつ変化する。
(II);キャリア部の軸方向長さを最小にするため、遊星ローラ21(A1)はβ=0である。また、別の1個の遊星ローラ21(A4)はα=0である。上記(I)の記載から、遊星ローラ21(A1)について、軸方向の向きを反転させたとき、遊星ローラ21(A4)と同一となる。また、遊星ローラ21(A1、A2、A3、A4)は外輪部材5の内径面に形成された螺旋突条6に沿って配置されるため、遊星ローラ21(A1)と遊星ローラ21(A4)は隣り合うのが自明である。
(III);遊星ローラ21(A1)が遊星ローラ21(A4)とは反対方向に隣り合う遊星ローラ21(A2)は、α=(α+β)/4である。一方、遊星ローラ21(A4)が遊星ローラ21(A1)とは反対方向に隣り合う遊星ローラ21(A3)は、β=(α+β)/4である。ここで、遊星ローラの全長は同一であるため、遊星ローラ21(A2)の軸方向の向きを反転させると遊星ローラ21(A3)と同一の形状となる。遊星ローラ21の個数4は4個に限らない。例えば、図示はしないがn個を使用した場合でも同じ考え方で以下のようになる。
遊星ローラ21(A1)が遊星ローラ21(An)とは反対方向に隣り合う遊星ローラ21(A2)は、α=(α+β)/nである。さらに、その隣の遊星ローラ21(A3)は、α=(α+β)/n×2である。一方、遊星ローラ21(An)が遊星ローラ21(A1)とは反対方向に隣り合う遊星ローラ21(An−1)は、β=(α+β)/nである。さらに隣の遊星ローラ21(An−2)は、β=(α+β)/n×2である。ここで、遊星ローラの全長は同一であるため、遊星ローラ21(A2)の軸方向の向きを反転させると遊星ローラ21(An−1)と同一の形状となる。同様に、遊星ローラ21(A3)の軸方向の向きを反転させると遊星ローラ21(An−2)と同一形状となる。
(IV);一つのアクチュエータ内に配置する遊星ローラの個数nが偶数個のとき、必要な遊星ローラの種類は上記(III)の関係からn/2種類となり、遊星ローラを4つとする場合は、図4(a)、(b)で示す2種類の遊星ローラ21となる。また、遊星ローラの個数が奇数個のとき、必要な遊星ローラの種類はn/2+0.5種類となる。よって、いずれの場合も、アクチュエータ内に配置する遊星ローラ21の種類を減らすことができ、コストの低減を図ることができる。
(I); FIG. 5 illustrates the case where four planetary rollers 21 are used. Four planetary rollers 21 (A1, A2, A3, A4) having constant α + β are arranged at equal intervals in the circumferential direction. When this is done, the position of each length d (d1, d2, d3, d4) from the reference position x of each planetary roller 21 (A1, A2, A3, A4) to the one end surface 21a is the circle of the planetary roller 21. The circumferential groove 23 changes by (α + β) / 4 as it fits into the helical ridge 6 formed on the inner diameter surface of the outer ring member 5.
(II); In order to minimize the axial length of the carrier portion, the planetary roller 21 (A1) has β = 0. Another planetary roller 21 (A4) has α = 0. From the description of (I) above, the planetary roller 21 (A1) is the same as the planetary roller 21 (A4) when the axial direction is reversed. Further, since the planetary rollers 21 (A1, A2, A3, A4) are arranged along the spiral protrusions 6 formed on the inner diameter surface of the outer ring member 5, the planetary rollers 21 (A1) and the planetary rollers 21 (A4) are arranged. Is self-explanatory.
(III): The planetary roller 21 (A2) in which the planetary roller 21 (A1) is adjacent to the planetary roller 21 (A4) in the opposite direction is α = (α + β) / 4. On the other hand, the planetary roller 21 (A3) in which the planetary roller 21 (A4) is adjacent to the planetary roller 21 (A1) in the opposite direction is β = (α + β) / 4. Here, since the full length of the planetary roller is the same, when the axial direction of the planetary roller 21 (A2) is reversed, the planetary roller 21 (A3) has the same shape. The number of planetary rollers 21 is not limited to four. For example, although not shown, even when n pieces are used, the same way of thinking is as follows.
The planetary roller 21 (A2) in which the planetary roller 21 (A1) is adjacent to the planetary roller 21 (An) in the opposite direction satisfies α = (α + β) / n. Further, the adjacent planetary roller 21 (A3) satisfies α = (α + β) / n × 2. On the other hand, the planetary roller 21 (An-1) in which the planetary roller 21 (An) is adjacent to the planetary roller 21 (A1) in the opposite direction is β = (α + β) / n. Further, the adjacent planetary roller 21 (An−2) satisfies β = (α + β) / n × 2. Here, since the full length of the planetary roller is the same, when the axial direction of the planetary roller 21 (A2) is reversed, the planetary roller 21 (An-1) has the same shape. Similarly, when the axial direction of the planetary roller 21 (A3) is reversed, the planetary roller 21 (An-2) has the same shape.
(IV): When the number n of planetary rollers arranged in one actuator is an even number, the required number of planetary rollers is n / 2 from the relationship of (III) above, and there are four planetary rollers. These are two types of planetary rollers 21 shown in FIGS. When the number of planetary rollers is an odd number, the necessary planetary roller types are n / 2 + 0.5 types. Therefore, in any case, the types of planetary rollers 21 arranged in the actuator can be reduced, and the cost can be reduced.

