JP2016056524A - Seismic reinforcement structure for existing building and seismic reinforcement method for existing building - Google Patents
Seismic reinforcement structure for existing building and seismic reinforcement method for existing building Download PDFInfo
- Publication number
- JP2016056524A JP2016056524A JP2014181482A JP2014181482A JP2016056524A JP 2016056524 A JP2016056524 A JP 2016056524A JP 2014181482 A JP2014181482 A JP 2014181482A JP 2014181482 A JP2014181482 A JP 2014181482A JP 2016056524 A JP2016056524 A JP 2016056524A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- steel material
- existing building
- base end
- shaft member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002787 reinforcement Effects 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 213
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 190
- 239000010959 steel Substances 0.000 claims abstract description 190
- 238000003780 insertion Methods 0.000 claims abstract description 152
- 230000037431 insertion Effects 0.000 claims abstract description 152
- 238000009434 installation Methods 0.000 claims description 6
- 238000011900 installation process Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000003014 reinforcing effect Effects 0.000 description 24
- 230000000694 effects Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
Abstract
Description
本発明は、既設建物の耐震補強構造及び既設建物の耐震補強方法に関する。 The present invention relates to a seismic reinforcement structure for existing buildings and a seismic reinforcement method for existing buildings.
従来、既設建物の耐震補強方法として、既設建物の柱や梁に複数のアンカーボルトを差し込んで、それらアンカーボルトに長尺の鋼板をナットで両面側から挟持するように固定した後、その鋼板の周囲にコンクリートを打設することによって、鋼板入りコンクリート体を既設建物に接合させるものがある(例えば、特許文献1)。 Conventionally, as a seismic reinforcement method for existing buildings, after inserting multiple anchor bolts into the pillars and beams of the existing building and fixing the long steel plates to the anchor bolts with nuts from both sides, There is one that joins a concrete body with a steel plate to an existing building by placing concrete around it (for example, Patent Document 1).
ところで、既設建物においては、柱や梁の位置が設計図と異なっていたり、鉄筋等が内蔵されていることによりアンカーボルトを差し込めない箇所があったりして、アンカーボルトを予定の位置に設置できないことがある。また、予定通りの位置にアンカーボルトを差し込んだとしても、差し込んだアンカーボルトが柱や梁の外面に対して傾いて、ナットを取り付ける基端部の位置がずれてしまうことがある。 By the way, in existing buildings, the position of columns and beams is different from the design drawing, or there are places where anchor bolts can not be inserted due to built-in reinforcing bars etc., so anchor bolts can not be installed at planned positions Sometimes. Even if the anchor bolt is inserted at a planned position, the inserted anchor bolt may be inclined with respect to the outer surface of the column or beam, and the position of the base end portion to which the nut is attached may be displaced.
その点、鋼板にアンカーボルトを挿通する挿通孔を形成する際に、挿通孔を大きめに形成しておけば、現場でアンカーボルトを差し込む位置がずれたり、アンカーボルトに傾きが生じたりしても、鋼板に予め形成された挿通孔にアンカーボルトの基端部を容易に挿通することができるので、現場での施工性がよい。 On that point, when forming the insertion hole for inserting the anchor bolt into the steel plate, if the insertion hole is formed larger, the position where the anchor bolt is inserted may be shifted on the site or the anchor bolt may be inclined. Since the base end portion of the anchor bolt can be easily inserted into the insertion hole formed in advance in the steel plate, the workability on site is good.
しかし、挿通孔をアンカーボルトの直径よりも過度に大きくすると、ナットで挟持してコンクリートを打設したときに挿通孔内にコンクリートが打設されない空洞が残ってしまい、アンカーボルト及び鋼材のコンクリート体との一体性が低下してしまう、という課題がある。 However, if the insertion hole is made excessively larger than the diameter of the anchor bolt, when the concrete is placed by pinching with a nut, a cavity in which the concrete is not placed remains in the insertion hole, and the concrete body of the anchor bolt and the steel material remains. There is a problem that the unity with is reduced.
本発明は、このような従来技術に存在する問題点に着目してなされたものである。その目的は、既設建物に差し込まれた複数の軸材に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材及び鋼材のコンクリート体との一体性の低下を抑制することができる既設建物の耐震補強構造及び既設建物の耐震補強方法を提供することにある。 The present invention has been made paying attention to such problems existing in the prior art. The purpose of the existing building is to prevent deterioration of the integrity of the shaft material and the steel material with the concrete body while ensuring good workability when attaching the steel material to the multiple shaft materials inserted into the existing building. Another object is to provide a seismic reinforcement structure and a seismic reinforcement method for existing buildings.
以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する既設建物の耐震補強構造は、既設建物に先端部が差し込まれる複数の軸材と、前記複数の軸材の基端部が遊貫可能な複数の挿通孔を有する鋼材と、前記挿通孔に挿通された一の前記軸材の前記基端部に取り付けられて、前記鋼材を挟持する挟持部と、前記挿通孔に挿通された他の前記軸材の前記基端部において、前記鋼材よりも基端に近い位置に設けられる抜け止め部と、前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、を備える。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
The seismic reinforcement structure of the existing building that solves the above problems is a steel material having a plurality of shaft members into which the tip ends are inserted into the existing building, and a plurality of insertion holes through which the base end portions of the plurality of shaft materials can penetrate, Attached to the base end portion of the one shaft member inserted through the insertion hole, and a clamping portion for sandwiching the steel material, and the base end portion of the other shaft member inserted through the insertion hole, A retaining portion provided at a position closer to the base end than the steel material, and a concrete body that includes the steel material and is integrated with the existing building.
この構成によれば、一部の軸材に取り付けた挟持部で鋼材を挟持することによって、鋼材の位置決めを適切に行うとともに、他の軸材において鋼材よりも基端に近い位置に設けた抜け止め部によって、鋼材の基端側への移動を規制することができる。また、挟持部に挟持される鋼材の挿通孔内にはコンクリートが入らないのに対して、抜け止め部を設けた軸材の挿通孔内にはコンクリートが入り込むので、挿通孔を大きくした場合にも、全ての軸材に挟持部を取り付ける場合よりも、軸材及び鋼材のコンクリート体との一体性の低下が抑制される。したがって、軸材の基端部が遊貫可能な程度に挿通孔を大きくすることによって、既設建物に差し込まれた複数の軸材に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材及び鋼材のコンクリート体との一体性の低下を抑制することができる。 According to this configuration, the steel material is properly positioned by clamping the steel material with the clamping part attached to a part of the shaft material, and the other shaft material is provided at a position closer to the base end than the steel material. The movement of the steel material toward the base end side can be restricted by the stopper. In addition, concrete does not enter the steel material insertion hole that is clamped by the clamping part, whereas concrete enters the shaft material insertion hole provided with a retaining part, so when the insertion hole is enlarged Moreover, the fall of the integrity with the concrete body of a shaft material and steel materials is suppressed rather than the case where a clamping part is attached to all the shaft materials. Therefore, by increasing the insertion hole to such an extent that the base end portion of the shaft material can penetrate freely, the shaft material can be secured while ensuring good workability when attaching steel materials to a plurality of shaft materials inserted into an existing building. And the fall of the integrity with the concrete body of steel materials can be controlled.
上記既設建物の耐震補強構造において、前記既設建物には3以上の前記軸材が差し込まれるとともに前記鋼材は3以上の前記挿通孔を有し、前記抜け止め部が設けられる前記軸材の数が、前記挟持部が取り付けられる前記軸材の数よりも多いことが好ましい。 In the seismic reinforcement structure of the existing building, three or more shaft members are inserted into the existing building and the steel member has three or more insertion holes, and the number of the shaft members provided with the retaining portions is the number of the shaft members. It is preferable that the number of the shaft members to which the clamping portion is attached is larger than the number of the shaft members.
この構成によれば、抜け止め部が設けられる軸材の数を、挟持部が取り付けられる軸材の数よりも多くすることにより、コンクリートが入り込む挿通孔の数を多くして、軸材及び鋼材のコンクリート体との一体性を高めることができる。 According to this configuration, by increasing the number of shaft members provided with the retaining portions more than the number of shaft members to which the sandwiching portions are attached, the number of insertion holes into which the concrete enters is increased, and the shaft material and the steel material The unity with the concrete body can be improved.
上記課題を解決する既設建物の耐震補強構造は、既設建物に先端部が差し込まれる複数の軸材と、前記軸材の基端部が遊貫可能な複数の挿通孔を有する鋼材と、前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、を備え、前記挿通孔に挿通された一の前記軸材は、前記基端部に取り付けられた挟持部によって前記鋼材と連結され、前記挿通孔に挿通された他の前記軸材は、前記挿通孔内に充填された前記コンクリート体によって前記鋼材と連結される。 The seismic reinforcement structure for an existing building that solves the above problems includes a plurality of shaft members into which distal ends are inserted into the existing building, a steel material having a plurality of insertion holes through which base end portions of the shaft members can pass freely, and the steel material. A concrete body integrated with the existing building, and the one shaft member inserted through the insertion hole is connected to the steel member by a sandwiching portion attached to the base end portion. The other shaft member inserted through the insertion hole is connected to the steel material by the concrete body filled in the insertion hole.
この構成によれば、一部の軸材に取り付けた挟持部で鋼材を挟持することによって、鋼材の位置決めを適切に行うことができる。また、挟持部に挟持される鋼材の挿通孔内にはコンクリートが入らないのに対して、挟持部を設けない軸材が挿通される挿通孔内にはコンクリートが入り込むので、挿通孔内に充填されたコンクリート体によって軸材と鋼材とを連結することができる。したがって、軸材の基端部が遊貫可能な程度に挿通孔を大きくすることによって、既設建物に差し込まれた複数の軸材に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材及び鋼材のコンクリート体との一体性の低下を抑制することができる。 According to this configuration, the steel material can be properly positioned by clamping the steel material with the clamping portions attached to some of the shaft members. In addition, concrete does not enter the steel material insertion hole that is clamped in the clamping part, whereas concrete enters the insertion hole in which the shaft member without the clamping part is inserted, so the insertion hole is filled. The shaft material and the steel material can be connected by the concrete body made. Therefore, by increasing the insertion hole to such an extent that the base end portion of the shaft material can penetrate freely, the shaft material can be secured while ensuring good workability when attaching steel materials to a plurality of shaft materials inserted into an existing building. And the fall of the integrity with the concrete body of steel materials can be controlled.
