JP2016052974A - SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 - Google Patents
SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 Download PDFInfo
- Publication number
- JP2016052974A JP2016052974A JP2014180219A JP2014180219A JP2016052974A JP 2016052974 A JP2016052974 A JP 2016052974A JP 2014180219 A JP2014180219 A JP 2014180219A JP 2014180219 A JP2014180219 A JP 2014180219A JP 2016052974 A JP2016052974 A JP 2016052974A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- layer
- preform
- silicon carbide
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Products (AREA)
Abstract
【課題】十分な層厚と緻密度を備えたSiCモノリシック層を最外層に備えさせることで、高温環境下や腐食性液体・腐食性ガス環境下などでの耐食性を高めることができるようにし、また製造が容易且つ迅速に行え、しかも低コスト化が可能となるようにする。【解決手段】骨格部2と、骨格部2の表面に接合界面部3を融和させて一体形成された外層部4とを有し、骨格部2は、SiCマトリックス8を設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、外層部4は、SiCを唯一の主要素材として骨格部2よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、外層部4の肉厚が10μmを超え且つ骨格部2の1/2肉厚以下に形成されている。【選択図】図1
Description
本発明は、SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法に関する。
耐熱性、耐摩耗性に優れるセラミック材料として、SiCフィラメントより成る繊維核をカーボン包囲層で包囲し、そのまわりにSiCの緻密なマトリックスを形成させて成るSiC複合材が知られている(特許文献1等参照)。このようなSiC複合材において、カーボン包囲層は、焼結過程での繊維核とマトリックスとの相互拡散反応を抑制して両者の界面部に残存したものである。その結果、このカーボン包囲層が繊維核やマトリックスよりも脆弱さを優先的に発揮して(外力の作用時に繊維核とマトリックスとの間の滑りを許容して)応力吸収部として作用し、もってSiC複合材の全体としての耐脆性破壊特性を向上させることができる(一気に全体が破壊することを防止できる)とされている。
従来のSiC複合材では、SiCマトリックス中にカーボン包囲層を含み、また最外層近傍にカーボン包囲層が配置されることもある構造のために焼結中の高圧付加が困難となり、緻密度(密度)を高めるうえで自ずと限度があった。そのため、耐食性については充分とは言えず、高温環境下や腐食性液体・腐食性ガス環境下などでは小片状の剥離や崩壊が生じ、場合によってはそれら剥離や崩壊が拡大するということがあった。なお、これを防止するために、最外層に対して緻密度の高いSiCのモノリシックによる表面被覆層を設けて、耐食性を高める対策案が考えられる。
一般に、表面被覆層を設けるための方法には溶射法、スパッタ法、CVD法がある。しかしながら、このうち溶射法はSiCの焼結に採用することができない。また、スパッタ法は薄膜形成法なので、形成可能な膜厚はせいぜい10μm程度である。それ故、このような極薄の表面被膜では簡単に層間剥離が起こってしまい、表面被覆層として用をなさないという問題があった。
また、CVD法では緻密度を高めることが技術的に困難であるばかりでなく、単に層厚を厚くするだけでもコストと処理時間の面で採用し難いという問題があった。
本発明は、上記事情に鑑みてなされたものであって、十分な層厚と緻密度を備えたSiCモノリシック層を最外層に備えさせることで、高温環境下や腐食性液体・腐食性ガス環境下などでの耐食性を高めることができるようにし、また製造が容易且つ迅速に行え、しかも低コスト化が可能となるようにしたSiCモノリシック層を最外層に備えたSiC複合材及びその製造方法を提供することを目的とする。