ここで、遊星ローラ21のスラスト軸受24で支持される側の端面を研削加工することにより、その端面をスラスト軸受24の軌道面とすることができるため、スラスト軸受24の軌道輪の一方を不要として部品点数を削減し、コストの低減を図ることができると共に、キャリア14の軸方向長さのコンパクト化を図ることができる。結果として、電動式直動アクチュエータAの軸方向長さのコンパクト化を図ることができる。   Here, by grinding the end surface of the planetary roller 21 that is supported by the thrust bearing 24, the end surface can be used as the raceway surface of the thrust bearing 24, so one of the raceways of the thrust bearing 24 is unnecessary. As a result, the number of parts can be reduced, the cost can be reduced, and the axial length of the carrier 14 can be made compact. As a result, the axial length of the electric linear actuator A can be reduced.

上記のように、一端面に形成された小径部21bの端面のみを研削加工すると、その研削された一端面がスラスト軸受24の軌道面を形成するよう軸方向向きを考慮する必要があり、組み込みに注意を要する。そこで、遊星ローラ21の研削加工が施されていない軸端面にも研削加工を施すことにより、少なくとも1組以上ある同一形状の遊星ローラ21についてはいずれの軸端面もスラスト軸受の軌道面21aとすることが可能となるから軸方向の向きを反転させることで相互に入れ替えて組立てることが可能となる。これにより、組立て時に遊星ローラの軸端面の研削面向きを選別する工数を削減すると同時に、遊星ローラ21の向きを誤って組立ててしまう可能性を排除することができる。   As described above, when only the end surface of the small diameter portion 21b formed on one end surface is ground, it is necessary to consider the axial direction so that the ground end surface forms the raceway surface of the thrust bearing 24. Attention is required. Therefore, the shaft end surface of the planetary roller 21 that has not been ground is also ground, so that at least one set of planetary rollers 21 having the same shape has the shaft end surface as the raceway surface 21a of the thrust bearing. Therefore, by reversing the axial direction, it is possible to replace and assemble them. As a result, the number of steps for selecting the grinding surface orientation of the shaft end surface of the planetary roller during assembly can be reduced, and at the same time, the possibility of erroneously assembling the orientation of the planetary roller 21 can be eliminated.

上記実施例では、外輪部材5を軸方向に移動したタイプを説明したが、外輪部材5を固定して遊星ローラ21とキャリア14を一体に軸方向に移動するものであってもよい。本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   In the above embodiment, the type in which the outer ring member 5 is moved in the axial direction has been described. However, the outer ring member 5 may be fixed and the planetary roller 21 and the carrier 14 may be moved integrally in the axial direction. The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

A 電動式直動アクチュエータ
B 電動式ディスクブレーキ装置
1 ハウジング
5 外輪部材
6 螺旋突条
10 回転軸
11 電動モータ
14 キャリア
14a インナ側ディスク
21 遊星ローラ
21b 小径部
21c 小径部
23 円周溝
24 スラスト軸受
41 ブレーキディスク
43 可動ブレーキパッド(ブレーキパッド)
A Electric linear actuator B Electric disk brake device 1 Housing 5 Outer ring member 6 Spiral ridge 10 Rotating shaft 11 Electric motor 14 Carrier 14a Inner side disk 21 Planetary roller 21b Small diameter part 21c Small diameter part 23 Circumferential groove 24 Thrust bearing 41 Brake disc 43 Movable brake pad (brake pad)