上記課題を解決する既設建物の耐震補強構造は、既設建物に先端部が差し込まれる3以上の軸材と、前記軸材の基端部が遊貫可能な3以上の挿通孔を有する鋼材と、前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、を備え、前記挿通孔に挿通された前記3以上の軸材は、前記鋼材を挟持する挟持部が前記基端部に取り付けられる第1軸材と、前記基端部において前記鋼材よりも基端に近い位置に抜け止め部が設けられる第2軸材と、前記抜け止め部及び前記挟持部が設けられない第3軸材と、を含む。 The seismic reinforcement structure for an existing building that solves the above problems includes three or more shaft members into which the distal end portion is inserted into the existing building, and a steel material having three or more insertion holes through which the base end portion of the shaft member can penetrate, A concrete body that includes the steel material and is integrated with the existing building, and the three or more shaft members that are inserted through the insertion holes have a holding portion that holds the steel material at the base end portion. First shaft member to be attached, second shaft member provided with a retaining portion at a position closer to the proximal end than the steel material at the base end portion, and a third shaft not provided with the retaining portion and the clamping portion Material.
この構成によれば、一部の軸材に取り付けた挟持部で鋼材を挟持することによって、鋼材の位置決めを適切に行うことができる。また、挟持部に挟持される鋼材の挿通孔内にはコンクリートが入らないのに対して、挟持部を設けない第2軸材及び第3軸材が挿通される挿通孔内にはコンクリートが入り込むので、挿通孔内に充填されたコンクリート体によって第2軸材及び第3軸材と鋼材とを連結することができる。したがって、軸材の基端部が遊貫可能な程度に挿通孔を大きくすることによって、既設建物に差し込まれた複数の軸材に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材及び鋼材のコンクリート体との一体性の低下を抑制することができる。 According to this configuration, the steel material can be properly positioned by clamping the steel material with the clamping portions attached to some of the shaft members. In addition, concrete does not enter the steel material insertion hole sandwiched by the sandwiching part, whereas concrete enters the insertion hole through which the second shaft member and the third shaft member that are not provided with the sandwiching part are inserted. Therefore, the second shaft member, the third shaft member and the steel material can be connected by the concrete body filled in the insertion hole. Therefore, by increasing the insertion hole to such an extent that the base end portion of the shaft material can penetrate freely, the shaft material can be secured while ensuring good workability when attaching steel materials to a plurality of shaft materials inserted into an existing building. And the fall of the integrity with the concrete body of steel materials can be controlled.
上記既設建物の耐震補強構造において、前記軸材は、前記既設建物の柱体及び梁体に先端部が差し込まれ、前記柱体と前記梁体が交差する位置に配置された前記軸材に前記挟持部が取り付けられることが好ましい。 In the seismic reinforcement structure of the existing building, the shaft member is inserted into the shaft member disposed at a position where a tip portion is inserted into a column body and a beam body of the existing building, and the column body and the beam body intersect each other. It is preferable that a clamping part is attached.
この構成によれば、柱体と梁体が交差する位置に配置された軸材に挟持部を取り付けて鋼材を挟持することにより、コンクリート打設前に、鋼材を軸材に対して効率よく位置決めすることができる。 According to this configuration, the steel material is efficiently positioned with respect to the shaft material before placing the concrete by attaching the clamping portion to the shaft material arranged at the position where the column body and the beam body intersect to hold the steel material. can do.
上記既設建物の耐震補強構造において、前記鋼材は、前記既設建物の柱体及び梁体に沿う位置に配置される枠体を構成し、前記挟持部は、少なくとも、前記枠体の角部分に配置されることが好ましい。 In the seismic strengthening structure of the existing building, the steel material constitutes a frame body arranged at a position along the column body and the beam body of the existing building, and the sandwiching portion is arranged at least at a corner portion of the frame body It is preferred that
この構成によれば、鋼材が既設建物の柱体及び梁体に沿う位置に配置される枠体を構成するときに、その枠体の角部分に挟持部を配置することにより、コンクリート打設前に、鋼材を軸材に対して効率よく位置決めすることができる。 According to this configuration, when constituting a frame in which the steel material is arranged at positions along the pillars and beams of the existing building, the sandwiching portions are arranged at the corners of the frame before placing the concrete. In addition, the steel material can be efficiently positioned with respect to the shaft material.
上記課題を解決する既設建物の耐震補強方法は、既設建物に複数の軸材の先端部を差し込む軸材設置工程と、鋼材に設けられた複数の挿通孔に前記複数の軸材の基端部をそれぞれ挿通する挿通工程と、前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、前記挿通孔に挿通された他の前記軸材の基端部において、前記鋼材よりも基端に近い位置に抜け止め部を設ける抜け止め工程と、前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設する打設工程と、を備える。 The seismic reinforcement method for an existing building that solves the above problems includes a shaft installation step of inserting the tip ends of a plurality of shaft members into the existing building, and a base end portion of the plurality of shaft members in a plurality of insertion holes provided in the steel material. A step of inserting the steel material by a holding portion attached to a base end portion of the one shaft member inserted through the insertion hole, and the other of the insertion member inserted through the insertion hole. At the base end portion of the shaft member, a retaining step for providing a retaining portion at a position closer to the base end than the steel material, and placing the concrete so as to surround the steel material at a position in contact with the existing building A process.
この構成によれば、上記既設建物の耐震補強構造と同様の作用効果を得ることができる。
上記課題を解決する既設建物の耐震補強方法は、既設建物に複数の軸材の先端部を差し込む軸材設置工程と、鋼材に設けられた複数の挿通孔に前記複数の軸材の基端部をそれぞれ挿通する挿通工程と、前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設して、他の前記軸材が挿通された前記挿通孔にコンクリートを充填する打設工程と、を備える。
According to this structure, the same effect as the seismic reinforcement structure of the said existing building can be obtained.
The seismic reinforcement method for an existing building that solves the above problems includes a shaft installation step of inserting the tip ends of a plurality of shaft members into the existing building, and a base end portion of the plurality of shaft members in a plurality of insertion holes provided in the steel material. Each of the steel material, a clamping step of clamping the steel material by a clamping portion attached to a base end portion of the one shaft material inserted through the insertion hole, and a position of the steel material in contact with the existing building. Placing concrete so as to surround the periphery, and filling the insertion hole into which the other shaft member is inserted with concrete.
この構成によれば、上記既設建物の耐震補強構造と同様の作用効果を得ることができる。
上記課題を解決する既設建物の耐震補強方法は、既設建物に3以上の軸材の先端部を差し込む軸材設置工程と、鋼材に設けられた3以上の挿通孔に前記3以上の軸材の基端部をそれぞれ挿通する挿通工程と、前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、前記挟持部が取り付けられた前記一の軸材とは別の軸材の基端部において、前記鋼材よりも基端に近い位置に抜け止め部を設ける抜け止め工程と、前記3以上の軸材のうちの一部に、前記抜け止め部及び前記挟持部を設けない軸材を残した状態で、前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設して、前記挟持部に挟まれない前記挿通孔にコンクリートを充填する打設工程と、を備える。
According to this structure, the same effect as the seismic reinforcement structure of the said existing building can be obtained.
The seismic reinforcement method for an existing building that solves the above problems includes a shaft material installation step in which the tip of three or more shaft members are inserted into the existing building, and three or more shaft members in three or more insertion holes provided in the steel material. An insertion step of inserting each of the base end portions, a holding step of holding the steel material by a holding portion attached to the base end portion of the one shaft member inserted through the insertion hole, and the holding portion are attached. In a base end portion of a shaft member different from the one shaft member, a retaining step of providing a retaining portion at a position closer to the base end than the steel material, and a part of the three or more shaft members, The insertion that is not pinched by the clamping part by placing concrete so as to surround the steel material at a position in contact with the existing building with the shaft member not provided with the retaining part and the clamping part remaining A placing step of filling the hole with concrete.
この構成によれば、上記既設建物の耐震補強構造と同様の作用効果を得ることができる。 According to this structure, the same effect as the seismic reinforcement structure of the said existing building can be obtained.
本発明によれば、既設建物に差し込まれた複数の軸材に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材及び鋼材のコンクリート体との一体性の低下を抑制することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fall of the integrity with the concrete body of a shaft material and steel materials can be suppressed, ensuring the workability at the time of attaching steel materials to the some shaft material inserted in the existing building favorably. .
以下、既設建物の耐震補強構造及び既設建物の耐震補強方法の実施形態を図面に従って説明する。
図1に示すように、既設建物11を支える構造体である柱体12及び梁体13には、耐震補強のための補強部21が連結される。補強部21は、例えば、既設建物11に設けられた窓や出入り口などの開口部14を塞がないように矩形枠状に形成される。矩形枠状の補強部21は、例えば図1に二点鎖線で示すように、既設建物11の階数や柱体12の位置に応じて、任意に増設することが可能である。
Hereinafter, embodiments of an earthquake-proof reinforcement structure for an existing building and an earthquake-proof reinforcement method for an existing building will be described with reference to the drawings.
As shown in FIG. 1, a reinforcing portion 21 for seismic reinforcement is connected to a column body 12 and a beam body 13 which are structures supporting an existing building 11. For example, the reinforcing portion 21 is formed in a rectangular frame shape so as not to block the openings 14 such as windows and doorways provided in the existing building 11. For example, as shown by a two-dot chain line in FIG. 1, the rectangular frame-shaped reinforcing portion 21 can be arbitrarily added according to the number of floors of the existing building 11 and the position of the column 12.