本発明は、上記事情に鑑みてなされたものであって、十分な層厚と緻密度を備えたSiCモノリシック層を最外層に備えさせることで、高温環境下や腐食性液体・腐食性ガス環境下などでの耐食性を高めることができるようにし、また製造が容易且つ迅速に行え、しかも低コスト化が可能となるようにしたSiCモノリシック層を最外層に備えたSiC複合材及びその製造方法を提供することを目的とする。
前記目的を達成するために、本発明は次の手段を講じた。
即ち、本発明に係るSiCモノリシック層を最外層に備えたSiC複合材では、骨格部と、前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されていることを特徴とする。
即ち、本発明に係るSiCモノリシック層を最外層に備えたSiC複合材では、骨格部と、前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されていることを特徴とする。
一方、本発明に係るSiC複合材の製造方法では、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆したうえでその被覆表面にスラリー状にした炭化ケイ素を被着させて第1
プリフォームを形成し、裸の炭化ケイ素繊維体に対してその表面にスラリー状にした炭化ケイ素を被着させて第2プリフォームを形成し、前記第1プリフォームに対して前記第2プリフォームを被覆させ且つ圧着させた状態で焼結させることにより、骨格部と、前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されているSiCモノリシック層を最外層に備えたSiC複合材を製造することを特徴とする。
プリフォームを形成し、裸の炭化ケイ素繊維体に対してその表面にスラリー状にした炭化ケイ素を被着させて第2プリフォームを形成し、前記第1プリフォームに対して前記第2プリフォームを被覆させ且つ圧着させた状態で焼結させることにより、骨格部と、前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されているSiCモノリシック層を最外層に備えたSiC複合材を製造することを特徴とする。
なお、前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体(糸状)に形成しておき、その後に棒型マンドレルのまわりにフィラメントワインディング法にて巻き付けることで中空パイプ形体に形成したものとし、前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体(糸状)に形成しておき、その後に中空パイプ形体とされた前記第1プリフォームのまわりにフィラメントワインディング法にて巻き付けることでパイプ外面を全周被覆したものとすることができる。
又は、前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体(糸状)に形成しておき、その後に製織又は製編を行ってシート状に形成したものとし、前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体(糸状)に形成しておき、その後に製織又は製編を行ってシート状に形成したものとして、前記第1プリフォームに対する第2プリフォームの被覆を積層によって行うものとすることもできる。
その他、前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体(糸状)に形成しておき、その後に棒型マンドレルのまわりにフィラメントワインディング法にて巻き付けることで中空パイプ形体に形成したものとし、前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体(糸状)に形成しておき、その後に製織又は製編を行ってシート状に形成したものとして、中空パイプ形体とされた前記第1プリフォームのまわりに巻き付けるようにして積層して、パイプ外面を全周被覆したものとしてもよい。
また更に、前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体(糸状)に形成しておき、その後に製織又は製編を行ってシート状に形成したものとして、このシート状から成形体を形成させ、前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体(糸状)に形成しておき、その後に成形体である前記第1プリフォームのまわりにフィラメントワインディング法にて巻き付けることでパイプ外面を全周被覆したものとするものとしてもよい。
本発明に係るSiCモノリシック層を最外層に備えたSiC複合材及びその製造方法では、十分な層厚と緻密度を備えたSiCモノリシック層を最外層に備えさせることで、高温環境下や腐食性液体・腐食性ガス環境下などでの耐食性を高めることができ、また製造が容易且つ迅速に行え、しかも低コスト化が可能となっている。