Claims (5)

ハウジング内に円筒状の外輪部材を組込み、その外輪部材の軸心上に電動モータによって回転駆動される回転軸を設け、その回転軸の外径面と前記外輪部材の内径面間に組み込まれて周方向に等間隔に配置された複数の遊星ローラを前記回転軸を中心にして回転自在に支持されたキャリアによって回転自在に支持し、各遊星ローラの外径面には前記外輪部材の内径面に設けられた螺旋突条に噛合する円周溝を、螺旋突条と同一ピッチで形成し、前記回転軸の回転により、その回転軸との摩擦接触により遊星ローラを自転および公転させて外輪部材もしくは遊星ローラを軸方向に直線移動させ、その遊星ローラとキャリアのインナ側ディスクとの間に組み込まれたスラスト軸受で軸方向力を支持し、前記複数の遊星ローラの前記スラスト軸受と対向する一端面のそれぞれに小径部を設けた電動式直動アクチュエータにおいて、
前記複数の遊星ローラにおける有効円周溝長さを同一とし、各遊星ローラの他端面に軸方向長さが0以上とされる小径部を設け、その他端面の小径部と一端面の小径部の足し合わせた軸方向長さを複数の遊星ローラのそれぞれで等しくして、複数の遊星ローラの軸方向長さを同一長さとしたことを特徴とする電動式直動アクチュエータ。
A cylindrical outer ring member is incorporated in the housing, and a rotary shaft that is rotationally driven by an electric motor is provided on the axis of the outer ring member, and is incorporated between the outer diameter surface of the rotary shaft and the inner diameter surface of the outer ring member. A plurality of planetary rollers arranged at equal intervals in the circumferential direction are rotatably supported by a carrier that is rotatably supported around the rotation axis, and an outer diameter surface of each planetary roller has an inner diameter surface of the outer ring member An outer ring member is formed by forming a circumferential groove that meshes with the spiral protrusion provided on the outer periphery of the spiral protrusion at the same pitch and rotating and revolving the planetary roller by frictional contact with the rotation shaft by the rotation of the rotation shaft. Alternatively, the planetary roller is linearly moved in the axial direction, and axial force is supported by a thrust bearing incorporated between the planetary roller and the inner disk of the carrier, and the thrust bearings of the plurality of planetary rollers The electric linear motion actuator having a small diameter portion at each of one end surface that direction,
The plurality of planetary rollers have the same effective circumferential groove length, the other end surface of each planetary roller is provided with a small diameter portion having an axial length of 0 or more, and the other end surface has a small diameter portion and a small diameter portion on one end surface. An electric linear actuator characterized in that the added axial length is equal for each of the plurality of planetary rollers, and the plurality of planetary rollers have the same axial length.
前記遊星ローラの軸方向の向きを反転させた状態で同一形状の遊星ローラを少なくとも1組以上有してなる請求項1に記載の電動式直動アクチュエータ。   2. The electric linear actuator according to claim 1, comprising at least one planetary roller having the same shape in a state in which the axial direction of the planetary roller is reversed. 前記遊星ローラの前記スラスト軸受と対向する小径部の端面を研削加工してスラスト軸受の軌道面とした請求項1又は2に記載の電動式直動アクチュエータ。   3. The electric linear actuator according to claim 1, wherein an end surface of the small diameter portion of the planetary roller facing the thrust bearing is ground to form a raceway surface of the thrust bearing. 前記遊星ローラの両端面に設けられた一対の小径部のそれぞれにおける端面を研削加工してスラスト軸受の軌道面とした請求項1又は2に記載の電動式直動アクチュエータ。   3. The electric linear actuator according to claim 1, wherein end surfaces of each of a pair of small diameter portions provided on both end surfaces of the planetary roller are ground to form a raceway surface of a thrust bearing. 電動式直動アクチュエータによりブレーキパッドを直線駆動し、そのブレーキパッドでブレーキディスクを押圧して、そのブレーキディスクに制動力を付与するようにした電動式ディスクブレーキ装置において、
前記電動式直動アクチュエータが請求項1乃至4のいずれかの項に記載の電動式直動アクチュエータからなることを特徴とする電動式ディスクブレーキ装置。
In the electric disc brake device in which the brake pad is linearly driven by the electric linear actuator, the brake disc is pressed with the brake pad, and braking force is applied to the brake disc.
An electric disk brake device, wherein the electric linear actuator comprises the electric linear actuator according to any one of claims 1 to 4.
JP2014191148A 2014-09-19 2014-09-19 Electric linear actuator and electric disc brake device Active JP6478540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014191148A JP6478540B2 (en) 2014-09-19 2014-09-19 Electric linear actuator and electric disc brake device
PCT/JP2015/075704 WO2016043114A1 (en) 2014-09-19 2015-09-10 Electric linear actuator and electric disc brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191148A JP6478540B2 (en) 2014-09-19 2014-09-19 Electric linear actuator and electric disc brake device