図2に示すように、補強部21は、既設建物11の柱体12及び梁体13に先端部が差し込まれる複数の軸材22と、軸材22の基端部に取り付けられる鋼材23と、鋼材23を内部に含んで既設建物11と一体化されるコンクリート体24と、を備える。すなわち、補強部21は、鋼材入りコンクリート体である。本実施形態の鋼材23は、例えば長尺の鋼板であり、柱体12及び梁体13の配置に応じて適宜接合されることによって、既設建物11の柱体12及び梁体13に沿う位置に配置される正面視矩形状の枠体を構成する。なお、鋼材23の接合は、溶接によって行うこともできるし、ボルト及びナットで挟むことによって行うこともできる。 As shown in FIG. 2, the reinforcing portion 21 includes a plurality of shaft members 22 into which the distal end portions are inserted into the column bodies 12 and the beam bodies 13 of the existing building 11, a steel material 23 attached to the base end portion of the shaft member 22, and A concrete body 24 that includes the steel material 23 and is integrated with the existing building 11. That is, the reinforcement part 21 is a steel-containing concrete body. The steel material 23 of the present embodiment is, for example, a long steel plate, and is appropriately joined according to the arrangement of the column body 12 and the beam body 13, so that the steel material 23 is positioned at a position along the column body 12 and the beam body 13 of the existing building 11. A frame body having a rectangular shape in front view is arranged. In addition, joining of the steel material 23 can also be performed by welding, and can also be performed by pinching | pinching with a volt | bolt and a nut.
補強部21は、図2に二点鎖線で示すように、柱体12及び梁体13に対して斜めに交差するように設けられる斜状補強部材25を有してもよい。斜状補強部材25は、例えば鋼材23に連結される両端部を除いてコンクリート被覆されたコンクリートプレキャスト体であってもよいし、伸縮可能な棒状のオイルダンパーなど、制震装置として機能するものであってもよい。 The reinforcing portion 21 may include a diagonal reinforcing member 25 provided so as to obliquely intersect the column body 12 and the beam body 13 as indicated by a two-dot chain line in FIG. The oblique reinforcing member 25 may be, for example, a concrete precast body that is covered with concrete except for both ends connected to the steel material 23, or functions as a vibration control device such as a telescopic rod-shaped oil damper. There may be.
図3に示すように、軸材22は、軸材22よりも全長(図3では左右方向の長さ)が短くなるように既設建物11の柱体12(または梁体13)に形成された挿入孔15に先端部(図3では左端部)が挿入される。このとき、軸材22の基端部(図3では右端部)は既設建物11の柱体12(または梁体13)から突出する態様となる。 As shown in FIG. 3, the shaft member 22 is formed on the column 12 (or the beam member 13) of the existing building 11 so that the overall length (the length in the left-right direction in FIG. 3) is shorter than the shaft member 22. The distal end portion (left end portion in FIG. 3) is inserted into the insertion hole 15. At this time, the base end portion (right end portion in FIG. 3) of the shaft member 22 is in a mode of protruding from the column body 12 (or the beam body 13) of the existing building 11.
鋼材23は、複数の軸材22の基端部が遊貫可能な複数の挿通孔28を有する。挿通孔28は、軸材22への取り付けに先立って、既設建物11の設計図等に基づいて予め位置が定められ、形成されるものである。これに対して、軸材22が挿入される挿入孔15は、鋼材23の挿通孔28と対応する位置に設けるべく、現場で形成されるものであるが、既設建物11の実際の構造が設計図と異なっていたり、鉄筋等が内蔵されていたりすると、挿入孔15の形成位置が予定の位置よりずれることがある。また、挿入孔15の形成角度が壁面に対して斜めになった場合には、挿入孔15に差し込まれた軸材22が傾いて、その基端部の位置が挿通孔28に対してずれることがある。 The steel member 23 has a plurality of insertion holes 28 through which the base end portions of the plurality of shaft members 22 can pass. Prior to the attachment to the shaft member 22, the insertion hole 28 is formed with its position determined in advance based on the design drawing of the existing building 11. On the other hand, the insertion hole 15 into which the shaft member 22 is inserted is formed in the field so as to be provided at a position corresponding to the insertion hole 28 of the steel material 23, but the actual structure of the existing building 11 is designed. If it is different from the figure or a reinforcing bar or the like is built in, the formation position of the insertion hole 15 may deviate from the planned position. Further, when the forming angle of the insertion hole 15 is inclined with respect to the wall surface, the shaft member 22 inserted into the insertion hole 15 is inclined, and the position of the base end portion is shifted with respect to the insertion hole 28. There is.
そのため、挿通孔28は、挿入孔15の形成位置がずれたり、軸材22が傾いたりした場合にも、軸材22を挿通することが可能なように、軸材22の軸経よりも大きめに形成し、軸材22が遊貫されるようにする。例えば、挿通孔28の直径をD1、軸材22の軸経をD2としたときに、D1=D2+2mm程度のクリアランスで軸材22を挿通孔28に挿通することができる場合に、D1=D2+20mm程度のクリアランスを確保する。そうすれば、複数の軸材22の基端部の位置がずれたとしても、鋼材23の取り付け作業を容易に行うことが可能である。 Therefore, the insertion hole 28 is larger than the shaft length of the shaft member 22 so that the shaft member 22 can be inserted even when the formation position of the insertion hole 15 is shifted or the shaft member 22 is inclined. The shaft member 22 is allowed to pass through. For example, when the diameter of the insertion hole 28 is D1 and the axis of the shaft member 22 is D2, when the shaft member 22 can be inserted into the insertion hole 28 with a clearance of about D1 = D2 + 2 mm, D1 = D2 + 20 mm. Ensure clearance. If it does so, even if the position of the base end part of the some shaft material 22 slip | deviates, it is possible to perform the attachment operation | work of the steel material 23 easily.
そして、挿通孔28のうちの一部である挿通孔28Aに挿通された軸材22(22A)の基端部には、鋼材23を挟持するように挟持部31が取り付けられる。挟持部31は、例えば二組の座金32とナット33によって構成される。なお、挟持部31を座金32とナット33によって構成する場合、軸材22Aは、その基端部にナット33に形成される雌ねじ部と対応する雄ねじ部を有するアンカーボルトとするとよい。また、座金32は、挿通孔28の開口を覆うことができる大きさにする。 And the clamping part 31 is attached to the base end part of the shaft material 22 (22A) inserted in 28 A of insertion holes which are some of the insertion holes 28 so that the steel material 23 may be clamped. The clamping part 31 is comprised by two sets of washers 32 and the nut 33, for example. In addition, when the clamping part 31 is comprised by the washer 32 and the nut 33, it is good for the shaft member 22A to be an anchor bolt having a male screw part corresponding to the female screw part formed on the nut 33 at the base end part. The washer 32 is sized to cover the opening of the insertion hole 28.
挿通孔28のうちの一部である挿通孔28Bに挿通された軸材22Aとは別の軸材22(22B)の基端部には、鋼材23よりも基端に近い位置に抜け止め部34が設けられる。抜け止め部34は、例えば一組の座金32とナット33によって構成される。なお、抜け止め部34を座金32とナット33によって構成する場合、軸材22Bは、その基端部にナット33に形成される雌ねじ部と対応する雄ねじ部を有するアンカーボルトとするとよい。 The proximal end portion of the shaft member 22 (22B) different from the shaft member 22A inserted into the insertion hole 28B, which is a part of the insertion hole 28, has a retaining portion at a position closer to the proximal end than the steel material 23. 34 is provided. The retaining portion 34 includes, for example, a set of washers 32 and nuts 33. When the retaining portion 34 is configured by the washer 32 and the nut 33, the shaft member 22B may be an anchor bolt having a male screw portion corresponding to the female screw portion formed on the nut 33 at the base end portion.
抜け止め部34が取り付けられる軸材22Bの数は、挟持部31が取り付けられる軸材22Aの数よりも多いことが好ましい。一例として、複数の鋼材23が接合されることにより、既設建物11の柱体12及び梁体13に沿う位置に配置される正面視矩形枠状の枠体を構成する場合に、その枠体の角部分にのみ挟持部31を配置する。また、他の例として、その枠体の角部分に加えて柱体12または梁体13の長手方向に並ぶ複数の軸材22のうちの一部に挟持部31を設ける。このように鋼材23が枠体を構成する場合、例えば162本の軸材22に対して58本の軸材22Aに挟持部31を設けるなど、施工上適切に位置決めを行うために、軸材22全体の1〜4割程度を挟持部31を取り付ける軸材22Aとすることが好ましい。 The number of shaft members 22B to which the retaining portions 34 are attached is preferably larger than the number of shaft members 22A to which the clamping portions 31 are attached. As an example, when a plurality of steel members 23 are joined together to form a frame body having a rectangular frame shape in a front view arranged at positions along the column body 12 and the beam body 13 of the existing building 11, The clamping part 31 is arrange | positioned only at a corner | angular part. As another example, in addition to the corner portion of the frame body, the clamping portion 31 is provided in a part of the plurality of shaft members 22 arranged in the longitudinal direction of the column body 12 or the beam body 13. Thus, when the steel material 23 comprises a frame, in order to position appropriately on construction, such as providing the clamping part 31 in 58 shaft materials 22A with respect to 162 shaft materials 22, shaft material 22 is provided, for example. It is preferable that about 10 to 40% of the whole is the shaft member 22A to which the clamping portion 31 is attached.