以下、本発明の実施の形態を、図面に基づき説明する。
図1は、本発明に係るSiC複合材1を中空パイプ(丸管)として実施した第1実施形態の正面図(端面図)であり、図2はこのSiC複合材1における断面構造を示した模式図(図1のA部拡大に対応)である。
図1から明らかなように、本発明に係るSiC複合材1は、骨格部2と、この骨格部2の表面に接合界面部3を融和させて一体形成された外層部4とを有したものとなっている。本第1実施形態ではSiC複合材1が中空パイプなので、骨格部2は中空パイプ形体の内周側に配置されて構造上の芯材的な作用を奏しており、これに対して外層部4は、中空パイプ形体の外周面を取り巻くように配置されて最外層としての作用を奏するものとなっている。
図1は、本発明に係るSiC複合材1を中空パイプ(丸管)として実施した第1実施形態の正面図(端面図)であり、図2はこのSiC複合材1における断面構造を示した模式図(図1のA部拡大に対応)である。
図1から明らかなように、本発明に係るSiC複合材1は、骨格部2と、この骨格部2の表面に接合界面部3を融和させて一体形成された外層部4とを有したものとなっている。本第1実施形態ではSiC複合材1が中空パイプなので、骨格部2は中空パイプ形体の内周側に配置されて構造上の芯材的な作用を奏しており、これに対して外層部4は、中空パイプ形体の外周面を取り巻くように配置されて最外層としての作用を奏するものとなっている。
なお、図2に示すように、骨格部2と外層部4との接合界面部3は互いに融和状態で一体化されており、明確な境界は存在していない。とはいえ、骨格部2には後述するようにカーボン包囲層7によって包囲された繊維核6が含まれているが、外層部4にはこのカーボン包囲層7が含まれていない。そのため、このカーボン包囲層7が存在する最も外周側に骨格部2と外層部4との接合界面部3が存在するものとおく。このような事情から、骨格部2と外層部4との接合界面部3は、大略的には丸パイプ形体の円形断面に対して同心円的に存在するが、その円弧は曲率半径が一定の綺麗な曲線で囲まれたものではなく、大小様々な凹凸で蛇行した曲線によって囲まれたものとして存在することになる。
図2から明らかなように、骨格部2は、繊維核6をカーボン包囲層7で包囲した状態のものが、SiCマトリックス8中に適宜分散して内在した構造となっている。すなわち、繊維核6がそのまわりをカーボン包囲層7によって取り囲まれ、更にこのカーボン包囲層7のまわりがSiCマトリックス8によって取り囲まれた構成となっている。このようなSiCマトリックス8に取り囲まれた構成となる骨格部2は、その密度が2.5g/cm3以上3.2g/cm3以下になっている。
繊維核6は、複数本のSiCフィラメントを寄り合わせたものである。ここにおいて「寄り合わせ」とは、SiCフィラメント相互を無撚のまま引き揃えて並行にしたものだけでなく、撚りをかけたものや紐状に編んだもの等を含んだものとする。SiCフィラメントの太さや寄り合わせをする本数等は、適宜変更可能である。なお、1本のSiCフィラメントだけで繊維核6を構成させる場合も含むものとする。
外層部4は、形体的な強度や保形性を直接的に確保させるための素材(以下、「主要素材」と言う)をSiCのみに限定した状態で形成されている。言い換えれば、外層部4はSiCを唯一の主要素材としている。なお、主要素材とは別に、混練、成形、焼結などのプロセス上において使用する副素材(焼結助剤などの各種助剤や添加剤など)が外層部4に残留していたとしても、「外層部4がSiCのみで形成されている」点は揺るがないものとする。従って、このような構成の外層部4は、「SiCモノリシックである」と言うことができる。
このようにして成る外層部4は、SiCのみより形成されていることで、密度が2.6g/cm3以上3.2g/cm3以下になっている。但し、この外層部4の密度は、常に骨格部2よりも高密度となることを条件下におく。
外層部4の肉厚は、スパッタ法では達成するのが難しいとされる10μmを超えて、分厚いものとして形成されている。また、外層部4の肉厚が骨格部2の肉厚と同等以上になってしまうと、外層部4も骨格部2と同等の脆性を発現することとなって、外層部4を設けることに価値が無くなってしまう。そこで、外層部4の肉厚は骨格部2の肉厚よりも薄くなるように形成されている。おおよそ、骨格部の1/2肉厚以下となるように形成する
のが好適とされる。そのため、外層部4の脆性によって、SiC複合材1の全体の強度が悪影響を受けることがないようにしてある。
外層部4の肉厚は、スパッタ法では達成するのが難しいとされる10μmを超えて、分厚いものとして形成されている。また、外層部4の肉厚が骨格部2の肉厚と同等以上になってしまうと、外層部4も骨格部2と同等の脆性を発現することとなって、外層部4を設けることに価値が無くなってしまう。そこで、外層部4の肉厚は骨格部2の肉厚よりも薄くなるように形成されている。おおよそ、骨格部の1/2肉厚以下となるように形成する
のが好適とされる。そのため、外層部4の脆性によって、SiC複合材1の全体の強度が悪影響を受けることがないようにしてある。
次に、このような構成のSiC複合材1の製造方法を、模式的に描いた図3及び図4を参照しつつ説明する。
まず、図3(b)に示すように、1本又は複数本の炭化ケイ素繊維10の表面にCVD法などにより炭素又は窒化ホウ素を析出させて被膜部11を形成させ、これにより被覆繊維体12とする。炭化ケイ素繊維10は、焼結後においてSiCフィラメントとして残存し、繊維核6(図2参照)を構成するためのものであり、また炭素又は窒化ホウ素による被膜部11はカーボン包囲層7を構成するためのものである。そのため、炭化ケイ素繊維10の太さや束にするか否か、束にする際の使用本数やその束状態(繊維相互を無撚のまま引き揃えて並行にするか撚りをかけるか、或いは紐状に編むか等)をどのよういするか等に関しては、前記したように特に限定されるものではない。
まず、図3(b)に示すように、1本又は複数本の炭化ケイ素繊維10の表面にCVD法などにより炭素又は窒化ホウ素を析出させて被膜部11を形成させ、これにより被覆繊維体12とする。炭化ケイ素繊維10は、焼結後においてSiCフィラメントとして残存し、繊維核6(図2参照)を構成するためのものであり、また炭素又は窒化ホウ素による被膜部11はカーボン包囲層7を構成するためのものである。そのため、炭化ケイ素繊維10の太さや束にするか否か、束にする際の使用本数やその束状態(繊維相互を無撚のまま引き揃えて並行にするか撚りをかけるか、或いは紐状に編むか等)をどのよういするか等に関しては、前記したように特に限定されるものではない。
次に、この被覆繊維体12の表面に炭化ケイ素15を被着させることにより、繊維形体をした第1素材16に形成させる。炭化ケイ素15は、焼結後において骨格部2のSiCマトリックス8(図2参照)を構成するためのものである。
炭化ケイ素15の被着方法としては、図3(a)に示すように、炭化ケイ素15をスラリー状にして貯槽20へ貯めておき、この貯槽20中へ被覆繊維体12をくぐらす方法が最も好適である。その他、スラリーを滝状や幕状に流下させた中へ被覆繊維体12を通過させる流し掛け法や、スラリーを吹き付けるスプレー掛け法等、適宜方法を採用することができる。
炭化ケイ素15の被着方法としては、図3(a)に示すように、炭化ケイ素15をスラリー状にして貯槽20へ貯めておき、この貯槽20中へ被覆繊維体12をくぐらす方法が最も好適である。その他、スラリーを滝状や幕状に流下させた中へ被覆繊維体12を通過させる流し掛け法や、スラリーを吹き付けるスプレー掛け法等、適宜方法を採用することができる。
次に、このようにして得た第1素材16を用いて第1プリフォーム21を形成する。この第1プリフォーム21は、本第1実施形態の場合では中空パイプ形体にする。そこで、第1素材16を棒型マンドレル22のまわりにフィラメントワインディング法にて巻き付けるようにすればよい。棒型マンドレル22に対して第1プリフォーム21を巻き付ける回数などは、骨格部2に要求される層厚に応じて適宜に設定すればよい。
一方、図4(b)に示すように、1本又は複数本の炭化ケイ素繊維10の表面に炭化ケイ素15を被着させることにより、繊維形体をした第2素材26に形成させる。炭化ケイ素繊維10及び炭化ケイ素15は焼結によって相互拡散反応を生じ、一体化することによって外層部4のSiCモノリシック(図2参照)を構成するためのものである。そのため、この第2素材26は、炭化ケイ素繊維10を裸のまま(炭素又は窒化ホウ素による被膜部11は形成させないで)、その外面に直接、炭化ケイ素15を被着させている。
なお、この第2素材26の形成は、第1素材16の形成時や第1プリフォーム21の形成時に並行して行ってもよいし、これより先行させても行ってもよいし、或いは後に行ってもよい。
次に、このようにして得た第2素材26を用いて第2プリフォーム28を形成する。この第2プリフォーム28は、第2素材26を中空パイプ形体とされた第1プリフォーム21のまわりにフィラメントワインディング法にて巻き付け、パイプ外面を全周被覆したものとすればよい。第1プリフォーム21に対して第2プリフォーム28を巻き付ける回数などは、外層部4に要求される層厚と、骨格部2との関係で条件付けされた層厚比の範囲内において適宜に設定すればよい。
次に、このようにして得た第2素材26を用いて第2プリフォーム28を形成する。この第2プリフォーム28は、第2素材26を中空パイプ形体とされた第1プリフォーム21のまわりにフィラメントワインディング法にて巻き付け、パイプ外面を全周被覆したものとすればよい。第1プリフォーム21に対して第2プリフォーム28を巻き付ける回数などは、外層部4に要求される層厚と、骨格部2との関係で条件付けされた層厚比の範囲内において適宜に設定すればよい。
なお、第1プリフォーム21に対して第2素材26を巻き付ける際に、第1プリフォーム21を棒型マンドレル22に装着したままにしてもよいことは言うまでもない。すなわち、棒型マンドレル22を軸にして第1プリフォーム21の形成(第1素材16の巻き付け)を行った後、第1素材16から第2素材26への供給切り換えを行い、引き続き、第2プリフォーム28の形成(第2素材26の巻き付け)を行うようにすれば、作業効率を飛躍的に高めることができる。
このようにして第1プリフォーム21に対して第2プリフォーム28を被覆させると、第2プリフォーム28が第1プリフォーム21を巻き締めて圧着状態になる。そこで、この圧着状態を維持させて焼結させる。焼結は、アルゴンなどの不活性雰囲気中で行うようにして、第1プリフォーム21に含まれた炭素又は窒化ホウ素による被膜部11が残存す
る(焼失しない)ようにする。
る(焼失しない)ようにする。
かくして、図1及び図2で説明したように、骨格部2と、この骨格部2の表面に接合界面部3を融和させて一体形成された外層部4とを有して成る本発明のSiC複合材1が得られるものである。このSiC複合材1は、外層部4が十分な層厚と緻密度を備えたSiCモノリシック層であるので、高温環境下や腐食性液体・腐食性ガス環境下などで高い耐食性を発現できるものである。
また、骨格部2では、カーボン包囲層7が繊維核6やSiCマトリックス8よりも脆弱さを優先的に発揮して(外力の作用時に繊維核6とSiCマトリックス8との間の滑りを許容して)応力吸収部として作用し、もってSiC複合材1の全体としての耐脆性破壊特性を向上させることができる(一気に全体が破壊することを防止できる)ものとなっている。
更に、製造が容易且つ迅速に行えると共に、低コスト化が可能となる。のみならず、焼結過程で骨格部2のSiCマトリックス8にクラックが生じたり破損したりすることがないので、歩留まりがよくなり、一層の低コスト化が図れる。
図5は本発明に係るSiC複合材1の第2実施形態である。本第2実施形態では、SiC複合材1を両面被覆のブロック形体に実施している。また図6は本発明に係るSiC複合材1の第3実施形態である。本第3実施形態では、SiC複合材1を片面被覆のブロック形体に実施している。
図5は本発明に係るSiC複合材1の第2実施形態である。本第2実施形態では、SiC複合材1を両面被覆のブロック形体に実施している。また図6は本発明に係るSiC複合材1の第3実施形態である。本第3実施形態では、SiC複合材1を片面被覆のブロック形体に実施している。
これら第2実施形態や第3実施形態を製造するには、第1プリフォーム21の形成に用いる第1素材16を製織又は製編して、この第1プリフォーム21がシート状を呈するように準備する。また、第2プリフォーム28についても同様に、第2素材26を用いて製織又は製編して、この第2プリフォーム28がシート状を呈するように準備する。
そのうえで、第1プリフォーム21の表裏両面(第2実施形態)又は片面(第3実施形態)に第2プリフォーム28を積層させ、この積層状態に加圧力を付与しつつ(圧着しつつ)、焼結するものである。この場合、第1プリフォーム21のシート厚や第2プリフォーム28のシート厚を適宜設定することで、第1プリフォーム21による骨格部2の厚さや第2プリフォーム28による外層部4の厚さを適宜調節すればよい。
そのうえで、第1プリフォーム21の表裏両面(第2実施形態)又は片面(第3実施形態)に第2プリフォーム28を積層させ、この積層状態に加圧力を付与しつつ(圧着しつつ)、焼結するものである。この場合、第1プリフォーム21のシート厚や第2プリフォーム28のシート厚を適宜設定することで、第1プリフォーム21による骨格部2の厚さや第2プリフォーム28による外層部4の厚さを適宜調節すればよい。
ところで、前記した第1実施形態では、図2に示したように、繊維核6がそのまわりをカーボン包囲層7によって取り囲まれ、更にこのカーボン包囲層7のまわりがSiCマトリックス8によって取り囲まれた構成である。この構成により、カーボン包囲層7が繊維核6やSiCマトリックス8よりも脆弱さを優先的に発揮して(外力の作用時に繊維核6とSiCマトリックス8との間の滑りを許容して)応力吸収部として作用し、もってSiC複合材1の全体としての耐脆性破壊特性を向上させることができる。
このカーボン包囲層7は、図3(b)に示すように、炭化ケイ素繊維10(焼結後に繊維核6を構成するもの)の表面に析出させた炭素又は窒化ホウ素による被膜部11を、不活性雰囲気下で焼結することにより構成している。
そこで、この被膜部11の形成に代えて、炭化ケイ素繊維10の表面に炭素粒子を分散して付着させ、不活性雰囲気下で焼結するという手順を採用してもよい。すなわち、炭化ケイ素繊維10に対して炭素粒子を付着させた状態のものを被覆繊維体12とし、この被覆繊維体12の表面に炭化ケイ素15(焼結後に骨格部2のSiCマトリックス8を構成するもの)を被着させることで第1素材16に形成し、以後、第1実施形態と同様な手順で第1プリフォーム21及び第2プリフォーム28を形成して焼結させるという手順になる。
そこで、この被膜部11の形成に代えて、炭化ケイ素繊維10の表面に炭素粒子を分散して付着させ、不活性雰囲気下で焼結するという手順を採用してもよい。すなわち、炭化ケイ素繊維10に対して炭素粒子を付着させた状態のものを被覆繊維体12とし、この被覆繊維体12の表面に炭化ケイ素15(焼結後に骨格部2のSiCマトリックス8を構成するもの)を被着させることで第1素材16に形成し、以後、第1実施形態と同様な手順で第1プリフォーム21及び第2プリフォーム28を形成して焼結させるという手順になる。
このような手順を採用すると、炭化ケイ素繊維10に付着させた炭素粒子は、材料内部に分散されたまま焼結し、その後、大気雰囲気中で炭素を酸化する(脱炭する)過程で炭素が消失して気孔を生起させるようになるので、前記したカーボン包囲層7に相当する部分がポーラス層(多孔質層)となる。すなわち、このようなポーラス層も、繊維核6とSiCマトリックス8との間で応力吸収部として作用し、もってSiC複合材1の全体としての耐脆性破壊特性を向上させることができる。
なお、炭化ケイ素繊維10に対して炭素粒子を付着させる方法としては、図3(a)に
示すようなスラリー状にした炭化ケイ素15に対して炭素粒子を混入しておき、この貯槽20へ被覆繊維体12をくぐらす方法等を採用すればよい。なおまた、貯槽20は2つ使用する(2段構えにする)ものとして、1段目の貯槽20で炭素粒子を炭化ケイ素15のスラリーに混入させておき、2段目の貯槽20では炭化ケイ素15のみのスラリーとさせるようにし、これら1段目、2段目の貯槽20へ順番に炭化ケイ素繊維10を通過させるようにしてもよい。
示すようなスラリー状にした炭化ケイ素15に対して炭素粒子を混入しておき、この貯槽20へ被覆繊維体12をくぐらす方法等を採用すればよい。なおまた、貯槽20は2つ使用する(2段構えにする)ものとして、1段目の貯槽20で炭素粒子を炭化ケイ素15のスラリーに混入させておき、2段目の貯槽20では炭化ケイ素15のみのスラリーとさせるようにし、これら1段目、2段目の貯槽20へ順番に炭化ケイ素繊維10を通過させるようにしてもよい。
本実施形態において、炭化ケイ素繊維10に対して炭素粒子を付着するうえでは、必ずしも、被膜部11(炭素又は窒化ホウ素の析出膜)を省略することが限定されるものではなく、被膜部11の上から炭素粒子を付着するようにしてもよい。
また、本実施形態では、炭化ケイ素繊維10に付着させた炭素粒子が焼結過程後に大気雰囲気中で酸化することで消失(脱炭)して気孔を生起させるものとしたが、使用する粒子を窒化ホウ素とすることで、消失させずに残留させるようにすることも可能である。
また、本実施形態では、炭化ケイ素繊維10に付着させた炭素粒子が焼結過程後に大気雰囲気中で酸化することで消失(脱炭)して気孔を生起させるものとしたが、使用する粒子を窒化ホウ素とすることで、消失させずに残留させるようにすることも可能である。
焼結後の状態として窒化ホウ素が粒子状に残留する構成では、気密性が高くなり、その結果、耐酸化性や耐食性が向上するために、高温環境下で一層安定した特性が得られるという利点に繋がる。また、脱炭の必要がないので製造過程が軽減され、後工程が短くなるという副次的効果もある。
なお、本発明は、前記各実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
なお、本発明は、前記各実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
例えば、本発明に係るSiC複合材1において、骨格部2に含まれるカーボン包囲層7(繊維核6を包囲したもの)は1本だけとすることも可能である。
SiC複合材1の外形状やその外形寸法などは、用途に応じて適宜変更可能なものであり、何ら限定されない。
第1プリフォーム21をフィラメントワインディング法にて中空パイプ形体に形成し、そのまわりにシート状に形成した第2プリフォーム28を巻き付けるように積層して、この積層状態を加圧保持しつつ焼結させるような製造方法を採用することもできる。
SiC複合材1の外形状やその外形寸法などは、用途に応じて適宜変更可能なものであり、何ら限定されない。
第1プリフォーム21をフィラメントワインディング法にて中空パイプ形体に形成し、そのまわりにシート状に形成した第2プリフォーム28を巻き付けるように積層して、この積層状態を加圧保持しつつ焼結させるような製造方法を採用することもできる。
また、第1プリフォームをシート状に形成したうえで、このシート状から適宜形状の成形体(例えば棒状や板状、ブロック状など)を形成させ、そのまわりに繊維形体(糸状)に形成した第2プリフォーム28をフィラメントワインディング法にて巻き付けて焼結させるような製造方法を採用することもできる。
1 SiC複合材
2 骨格部
3 接合界面部
4 外層部
6 繊維核
7 カーボン包囲層
8 SiCマトリックス
10 炭化ケイ素繊維
11 被膜部
12 被覆繊維体
15 炭化ケイ素
16 第1素材
20 貯槽
21 第1プリフォーム
22 棒型マンドレル
26 第2素材
28 第2プリフォーム
2 骨格部
3 接合界面部
4 外層部
6 繊維核
7 カーボン包囲層
8 SiCマトリックス
10 炭化ケイ素繊維
11 被膜部
12 被覆繊維体
15 炭化ケイ素
16 第1素材
20 貯槽
21 第1プリフォーム
22 棒型マンドレル
26 第2素材
28 第2プリフォーム
Claims (4)
- 骨格部と、
前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、
前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、
前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、
前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されていることを特徴とするSiCモノリシック層を最外層に備えたSiC複合材。 - 炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆したうえでその被覆表面にスラリー状にした炭化ケイ素を被着させて第1プリフォームを形成し、
裸の炭化ケイ素繊維体に対してその表面にスラリー状にした炭化ケイ素を被着させて第2プリフォームを形成し、
前記第1プリフォームに対して前記第2プリフォームを被覆させ且つ圧着させた状態で焼結させることにより、
骨格部と、前記骨格部の表面に接合界面部を融和させて一体形成された外層部と、を有し、前記骨格部は、SiCフィラメントより成る繊維核をカーボン包囲層で包囲すると共に当該カーボン包囲層まわりにSiCマトリックスを設けることによって密度2.5g/cm3以上3.2g/cm3以下に形成されており、前記外層部は、SiCを唯一の主要素材として前記骨格部よりも高密度であることを条件に密度2.6g/cm3以上3.2g/cm3以下に形成されており、前記外層部の肉厚が10μmを超え且つ前記骨格部の1/2肉厚以下に形成されているSiCモノリシック層を最外層に備えたSiC複合材を製造する
ことを特徴とするSiCモノリシック層を最外層に備えたSiC複合材の製造方法。 - 前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体に形成しておき、その後に棒型マンドレルのまわりにフィラメントワインディング法にて巻き付けることで中空パイプ形体に形成したものとし、
前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体に形成しておき、その後に中空パイプ形体とされた前記第1プリフォームのまわりにフィラメントワインディング法にて巻き付けることでパイプ外面を全周被覆したものとすることを特徴とする請求項2記載のSiCモノリシック層を最外層に備えたSiC複合材の製造方法。 - 前記第1プリフォームは、炭化ケイ素繊維体を炭素又は窒化ホウ素により被覆した段階で繊維形体に形成しておき、その後に製織又は製編を行ってシート状に形成したものとし、
前記第2プリフォームは、裸の炭化ケイ素繊維体を繊維形体に形成しておき、その後に製織又は製編を行ってシート状に形成したものとして、
前記第1プリフォームに対する第2プリフォームの被覆を積層によって行うことを特徴とする請求項2記載のSiCモノリシック層を最外層に備えたSiC複合材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014180219A JP2016052974A (ja) | 2014-09-04 | 2014-09-04 | SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014180219A JP2016052974A (ja) | 2014-09-04 | 2014-09-04 | SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016052974A true JP2016052974A (ja) | 2016-04-14 |
Family
ID=55744715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014180219A Pending JP2016052974A (ja) | 2014-09-04 | 2014-09-04 | SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016052974A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019531246A (ja) * | 2016-08-08 | 2019-10-31 | ゼネラル・アトミックスGeneral Atomics | 設計されたSiC−SiC複合材およびモノリシックSIC層構造体 |
CN115747680A (zh) * | 2022-09-15 | 2023-03-07 | 中南大学 | 一种铝基碳化硅连续纤维材料缠绕成型装置 |
-
2014
- 2014-09-04 JP JP2014180219A patent/JP2016052974A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019531246A (ja) * | 2016-08-08 | 2019-10-31 | ゼネラル・アトミックスGeneral Atomics | 設計されたSiC−SiC複合材およびモノリシックSIC層構造体 |
JP2021165225A (ja) * | 2016-08-08 | 2021-10-14 | ゼネラル・アトミックスGeneral Atomics | 設計されたSiC−SiC複合材およびモノリシックSIC層構造体 |
CN115747680A (zh) * | 2022-09-15 | 2023-03-07 | 中南大学 | 一种铝基碳化硅连续纤维材料缠绕成型装置 |
CN115747680B (zh) * | 2022-09-15 | 2024-03-22 | 中南大学 | 一种铝基碳化硅连续纤维材料缠绕成型装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2020128441A (ru) | Многослойная композитная система покрытия топлива с высокотемпературной герметичностью и устойчивостью к нештатным ситуациям | |
JP2017193813A5 (ja) | ||
JP2016052974A (ja) | SiCモノリシック層を最外層に備えたSiC複合材及びその製造方法 | |
JP6334293B2 (ja) | 管状体 | |
CN101931842A (zh) | 音圈骨架及扬声器 | |
JP2013210372A (ja) | 核燃料被覆管及びその製造方法 | |
CN108950685A (zh) | 一种涂层坩埚的制作方法 | |
JP6410272B2 (ja) | 複合体強化インサートおよび製造方法 | |
CN107513674A (zh) | 一种改善钛铝层状复合材料组织和提高力学性能的方法 | |
CN206467392U (zh) | 一种自卷套管 | |
JP6334292B2 (ja) | 管状体の製造方法 | |
EP3002267B1 (fr) | Procédé pour la réalisation d'une pièce monolithique composite thermostructurale à double paroi et pièce obtenue | |
CN203150172U (zh) | 钢包车用耐火卷筒软电缆 | |
CN202410531U (zh) | 外支撑增强型中空纤维膜 | |
JP2018095508A (ja) | SiC繊維強化SiC複合材料の製造方法 | |
CN204069386U (zh) | 一种碳纤维电热管 | |
CN106825498B (zh) | 升液管及其制造方法 | |
CN103724030A (zh) | 一种碳纤维增强多孔复合材料及其制备方法 | |
CN108866755A (zh) | 一种平面极坐标圆形织物的织造方法及设备 | |
CN107021758B (zh) | 核燃料碳化硅陶瓷包壳管中间复合材料层的缠绕铺层结构 | |
CN103951453A (zh) | 一种在2000℃以下长期使用的金属陶瓷基复合材料 | |
JP4170486B2 (ja) | 三次元網状構造ガラス質焼結体およびその製造方法 | |
CN206522536U (zh) | 钩织多孔与薄壁层状金属复合管 | |
CN111875402B (zh) | 一种纤维缠绕强化石墨发热管结构及其制备方法 | |
WO2020039599A1 (ja) | SiC繊維を内包する管状体 |