Publications (2)

Publication Number Publication Date
JP2016061396A true JP2016061396A (en) 2016-04-25
JP6478540B2 JP6478540B2 (en) 2019-03-06

Family

ID=55533152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191148A Active JP6478540B2 (en) 2014-09-19 2014-09-19 Electric linear actuator and electric disc brake device

Country Status (2)

Country Link
JP (1) JP6478540B2 (en)
WO (1) WO2016043114A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178785A (en) * 2019-07-08 2019-10-17 Ntn株式会社 Planetary roller and electrically-driven linear actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002841B (en) * 2014-12-09 2020-03-06 斯凯孚公司 Planetary roller screw mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172056A (en) * 1986-12-23 1988-07-15 ロルビ エス ア Screw device with recirculating adjoint roller
JP2011074950A (en) * 2009-09-29 2011-04-14 Ntn Corp Electrically operated linear actuator and electrically operated brake device
JP2011179539A (en) * 2010-02-26 2011-09-15 Ntn Corp Electric linear motion actuator and electric brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172056A (en) * 1986-12-23 1988-07-15 ロルビ エス ア Screw device with recirculating adjoint roller
JP2011074950A (en) * 2009-09-29 2011-04-14 Ntn Corp Electrically operated linear actuator and electrically operated brake device
JP2011179539A (en) * 2010-02-26 2011-09-15 Ntn Corp Electric linear motion actuator and electric brake device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178785A (en) * 2019-07-08 2019-10-17 Ntn株式会社 Planetary roller and electrically-driven linear actuator

Also Published As

Publication number Publication date
JP6478540B2 (en) 2019-03-06
WO2016043114A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5596575B2 (en) Electric linear actuator and electric disc brake device
US20100084230A1 (en) Electromechanical linear-motion actuator and electromechanical brake system
WO2013011892A1 (en) Motor with speed reducer
WO2012032980A1 (en) Electric direct-acting actuator and electric disc brake device
WO2016080186A1 (en) Electric linear actuator and electric brake device
JP2014047845A (en) Electrically-driven linear actuator and electrically-driven disc braking device
JP6659364B2 (en) Electric brake device
JP6478540B2 (en) Electric linear actuator and electric disc brake device
JP6556505B2 (en) Electric linear actuator and electric brake device
JP6109121B2 (en) Electric disc brake device
WO2016186001A1 (en) Electric linear actuator and electric braking device
JP2017160981A (en) Planetary roller screw type linear motion mechanism and electrically-driven brake control system
JP5687518B2 (en) Electric linear actuator and electric disc brake device
KR101838924B1 (en) Rotation actuator
JP5797929B2 (en) Electric linear actuator and electric disc brake device
JP2012241825A (en) Electric linear actuator and electric disk brake device
JP7235217B2 (en) Friction gear reducer
KR20210095762A (en) High reduction-ratio speed reducer device
JP2008312437A (en) Electric direct acting actuator and electric braking device
JP5474475B2 (en) Electric linear actuator and electric brake device
JP6407704B2 (en) Electric linear actuator and electric brake device
JP7152913B2 (en) Electric linear motion actuator and electric brake device
JP7401939B1 (en) Conjugate cam type reducer
JP2017171142A (en) Electric linear actuator and electric disc brake device
JP4284992B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250