挿通孔28に挿通された軸材22のうちの一部には、座金32とナット33が取り付けられない。このように、座金32とナット33によって鋼材23と連結されない軸材22を軸材22Cといい、軸材22Cが挿通される挿通孔28を挿通孔28Cという。なお、軸材22Cには雄ねじ部を設けなくてもよいが、軸材22A、22Bと部品を共通化するために、軸材22A、22Bと同様の構成とすることが好ましい。 The washer 32 and the nut 33 are not attached to a part of the shaft member 22 inserted through the insertion hole 28. As described above, the shaft member 22 that is not connected to the steel member 23 by the washer 32 and the nut 33 is referred to as a shaft member 22C, and the insertion hole 28 through which the shaft member 22C is inserted is referred to as an insertion hole 28C. The shaft member 22C does not have to be provided with a male thread portion, but is preferably configured in the same manner as the shaft members 22A and 22B in order to share parts with the shaft members 22A and 22B.
このように、挿通孔28に挿通された3以上の軸材22は、鋼材23を挟持する挟持部31が基端部に取り付けられる第1軸材22Aと、基端部において鋼材23よりも基端に近い位置に抜け止め部34が設けられる第2軸材22Bと、抜け止め部34及び挟持部31が設けられない第3軸材22Cと、を含む。 As described above, the three or more shaft members 22 inserted through the insertion hole 28 include the first shaft member 22A in which the clamping portion 31 that sandwiches the steel material 23 is attached to the base end portion, and the base end portion is more base than the steel material 23. It includes a second shaft member 22B in which the retaining portion 34 is provided at a position near the end, and a third shaft member 22C in which the retaining portion 34 and the clamping portion 31 are not provided.
鋼材23が鋼板である場合には、鋼板の外周に連結部材26によって連結された複数のフープ筋27を配置することが好ましい。この場合、座金32及びナット33が取り付けられる軸材22の基端部は、フープ筋27に囲まれる位置に配置される。 When the steel material 23 is a steel plate, it is preferable to arrange a plurality of hoop bars 27 connected by a connecting member 26 on the outer periphery of the steel plate. In this case, the base end portion of the shaft member 22 to which the washer 32 and the nut 33 are attached is disposed at a position surrounded by the hoop muscle 27.
次に、既設建物11の耐震補強方法について説明する。
補強部21を形成するにあたっては、まず、既設建物11の柱体12及び梁体13に3以上の挿入孔15を形成する。また、鋼材23には予め所定の位置に3以上の挿通孔28(28A,28B,28C)を形成しておくとともに、連結部材26を介してフープ筋27を鋼材23に取り付けておく。
Next, the seismic reinforcement method for the existing building 11 will be described.
In forming the reinforcing portion 21, first, three or more insertion holes 15 are formed in the column body 12 and the beam body 13 of the existing building 11. Further, three or more insertion holes 28 (28A, 28B, 28C) are previously formed in the steel material 23 at predetermined positions, and the hoop bars 27 are attached to the steel material 23 via the connecting members 26.
次に、図4に示すように、挿入孔15に軸材22の先端部を差し込んで、軸材22の基端部が柱体12及び梁体13から突出した状態となるように、軸材22を設置する(軸材設置工程)。そして、軸材22のうちの一部である軸材22Aには、一組の座金32及びナット33を取り付けておく。 Next, as shown in FIG. 4, the shaft member 22 is inserted into the insertion hole 15 so that the base end portion of the shaft member 22 protrudes from the column body 12 and the beam body 13. 22 is installed (shaft material installation process). A set of washers 32 and nuts 33 are attached to the shaft member 22 </ b> A which is a part of the shaft member 22.
続いて、鋼材23をクレーン等で吊して、鋼材23に設けられた複数の挿通孔28(28A,28B,28C)に複数の軸材22(22A,22B,22C)の基端部をそれぞれ挿通する(挿通工程)。 Subsequently, the steel material 23 is suspended by a crane or the like, and the base end portions of the plurality of shaft members 22 (22A, 22B, 22C) are respectively inserted into the plurality of insertion holes 28 (28A, 28B, 28C) provided in the steel material 23. Insert (insertion process).
そして、軸材22Aには、さらに一組の座金32及びナット33を取り付けて、鋼材23を挟んで対をなすナット33をしめることにより、挿通孔28に挿通された軸材22Aの基端部に取り付けられた挟持部31によって鋼材23を挟持し(挟持工程)、軸材22Aと鋼材23を連結する。このとき、鋼材23は柱体12及び梁体13から離れた位置に配置されるように、挟持部31を構成する座金32及びナット33によって、軸材22の基端部に固定される。 Further, a set of washers 32 and nuts 33 are further attached to the shaft member 22A, and the nuts 33 forming a pair with the steel member 23 interposed therebetween are fastened, whereby the base end portion of the shaft member 22A inserted through the insertion hole 28 is secured. The steel material 23 is clamped by the clamping part 31 attached to (a clamping process), and the shaft material 22A and the steel material 23 are connected. At this time, the steel member 23 is fixed to the base end portion of the shaft member 22 by a washer 32 and a nut 33 constituting the sandwiching portion 31 so as to be disposed at a position away from the column body 12 and the beam body 13.
また、軸材22Bには、鋼材23よりも基端側に一組の座金32及びナット33を取り付ける。すなわち、挿通孔28に挿通された軸材22Bの基端部において、鋼材23よりも基端に近い位置に抜け止め部34を設ける(抜け止め工程)。これにより、鋼材23は抜け止め部34を構成する座金32及びナット33により、軸材22Bから抜け落ちないように、抜け止めされる。 Also, a set of washers 32 and nuts 33 are attached to the shaft member 22 </ b> B closer to the base end side than the steel material 23. That is, the retaining portion 34 is provided at a position closer to the proximal end than the steel material 23 at the proximal end portion of the shaft member 22B inserted through the insertion hole 28 (a retaining step). As a result, the steel material 23 is prevented from being detached by the washer 32 and the nut 33 constituting the retaining portion 34 so as not to fall off the shaft member 22B.
なお、軸材22Cには座金32及びナット33を取り付けない。また、軸材22に複数の鋼材23を取り付ける場合には、各鋼材23を同様に座金32及びナット33によって軸材22に連結するとともに、鋼材23同士をつきあわせて接合する。 The washer 32 and the nut 33 are not attached to the shaft member 22C. Moreover, when attaching the some steel material 23 to the shaft material 22, while connecting each steel material 23 to the shaft material 22 similarly with the washer 32 and the nut 33, the steel materials 23 are brought together and joined.
すべての鋼材23の取り付けが終了すると、図5に示すように、鋼材23及びフープ筋27を囲むように、柱体12(または梁体13)の外面側にコンクリートを打設するための型枠16を取り付ける。そして、図5に二点鎖線で示すように、3以上の軸材22のうちの一部に、抜け止め部34及び挟持部31が設けられない軸材22Cを残した状態で、型枠16内にコンクリートを流し込み、既設建物11と接する位置に鋼材23の周囲を囲むようにコンクリートを打設する(打設工程)。 When the installation of all the steel materials 23 is completed, as shown in FIG. 5, a formwork for placing concrete on the outer surface side of the column 12 (or the beam 13) so as to surround the steel 23 and the hoop bars 27. 16 is attached. Then, as shown by a two-dot chain line in FIG. 5, in a state in which the shaft member 22 </ b> C where the retaining portion 34 and the clamping portion 31 are not provided is left in a part of the three or more shaft members 22. Concrete is poured into the interior, and the concrete is placed so as to surround the periphery of the steel material 23 at a position in contact with the existing building 11 (placement process).
このとき、既設建物11の外面と鋼材23との間にコンクリート打設用ホース17の先端を配置してコンクリートを型枠16内に流し込むことによって、挿通孔28B,28Cの座金32及びナット33が取り付けられていない側の開口からコンクリートが入り込むことにより、挿通孔28内にもコンクリートが充填される。 At this time, by placing the tip of the concrete placing hose 17 between the outer surface of the existing building 11 and the steel material 23 and pouring the concrete into the mold 16, the washer 32 and the nut 33 of the insertion holes 28 </ b> B and 28 </ b> C are formed. When the concrete enters through the opening on the side not attached, the concrete is also filled into the insertion hole 28.
そして、打設したコンクリートが固まってコンクリート体24となった後に、型枠16を取り外す。これにより、軸材22B,22Cは、挿通孔28B,28C内に充填されたコンクリート体24を介して、鋼材23と連結される。その後、必要に応じて、外装材の吹付けなど、コンクリート体24の表面処理を行って、補強部21を完成させる。 Then, after the placed concrete is hardened to become the concrete body 24, the mold 16 is removed. Thereby, shaft material 22B, 22C is connected with steel material 23 via concrete body 24 with which insertion hole 28B, 28C was filled. Then, if necessary, surface treatment of the concrete body 24, such as spraying of an exterior material, is performed, and the reinforcement part 21 is completed.
次に、本実施形態における既設建物11の耐震補強構造及び既設建物の耐震補強方法の作用について説明する。
挿通孔28の直径をD1、軸材22の軸経をD2としたときに、例えばD1−D2≧20mmとするなど、挿通孔28を大きめに形成しておくことによって、挿通工程において鋼材23に設けられた挿通孔28に軸材22を挿通しやすくなる。
Next, the effect | action of the seismic reinforcement structure of the existing building 11 in this embodiment and the seismic reinforcement method of the existing building is demonstrated.
When the diameter of the insertion hole 28 is D1 and the axis of the shaft member 22 is D2, for example, D1-D2 ≧ 20 mm. It becomes easy to insert the shaft member 22 into the provided insertion hole 28.
特に、既設建物11に補強部21を設ける際には、設計図に基づいて配置された挿通孔28の位置と、現場で設置された軸材22の位置とがばらつくことが多い。また、挿通孔28の数が長手方向において3以上並ぶ場合には、その長手方向と交差する方向における位置のずれも生じることになるし、さらに挿通孔28の数が4以上など多数に及ぶ場合には、それら挿通孔28ごとの位置の誤差を、2mm程度のクリアランスで調整することは困難になる。 In particular, when the reinforcing part 21 is provided in the existing building 11, the position of the insertion hole 28 arranged based on the design drawing and the position of the shaft member 22 installed in the field often vary. Further, when the number of the insertion holes 28 is three or more in the longitudinal direction, a positional shift in the direction intersecting the longitudinal direction may occur, and the number of the insertion holes 28 may be a large number such as four or more. Therefore, it is difficult to adjust the position error for each insertion hole 28 with a clearance of about 2 mm.
その点、鋼材23に軸材22を挿通する挿通孔28を形成する際に、軸材22の直径よりも大きめに挿通孔28を形成しておけば、軸材22を差し込む位置がずれたり、軸材22が壁面に対して傾いた状態で差し込まれたりしたとしても、複数の挿通孔28に対して軸材22を挿通しやすい。 In that respect, when forming the insertion hole 28 through which the shaft member 22 is inserted into the steel material 23, if the insertion hole 28 is formed larger than the diameter of the shaft member 22, the position of inserting the shaft member 22 may be shifted, Even if the shaft member 22 is inserted while being inclined with respect to the wall surface, the shaft member 22 can be easily inserted into the plurality of insertion holes 28.
ただし、挿通孔28を軸材22の直径よりも過度に大きくすると、座金32及びナット33で挟持してコンクリートを打設したときに、挿通孔28内にコンクリートが打設されない空洞が残ってしまい、鋼材23とコンクリート体24との一体性が低下してしまうおそれがある。 However, if the insertion hole 28 is excessively larger than the diameter of the shaft member 22, when concrete is placed while being sandwiched between the washer 32 and the nut 33, a cavity in which concrete is not placed remains in the insertion hole 28. The integrity of the steel material 23 and the concrete body 24 may be reduced.
すなわち、地震等によって既設建物11及び補強部21が軸材22の軸方向と交差する方向に振動したときに挿通孔28内が空洞になっていると、挟持部31による挟持力を超える力が作用した場合に、軸材22と鋼材23の間で十分に力を伝えられないおそれがある。なお、軸方向と交差する方向には、軸方向と直交する方向のみならず、軸方向に対して斜めに交差する方向も含む。 That is, if the inside of the insertion hole 28 is hollow when the existing building 11 and the reinforcing portion 21 vibrate in a direction intersecting the axial direction of the shaft member 22 due to an earthquake or the like, a force exceeding the clamping force by the clamping portion 31 is generated. When acting, there is a possibility that sufficient force cannot be transmitted between the shaft member 22 and the steel member 23. The direction intersecting with the axial direction includes not only the direction orthogonal to the axial direction but also the direction intersecting obliquely with respect to the axial direction.
その点、挿通孔28B,28Cの開口は少なくとも一方が開放されているので、打設工程において挿通孔28B,28C内にもコンクリートが充填され、コンクリート体24を介して軸材22B,22Cと鋼材23とが一体化される。すなわち、挿通孔28B,28C内に充填されたコンクリート体24を介して、軸材22B,22Cに対して軸方向と交差する方向に作用する力を鋼材23に伝えることができるので、補強部21による補強効果が十分に発揮される。 In that respect, since at least one of the openings of the insertion holes 28B and 28C is opened, the insertion holes 28B and 28C are also filled with concrete in the placing step, and the shaft members 22B and 22C and the steel material are interposed via the concrete body 24. 23 is integrated. That is, the force acting in the direction intersecting the axial direction on the shaft members 22B and 22C can be transmitted to the steel member 23 through the concrete body 24 filled in the insertion holes 28B and 28C. The reinforcing effect by is sufficiently exhibited.
そして、軸材22Aを挿通する挿通孔28Aの数よりも軸材22B,22Cを挿通する挿通孔28B,28Cの数を多くすれば、内部が空洞となる挿通孔28の数が減るため、鋼材23とコンクリート体24との一体性を高めることができ、好ましい。 If the number of insertion holes 28B and 28C through which the shaft members 22B and 22C are inserted is larger than the number of insertion holes 28A through which the shaft member 22A is inserted, the number of insertion holes 28 in which the inside is hollow is reduced. 23 and the concrete body 24 can be improved in integration, which is preferable.
一方、地震等によって既設建物11が軸材22の軸方向に振動した場合、既設建物11の変位は軸材22を通じて鋼材23に伝達される。このとき、軸材22Aが挿通孔28A内において余裕のある態様で遊挿され、コンクリート打設後に挿通孔28A内に空洞が残ったとしても、軸材22Aに対して軸方向に作用する力は、挟持部31を介して鋼材23に伝えることができる。 On the other hand, when the existing building 11 vibrates in the axial direction of the shaft member 22 due to an earthquake or the like, the displacement of the existing building 11 is transmitted to the steel member 23 through the shaft member 22. At this time, even if the shaft member 22A is loosely inserted in the insertion hole 28A in a mode with a margin, and a cavity remains in the insertion hole 28A after placing the concrete, the force acting in the axial direction on the shaft member 22A is It can be transmitted to the steel material 23 via the clamping part 31.
また、軸材22Bにおいても、その軸方向に沿って既設建物11が鋼材23から離れる方向に力が作用した場合に、抜け止め部34により鋼材23が係止され、鋼材23が既設建物11の変位に追従するため、補強部21による耐震作用を奏することができる。 Further, also in the shaft member 22B, when a force acts in a direction in which the existing building 11 is separated from the steel material 23 along the axial direction, the steel material 23 is locked by the retaining portion 34, and the steel material 23 is attached to the existing building 11. In order to follow the displacement, the seismic effect by the reinforcing portion 21 can be exhibited.
このように、軸材22Bと軸材22Cとでは、軸方向と交差する方向に作用する力に対する耐震作用は同等であるが、軸材22Bは軸材22Cよりも軸方向に作用する力に対する耐震作用が高い。そのため、仮に軸材22Bを設けない場合や軸材22Bの数を減らす場合には、軸方向における耐震作用を補うために、軸材22Bに替えて軸材22Aを配置するようにしてもよい。 As described above, the shaft member 22B and the shaft member 22C have the same earthquake resistance with respect to the force acting in the direction intersecting the axial direction, but the shaft member 22B is earthquake resistant against the force acting in the axial direction more than the shaft member 22C. High effect. For this reason, if the shaft member 22B is not provided or the number of the shaft members 22B is reduced, the shaft member 22A may be arranged in place of the shaft member 22B in order to supplement the earthquake resistance in the axial direction.
なお、軸材22Aは、コンクリート打設前に鋼材23を軸材22に対して位置決めするために必要であるため、少なくとも鋼材23の長手方向における端部や鋼材23同士の接合部分など、位置決めの要所となる箇所に設ける必要がある。 The shaft member 22A is necessary for positioning the steel material 23 with respect to the shaft material 22 before placing the concrete. Therefore, at least the end portion in the longitudinal direction of the steel material 23 and the joint portion between the steel materials 23 are positioned. It is necessary to install it at a key point.
挿通孔28Bは、鋼材23の抜け止めとして機能する座金32及びナット33によって一方の開口がふさがれているため、ふさがれていない方の開口側(既設建物11側)からコンクリートを流し込むと、挿通孔28B内にコンクリートが入りやすい。そして、このように鋼材23よりも既設建物11側からコンクリートを流し込むと、流動するコンクリートによって鋼材23が軸材22の基端側に向けて押されるが、軸材22A,22Bの基端側に設けられたナット33によって鋼材23の基端側への移動が規制される。そのため、軸材22のうちの一部にしか挟持部31を設けていない場合にも、鋼材23が基端側へ移動して、軸材22から抜け落ちるといった事態の発生が抑制される。 One opening of the insertion hole 28B is blocked by a washer 32 and a nut 33 that function as a retaining member for the steel material 23. Therefore, when the concrete is poured from the opening side that is not blocked (the existing building 11 side), the insertion hole 28B is inserted. Concrete tends to enter the hole 28B. And when concrete is poured from the existing building 11 side rather than the steel material 23 in this way, the steel material 23 is pushed toward the base end side of the shaft member 22 by the flowing concrete, but on the base end side of the shaft members 22A and 22B. The movement of the steel material 23 toward the base end side is restricted by the provided nut 33. Therefore, even when the clamping part 31 is provided only in a part of the shaft member 22, the occurrence of a situation in which the steel material 23 moves to the proximal end side and falls off the shaft member 22 is suppressed.
さらに、軸材22B,22Cにおいては、軸材22Aよりも座金32及びナット33の取り付け数が少なくなるため、座金32及びナット33を取り付ける作業の手間が削減される。特に、座金32及びナット33が取り付けられる軸材22の基端部は、フープ筋27に囲まれる位置にあるために作業がしにくく、座金32及びナット33の取り付け数が減れば、作業時間を短縮することが可能になる。 Further, in the shaft members 22B and 22C, the number of attachments of the washers 32 and the nuts 33 is smaller than that of the shaft members 22A, so that the work for attaching the washers 32 and the nuts 33 is reduced. In particular, the base end portion of the shaft member 22 to which the washer 32 and the nut 33 are attached is difficult to work because it is located in the position surrounded by the hoop muscle 27. If the number of washers 32 and nuts 33 is reduced, the working time is reduced. It becomes possible to shorten.
特に、挟持部31及び抜け止め部34を設けない軸材22Cの数を、挟持部31を備える軸材22Aの数及び抜け止め部34を備える軸材22Bの数よりも多くしたり、軸材22Cの数を軸材22Aと軸材22Bの合計数よりも多くしたりすれば、より作業時間を短縮することができるので、好ましい。 In particular, the number of shaft members 22C that are not provided with the sandwiching portions 31 and the retaining portions 34 may be greater than the number of shaft members 22A that include the sandwiching portions 31 and the number of shaft members 22B that include the retaining portions 34. It is preferable to increase the number of 22C more than the total number of the shaft member 22A and the shaft member 22B because the working time can be further shortened.
以上詳述した実施形態によれば、次のような効果が発揮される。
(1)一部の軸材22Aに取り付けた挟持部31で鋼材23を挟持することによって、鋼材23の位置決めを適切に行うとともに、他の軸材22Bにおいて鋼材23よりも基端に近い位置に設けた抜け止め部34によって、鋼材23の基端側への移動を規制することができる。また、挟持部31に挟持される鋼材23の挿通孔28A内にはコンクリートが入らないのに対して、抜け止め部34を設けた軸材22の挿通孔28B内にはコンクリートが入り込む。そのため、挿通孔28を大きくした場合にも、全ての軸材22に挟持部31を取り付ける場合よりも、軸材22及び鋼材23のコンクリート体24との一体性の低下が抑制される。したがって、軸材22の基端部が遊貫可能な程度に挿通孔28を大きくすることによって、既設建物11に差し込まれた複数の軸材22に鋼材23を取り付ける際の施工性を良好に確保しつつ、軸材22及び鋼材23のコンクリート体24との一体性の低下を抑制することができる。
According to the embodiment detailed above, the following effects are exhibited.
(1) By sandwiching the steel material 23 with the clamping portion 31 attached to a part of the shaft material 22A, the steel material 23 is appropriately positioned, and the other shaft material 22B is closer to the base end than the steel material 23. The provided retaining portion 34 can restrict the movement of the steel material 23 toward the base end side. In addition, concrete does not enter the insertion hole 28A of the steel material 23 sandwiched by the sandwiching portion 31, whereas the concrete enters the insertion hole 28B of the shaft member 22 provided with the retaining portion 34. Therefore, even when the insertion hole 28 is enlarged, a decrease in the integrity of the shaft member 22 and the steel member 23 with the concrete body 24 is suppressed as compared with the case where the clamping portions 31 are attached to all the shaft members 22. Therefore, by making the insertion hole 28 large enough to allow the base end portion of the shaft member 22 to pass through, the workability when attaching the steel material 23 to the plurality of shaft members 22 inserted into the existing building 11 is ensured satisfactorily. However, the deterioration of the integrity of the shaft member 22 and the steel member 23 with the concrete body 24 can be suppressed.
(2)抜け止め部34が設けられる軸材22Bの数を、挟持部31が取り付けられる軸材22Aの数よりも多くすることにより、コンクリートが入り込む挿通孔28の数を多くして、軸材22及び鋼材23のコンクリート体24との一体性を高めることができる。 (2) By increasing the number of shaft members 22B on which the retaining portions 34 are provided to be larger than the number of shaft members 22A to which the sandwiching portions 31 are attached, the number of insertion holes 28 into which the concrete enters is increased. The integrity of the 22 and the steel material 23 with the concrete body 24 can be enhanced.
(3)一部の軸材22Aに取り付けた挟持部31で鋼材23を挟持することによって、鋼材23の位置決めを適切に行うことができる。また、挟持部31に挟持される鋼材23の挿通孔28A内にはコンクリートが入らないのに対して、挟持部31を設けない軸材22B,22Cが挿通される挿通孔28B,28C内にはコンクリートが入り込む。そのため、挿通孔28B,28C内に充填されたコンクリート体24によって軸材22B,22Cと鋼材23とを連結することができる。したがって、軸材22の基端部が遊貫可能な程度に挿通孔28を大きくすることによって、既設建物11に差し込まれた複数の軸材22に鋼材23を取り付ける際の施工性を良好に確保しつつ、軸材22及び鋼材23のコンクリート体24との一体性の低下を抑制することができる。 (3) The steel material 23 can be appropriately positioned by clamping the steel material 23 with the clamping portions 31 attached to some of the shaft members 22A. In addition, concrete does not enter the insertion hole 28A of the steel material 23 sandwiched between the sandwiching portions 31, whereas the shaft members 22B and 22C without the sandwiching portion 31 are inserted into the insertion holes 28B and 28C. Concrete enters. Therefore, the shaft members 22B, 22C and the steel material 23 can be connected by the concrete body 24 filled in the insertion holes 28B, 28C. Therefore, by making the insertion hole 28 large enough to allow the base end portion of the shaft member 22 to pass through, the workability when attaching the steel material 23 to the plurality of shaft members 22 inserted into the existing building 11 is ensured satisfactorily. However, the deterioration of the integrity of the shaft member 22 and the steel member 23 with the concrete body 24 can be suppressed.
(4)柱体12と梁体13が交差する位置に配置された軸材22に挟持部31を取り付けて鋼材23を挟持することにより、コンクリート打設前に、鋼材23を軸材22に対して効率よく位置決めすることができる。 (4) The steel material 23 is attached to the shaft material 22 before placing the concrete by attaching the clamping portion 31 to the shaft material 22 arranged at the position where the column body 12 and the beam body 13 intersect to hold the steel material 23. Can be positioned efficiently.
(5)鋼材23が既設建物11の柱体12及び梁体13に沿う位置に配置される枠体を構成するときに、その枠体の角部分に挟持部31を配置することにより、コンクリート打設前に、鋼材23を軸材22に対して効率よく位置決めすることができる。 (5) When the steel material 23 constitutes a frame body arranged at a position along the column 12 and the beam body 13 of the existing building 11, by placing the clamping portions 31 at the corners of the frame body, Prior to installation, the steel material 23 can be efficiently positioned with respect to the shaft material 22.
(変更例)
なお、上記実施形態は、次のように変更して具体化することも可能である。
・補強部21に設ける斜状補強部材25の数や配置は、任意に変更することができる。
(Example of change)
In addition, the said embodiment can also be changed and actualized as follows.
-The number and arrangement | positioning of the diagonal reinforcement member 25 provided in the reinforcement part 21 can be changed arbitrarily.
例えば、図6(a)に示す第1変更例のように、補強部21において2つの斜状補強部材25の配置を変更してもよいし、図6(b)に示す第2変更例のように、補強部21に設ける斜状補強部材25を1つにしてもよいし、図6(c)に示す第3変更例のように、開口部14である出入り口を露出させるように斜状補強部材25を配置してもよい。 For example, as in the first modified example shown in FIG. 6A, the arrangement of the two oblique reinforcing members 25 may be changed in the reinforcing portion 21, or in the second modified example shown in FIG. Thus, the diagonal reinforcing member 25 provided in the reinforcing portion 21 may be one, or as shown in FIG. 6C, the diagonal reinforcing member 25 is inclined so as to expose the entrance / exit which is the opening 14. A reinforcing member 25 may be disposed.
・補強部21に内蔵する鋼材23は鋼板に限らず、例えばH形鋼、I形鋼、溝型鋼、山形鋼など、任意に変更することができる。
例えば、図7に示す第4変更例のように、鋼材23としてH形鋼を用いれば、引っ張り、曲げ、圧縮といった応力に対して高い耐力を発揮することができる。なお、鋼材23としてH形鋼を用いる場合には、斜状補強部材25及びフープ筋27を設けなくてもよい。また、この場合、コンクリート体24にビニロンファイバーやステンレスファイバーなどの繊維を加えてもよい。
-The steel material 23 built in the reinforcement part 21 is not restricted to a steel plate, For example, it can change arbitrarily, such as H-section steel, I-section steel, groove type steel, and angle steel.
For example, as in the fourth modification shown in FIG. 7, if an H-shaped steel is used as the steel material 23, a high proof stress can be exerted against stresses such as tension, bending, and compression. In addition, when H-section steel is used as the steel material 23, the oblique reinforcing member 25 and the hoop bars 27 may not be provided. In this case, fibers such as vinylon fiber and stainless fiber may be added to the concrete body 24.
・軸材22Aを挿通する挿通孔28Aの直径を、軸材22B,22Cを挿通する挿通孔28B,28Cの直径より小さくしてもよい。この構成によれば、挟持部31の挟持によりコンクリート打設時に挿通孔28内に形成される空洞を小さくすることができる。 The diameter of the insertion hole 28A for inserting the shaft member 22A may be smaller than the diameter of the insertion holes 28B and 28C for inserting the shaft members 22B and 22C. According to this configuration, the cavity formed in the insertion hole 28 when the concrete is placed can be reduced by clamping the clamping part 31.
・挿通孔28の直径D1は、挿通孔28及び軸材22の数等に応じて任意に変更することができるが、10mm≦D1にしておけば、挿通孔28内にコンクリートが充填されやすいため、好ましい。また、D1≦30mm程度にしておけば、概ね挿通孔28の位置の誤差に対応することができるため、10mm≦D1≦30mmとすることが好ましい。なお、上記実施形態のように、既設建物11に耐震補強のために設置される後施工アンカーなどの軸材22の配置間隔は、概ねその軸径の5.5倍程度とされており、軸径を20mmとすると、2つの軸材22の間の距離は90mm程度となる。そのため、隣り合う2つの軸材22を挿通する2つの挿通孔28が干渉しないためには、D1≦100mm程度にする必要がある。 -The diameter D1 of the insertion hole 28 can be arbitrarily changed according to the number of the insertion holes 28 and the shaft members 22, but if 10mm≤D1, the insertion hole 28 is easily filled with concrete. ,preferable. Further, if D1 ≦ 30 mm or so, it is possible to substantially correspond to an error in the position of the insertion hole 28, and therefore it is preferable to satisfy 10 mm ≦ D1 ≦ 30 mm. Note that, as in the above-described embodiment, the arrangement interval of the shaft members 22 such as post-installed anchors installed in the existing building 11 for seismic reinforcement is approximately 5.5 times the shaft diameter. If the diameter is 20 mm, the distance between the two shaft members 22 is about 90 mm. Therefore, in order not to interfere with the two insertion holes 28 through which the two adjacent shaft members 22 are inserted, it is necessary to satisfy D1 ≦ 100 mm.
・軸材22C及び挿通孔28Cを設けず、全ての軸材22に挟持部31または抜け止め部34を設けてもよい。この場合、挿通孔28及び軸材22の数は2以上の任意の数に変更することができる。 -The shaft member 22C and the insertion hole 28C may not be provided, and the clamping portion 31 or the retaining portion 34 may be provided on all the shaft materials 22. In this case, the number of the insertion holes 28 and the shaft members 22 can be changed to an arbitrary number of 2 or more.
・軸材22B及び挿通孔28Bを設けず、挿通孔28に挿通された一部の軸材22Aを基端部に取り付けられた挟持部31によって鋼材23と接続し、挿通孔28Cに挿通されたその他の軸材22Cを挿通孔28C内に充填されたコンクリート体24によって鋼材23と接続するようにしてもよい。この場合、挿通孔28及び軸材22の数は2以上の任意の数に変更することができる。また、この構成を採用する場合、上述した既設建物の耐震補強方法において、抜け止め工程を省略することができる。 The shaft member 22B and the insertion hole 28B are not provided, and a part of the shaft member 22A inserted through the insertion hole 28 is connected to the steel material 23 by the clamping portion 31 attached to the base end portion, and is inserted into the insertion hole 28C. The other shaft member 22C may be connected to the steel member 23 by the concrete body 24 filled in the insertion hole 28C. In this case, the number of the insertion holes 28 and the shaft members 22 can be changed to an arbitrary number of 2 or more. Moreover, when employ | adopting this structure, in the earthquake-proof reinforcement method of the existing building mentioned above, the retaining step can be omitted.
この構成によれば、一部の軸材22Aに取り付けた挟持部31で鋼材23を挟持することによって、鋼材23の位置決めを適切に行うことができる。また、挟持部31に挟持される鋼材23の挿通孔28A内にはコンクリートが入らないのに対して、挟持部31を設けない軸材22Cが挿通される挿通孔28C内にはコンクリートが入り込む。そのため、挿通孔28C内に充填されたコンクリート体24によって軸材22Cと鋼材23とを連結することができる。したがって、軸材22の基端部が遊貫可能な程度に挿通孔28を大きくすることによって、既設建物11に差し込まれた複数の軸材22に鋼材を取り付ける際の施工性を良好に確保しつつ、軸材22及び鋼材23のコンクリート体24との一体性の低下を抑制することができる。 According to this configuration, the steel material 23 can be properly positioned by clamping the steel material 23 with the clamping portions 31 attached to some shaft materials 22A. In addition, concrete does not enter the insertion hole 28A of the steel material 23 sandwiched by the sandwiching portion 31, whereas concrete enters the insertion hole 28C through which the shaft member 22C without the sandwiching portion 31 is inserted. Therefore, the shaft member 22C and the steel material 23 can be connected by the concrete body 24 filled in the insertion hole 28C. Therefore, by making the insertion hole 28 large enough to allow the base end portion of the shaft member 22 to penetrate freely, the workability when attaching the steel material to the plurality of shaft members 22 inserted into the existing building 11 is ensured satisfactorily. On the other hand, the deterioration of the integrity of the shaft material 22 and the steel material 23 with the concrete body 24 can be suppressed.
・補強部21は、必ずしも一対の柱体12と一対の梁体13とに沿うように配置される枠体に限らず、例えば柱体12のみまたは梁体13のみに沿うように長尺状をなしてもよいし、柱体12と梁体13が交差する交差部分を1つ有する十字状またはL字状をなしてもよい。また、補強部21は、柱体12と梁体13が交差する交差部分を2つまたは3つ有するようにしてもよい。なお、補強部21が長尺状をなす場合には、少なくともその両端部に位置する軸材22に挟持部31を設けるのが好ましく、補強部21が柱体12と梁体13が交差する交差部分に沿うように配置される場合には、少なくともその柱体12と梁体13が交差する位置に配置した軸材22に挟持部31を取り付けるのが好ましい。 The reinforcing portion 21 is not necessarily limited to the frame body arranged along the pair of column bodies 12 and the pair of beam bodies 13, for example, has a long shape so as to follow only the column bodies 12 or only the beam bodies 13. Alternatively, it may be formed in a cross shape or an L shape having one intersection where the column body 12 and the beam body 13 intersect. Further, the reinforcing portion 21 may have two or three intersecting portions where the column body 12 and the beam body 13 intersect. In addition, when the reinforcement part 21 makes elongate shape, it is preferable to provide the clamping part 31 in the shaft material 22 located in the both ends, and the reinforcement part 21 cross | intersects that the column body 12 and the beam body 13 cross | intersect. In the case of being arranged along the part, it is preferable to attach the clamping part 31 to the shaft member 22 arranged at least at a position where the column body 12 and the beam body 13 intersect.
・鋼材23に軸材22を挿通しない貫通孔を設けてもよい。この構成によれば、貫通孔にコンクリートを充填することによって、鋼材23とコンクリート体24との一体性を高めることができる。 -You may provide the through-hole which does not penetrate the shaft material 22 in the steel material 23. FIG. According to this configuration, the integrity of the steel material 23 and the concrete body 24 can be enhanced by filling the through hole with concrete.
・挟持部31及び抜け止め部34は、座金32とナット33以外によって構成してもよい。例えば、座金32とナット33を一体化した専用の部材を用いてもよい。また、軸材22の基端にキャップ状の抜け止め部を設けてもよいし、軸材22の基端を折り曲げることによって抜け止め部としてもよい。 The clamping part 31 and the retaining part 34 may be configured by other than the washer 32 and the nut 33. For example, a dedicated member in which the washer 32 and the nut 33 are integrated may be used. Further, a cap-shaped retaining portion may be provided at the proximal end of the shaft member 22, or the retaining portion may be formed by bending the proximal end of the shaft member 22.
・既設建物11において、軸材22を差し込む対象は柱体12及び梁体13に限らず、例えば構造壁など、構造耐力を負担するものとして設計された任意の構造体に軸材22を差し込んで補強部21を設けてもよい。 In the existing building 11, the shaft member 22 is not limited to the column body 12 and the beam body 13. For example, the shaft member 22 is inserted into an arbitrary structure designed to bear structural strength such as a structural wall. A reinforcing part 21 may be provided.
11…既設建物、12…柱体、13…梁体、22…軸材、22A…第1軸材、22B…第2軸材、22C…第3軸材、23…鋼材、24…コンクリート体、28,28A,28B,28C…挿通孔、31…挟持部、34…抜け止め部。 DESCRIPTION OF SYMBOLS 11 ... Existing building, 12 ... Column, 13 ... Beam, 22 ... Shaft, 22A ... First shaft, 22B ... Second shaft, 22C ... Third shaft, 23 ... Steel, 24 ... Concrete body, 28, 28A, 28B, 28C ... insertion hole, 31 ... clamping part, 34 ... retaining part.
・挿通孔28の直径D1は、挿通孔28及び軸材22の数等に応じて任意に変更することができるが、10mm≦(D1−D2)にしておけば、挿通孔28内にコンクリートが充填されやすいため、好ましい。また、(D1−D2)≦30mm程度にしておけば、概ね挿通孔28の位置の誤差に対応することができるため、10mm≦(D1−D2)≦30mmとすることが好ましい。なお、上記実施形態のように、既設建物11に耐震補強のために設置される後施工アンカーなどの軸材22の配置間隔は、概ねその軸径の5.5倍程度とされており、軸径を20mmとすると、2つの軸材22の間の距離は90mm程度となる。そのため、隣り合う2つの軸材22を挿通する2つの挿通孔28が干渉しないためには、D1≦100mm程度にする必要がある。 The diameter D1 of the insertion hole 28 can be arbitrarily changed according to the number of the insertion holes 28 and the shaft members 22, but if 10 mm ≦ (D1-D2) , concrete is inserted in the insertion hole 28. It is preferable because it is easily filled. Further, if (D1-D2) ≦ 30 mm or so, it is possible to substantially correspond to an error in the position of the insertion hole 28, and therefore it is preferable to satisfy 10 mm ≦ (D1-D2) ≦ 30 mm. Note that, as in the above-described embodiment, the arrangement interval of the shaft members 22 such as post-installed anchors installed in the existing building 11 for seismic reinforcement is approximately 5.5 times the shaft diameter. If the diameter is 20 mm, the distance between the two shaft members 22 is about 90 mm. Therefore, in order not to interfere with the two insertion holes 28 through which the two adjacent shaft members 22 are inserted, it is necessary to satisfy D1 ≦ 100 mm.
Claims (9)
前記軸材の基端部が遊貫可能な複数の挿通孔を有する鋼材と、
前記挿通孔に挿通された一の前記軸材の前記基端部に取り付けられて、前記鋼材を挟持する挟持部と、
前記挿通孔に挿通された他の前記軸材の前記基端部において、前記鋼材よりも基端に近い位置に設けられる抜け止め部と、
前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、
を備える既設建物の耐震補強構造。 A plurality of shaft members whose tip is inserted into an existing building;
A steel material having a plurality of insertion holes through which the base end portion of the shaft material can pass freely;
A clamping part that is attached to the base end part of the one shaft member inserted through the insertion hole and clamps the steel material;
In the base end portion of the other shaft member inserted through the insertion hole, a retaining portion provided at a position closer to the base end than the steel material,
A concrete body that includes the steel material therein and is integrated with the existing building;
A seismic reinforcement structure for existing buildings.
前記抜け止め部が設けられる前記軸材の数が、前記挟持部が取り付けられる前記軸材の数よりも多い
請求項1に記載の既設建物の耐震補強構造。 Three or more shaft members are inserted into the existing building and the steel member has three or more insertion holes,
The seismic reinforcement structure for an existing building according to claim 1, wherein the number of shaft members provided with the retaining portions is greater than the number of shaft members to which the clamping portions are attached.
前記軸材の基端部が遊貫可能な複数の挿通孔を有する鋼材と、
前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、
を備え、
前記挿通孔に挿通された一の前記軸材は、前記基端部に取り付けられた挟持部によって前記鋼材と連結され、前記挿通孔に挿通された他の前記軸材は、前記挿通孔内に充填された前記コンクリート体によって前記鋼材と連結される
既設建物の耐震補強構造。 A plurality of shaft members whose tip is inserted into an existing building;
A steel material having a plurality of insertion holes through which the base end portion of the shaft material can pass freely;
A concrete body that includes the steel material therein and is integrated with the existing building;
With
One shaft member inserted into the insertion hole is connected to the steel material by a clamping portion attached to the base end, and the other shaft member inserted into the insertion hole is inserted into the insertion hole. A seismic reinforcement structure for an existing building connected to the steel material by the filled concrete body.
前記軸材の基端部が遊貫可能な3以上の挿通孔を有する鋼材と、
前記鋼材を内部に含んで前記既設建物と一体化されるコンクリート体と、
を備え、
前記挿通孔に挿通された前記3以上の軸材は、前記鋼材を挟持する挟持部が前記基端部に取り付けられる第1軸材と、前記基端部において前記鋼材よりも基端に近い位置に抜け止め部が設けられる第2軸材と、前記抜け止め部及び前記挟持部が設けられない第3軸材と、を含む
既設建物の耐震補強構造。 3 or more shaft members whose tip is inserted into an existing building,
A steel material having three or more insertion holes through which the base end portion of the shaft material can pass freely;
A concrete body that includes the steel material therein and is integrated with the existing building;
With
The three or more shaft members inserted into the insertion holes are a first shaft member in which a sandwiching portion for sandwiching the steel material is attached to the base end portion, and a position closer to the base end than the steel material in the base end portion. A seismic reinforcement structure for an existing building, comprising: a second shaft member provided with a retaining portion; and a third shaft member not provided with the retaining portion and the clamping portion.
前記柱体と前記梁体が交差する位置に配置された前記軸材に前記挟持部が取り付けられる
請求項1から請求項4のうちいずれか一項に記載の既設建物の耐震補強構造。 The shaft member has a tip inserted into the column and beam of the existing building,
The seismic reinforcement structure for an existing building according to any one of claims 1 to 4, wherein the clamping portion is attached to the shaft member arranged at a position where the column body and the beam body intersect.
請求項1から請求項5のうちいずれか一項に記載の既設建物の耐震補強構造。 The said steel material comprises the frame arrange | positioned in the position along the pillar and beam body of the said existing building, The said clamping part is arrange | positioned at least at the corner | angular part of the said frame. The seismic reinforcement structure for an existing building according to any one of the above.
鋼材に設けられた複数の挿通孔に前記複数の軸材の基端部をそれぞれ挿通する挿通工程と、
前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、
前記挿通孔に挿通された他の前記軸材の基端部において、前記鋼材よりも基端に近い位置に抜け止め部を設ける抜け止め工程と、
前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設する打設工程と、
を備える既設建物の耐震補強方法。 A shaft material installation process in which the tip of a plurality of shaft materials is inserted into an existing building,
An insertion step of inserting the base end portions of the plurality of shaft members into a plurality of insertion holes provided in the steel material, and
A sandwiching step of sandwiching the steel material by a sandwiching portion attached to a base end portion of the one shaft member inserted through the insertion hole;
In the base end portion of the other shaft member inserted through the insertion hole, a retaining step of providing a retaining portion at a position closer to the base end than the steel material,
A placing step of placing concrete so as to surround the steel material at a position in contact with the existing building;
A seismic reinforcement method for existing buildings.
鋼材に設けられた複数の挿通孔に前記複数の軸材の基端部をそれぞれ挿通する挿通工程と、
前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、
前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設して、他の前記軸材が挿通された前記挿通孔にコンクリートを充填する打設工程と、
を備える既設建物の耐震補強方法。 A shaft material installation process in which the tip of a plurality of shaft materials is inserted into an existing building,
An insertion step of inserting the base end portions of the plurality of shaft members into a plurality of insertion holes provided in the steel material, and
A sandwiching step of sandwiching the steel material by a sandwiching portion attached to a base end portion of the one shaft member inserted through the insertion hole;
Placing concrete so as to surround the steel material at a position in contact with the existing building, and placing the concrete into the insertion hole through which the other shaft material is inserted, and
A seismic reinforcement method for existing buildings.
鋼材に設けられた3以上の挿通孔に前記3以上の軸材の基端部をそれぞれ挿通する挿通工程と、
前記挿通孔に挿通された一の前記軸材の基端部に取り付けられた挟持部によって前記鋼材を挟持する挟持工程と、
前記挟持部が取り付けられた前記一の軸材とは別の軸材の基端部において、前記鋼材よりも基端に近い位置に抜け止め部を設ける抜け止め工程と、
前記3以上の軸材のうちの一部に、前記抜け止め部及び前記挟持部を設けない軸材を残した状態で、前記既設建物と接する位置に前記鋼材の周囲を囲むようにコンクリートを打設して、前記挟持部に挟まれない前記挿通孔にコンクリートを充填する打設工程と、
を備える既設建物の耐震補強方法。 A shaft material installation step of inserting the tip of three or more shaft materials into an existing building;
An insertion step of inserting the base end portions of the three or more shaft members into three or more insertion holes provided in the steel material,
A sandwiching step of sandwiching the steel material by a sandwiching portion attached to a base end portion of the one shaft member inserted through the insertion hole;
A retaining step of providing a retaining portion at a position closer to the base end than the steel material at a base end portion of the shaft member different from the one shaft member to which the clamping portion is attached,
Concrete is cast so as to surround the steel material at a position in contact with the existing building in a state where the shaft member not provided with the retaining portion and the clamping portion is left in a part of the three or more shaft members. And placing the concrete into the insertion hole that is not sandwiched between the clamping parts;
A seismic reinforcement method for existing buildings.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014181482A JP5694596B1 (en) | 2014-09-05 | 2014-09-05 | Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings |
PCT/JP2015/066904 WO2016035411A1 (en) | 2014-09-05 | 2015-06-11 | Seismic reinforcing structure for existing buildings and seismic reinforcing method for existing buildings |
KR1020157022838A KR101634512B1 (en) | 2014-09-05 | 2015-06-11 | Seismic strengthening structure and method for existing building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014181482A JP5694596B1 (en) | 2014-09-05 | 2014-09-05 | Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5694596B1 JP5694596B1 (en) | 2015-04-01 |
JP2016056524A true JP2016056524A (en) | 2016-04-21 |
Family
ID=52830839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014181482A Active JP5694596B1 (en) | 2014-09-05 | 2014-09-05 | Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5694596B1 (en) |
KR (1) | KR101634512B1 (en) |
WO (1) | WO2016035411A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019190168A (en) * | 2018-04-26 | 2019-10-31 | 矢作建設工業株式会社 | Earthquake strengthening structure of building |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106988552A (en) * | 2017-05-19 | 2017-07-28 | 福州大学 | Existing reinforced concrete structure reinforcing construction and its reinforcement means based on BRB |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3051071B2 (en) | 1996-11-25 | 2000-06-12 | 矢作建設工業株式会社 | Seismic retrofitting method for existing buildings |
JP3466961B2 (en) * | 1999-06-07 | 2003-11-17 | 矢作建設工業株式会社 | Reinforcement method for existing load-bearing walls with openings |
JP4587386B2 (en) * | 2005-04-06 | 2010-11-24 | 国立大学法人豊橋技術科学大学 | Seismic reinforcement structure for existing buildings |
JP5460368B2 (en) * | 2010-02-16 | 2014-04-02 | 株式会社国元商会 | Reinforced concrete formwork structure |
-
2014
- 2014-09-05 JP JP2014181482A patent/JP5694596B1/en active Active
-
2015
- 2015-06-11 KR KR1020157022838A patent/KR101634512B1/en active IP Right Grant
- 2015-06-11 WO PCT/JP2015/066904 patent/WO2016035411A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019190168A (en) * | 2018-04-26 | 2019-10-31 | 矢作建設工業株式会社 | Earthquake strengthening structure of building |
JP7131952B2 (en) | 2018-04-26 | 2022-09-06 | 矢作建設工業株式会社 | Seismic reinforcement structure of building |
Also Published As
Publication number | Publication date |
---|---|
KR101634512B1 (en) | 2016-06-28 |
KR20160039143A (en) | 2016-04-08 |
JP5694596B1 (en) | 2015-04-01 |
WO2016035411A1 (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101720473B1 (en) | Underground PC structure and its construction method using Partial-PC wall with improved seismic performance | |
JP6815183B2 (en) | Complex building | |
JP2015078575A (en) | Column-beam joint structure, frame structure, and method of joining column and beam | |
JP2014055517A (en) | Precast beam-column joint structure | |
JP5694596B1 (en) | Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings | |
JP7050542B2 (en) | Mixed structure of reinforced concrete columns and steel beams | |
JP2005220699A (en) | Reinforcement structure of existing column and reinforcing method for the same | |
JP5658966B2 (en) | Composite beam, composite beam joint structure, and composite beam joint method | |
JP2016089488A (en) | Existing building strengthening method | |
JP6574336B2 (en) | Steel-framed reinforced concrete columns and buildings using the same | |
JP2015025314A (en) | Construction method for precast concrete skeleton | |
JP2014190040A (en) | Hybrid structure and the construction method therefor | |
WO2015146907A1 (en) | Beam member and framework employing same | |
JP2017101442A (en) | Joining structure and joining method | |
JP5717983B2 (en) | Member joining structure, building, and member joining method | |
JP7087260B2 (en) | Column-beam joint structure | |
JP6839921B2 (en) | Column-beam joint structure | |
JP6340467B1 (en) | Ramen structure using sleeve wall and joining method thereof | |
KR20210000926A (en) | Reinforecement body for exisiting building and aseismic reinforcement method for existing building | |
JP2015214864A (en) | Rebar structure and reinforced concrete structure | |
JP5696879B2 (en) | Concrete joint structure and concrete joint method | |
JP7200042B2 (en) | pile foundation structure | |
JP7137978B2 (en) | Plate-shaped member for pillar | |
JP6807157B2 (en) | Joint member and joint structure | |
JP2018013006A (en) | Brace joint structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5694596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |