JP2016052960A - Silica castable refractory and silica precast block refractory - Google Patents

Silica castable refractory and silica precast block refractory Download PDF

Info

Publication number
JP2016052960A
JP2016052960A JP2014178578A JP2014178578A JP2016052960A JP 2016052960 A JP2016052960 A JP 2016052960A JP 2014178578 A JP2014178578 A JP 2014178578A JP 2014178578 A JP2014178578 A JP 2014178578A JP 2016052960 A JP2016052960 A JP 2016052960A
Authority
JP
Japan
Prior art keywords
mass
silica
siliceous
refractory
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014178578A
Other languages
Japanese (ja)
Other versions
JP6189268B2 (en
Inventor
順 石原
Jun Nishihara
順 石原
善康 遠藤
Yoshiyasu Endo
善康 遠藤
潤哉 竹並
Junya Takenami
潤哉 竹並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Rozai KK
Original Assignee
Nippon Tokushu Rozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Rozai KK filed Critical Nippon Tokushu Rozai KK
Priority to JP2014178578A priority Critical patent/JP6189268B2/en
Publication of JP2016052960A publication Critical patent/JP2016052960A/en
Application granted granted Critical
Publication of JP6189268B2 publication Critical patent/JP6189268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a silica castable refractory excellent in thermal shock resistance during heating, having suppressed shrinkage under load at high temperature, good in creep resistance at high temperature, hardening in appropriate time and capable of being flow molding easily even when being a large molded body.SOLUTION: There is provided a silica castable refractory by adding Portland cement of 0.7 to 2 mass%, a water-reducing agent of 0.03 to 0.3 mass%, sodium silicate of 0.04 to 0.30 mass% in terms of NaO, by outer multiplication, based on 100 mass% of a silica refractory raw blended article consisting of molten quartz, crystalline silica consisting of cristobalite and quartz and silica superfine powder. There is provided a silica castable refractory which has blended ratio of the silica refractory raw material blended article of the molten quartz of 96 to 70 mass%, the crystalline silica consisting of cristobalite and quartz of 0 to 20 mass% and the silica superfine powder of 3.8 to 10 mass%, and may contain burnt silica of 10 mass% or less as a part of the silica refractory raw material blended article.SELECTED DRAWING: None

Description

本発明は、加熱時の熱衝撃抵抗性に優れ、かつ高温での荷重下収縮が抑制され、クリープ変形し難い珪石質キャスタブル耐火物、及びそれを用いた珪石質プレキャストブロック耐火物に関する。   The present invention relates to a siliceous castable refractory material that is excellent in thermal shock resistance during heating, is suppressed from shrinkage under load at high temperatures, and hardly undergoes creep deformation, and a siliceous precast block refractory material using the same.

一般的に、コークス炉では、珪石れんががライニングされて30年以上の長期間使用され、その長期間使用中損傷したライニング部位の補修は、れんがの交換あるいは耐火材料の溶射などによって行われている。このうち、補修用れんがは、500℃前後で保温されたコークス炉内壁に築造されるため、熱衝撃抵抗性が要求される。   Generally, in a coke oven, silica brick is lined for a long period of 30 years or more, and repair of damaged lining parts during long-term use is performed by replacing bricks or spraying refractory materials. . Among these, the repair brick is required to have thermal shock resistance because it is built on the inner wall of the coke oven kept at around 500 ° C.

ライニング用の珪石れんがは、結晶相として主にトリジマイトとクリストバライトとからなるが、それぞれの結晶は、低温領域で、低温型から高温型転移による異常体積変化を生じるために、熱衝撃抵抗性が劣り、熱間補修用れんがとしては不適である。トリジマイトは117℃と163℃で相転移し、それぞれ0.15%と0.2%の線変化が生じ、また、クリストバライトは230℃〜270℃で相転移し、約0.4%の線変化が生じる。   Silica brick for lining mainly consists of tridymite and cristobalite as crystal phases, but each crystal has an abnormal volume change due to transition from low temperature type to high temperature type in low temperature region, so thermal shock resistance is inferior. It is not suitable as a hot repair brick. Tridymite undergoes phase transition at 117 ° C and 163 ° C, resulting in a linear change of 0.15% and 0.2%, respectively, and cristobalite undergoes a phase change at 230 ° C to 270 ° C, resulting in a linear change of approximately 0.4%. Occurs.

そのため、通常、熱間補修用の珪石れんがとしては、焼成珪石と低熱膨張性である溶融石英を使用したれんがが使用されている。クリストバライトとトリジマイトの1000℃における熱間膨張率は、それぞれ、1.5%と1.0%であるのに対して溶融石英は0.1%と非常に小さく、そのため、れんが全体の熱膨張率を小さくすることができて熱衝撃抵抗性が生じる。例えば、特許文献1〜5に、クリストバライト及び/又はトリジマイトを主成分とする焼成珪石と溶融石英とからなる、熱衝撃抵抗性を有する珪石れんがが記載されている。   Therefore, as a silica brick for hot repair, a brick using a fused silica and a fused silica having a low thermal expansion is usually used. The hot expansion coefficients of cristobalite and tridymite at 1000 ° C. are 1.5% and 1.0%, respectively, whereas that of fused quartz is very small, 0.1%. Can be reduced, and thermal shock resistance is generated. For example, Patent Documents 1 to 5 describe silica impact bricks having thermal shock resistance, which are composed of calcined silica mainly composed of cristobalite and / or tridymite and fused silica.

溶融石英は、その粒度に関係なく、温度に依存した速度で結晶化する性質をもつ。れんがは、製造過程で、通常1200℃〜1400℃で焼成される。焼成前に配合された溶融石英が、焼成工程で結晶化が進むと熱衝撃抵抗性が減少する。溶融石英は、焼成過程で粒子表面から結晶化するので、微粉部に使うと焼成工程で内部まで結晶化してしまい、非晶質部が消失するため、れんがでは、粗粒部に溶融石英を用いて焼成工程での非晶質部の完全消失を回避している。   Fused quartz has the property of crystallizing at a temperature dependent rate regardless of its particle size. The brick is usually fired at 1200 ° C. to 1400 ° C. in the manufacturing process. When the fused quartz blended before firing is crystallized in the firing process, the thermal shock resistance decreases. Since fused quartz is crystallized from the particle surface during the firing process, if it is used in the fine powder part, it will crystallize to the inside during the firing process, and the amorphous part disappears. Thus, complete disappearance of the amorphous part in the firing process is avoided.

一方、キャスタブル耐火物は、耐火性骨材と硬化剤を混合した粉体の耐火物で、水和性又は化学結合を有し、加水して混練後、振動、突き固め等の種々の形式で施工される。硬化後急昇温すると、施工体内の水蒸気圧が高まって、爆裂する恐れがあるため、数日かけて、数百℃に達するまで、段階的に昇温して乾燥する必要がある。
キャスタブル耐火物用硬化剤としては、通常アルミナセメントが使用されるが、珪石質キャスタブル耐火物用にアルミナセメントを使用すると、アルミナセメントの主成分であるCaO・Alが骨材の主成分であるSiOと反応して、アルミニウム・カルシウムシリケート(CaO−Al−SiO)系低融点物を生成し、高温域では骨材粒子の結合を失って荷重下収縮が著しく大きくなるため、低温域での使用に限定される。
On the other hand, a castable refractory is a powder refractory mixed with a refractory aggregate and a hardener, has hydration properties or chemical bonds, and is added in various forms such as vibration and tamping after adding water and kneading. It is constructed. If the temperature rises rapidly after curing, the water vapor pressure in the construction body increases and there is a risk of explosion, so it is necessary to increase the temperature stepwise until it reaches several hundred degrees C over several days and dry.
As the hardener for castable refractories, alumina cement is usually used, but when alumina cement is used for siliceous castable refractories, the main component of aggregate is CaO · Al 2 O 3 which is the main component of alumina cement. Reacts with SiO 2 to produce an aluminum / calcium silicate (CaO—Al 2 O 3 —SiO 2 ) -based low melting point, and loses aggregate particles in a high temperature range, resulting in significantly increased shrinkage under load. Therefore, it is limited to use in a low temperature range.

珪石質キャスタブル耐火物用硬化剤としては、ポルトランドセメントが汎用されており、その他に、コロイダルシリカのゲル化作用によって硬化するものがある。
ポルトランドセメントは、主成分がカルシウムシリケートで、珪石質キャスタブル耐火物に使用したとき、CaO−Al−SiO系低融点物の生成量が少なく、高融点のCaO−SiO系化合物が結合材としての機能を維持するため、アルミナセメントを硬化剤とした場合に比べて、より高温で使用できる。このため、ポルトランドセメントは、珪石質キャスタブル耐火物の硬化剤として主流になっている。
As a curing agent for siliceous castable refractories, Portland cement is widely used, and there are those that are cured by the gelation action of colloidal silica.
Portland cement is mainly composed of calcium silicate, and when used in siliceous castable refractories, the amount of CaO-Al 2 O 3 —SiO 2 low melting point product is small and high melting point CaO—SiO 2 type compound is In order to maintain the function as a binder, it can be used at a higher temperature than when alumina cement is used as a hardener. For this reason, Portland cement has become mainstream as a hardener for siliceous castable refractories.

例えば特許文献6,7に、硬化剤としてポルトランドセメントを使用した珪石質キャスタブル耐火物が記載されている。特許文献6は、溶融石英を主原料とし、ポルトランドセメント2〜10質量%、シリカ超微粉1〜8質量%からなる珪石質キャスタブル耐火物に関する。特許文献7は、主要鉱物相としてトリジマイト70質量%以上を含む使用後珪石れんがや焼成後の珪石れんが規格外品を主原料とし、ポルトランドセメントを2〜5重量%、フュームドシリカを8〜22質量%配合して調整した珪石質キャスタブルに関する。   For example, Patent Documents 6 and 7 describe a siliceous castable refractory using Portland cement as a curing agent. Patent Document 6 relates to a siliceous castable refractory material containing 2-10% by mass of Portland cement and 1-8% by mass of silica ultrafine powder using fused quartz as a main raw material. Patent Document 7 discloses a post-use silica brick that contains 70% by mass or more of tridymite as a main mineral phase or a non-standard product of a fired silica brick, 2-5% by weight of Portland cement, and 8-22 of fumed silica. The present invention relates to a siliceous castable prepared by blending mass%.

ポルトランドセメントの主成分であるカルシウムシリケート(その主成分はエーライト(3CaO・SiO))は、下記化学反応式に示すように、水和して3CaO・2SiO・3HO等と多量のCa(OH)を生成するが、その水和速度はアルミナセメントを構成する主物質であるCaO・Alと比べると遅い。また、Ca(OH)の脱水温度は500℃〜600℃で高い。このため、ポルトランドセメントを硬化剤とした珪石質キャスタタブル耐火物は、硬化促進剤を添加するなどの手段のほか、充分な爆裂対策が必要である。さらに、この500℃〜600℃での脱水時に、大きな体積変化を伴い、収縮性を示す。 Calcium silicate which is the main component of Portland cement (its main component is alite (3CaO · SiO 2 )) is hydrated and contains a large amount of 3CaO · 2SiO 2 · 3H 2 O and the like as shown in the following chemical reaction formula. Although Ca (OH) 2 is produced, the rate of hydration is slower than that of CaO.Al 2 O 3 which is the main material constituting alumina cement. Moreover, the dehydration temperature of Ca (OH) 2 is high at 500 ° C to 600 ° C. For this reason, siliceous castable refractories using Portland cement as a curing agent need to take sufficient measures against explosion in addition to means such as adding a curing accelerator. Furthermore, the dehydration at 500 ° C. to 600 ° C. is accompanied by a large volume change and exhibits shrinkage.

Figure 2016052960
Figure 2016052960

コロイダルシリカのゲル化作用を用いて硬化させる珪石質キャスタブル耐火物が、例えば特許文献8に記載されている。特許文献8に記載された珪石質キャスタブル耐火物は、溶融石英と焼成珪石からなる珪石質耐火原料配合物100質量%に対して、外掛けでコロイダルシリカを固形SiOに換算して3.0〜9.3質量%、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%添加したもので、前記珪石質耐火原料配合物の溶融石英と焼成珪石の配合割合が、焼成珪石がトリジマイトを主成分とする場合、溶融石英40〜100質量%、焼成珪石0〜60質量%であり、トリジマイト及びクリストバライトを主成分とする場合、溶融石英60〜100質量%、焼成珪石0〜40質量%である。前記珪石質耐火原料配合物は、シリカフラワーを8質量%以下含み得る。 For example, Patent Document 8 discloses a siliceous castable refractory material that is cured using the gelling action of colloidal silica. The siliceous castable refractory described in Patent Document 8 is 3.0 by converting colloidal silica into solid SiO 2 as an outer shell with respect to 100% by mass of a siliceous refractory raw material composition composed of fused quartz and calcined silica. 9.3 mass%, sodium silicate in terms of solid Na 2 O added 0.04 to 0.30 mass%, the blending ratio of fused quartz and calcined silica of the siliceous refractory raw material composition, When the calcined silica is composed mainly of tridymite, it is 40 to 100% by mass of fused quartz and 0 to 60% by mass of calcined silica. When it is composed mainly of tridymite and cristobalite, it is 60 to 100% by mass of fused silica and 0% of calcined silica. -40 mass%. The siliceous refractory raw material composition may contain 8% by mass or less of silica flour.

コロイダルシリカはpHの変化、電解質の添加によって常温でゲル化する。電解質ゲル化剤としては、塩化アンモニウム、硅弗化ソーダ、硫酸ソーダ等が公知であるが、特許文献8では、易溶性の珪酸ソーダが使用されている。ゲル化剤として、塩化アンモニウムを使用すると900℃付近から著しく荷重下収縮するが、珪酸ソーダを使用した場合は、この荷重下収縮が抑制されている。   Colloidal silica gels at room temperature by changing pH and adding electrolyte. As the electrolyte gelling agent, ammonium chloride, sodium perfluoride, sodium sulfate, and the like are known, but in Patent Document 8, readily soluble sodium silicate is used. When ammonium chloride is used as a gelling agent, it shrinks under load from around 900 ° C., but when sodium silicate is used, this shrinkage under load is suppressed.

溶融石英は温度に依存した速度で結晶化し、密度の低い高温型クリストバライトや高温型トリジマイトに変化するが、アルカリ金属又はアルカリ土類金属には溶融石英の結晶化促進作用がある。特許文献8に記載された珪石質キャスタブル耐火物は、コロイダルシリカのゲル化剤として珪酸ソーダを使用しているため、ソーダ成分が溶融石英の結晶化を促進して、密度の低い高温型クリストバライトへの変化が速く進行する結果、荷重下収縮が抑制されたと推測されている。なお、表1にシリカの結晶相及び溶融石英の密度を示す。   Fused quartz crystallizes at a temperature-dependent rate and changes to low-temperature high-temperature cristobalite or high-temperature tridymite, but alkali metals or alkaline-earth metals have an action to promote crystallization of fused quartz. Since the siliceous castable refractory described in Patent Document 8 uses sodium silicate as a gelling agent for colloidal silica, the soda component promotes the crystallization of fused quartz, resulting in a low-temperature high-temperature cristobalite. It is presumed that the shrinkage under load was suppressed as a result of the change in the speed of the change proceeding quickly. Table 1 shows the crystal phase of silica and the density of fused silica.

Figure 2016052960
Figure 2016052960

特許文献8に記載された珪石質キャスタブルは、不純物として、ソーダ成分を含有する。ソーダ成分は、焼成珪石やコロダルシリカに微量含有するが、その大部分はゲル化剤として使用された珪酸ソーダ起源のものである。アルカリ金属はSiOと反応して低融点物を生成するため、珪石質キャスタブルがソーダ成分を含むと、技術常識的には、高温での荷重下収縮が大きくなり、耐クリープ性も低下すると考えられる。しかし、特許文献8によれば、コロイダルシリカに含まれるソーダ成分と珪酸ソーダに含まれるソーダ成分をプラスしたトータルのソーダ成分添加量を、固形NaOに換算して、0.06〜0.32質量%とした場合、荷重下収縮は緩和され、耐クリープ性も略通常の珪石れんがと同等である。また、低膨張性の溶融石英を40〜100質量%使用しているため、耐熱衝撃抵抗性も良好である。 The siliceous castable described in Patent Document 8 contains a soda component as an impurity. The soda component is contained in a small amount in calcined silica or colloidal silica, but most of it is derived from sodium silicate used as a gelling agent. Alkali metal reacts with SiO 2 to produce a low melting point, so if siliceous castable contains a soda component, it is technically common knowledge that shrinkage under load at high temperature increases and creep resistance also decreases. It is done. However, according to Patent Document 8, the total amount of soda component added by adding the soda component contained in colloidal silica and the soda component contained in sodium silicate is converted to solid Na 2 O, 0.06 to 0.00. When the content is 32% by mass, shrinkage under load is relaxed, and creep resistance is substantially equivalent to that of ordinary silica brick. Moreover, since 40-100 mass% of low expansible fused quartz is used, the thermal shock resistance is also favorable.

キャスタブル耐火物は、通常、製鉄所などの事前に型枠が設置された場所で、ミキサー内で加水して混練後、型枠内に流し込み成形される。コロイダルシリカを硬化剤としたキャスタブル耐火物は、コロイダルシリカの一部又は全てが混練媒液として用いられ、水のように施工場所で容易に調達できないため、別途、施工場所に必要量を調達準備する必要が生ずる。   Castable refractories are usually cast in a mold after being mixed and mixed in a mixer at a place where a mold is installed in advance, such as an ironworks. Castable refractories that use colloidal silica as a curing agent are partly or entirely used as a kneading fluid and cannot be procured easily at construction sites like water. Need to be done.

コロイダルシリカを硬化剤とするキャスタブル耐火物は、高温乾燥雰囲気での流し込み施工の際に、コロイダルシリカの水分蒸発に伴う、粘性増加や低流動化が生じ易い。また、流し込み施工後から硬化するまでの間に、水分が蒸発すると、成形体の蒸発部分に、収縮や亀裂が生じる場合がある等、施工の容易性という観点からは、アルミナセメントやポルトランドセメントを硬化剤としたキャスタブル耐火物と比較して問題点が多い。
特許文献8に記載されたコロイダルシリカを硬化剤とする珪石質キャスタブルの大半は、振動テーブル、養生設備、乾燥設備等が完備されたプレキャストブロック製造工場においてプレキャストブロック材として使用されていて、養生中はビニールで覆う等して、水分の蒸発防止策を施している。
Castable refractories using colloidal silica as a curing agent are liable to increase in viscosity and decrease in fluidity due to water evaporation of colloidal silica during casting in a high-temperature dry atmosphere. In addition, from the viewpoint of ease of construction, alumina cement or Portland cement may be used from the viewpoint of ease of construction. There are many problems compared to castable refractories that are hardeners.
Most of the siliceous castables that use colloidal silica as a curing agent described in Patent Document 8 are used as precast block materials in precast block manufacturing plants that are fully equipped with vibration tables, curing equipment, drying equipment, etc. Is covered with vinyl to prevent moisture evaporation.

特公平1−38073号公報Japanese Patent Publication No. 1-338073 特公平1−38074号公報JP-B-1-38074 特開平05−132355号公報JP 05-132355 A 特開2003−55035号公報JP 2003-55035 A 特開2007−302540号公報JP 2007-302540 A 特開昭56−78476号公報JP 56-78476 A 特開2006−290657号公報JP 2006-290657 A 特開2013−189322号公報JP 2013-189322 A

コークス炉にはいろいろな型式があり、型式により燃焼方式、蓄熱方式は異なるが、石炭を乾留する原理は同じであり、炭化室と燃焼室が上部に交互に並び下部に蓄熱室がある。コークス炉の天井部分の装炭口から乾燥した石炭を炭化室に入れ、1日足らずの時間をかけて乾留してコークスとする。炭化室内の乾留し終えたコークスは、炭化室のプッシュサイドから押し出し機によって押し出され、コークサイドで排出される。炭化室の温度は、通常は概ね1000℃程度で、乾留し終えたコークスの排出時でも500℃以上に保持されている。その熱源は燃焼室下部に設置されたバーナーからの高炉ガス及び/又はコークス炉ガスの燃焼熱であり、燃焼室の温度は1100℃〜1350℃となる。各燃焼室は多数のフリュー(加熱炎道)に細分化されていて、各フリューは約10cm厚の気密性の高い珪石れんがに囲われている。燃焼熱は珪石れんが壁を伝導して炭化室側壁側に達し、石炭の乾留に寄与する。   There are various types of coke ovens, and the combustion method and heat storage method differ depending on the type, but the principle of carbonization of the coal is the same. The dried coal is put into the carbonization chamber from the coal opening at the ceiling part of the coke oven, and is subjected to dry distillation over less than one day to obtain coke. Coke that has been carbonized in the carbonization chamber is pushed out from the push side of the carbonization chamber by an extruder and discharged at the coke side. The temperature of the carbonization chamber is usually about 1000 ° C., and is maintained at 500 ° C. or higher even when the coke after dry distillation is discharged. The heat source is combustion heat of blast furnace gas and / or coke oven gas from a burner installed at the lower part of the combustion chamber, and the temperature of the combustion chamber is 1100 ° C to 1350 ° C. Each combustion chamber is subdivided into a number of flues (heating flame channels), and each flue is surrounded by a highly airtight silica brick of about 10 cm thickness. Combustion heat is conducted through the walls of the silica brick and reaches the side of the carbonization chamber, contributing to the dry distillation of coal.

押し出し機の押し出し面は、プッシュサイド側からコークサイド方向に、炭化室側壁面に沿って約45cm幅の炭化室内を10数m移動するが、乾留し終えたコークスはコークサイド出口付近で密集するため、密集したコークスがコークサイド出口付近の炭化室側壁の珪石れんがを損傷することがある。コークサイド出口付近は、外気との接触により急冷して熱的損傷を受け易い部分でもあるため、補修を必要とする回数が比較的多く、損傷が著しい場合は、新しい珪石れんが、熱間積替用の珪石質れんが又はキャスタブルブロック耐火物に積み替えられる。   The extrusion surface of the extruder moves from the push side to the coke side in the carbonization chamber having a width of about 45 cm along the carbonization chamber side wall, but the coke after dry distillation is concentrated near the coke side outlet. Therefore, dense coke may damage the silica brick on the side wall of the coking chamber near the coke side outlet. The vicinity of the corkside exit is also a part that is rapidly cooled by contact with the outside air and is susceptible to thermal damage. Therefore, repairs are frequently performed frequently, and if the damage is significant, new silica brick is hot-replaced. Can be transshipped to siliceous brick or castable block refractories.

炭化室の両側壁が垂直で平行な正常状態であれば、押し出し機の押し出し面は、順調に移動できて、コークスの排出は可能であるが、炭化室方向に、側壁が傾斜したり、側壁用珪石れんがが迫り出して、押し出し機の押し出し面が移動できなくなると、コークスの排出ができなくなる。このような問題箇所が炭化室中央部付近に生じると、1つのフリューに止まらず、場合によっては、該当する炭化室、燃焼室一帯を全面改修する必要が生じる。   If both side walls of the carbonization chamber are vertical and parallel, the extrusion surface of the extruder can move smoothly and coke can be discharged. Coke can no longer be discharged if the silica brick for squeezing out and the extrusion surface of the extruder cannot move. If such a problem location occurs near the center of the carbonization chamber, it does not stop at one flue, and in some cases, it is necessary to completely repair the corresponding carbonization chamber and combustion chamber.

炭化室側壁の傾斜、珪石れんがの迫り出し等の問題が発生し難く長寿命なコークス炉壁を実現するため、様々なコークス炉壁のれんが積構造が提案され実施されている。それに伴い、コークス炉を築造する珪石れんが、熱間積替用珪石れんが、熱間積替用珪石質プレキャストブロック耐火物の形状や大きさも多種多様の傾向を示している。通常ダボ付で、形状は直方体から、L字型、コ字型、T字型等の異形のものまで様々で、重量は5〜30Kg/1個程度である。   Various coke oven wall brick structures have been proposed and implemented in order to realize a long-life coke oven wall that is unlikely to cause problems such as the inclination of the carbonization chamber side wall and the extrusion of silica brick. Along with this, silica bricks for building coke ovens, hot-replacement siliceous bricks, and hot-replacement siliceous precast block refractories have a variety of shapes and sizes. Usually with dowels, the shape varies from a rectangular parallelepiped to an irregular shape such as an L shape, a U shape, and a T shape, and the weight is about 5 to 30 kg / piece.

コークス炉壁は、上記のような多様な形状の珪石質耐火物を組み合わせながら築造されるが、熱間積替え作業は100℃を超える猛暑の中で行われるため、経験や技術はもとより、多大な労力と時間が必要となる。最近、多様な形状の珪石質耐火物を組み合わせて築造する代わりに、ユニット構造(図3参照)の大型の一体型珪石質プレキャストブロック耐火物を用いる熱間積替え工法が提案されている。   The coke oven wall is built by combining the various shapes of siliceous refractories as described above, but since the hot transshipment work is carried out in a heat wave exceeding 100 ° C, it is not only experience and technology, Requires labor and time. Recently, a hot transshipment method using a large-sized integrated siliceous precast block refractory having a unit structure (see FIG. 3) instead of combining various shapes of siliceous refractories has been proposed.

上記の大型プレキャストブロック耐火物は、重量が500kgを超えることも想定され、改修が必要な部分に、クレーンで吊り上げ吊り下げして設置する。一つのフリュー部に、この大型プレキャストブロック耐火物を数個積み上げ設置すれば一つのフリューの改修工事が終了する。コークス炉壁は同じような形状のフリューを10数個帯状に並べて設置し形成されるが、炭化室、燃焼室一帯を全面改修する場合でも、この熱間積替え工法が採用されれば省力化、工期短縮化が可能となる。   The large sized precast block refractory is assumed to have a weight exceeding 500 kg, and is installed by being suspended and suspended by a crane in a portion requiring refurbishment. If several large precast block refractories are stacked and installed in one flue, the repair work for one flue is completed. The coke oven wall is formed by arranging a dozen or more flues of the same shape in a strip shape, but even when the entire carbonization chamber and combustion chamber are renovated, if this hot transshipment method is adopted, labor saving, The construction period can be shortened.

大型プレキャストブロック耐火物を成形するには、通常の小型のものと比較して、流し込み成形に長時間を必要とする。コロイダルシリカボンドタイプのキャスタブル耐火物の場合、高温低湿度の時期には、水分の蒸発による流動性低下が生じて成形体が充填不足となり易く、また、水分蒸発に伴う養生収縮の影響で、成形体側面にまで亀裂が生じる場合がある等、施工の容易性や成形性の点で問題がある。大型プレキャストブロック耐火物の硬化剤としてコロイダルシリカを使用すると歩留まりや製造効率が低下する。   In order to mold a large-sized precast block refractory, a longer time is required for casting molding compared to a normal small-sized one. In the case of colloidal silica bond type castable refractories, during high temperature and low humidity, fluidity decreases due to evaporation of moisture, resulting in insufficient filling of the molded product. There is a problem in terms of ease of construction and formability, such as cracks occurring on the side of the body. When colloidal silica is used as a curing agent for large precast block refractories, the yield and production efficiency are lowered.

コークス炉用熱間積替用珪石質耐火物は、500℃前後で保温されたコークス炉内壁に築造されるため、耐熱衝撃抵抗性が要求される。トリジマイト及びクリストバライト等の結晶質珪石からなる通常の珪石質耐火物を、室温から500℃へと急速な温度変化に曝すと、結晶質珪石が相転移によって急膨張するため、亀裂等の損傷が発生する。一般的にコークス炉用熱間積替用珪石質耐火物は、結晶質珪石の一部又は全てを低膨張の溶融石英に置き換えることにより、成形体全体の熱膨張率を抑制して、耐熱衝撃抵抗性を向上させている。コークス炉用熱間積替珪石質耐火物としては、れんが及びキャスタブルブロック耐火物があり、さらに、キャスタブルブロック耐火物は、結合剤の種類によって、コロイダルシリカ型とポルトランドセメント型に区分される。   Since the siliceous refractory for hot transshipment for a coke oven is built on the inner wall of a coke oven kept at around 500 ° C., it is required to have thermal shock resistance. When normal siliceous refractories composed of crystalline silica such as tridymite and cristobalite are exposed to a rapid temperature change from room temperature to 500 ° C, the crystalline silica expands rapidly due to the phase transition, causing damage such as cracks. To do. In general, siliceous refractories for hot transshipment for coke ovens are designed to suppress the thermal expansion coefficient of the entire compact by replacing part or all of crystalline silica with low-expansion fused silica, thereby providing thermal shock resistance. Improves resistance. As the hot-replaceable siliceous refractories for coke ovens, there are bricks and castable block refractories, and the castable block refractories are classified into colloidal silica type and Portland cement type depending on the type of binder.

コロイダルシリカには、アルミナセメントやポルトランドセメントと比べて、CaO,Al等の不純物を含有しないため、珪石れんが相当の品質を有するキャスタブル耐火物が得られる。一方、コロイダルシリカのゲル化作用を硬化剤とするキャスタブル耐火物には、流し込み施工中に水分が蒸発した場合、粘性が大きくなって流動性が低下し、充分に充填したした施工体が得られない等の問題点がある。とりわけ、高温・低湿度雰囲気で大型プレキャストブロック耐火物を流し込み成形する場合、、小型と比較して流し込み時間が長くなるため、この間に、水分の蒸発による流動性低下が生じ取り扱い難い。 Since colloidal silica does not contain impurities such as CaO and Al 2 O 3 compared to alumina cement and Portland cement, a castable refractory having a considerable quality of silica brick is obtained. On the other hand, castable refractories that have the gelling action of colloidal silica as a curing agent, when water evaporates during casting, the viscosity increases and fluidity decreases, and a sufficiently filled construction body is obtained. There are problems such as not. In particular, when casting a large-sized precast block refractory in a high-temperature, low-humidity atmosphere, the casting time is longer than that of a small-sized one.

ポルトランドセメントは、アルミナセメントと比べて、Al含有量が少ないため、珪石質耐火物とした場合、高温においてCaO−Al-SiO系低融点物の生成量が少なくなる。また、一般コンクリート用硬化剤であることから明らかなように、高強度な成形体が得られ、大型珪石質キャスタブルブロック耐火物用硬化剤として適している。しかしながら、ポルトランドセメントは4%程度のAlを含有するため、コロイダルシリカのゲル化作用によって硬化するキャスタブル耐火物と比べて、上記低融点物の生成量が多くなる。また、ポルトランドセメント水和物は600℃付近で脱水するため、ポルトランドセメントを硬化剤としたキャスタブル耐火物は体積変化を伴って収縮性を示す。従って、1200℃以上の高温に曝される珪石質キャスタブル耐火物用のポルトランドセメントの添加量は必要な強度が発現する限り、少量が望ましい。 Since Portland cement has a lower Al 2 O 3 content than alumina cement, when it is used as a siliceous refractory, the amount of CaO—Al 2 O 3 —SiO 2 -based low melting point produced is reduced at high temperatures. Further, as is apparent from the general concrete curing agent, a high-strength molded body can be obtained, which is suitable as a curing agent for large siliceous castable block refractories. However, since Portland cement contains about 4% of Al 2 O 3 , the amount of the low-melting-point material generated is higher than that of a castable refractory that is hardened by the gelling action of colloidal silica. Further, since Portland cement hydrate is dehydrated at around 600 ° C., castable refractories using Portland cement as a curing agent exhibit shrinkage with volume change. Therefore, the addition amount of Portland cement for siliceous castable refractories exposed to a high temperature of 1200 ° C. or higher is desirably a small amount as long as necessary strength is exhibited.

特許文献6では、主原料である溶融石英に対し、ポルトランドセメント2〜10%、シリカ超微粉1〜8%を配合した溶融石英を主体とする耐火調合物が提案されている。溶融石英を主体とした珪石質耐火物は、硬化剤を配合しない溶融石英質れんがでさえ、1000℃〜1300℃において荷重下熱膨張曲線が大きな収縮性を示す。特許文献6ではポルトランドセメント配合量の下限を2%としているが、2%でもポルトランドセメントの脱水に伴う収縮は大きく、前記の1000℃〜1300℃の収縮を加えた600℃〜1300℃の荷重下熱膨張曲線が示す収縮量は1%以上に達する。コークス炉壁は炭化室側と燃焼室最高温部とでは温度差があることを考え合わせると、特許文献6に示されたキャスタブル耐火物で成形したブロック耐火物で築造したコークス炉壁は、亀裂や炉壁傾斜が発生する可能性がある。   Patent Document 6 proposes a refractory composition mainly composed of fused quartz in which 2 to 10% of Portland cement and 1 to 8% of silica ultrafine powder are blended with fused quartz as a main raw material. The siliceous refractory mainly composed of fused quartz exhibits a large shrinkage in the thermal expansion curve under load at 1000 ° C. to 1300 ° C. even with fused quartz brick not containing a curing agent. In Patent Document 6, the lower limit of the amount of Portland cement is set to 2%, but even at 2%, the shrinkage due to dehydration of Portland cement is large, and under the load of 600 ° C to 1300 ° C with the above shrinkage of 1000 ° C to 1300 ° C added. The shrinkage indicated by the thermal expansion curve reaches 1% or more. Considering that the coke oven wall has a temperature difference between the carbonization chamber side and the combustion chamber maximum temperature part, the coke oven wall built with the cast refractory molded by the castable refractory shown in Patent Document 6 is cracked. And furnace wall inclination may occur.

熱間補修用耐火物は、焼成珪石と低膨張性である溶融石英を、骨材として併用するのが一般的であり、溶融石英の使用によって熱的損傷抵抗性を向上させている。溶融石英は、高熱に晒されると結晶化する性質があり、溶融石英を多用した熱間補修用耐火物では、溶融石英の結晶化に伴う構造的損傷が生じ易くなる。従って、熱間補修用耐火物では、焼成珪石と溶融石英との配合比率、粒度構成を適正化して、熱的及び構造的損傷への対応が必要となる。   In general, refractories for hot repair use sintered silica and low-expansion fused quartz as an aggregate, and the use of fused quartz improves thermal damage resistance. Fused quartz has a property of crystallizing when exposed to high heat, and a refractory for hot repair using a large amount of fused quartz is likely to cause structural damage due to crystallization of fused quartz. Therefore, in the refractory for hot repair, it is necessary to optimize the blending ratio and particle size constitution of the sintered silica and the fused silica to cope with thermal and structural damage.

本発明は、珪石質キャスタブル耐火物に係る上記従来技術の問題点に鑑みてなされたもので、加熱時の熱衝撃抵抗性に優れ、かつ高温での荷重下収縮が抑制され、高温下での耐クリープ性が良好で、適時に十分な硬化性を有し、大型成形体をも容易に施工可能な珪石質キャスタブル耐火物、珪石質プレキャストブロック耐火物を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art relating to siliceous castable refractories, is excellent in thermal shock resistance during heating, and is suppressed from shrinkage under load at high temperatures, An object of the present invention is to provide a siliceous castable refractory and a siliceous precast block refractory that have good creep resistance, have sufficient curability in a timely manner, and can be easily applied to a large molded article.

本発明に係る珪石質キャスタブル耐火物は、溶融石英と、クリストバライト及びクオーツからなる結晶質シリカと、シリカ質超微粉からなる珪石質耐火原料配合物100質量%に対して、外掛けでポルトランドセメントを0.7〜2質量%、減水剤を0.03〜0.3質量%、珪酸ソーダをNaOに換算して0.04〜0.30質量%添加した珪石質キャスタブル耐火物であり、前記珪石質耐火原料配合物の配合割合(合計100質量%)が、溶融石英96〜70質量%、クリストバライト及びクオーツからなる結晶質シリカ0〜20質量%、シリカ質超微粉3.8〜10質量%である。 The siliceous castable refractory according to the present invention is made of Portland cement as an outer shell with respect to 100% by mass of a siliceous refractory raw material composition composed of fused silica, crystalline silica composed of cristobalite and quartz, and ultrafine siliceous powder. It is a siliceous castable refractory to which 0.7 to 2 % by mass, a water reducing agent is added to 0.03 to 0.3% by mass, and sodium silicate is converted to Na 2 O in an amount of 0.04 to 0.30% by mass, The mixing ratio (total 100% by mass) of the siliceous refractory raw material composition is 96 to 70% by mass of fused silica, 0 to 20% by mass of crystalline silica composed of cristobalite and quartz, and 3.8 to 10% by mass of siliceous ultrafine powder. %.

上記珪石質キャスタブル耐火物は、珪石質耐火原料配合物の一部として焼成珪石を含み得る。珪石質耐火原料配合物が焼成珪石を含む場合、珪石質キャスタブル耐火原料配合物の配合割合(合計100質量%)は、溶融石英96〜70質量%、クリストバライト及びクオーツからなる結晶質シリカ0〜20質量%、焼成珪石10質量%以下、シリカ質超微粉3.8〜10質量%であり、かつ前記結晶質シリカと焼成珪石の合量が20質量%以下である。前記焼成珪石は、トリジマイトを主成分とし、又はトリジマイト及びクリストバライトを主成分とする。また、この場合のポルトランドセメントの配合割合は、0.7〜1.3質量%とする。   The siliceous castable refractory can include calcined silica as part of the siliceous refractory raw material blend. When the siliceous refractory raw material composition includes calcined silica, the blending ratio of the siliceous castable refractory raw material composition (total 100% by mass) is 96 to 70% by mass of fused quartz, crystalline silica 0 to 20 consisting of cristobalite and quartz. Mass%, calcined silica 10 mass% or less, siliceous ultrafine powder 3.8 to 10 mass%, and the total amount of the crystalline silica and the calcined silica is 20 mass% or less. The calcined silica has tridymite as a main component or tridymite and cristobalite as main components. In this case, the blending ratio of Portland cement is 0.7 to 1.3% by mass.

本発明によれば、加熱時の熱衝撃抵抗性に優れ、かつ高温での荷重下収縮が抑制され、高温下でのクリープ性が良好で、適時に十分な硬化性を有し、大型成形体であっても容易に流し込み成形可能な珪石質キャスタブル耐火物、珪石質プレキャストブロック耐火物を提供することができる。   According to the present invention, the thermal shock resistance at the time of heating is excellent, the shrinkage under load at high temperature is suppressed, the creep property at high temperature is good, and the curability is sufficient at an appropriate time. Even so, it is possible to provide a siliceous castable refractory and a siliceous precast block refractory that can be easily cast.

溶融石英製造用溶融炉の概念図であり、その側面図(a)と平面図(b)である。It is a conceptual diagram of a melting furnace for producing fused quartz, and is a side view (a) and a plan view (b). 並型プレキャストブロックの概念図であり、その側面図(a)と平面図(b)である。It is a conceptual diagram of a parallel type precast block, The side view (a) and the top view (b). 大型プレキャストブロックの概念図であり、その平面図(a)と側面図(b)である。It is a conceptual diagram of a large-sized precast block, and is a plan view (a) and a side view (b).

以下、本発明に係る珪石質キャスタブル耐火物の珪石質耐火原料配合物、硬化剤及び減水剤についてより具体的に説明する。
(珪石質耐火原料配合物)
本発明に係る珪石質キャスタブル耐火物は、珪石質耐火原料配合物として、溶融石英と結晶質シリカ及びシリカ質超微粉を用いる。
溶融石英としては、自然界に産出するα型石英を主成分とする珪石を酸処理して不純物を除去したものを2000℃以上の高温で溶融し急冷固化したいわゆる石英ガラスや、金属アルコキシドの溶液から加水分解法によって石英ガラスの多孔質ゲルを作製し、これを乾燥・焼成して得られた高純度溶融石英などが使用できる。
Hereinafter, the siliceous refractory raw material composition, the curing agent and the water reducing agent of the siliceous castable refractory according to the present invention will be described more specifically.
(Siliceous refractory raw material composition)
The siliceous castable refractory according to the present invention uses fused silica, crystalline silica, and ultrafine siliceous powder as a siliceous refractory raw material composition.
As fused quartz, silica glass mainly composed of α-type quartz produced in nature and acid-treated to remove impurities is melted at a high temperature of 2000 ° C. or higher and rapidly cooled and solidified, or from a solution of metal alkoxide. A high-purity fused quartz obtained by preparing a porous gel of quartz glass by a hydrolysis method and drying and firing the gel can be used.

結晶質シリカとしては、上記の石英ガラス作製時に珪石が溶融する程の温度に達しなかった部分から副生産物として得られるクリストバライト及びクオーツからなる結晶質シリカを用い、若しくは、トリジマイトを主成分とする焼成珪石、又はトリジマイト及びクリストバライトを主成分とする焼成珪石を用いる。
シリカ質超微粉としては、シリカフラワー及び/又は溶融石英超微粉を用いる。シリカフラワーは、金属シリコン、シリコン合金製造の際に副生する集塵ダストである。溶融石英超微粉は、積算平均粒子径(累積分布図で50%の高さを与える直径、D50とも記載する)が1μm以下の球状粒子である。
As the crystalline silica, crystalline silica composed of cristobalite and quartz obtained as a by-product from a portion that did not reach a temperature at which the silica stone melts at the time of the production of the above quartz glass, or tridymite as a main component is used. A calcined silica or a calcined silica mainly composed of tridymite and cristobalite is used.
Silica flour and / or fused quartz ultrafine powder is used as the siliceous ultrafine powder. Silica flour is dust collection dust produced as a by-product during the production of metallic silicon and silicon alloys. The fused silica ultrafine powder is a spherical particle having an accumulated average particle diameter (a diameter giving a height of 50% in the cumulative distribution diagram, also referred to as D50) of 1 μm or less.

珪石質耐火原料配合物における溶融石英と結晶質シリカ及びシリカ質超微粉の配合割合(合計100質量%)は、結晶質シリカが石英ガラス作製時に副生産物として得られるクリストバライト及びクオーツからなる結晶質シリカの場合、溶融石英96〜70質量%、結晶質シリカ0〜20質量%(0質量%を含む)、シリカ質超微粉3.8〜10%とする。
クリストバライト及びクオーツからなる結晶質シリカの割合が20質量%を超えると、熱衝撃抵抗性が低下する。石英ガラスの原料となる珪石は、塩酸処理され不純物を除去したものが使用されるので、この結晶質シリカは、溶融石英と同様に純度が高く、SiO含有量は99.5%以上である。このため、クリストバライト及びクオーツからなる結晶質シリカを多用しても、焼成珪石を多用した場合のような熱間での耐クリープ性低下は生じない。
The mixing ratio (total 100% by mass) of fused silica, crystalline silica, and ultrafine siliceous powder in the siliceous refractory raw material blend is a crystalline substance composed of cristobalite and quartz obtained as a by-product when crystalline silica is produced in quartz glass. In the case of silica, the fused silica is 96 to 70% by mass, the crystalline silica is 0 to 20% by mass (including 0% by mass), and the siliceous ultrafine powder is 3.8 to 10%.
When the proportion of crystalline silica composed of cristobalite and quartz exceeds 20% by mass, the thermal shock resistance decreases. Since silica used as a raw material for quartz glass is treated with hydrochloric acid and impurities are removed, this crystalline silica is as high in purity as fused silica and has a SiO 2 content of 99.5% or more. . For this reason, even if a large amount of crystalline silica composed of cristobalite and quartz is used, there is no reduction in hot creep resistance as in the case of using a lot of calcined silica.

珪石質耐火原料配合物における溶融石英と結晶質シリカ及びシリカ質超微粉の配合割合(合計100質量%)は、結晶質シリカとして、クリストバライト及びクオーツからなる結晶質シリカの一部又は全部に代えて焼成珪石を用いる場合、溶融シリカ96〜70質量%、クリストバライト及びクオーツからなる結晶質シリカ0〜20質量%(0質量%を含む)、焼成珪石10質量%以下(0質量%を含まず)、シリカ質超微粉3.8〜10質量%とする。この場合、結晶質シリカ(クリストバライト及びクオーツからなる結晶質シリカと焼成珪石)の合量は20質量%以下(0質量%を含まず)とし、焼成珪石としては、トリジマイトを主成分とするもの、及び/又は、トリジマイト及びクリストバライトを主成分とするものを使用する。焼成珪石の配合割合が10質量%を超えると高温での荷重下膨張曲線が著しい収縮性を示し、又は熱間クリープ変形率が大きくなる。   The blending ratio (total 100% by mass) of fused silica, crystalline silica, and siliceous ultrafine powder in the siliceous refractory raw material composition is replaced with a part or all of crystalline silica composed of cristobalite and quartz as crystalline silica. When using calcined silica, 96 to 70% by mass of fused silica, 0 to 20% by mass (including 0% by mass) of crystalline silica composed of cristobalite and quartz, 10% by mass or less (not including 0% by mass) of calcined silica, The siliceous ultrafine powder is 3.8 to 10% by mass. In this case, the total amount of crystalline silica (crystalline silica composed of cristobalite and quartz and calcined silica) is 20% by mass or less (not including 0% by mass), and the calcined silica is composed mainly of tridymite, And / or a material mainly composed of tridymite and cristobalite. When the blending ratio of the calcined silica exceeds 10% by mass, the expansion curve under load at high temperature exhibits remarkable shrinkage, or the hot creep deformation ratio increases.

トリジマイトを主成分とする焼成珪石は、例えば使用済珪石質れんがを破砕して粒度調整したもの、トリジマイト及びクリストバライトを主成分とする焼成珪石は、例えば未使用珪石質れんが(規格外品や不用品で使用しなかったもの)を粉砕して粒度調整したものが使用できる。使用済み珪石質れんがは、トリジマイトとクリストバライトのX線回折強度比が概ね100対10以上であり、本発明ではこのようなX線強度回折比を有するものを、トリジマイトを主成分とする焼成珪石という。また、未使用珪石質れんがは、トリジマイトとクリストバライトのX線回折強度比は概ね100対90〜140の範囲内であり、本発明ではこのようなX線回折強度比を有するものを、トリジマイト及びクリストバライトを主成分とする焼成珪石という。   The calcined silica mainly composed of tridymite, for example, is obtained by crushing used siliceous bricks to adjust the particle size. And those whose particle sizes are adjusted by pulverization) can be used. The used siliceous brick has an X-ray diffraction intensity ratio of tridymite and cristobalite of about 100 to 10 or more, and in the present invention, the one having such an X-ray intensity diffraction ratio is called calcined silica with tridymite as a main component. . In addition, the unused siliceous brick has an X-ray diffraction intensity ratio of tridymite and cristobalite generally in the range of 100 to 90 to 140, and in the present invention, those having such an X-ray diffraction intensity ratio are treated with tridymite and cristobalite. It is called calcined silica with the main component.

シリカ質超微粉のうちシリカフラワーは、球状で、分散剤との併用で顕著な減水効果を示し、この現象は物理的にはマイクロシリカの形状に起因するボールベアリング効果といわれている。溶融石英超微粉も、物理的にはシリカフラワーと同様に、分散剤との併用で顕著な減水効果を示す。キャスタブル耐火物に加水混練して得られる成形体を乾燥すると、水が存在していた部分が空隙になるので、添加水量を減じて空隙部分を少なくすると成形体の強度は増加する。シリカ質超微粉の配合量が多くなるに従い、添加水量は減少し、成形体の強度は増加する。シリカ質超微粉の配合量が10%を超えると配合量の割りに減水性が顕れず、混練物の粘性が過剰となり成形作業に手間取る。シリカ質超微粉の表面エネルギーは高く、400℃〜800℃でのポルトランドセメントの脱水に伴う強度劣化を防止する作用がある。一方、シリカ質超微粉の配合量が3.8質量%未満では、量的不足から、成形体の強度増加又は強度劣化防止の効果が小さい。   Of the ultrafine siliceous powder, silica flour is spherical and exhibits a remarkable water-reducing effect when used in combination with a dispersing agent. This phenomenon is physically said to be a ball bearing effect due to the shape of microsilica. Fused quartz ultrafine powder also exhibits a remarkable water-reducing effect when used in combination with a dispersant, similarly to silica flour. When the molded product obtained by hydro-kneading the castable refractory is dried, the portion where water was present becomes voids. Therefore, if the amount of added water is reduced to reduce the voids, the strength of the molded product increases. As the amount of the siliceous ultrafine powder increases, the amount of added water decreases and the strength of the molded body increases. When the blending amount of the siliceous ultrafine powder exceeds 10%, water reduction does not appear for the blending amount, and the viscosity of the kneaded product becomes excessive, which takes time for the molding operation. The surface energy of siliceous ultrafine powder is high, and has the effect of preventing strength deterioration associated with dehydration of Portland cement at 400 ° C to 800 ° C. On the other hand, if the blending amount of the siliceous ultrafine powder is less than 3.8% by mass, the effect of increasing the strength of the molded article or preventing the strength deterioration is small due to insufficient quantity.

溶融石英超微粉は高純度であるが、シリカフラワーは数質量%の不純物を含む。後述する実施例では、溶融シリカ超微粉のSiO含有量は99.7%、シリカフラワーのSiO含有量は97.1%であった。シリカフラワーの不純物には微量の水溶性成分があり、水溶性成分の多少、あるいはpHが変動すると、キャスタブル耐火物の流動性や硬化時間に影響する。また、シリカフラワーを多用すると不純物が増え、高温での低融点物生成量が多くなり耐クリープ性が低下する。珪石質耐火原料配合物中への不純物量の低減のためには、シリカフラワー添加量としては6質量%以下が望ましい。 Fused silica ultrafine powder is highly pure, but silica flour contains several mass% impurities. In Examples described later, SiO 2 content of fused silica ultrafine is 99.7%, SiO 2 content of silica flour was 97.1%. Silica flour has a trace amount of water-soluble components. If the amount of water-soluble components or the pH varies, the flowability and curing time of castable refractories are affected. Moreover, when silica flour is used frequently, impurities increase, the amount of low melting point products generated at high temperatures increases, and creep resistance decreases. In order to reduce the amount of impurities in the siliceous refractory raw material composition, the addition amount of silica flour is preferably 6% by mass or less.

(硬化剤)
本発明に係るキャスタブル耐火物は、硬化剤としてポルトランドセメントを用いる。ポルトランドセメントとしては、主成分であるCaO,SiO含有量が多く、Al等の不純成分含有量は少ないものが望ましく、普通ポルトランドセメント、早強ポルトランドセメント、白色ポルトランドセメント等が好適に使用できる。キャスタブル耐火物にポルトランドセメントを多用すると、昇温過程で600℃付近から脱水に伴う体積変化が生じて収縮が著しくなり、また、ポルトランドセメントからのAlの混入量が多くなってCaO−Al−SiO系低融点物生成量が増加し、高温劣化する。従って、ポルトランドセメント添加量は、成形体の強度が十分に発現する限りにおいて、少量が望ましい。
本発明に係るキャスタブル耐火物中のAl混入量は、ポルトランドセメント量だけでなく、珪石質耐火原料配合物に用いる原料の種類や各種原料の量によって異なる。焼成珪石には数%のAlを含有するので、珪石質耐火原料配合物中に、焼成珪石を0〜10質量%含有する場合におけるポルトランドセメントの添加量は、外掛で0.7〜1.3質量%とする。石英ガラス製造時に副生的に産出する結晶質シリカは殆どAlを含有しないので、焼成珪石を含まない場合におけるポルトランドセメント添加量は、外掛けで0.7〜2.0質量%とし、好ましくは1.5質量%以下とする。
(Curing agent)
The castable refractory according to the present invention uses Portland cement as a curing agent. As the Portland cement, it is desirable that the content of CaO and SiO 2 as main components is large and the content of impure components such as Al 2 O 3 is small, and ordinary Portland cement, early strength Portland cement, white Portland cement, etc. are suitable. Can be used. When Portland cement is frequently used as a castable refractory, the volume change accompanying dehydration occurs from around 600 ° C. in the temperature rising process, resulting in significant shrinkage. Also, the amount of Al 2 O 3 mixed from Portland cement increases and CaO− The amount of Al 2 O 3 —SiO 2 -based low-melting point product increases, resulting in high temperature degradation. Accordingly, the amount of Portland cement added is desirably a small amount as long as the strength of the molded body is sufficiently developed.
The amount of Al 2 O 3 mixed in the castable refractory according to the present invention varies depending not only on the amount of Portland cement but also on the type of raw materials used in the siliceous refractory raw material blend and the amounts of various raw materials. Since the calcined silica contains several percent Al 2 O 3 , the addition amount of Portland cement in the case where 0-10% by mass of calcined silica is contained in the siliceous refractory raw material composition is 0.7- 1.3% by mass. Since crystalline silica produced as a by-product during the production of quartz glass contains almost no Al 2 O 3 , the amount of Portland cement added when it does not contain calcined silica is 0.7-2.0 mass% as an outer shell. Preferably, the content is 1.5% by mass or less.

本発明に係るキャスタブル耐火物は、水を添加して型枠内に流し込み施工するものであるが、流し込み可能な軟らかさを維持できる可使時間は0.5時間以上が必要とされ、脱枠できる程の硬さになるまでの硬化時間は72時間以内であることが要求される。さらに、可使時間は1時間以上、硬化時間は24時間以内が望ましいとされる。
本発明に係るキャスタブル耐火物の硬化剤として用いるポルトランドセメント添加量は0.7〜1.3質量%又は0.7〜2.0質量%の範囲にあり、少量であるため、硬化促進剤との併用により必要な硬化時間以内で硬化するものである。硬化促進剤としては、珪酸ソーダのほか、塩化カルシウム、塩化ナトリウム、硫酸塩など公知のものが使用できる。
The castable refractory according to the present invention is to be poured into a mold by adding water, but the pot life that can maintain the softness of pouring is required to be 0.5 hours or more, and the frame is removed. It is required that the curing time until it becomes as hard as possible is within 72 hours. Further, the pot life is preferably 1 hour or longer and the curing time is preferably within 24 hours.
Portland cement addition amount used as a curing agent for the castable refractory according to the present invention is in the range of 0.7 to 1.3% by mass or 0.7 to 2.0% by mass, and is a small amount. It is cured within the necessary curing time by using together. As the curing accelerator, known materials such as sodium silicate, calcium chloride, sodium chloride and sulfate can be used.

先に記したように、溶融石英を多用した耐火物は、れんがでさえ1000℃〜1400℃での荷重下収縮が著しい。溶融石英は長時間高温に曝すとやがて結晶化して比較的低密度のβートリジマイト及び/又はβークリストバライトになり膨張性を示す。アルカリには結晶化促進作用が有り、本発明に係るキャスタブル耐火物において、NaO成分を0.04〜0.30質量%添加することにより、1000℃〜1400℃の昇温過程で結晶化を促進して、荷重下収縮が抑制される。
硬化促進剤として珪酸ソーダ、塩化ナトリウムなどのアルカリ塩を用いると、荷重下収縮の抑制に必要なNaO成分量を得ることが可能である。しかし、荷重下収縮の抑制に十分な効果を得る量のNaOを硬化促進剤として添加した時、過剰な硬化促進作用によって必要な可使時間が得られない場合が生ずる。また、塩化カルシウムなどのアルカリを含有しない硬化促進剤を用いると、荷重下収縮の緩和に必要なNaO成分添加が別途必要になる。このような場合、難溶性珪酸ソーダを添加することによって、荷重下収縮緩和に必要なNaO成分を添加することが可能である。
As described above, the refractory material using a large amount of fused quartz is remarkably shrunk under load at 1000 ° C. to 1400 ° C. even in a brick. When the fused quartz is exposed to a high temperature for a long time, it will crystallize to become β-tridymite and / or β cristobalite having a relatively low density and expand. Alkali has an effect of promoting crystallization, and in the castable refractory according to the present invention, crystallization is performed in a temperature rising process of 1000 ° C. to 1400 ° C. by adding 0.04 to 0.30 mass% of the Na 2 O component. And the shrinkage under load is suppressed.
When an alkali salt such as sodium silicate or sodium chloride is used as a curing accelerator, it is possible to obtain the amount of Na 2 O component necessary for suppressing shrinkage under load. However, when an amount of Na 2 O that provides a sufficient effect for suppressing shrinkage under load is added as a curing accelerator, the necessary pot life may not be obtained due to excessive curing acceleration. Moreover, the use of curing accelerator which does not contain alkali such as calcium chloride, Na 2 O component added need to alleviate the load under contraction required separately. In such a case, it is possible to add a Na 2 O component necessary for relaxation under load by adding hardly soluble sodium silicate.

難溶性珪酸ソーダは、硅砂と水酸化ナトリウムを高温で溶融後冷却したオートクレーブ処理前の粉砕物(カレット)であり、これをオートクレーブ処理後脱水して得られる粉末又は水溶液が一般に珪酸ソーダと呼ばれているものである。珪酸ソーダは水に易溶性で硬化促進作用が有るのに対し、難溶性珪酸ソーダは、水に対する溶解度が珪酸ソーダに比べて非常に小さく硬化促進作用も小さい。
本発明において、珪石質耐火原料配合物100質量%に対して、外掛けで添加する珪酸ソーダとは、易溶性珪酸ソーダ又は難溶性珪酸ソーダ、若しくは易溶性珪酸ソーダと難溶性性珪酸ソーダの混合物であり、その添加量は、固形NaOに換算して0.04〜0.30質量%とする。
Slightly soluble sodium silicate is pulverized material (cullet) before autoclaving, which is obtained by melting cinnabar sand and sodium hydroxide at a high temperature and then cooling. The powder or aqueous solution obtained by dehydrating this after autoclaving is generally called sodium silicate. It is what. Sodium silicate is readily soluble in water and has a hardening accelerating action, whereas poorly soluble sodium silicate has a much lower solubility in water and less hardening accelerating action than sodium silicate.
In the present invention, with respect to 100% by mass of the siliceous refractory raw material composition, the sodium silicate to be added as an outer shell is an easily soluble sodium silicate, a hardly soluble sodium silicate, or a mixture of an easily soluble sodium silicate and a hardly soluble sodium silicate. The amount of addition is 0.04 to 0.30% by mass in terms of solid Na 2 O.

(減水剤)
本発明のキャスタブル耐火物は、硬化剤として用いるポルトランドセメント量が非常に少ないため、成形体を十分な強度とするには、珪石質骨材配合物中にシリカ質超微粉を配すると共に、減水効果の高い減水剤を使用するのが望ましい。本発明に使用する減水剤は、ポリエーテルカルボン酸系が望ましく、その添加量は珪石質骨材配合物100質量%に対し外掛けで0.03〜0.3質量%とされる。また、ナフタリン、メラミンスルホン酸縮合物、リン酸ソーダ等の無機電解質も使用可能である。
(Water reducing agent)
Since the castable refractory of the present invention has a very small amount of Portland cement used as a curing agent, in order to make the molded body have sufficient strength, a siliceous aggregate composition is provided with siliceous ultrafine powder and water is reduced. It is desirable to use a highly effective water reducing agent. The water reducing agent used in the present invention is preferably a polyether carboxylic acid type, and the amount added is 0.03 to 0.3% by mass on the basis of 100% by mass of the siliceous aggregate composition. Further, inorganic electrolytes such as naphthalene, melamine sulfonic acid condensate, and sodium phosphate can also be used.

(有機質繊維)
先に記したように、ポルトランドセメントを硬化剤としたキャスタブル耐火物は、アルミナセメントやコロイダルシリカのゲル化作用を硬化剤とした場合と比較して、加熱昇温過程で爆裂し易い。本発明のキャスタブル耐火物では、爆裂回避のため、有機質繊維を、珪石質耐火骨材配合物対して、外掛けで0.03〜0.2質量%添加するのが望ましい。有機質繊維としては、ポリプロピレン、ポリエチレン、ポリビニルアルコール等の繊維長さ3〜15mmの化学繊維が使用できる。
(Organic fiber)
As described above, castable refractories using Portland cement as a curing agent are more likely to explode in the process of heating and heating compared to the case where the gelling action of alumina cement or colloidal silica is used as a curing agent. In the castable refractory material of the present invention, it is desirable to add 0.03 to 0.2% by mass of organic fiber to the siliceous refractory aggregate composition in order to avoid explosion. As the organic fibers, chemical fibers having a fiber length of 3 to 15 mm, such as polypropylene, polyethylene, and polyvinyl alcohol, can be used.

[共通事項]
トリジマイトを主成分とする焼成珪石として、熱風炉で長時間使用後改修した使用済珪石れんが屑を用い、トリジマイト及びクリストバライトを主成分とする焼成珪石として、規格外や不用となった未使用珪石れんが屑を用いた。使用済珪石れんが屑と未使用れんが屑は、それぞれ約300Kgを無作為に採取し、3mm以下に破砕混合し、3−1mm、1−0.150mm、0.150mm以下に粒度分けした。
[Common subject matter]
Unused silica bricks that are out-of-standard or useless as fired silica stones mainly composed of tridymite and cristobalite, using spent silica brick scraps that have been refurbished after use for a long time in a hot stove as fired silica stones mainly composed of tridymite Waste was used. About 300 kg of used silica brick waste and unused brick waste were collected at random, crushed and mixed to 3 mm or less, and divided into particle sizes of 3-1 mm, 1-0.150 mm, and 0.150 mm or less.

3mm以下に破砕混合した使用済珪石れんが屑と未使用珪石れんが屑の中から、無作為に2Kg採取し、二分器で100gに縮分後、全量粉砕したものを試料として、それぞれの化学成分及び結晶相を調べた。結晶相はX線回折法で解析した。使用済珪石れんが屑と未使用珪石れんが屑の化学成分を表2に、結晶層及びX線回折強度を表3に示す。使用済珪石れんが屑と未使用珪石れんが屑共に、結晶相は低温型のトリジマイトと低温型クリストバライトが認められた。表3において、クリストバライトのX線回折強度(最大回折強度)はトリジマイトのX線回折強度(最大回折強度)を100としたときの相対値である。
使用済珪石れんが屑はトリジマイトを主成分とし、未使用珪石れんが屑はトリジマイト及びクリストバライトを主成分としている。
Randomly sample 2Kg from used silica bricks and unused silica bricks crushed and mixed to 3mm or less. The crystal phase was examined. The crystal phase was analyzed by X-ray diffraction method. Table 2 shows chemical components of used silica brick waste and unused silica brick waste, and Table 3 shows crystal layers and X-ray diffraction intensities. For both used and unused silica bricks, low-temperature tridymite and low-temperature cristobalite were observed in the crystal phase. In Table 3, the X-ray diffraction intensity (maximum diffraction intensity) of cristobalite is a relative value when the X-ray diffraction intensity (maximum diffraction intensity) of tridymite is 100.
Spent silica brick waste is mainly composed of tridymite, and unused silica brick waste is mainly composed of tridymite and cristobalite.

Figure 2016052960
Figure 2016052960

Figure 2016052960
Figure 2016052960

溶融石英は、珪石を溶融温度(1723℃)を超える温度で加熱して溶融し、急冷して製造される。本発明で使用した溶融石英の製造用溶融炉の構造を図1に示す。直径約1m長さ約2mの円筒状金属容器1の円の中心にSiC発熱体2を設置し、発熱体2に電気を通して加熱するタイプである。溶融石英の原料である珪石としては、酸処理して不純物を除去した高純度珪石が用いられ、これを金属容器1に入れて加熱溶融する。金属容器1と発熱体2は使い捨てで、加熱溶融後は金属容器1ごと水冷し、解体して溶融石英部分を採取する。溶融石英は、SiO2含有量が99.5質量%以上の高純度非結晶質品であり、これを5−3mm、3−1mm、1−0.150mm、0.150mm以下に粒度分けした。   Fused quartz is produced by heating and melting silica at a temperature exceeding the melting temperature (1723 ° C.) and then rapidly cooling it. The structure of a melting furnace for producing fused quartz used in the present invention is shown in FIG. In this type, a SiC heating element 2 is installed at the center of a circle of a cylindrical metal container 1 having a diameter of about 1 m and a length of about 2 m, and the heating element 2 is heated by electricity. As the silica that is a raw material of the fused quartz, high-purity silica that has been subjected to acid treatment to remove impurities is used, which is placed in the metal container 1 and heated and melted. The metal container 1 and the heating element 2 are disposable, and after heating and melting, the metal container 1 and the metal container 1 are cooled with water, disassembled, and a fused quartz portion is collected. Fused quartz is a high-purity amorphous product having a SiO2 content of 99.5% by mass or more, and this was divided into 5-3 mm, 3-1 mm, 1-0.150 mm, and 0.150 mm or less.

金属容器1内の珪石は、全てが溶融するのではなく、発熱体2の発熱部から離れた、容器側壁3に沿った溶融温度以下の部分には、不透明な数cm幅の珪石層がある。この不透明な珪石層から採取した珪石を、以下の実施例では、結晶質シリカと称する。
この結晶質シリカの原鉱約400Kgを入手し、3mm以下に粉砕、混合して無作為に2Kg採取し、さらに二分器で100gに縮分後、全量粉砕したものを試料として、化学成分及び結晶相を調べた。結晶相はX線回折法で解析した。
表4に溶融石英と結晶質シリカの化学成分、表5に溶融石英と結晶質シリカの結晶相を示す。結晶質シリカの結晶相は、低温型クリストバライトと低温型クオーツが認められた。表4において、低温型クオーツの回折強度(最大回折強度)は低温型クリストバライトの回折強度(最大回折強度)を100としたときの相対値である。
上記の3mm以下に粉砕混合した結晶質シリカを、さらに、3−1mm、1−0.150mm、0.150mm以下に粒度分けした。
The silica in the metal container 1 is not completely melted, but there is an opaque silica layer having a width of several centimeters in the portion below the melting temperature along the container side wall 3 away from the heating part of the heating element 2. . Silica stone collected from this opaque silica layer is referred to as crystalline silica in the following examples.
Obtain about 400Kg of this crystalline silica ore, pulverize to 3mm or less, mix and collect 2Kg at random, further reduce to 100g with a bifurcater, and then pulverize the whole amount to obtain the chemical components and crystals The phase was examined. The crystal phase was analyzed by X-ray diffraction method.
Table 4 shows the chemical components of fused silica and crystalline silica, and Table 5 shows the crystalline phases of fused silica and crystalline silica. Low-temperature cristobalite and low-temperature quartz were recognized as crystalline phases of crystalline silica. In Table 4, the diffraction intensity (maximum diffraction intensity) of the low-temperature type quartz is a relative value when the diffraction intensity (maximum diffraction intensity) of the low-temperature type cristobalite is 100.
The crystalline silica pulverized and mixed to 3 mm or less was further divided into particle sizes of 3-1 mm, 1-0.150 mm, and 0.150 mm or less.

Figure 2016052960
Figure 2016052960

Figure 2016052960
Figure 2016052960

本発明で使用するシリカ質超微粉は、シリカフラワーと溶融石英超微粉の2種類である。シリカフラワーとしてはSiO含有量が97.1質量%品を使用した。溶融石英質超微粉はSiO含有量が99.7質量%で、積算平均粒子径が1μm以下の球状粒子である。
減水剤は、ポリエーテルポリカルボン酸系を使用した。
有機質繊維は、繊度2.2dtex,繊維径18μ、繊維長5mmのポリプロピレンを使用した。
本発明のキャスタブル耐火物に添加する水は、上水道水を用いた。添加水量の数値は、珪石質耐火原料配合物に対する添加水の割合(外掛け)であり、質量%で示す。
The siliceous ultrafine powder used in the present invention is of two types: silica flour and fused quartz ultrafine powder. As the silica flour, a product having a SiO 2 content of 97.1% by mass was used. The fused quartz ultrafine powder is a spherical particle having a SiO 2 content of 99.7% by mass and an accumulated average particle size of 1 μm or less.
As the water reducing agent, a polyether polycarboxylic acid system was used.
As the organic fiber, polypropylene having a fineness of 2.2 dtex, a fiber diameter of 18 μm, and a fiber length of 5 mm was used.
The water added to the castable refractory of the present invention was tap water. The numerical value of the amount of added water is the ratio (outer coating) of added water to the siliceous refractory raw material composition, and is expressed in mass%.

[試験1]
珪石質耐火原料配合物(骨材)として、前記溶融石英及び結晶質シリカを用い、両骨材の配合比率を変化させ、シリカ質超微粉を8質量%を含有する原料配合物100質量%に対して、外掛けで、ポルトランドセメントを1.0質量%、珪酸ソーダを固形NaOに換算して0.02質量%、難溶性珪酸ソーダを固形NaOに換算して0.07質量%、有機質減水剤を0.2質量%、有機質繊維を0.05質量%、水を5.5%質量添加し、混練、成形、脱枠して得た耐火物試験片を用いて、物性値(嵩比重、圧縮強度、熱膨張率、荷重下熱膨張率、クリープ値)の測定、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。
混練は、株式会社ダルトン製の万能試験機を用いた。混練後のキャスタブル耐火物の軟らかさは実施例1〜4及び比較例1ではほぼ同じであった。成形は、林バイブレーター株式会社製の振動テーブルを用い、振動数50Hz、振動時間5分の条件で行った。混練後及び成形後のキャスタブル耐火物を用い、室温(25℃)における可使時間及び硬化時間を測定した。
[Test 1]
The fused silica and crystalline silica are used as the siliceous refractory raw material composition (aggregate), the mixing ratio of both aggregates is changed, and the siliceous ultrafine powder is converted to 100 mass% of the raw material composition containing 8 mass%. In contrast, Portland cement is 1.0% by mass, sodium silicate is 0.02% by mass in terms of solid Na 2 O, and sparingly soluble sodium silicate is 0.07% in terms of solid Na 2 O. %, Organic water-reducing agent 0.2% by mass, organic fiber 0.05% by mass, water 5.5% by mass added, kneaded, molded, de-framed, and using refractory specimens obtained, Measurement of values (bulk specific gravity, compressive strength, thermal expansion coefficient, thermal expansion coefficient under load, creep value), thermal shock resistance evaluation test, and explosion resistance evaluation test were performed.
For the kneading, a universal testing machine manufactured by Dalton Co., Ltd. was used. The softness of the castable refractory after kneading was almost the same in Examples 1 to 4 and Comparative Example 1. Molding was performed using a vibration table manufactured by Hayashi Vibrator Co., Ltd. under conditions of a frequency of 50 Hz and a vibration time of 5 minutes. Using the castable refractories after kneading and molding, the pot life and curing time at room temperature (25 ° C.) were measured.

混練後のキャスタブル耐火物の一部(約500g)を、ビニール袋に入れ、25℃の一定温度に保持した恒温槽内に保存し、可使時間測定用とした。このとき、ビニール袋の袋口を輪ゴムで閉じて恒温槽内に保存し、キャスタブル耐火物が乾燥しないようにした。キャスタブル耐火物の流動性を15分ごとに手触り感や目視で確認し、混練後から流動性低下(振動施工法で充填不足が生じるほどの流動性低下)が生じるまでの時間を一応の可使時間(仮にT1とする)とした。可使時間の測定開始から72時間を経過した時点で流動性低下が確認できなかった場合、以後の測定を中止した。
流動性低下が生じたと判断されたキャスタブル耐火物は、ビニール袋ごと振動テーブル上に置き5分間振動を与えて高密度化した後、再度流動性を前記の要領で確認し、流動性低下を再確認した場合は、当該キャスタブル耐火物の可使時間をT1と確定した。このキャスタブル耐火物は恒温槽内に戻して硬化時間測定用とした。一方、流動性低下を再確認しなかった(流動性が戻った)場合は、再度恒温槽に戻し、15分後に再びビニール袋ごと振動テーブル上に置き5分間振動を与えた後、再び流動性を前記要領で確認し、このとき流動性を再確認した場合は、当該キャスタブル耐火物の可使時間をT1+15分と確定した。流動性低下を再確認しなかった場合は、さらに以上のプロセスを繰り返した。可使時間を表6に示す。
A part (about 500 g) of the castable refractory after kneading was put in a plastic bag and stored in a thermostatic bath maintained at a constant temperature of 25 ° C., and used for measuring the pot life. At this time, the bag mouth of the plastic bag was closed with a rubber band and stored in a thermostatic bath so that the castable refractory was not dried. Check the fluidity of castable refractories every 15 minutes with the touch and visual sense, and use the time from kneading until the fluidity is lowered (flowiness is lowered enough to cause insufficient filling by vibration construction method). It was time (assuming T1). If no decrease in fluidity was confirmed after 72 hours had elapsed from the start of the pot life measurement, the subsequent measurement was stopped.
Castable refractories that have been judged to have deteriorated in fluidity are placed on a vibration table with plastic bags and subjected to vibration for 5 minutes to increase the density. Then, the fluidity is confirmed again as described above, and the decrease in fluidity is re-established. When confirmed, the pot life of the castable refractory was determined as T1. This castable refractory was returned to the thermostat for curing time measurement. On the other hand, if fluidity decline was not reconfirmed (fluidity returned), it was returned to the thermostatic bath again, and after 15 minutes, the plastic bag was placed on the vibration table again and subjected to vibration for 5 minutes. In this case, when the fluidity was reconfirmed, the pot life of the castable refractory was determined to be T1 + 15 minutes. If the fluidity decline was not reconfirmed, the above process was repeated. Table 6 shows the pot life.

硬化時間とは、混練後から成形体が損傷することなく脱枠できる程度に強度が発現するまでの時間である。この実施例では、硬化時間測定用のキャスタブル耐火物の強度を30分ごとに確認し、当該キャスタブル耐火物が腕力で潰れたり亀裂が生じたりしない程度に強度が発現するまでの時間を硬化時間とした。硬化時間を表6に示す。
一方、混練後のキャスタブル耐火物の一部は、JISR2553の規定に準ずる型枠に流し込み、型枠ごと上記と同じ恒温槽で養生し、これを硬化確認用とした。養生中はキャスタブル耐火物の流し込み面をビニールシートで覆い乾燥を防いだ。硬化時間測定用のキャスタブル耐火物が硬化時間に達した時点で、硬化確認用のキャスタブル耐火物を恒温槽から取り出し脱枠して、正常に脱枠できるかどうか確認した。また、JISR2553の規定に準じて1日養生後の圧縮強度を測定した。なお、本発明の実施例については、硬化時間到達時点において全て正常に脱枠可能で、かつ1日養生後の圧縮強度は全て5MPa以上であった。
The curing time is the time from when kneading until strength is developed to such an extent that the molded body can be removed without damage. In this example, the strength of the castable refractory for measuring the curing time is confirmed every 30 minutes, and the time until the strength is developed to such an extent that the castable refractory is not crushed or cracked by arm force is defined as the curing time. did. Table 6 shows the curing time.
On the other hand, a part of the castable refractory after the kneading was poured into a mold conforming to the provisions of JIS R2553, and the entire mold was cured in the same thermostatic bath as described above, and this was used for confirmation of curing. During curing, the castable refractories were covered with a plastic sheet to prevent drying. When the castable refractory for curing time measurement reached the curing time, the castable refractory for curing confirmation was taken out of the thermostatic chamber and de-framed to check whether it could be de-framed normally. Moreover, the compressive strength after 1 day curing was measured according to the prescription | regulation of JISR2553. In addition, about the Example of this invention, all were able to remove a frame normally at the time of hardening time arrival, and all the compressive strengths after 1 day curing were 5 MPa or more.

嵩比重、圧縮強度試験用試験片はJIS−R−2553に記載の成形型を用いて成形した。圧縮強度はJIS−R−2553の規定に準じて測定した。表6に、110℃で24時間乾燥後、及び1200℃(昇温速度5℃/分)で3時間焼成後の冷間での嵩比重、及び圧縮強度の測定値を示す。
熱膨張率はJIS−R−2207−1(可視光投影方式)の規定に準じて測定した。表6に、1000℃での熱膨張率の測定値を示す。
The test piece for bulk specific gravity and compressive strength test was molded using a molding die described in JIS-R-2553. The compressive strength was measured in accordance with JIS-R-2553. Table 6 shows the measured values of bulk specific gravity and compressive strength after drying at 110 ° C. for 24 hours and after baking at 1200 ° C. (heating rate 5 ° C./min) for 3 hours.
The coefficient of thermal expansion was measured in accordance with JIS-R-2207-1 (visible light projection method). Table 6 shows the measured values of the coefficient of thermal expansion at 1000 ° C.

荷重下熱膨張率及びクリープ値は品川リフラクトリーズ株式会社製熱間クリープ試験炉(SRC−15型)を用い、0.2MPaの圧力を付加してJIS−R−2658の規定に準じて測定した。表6には、1400℃に到達した時の荷重下熱膨張率の測定値を示す。続いて、そのまま1400℃で50時間保持し、50時間保持後の荷重下熱膨張率を測定した。表6に、1400℃で50時間保持後の荷重下熱膨張率と、1400℃到達時の荷重下熱膨張率の差をクリープ値として示す。   The thermal expansion coefficient and creep value under load were measured in accordance with JIS-R-2658 using a hot creep test furnace (SRC-15 type) manufactured by Shinagawa Refractories Co., Ltd. with a pressure of 0.2 MPa. did. Table 6 shows measured values of the coefficient of thermal expansion under load when the temperature reaches 1400 ° C. Then, it kept at 1400 degreeC for 50 hours as it was, and measured the thermal expansion coefficient under the load after holding for 50 hours. Table 6 shows the difference between the thermal expansion coefficient under load after holding at 1400 ° C. for 50 hours and the thermal expansion coefficient under load when reaching 1400 ° C. as a creep value.

熱衝撃抵抗性評価は、一辺100mmの立方体に成形し110℃×24時間乾燥後自然冷却した試験体を用い、この試験体を600℃又は1200℃に保持した電気炉中に投入し、30分経過後に電気炉内から試験体を通常室内に取り出して自然冷却した後に、試験体の外観を肉眼で観察する方法で行った。熱衝撃抵抗性は亀裂の有無で評価した。その結果を表6に示す。
耐爆裂性評価試験は一辺60mmの立方体に成形し、脱枠して直ぐに600℃に保持された電気炉中に投入して、爆裂する、爆裂しない、で評価した。キャスタブル耐火物の配合物、混練用水は、25℃に保持した恒温槽内で保存したものを用い、混練して振動施工後のものは、脱枠まで同じ恒温槽内で養生した。
The thermal shock resistance evaluation was performed by using a test body which was molded into a cube having a side of 100 mm, dried at 110 ° C. × 24 hours and then naturally cooled, and placed in an electric furnace maintained at 600 ° C. or 1200 ° C. for 30 minutes. After the elapse of time, the specimen was taken out from the electric furnace into a normal room and naturally cooled, and then the appearance of the specimen was observed with the naked eye. Thermal shock resistance was evaluated by the presence or absence of cracks. The results are shown in Table 6.
In the explosion resistance evaluation test, a cube having a side of 60 mm was formed, put into an electric furnace held at 600 ° C. immediately after being removed from the frame, and evaluated by exploding or not exploding. The castable refractory composition and the kneading water were stored in a thermostat kept at 25 ° C., and the kneaded and vibration-treated one was cured in the same thermostat until de-framed.

Figure 2016052960
Figure 2016052960

表6に示すように、実施例1〜4、比較例1は全て、圧縮強度はコークス炉用珪石れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.30〜0.16%の範囲内にあり、耐クリープ性、耐爆裂性評価試験の結果も良好であった。一方、熱衝撃抵抗性評価試験の結果は、実施例1〜4は良好であったのに対し、比較例1は、結晶質シリカの配合割合が本発明の規定を超え、かつ溶融石英の配合割合が本発明の規定未満であり、亀裂が発生した。   As shown in Table 6, in all of Examples 1 to 4 and Comparative Example 1, the compressive strength is 20 MPa or more, which is the standard for silica brick for coke ovens, and the thermal expansion coefficient under load when reaching 1400 ° C. is −0. It was in the range of 30 to 0.16%, and the results of the creep resistance and explosion resistance evaluation tests were also good. On the other hand, the results of the thermal shock resistance evaluation test were good in Examples 1 to 4, whereas in Comparative Example 1, the blending ratio of crystalline silica exceeded the provisions of the present invention and the blending of fused quartz The ratio was less than that of the present invention, and cracks occurred.

[試験2]
珪石質耐火原料配合物(骨材)として、溶融石英、結晶質シリカ及び焼成珪石を用い、3種の骨材の配合比率を変化させ、シリカ質超微粉8質量%を含有する原料配合物100質量%に対して、外掛けで、ポルトランドセメントを1.0質量%、珪酸ソーダを固形NaOに換算して0.02質量%、難溶性珪酸ソーダを固形NaOに換算して0.07質量%、有機質減水剤を0.2質量%、有機質繊維を0.05質量%、水を5.5質量%添加し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。焼成珪石としてトリジマイトを主成分とする珪石(使用済珪石れんが)を用いた結果を表7に示す。また、焼成珪石として未使用珪石れんが(クリストバライト及びトリジマイトを主成分)を用いた結果を表8に示す。
[Test 2]
As a siliceous refractory raw material composition (aggregate), fused quartz, crystalline silica and calcined silica stone are used, and the composition ratio of the three aggregates is changed, and the raw material composition 100 containing 8% by mass of siliceous ultrafine powder 100 Portland cement is 1.0% by mass, sodium silicate is converted to solid Na 2 O, 0.02% by mass, and sparingly soluble sodium silicate is converted to solid Na 2 O. 0.07% by mass, 0.2% by mass of organic water reducing agent, 0.05% by mass of organic fiber, and 5.5% by mass of water, and using a refractory test piece obtained by kneading, molding and de-framed In the same manner as in [Test 1], measurement of physical properties, thermal shock resistance evaluation test, and explosion resistance evaluation test were performed. Table 7 shows the results of using silica (mainly used silica brick) containing tridymite as a main component as the calcined silica. Table 8 shows the results of using unused silica bricks (mainly cristobalite and tridymite) as calcined silica.

Figure 2016052960
Figure 2016052960

Figure 2016052960
Figure 2016052960

表7に示すように、実施例5〜8は、骨材配合比率が、溶融石英72〜82質量%、結晶質シリカ10質量%、使用済珪石れんが0〜10質量%であり、いずれも圧縮強度はコークス炉用れんが規格である20Mpa以上であって、1400℃到達時の荷重下熱膨張率は−0.20〜−0.31%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験の結果、耐爆裂性評価試験の結果も良好であった。一方、比較例2は、使用済珪石れんがの配合割合が本発明の規定を超え、かつ溶融石英の配合割合が本発明の規定未満であり、1400℃到達時の荷重下熱膨張率が大きい収縮性を示し、クリープ変形率も大きく、1200℃での熱衝撃抵抗性評価試験の結果亀裂が発生した。   As shown in Table 7, in Examples 5 to 8, the aggregate blending ratio is 72 to 82% by mass of fused silica, 10% by mass of crystalline silica, and 0 to 10% by mass of used silica stone brick, all of which are compressed. The strength is 20 Mpa or more, which is the standard for coke oven bricks, and the coefficient of thermal expansion under load when reaching 1400 ° C. is in the range of −0.20 to −0.31%, and the creep resistance and thermal shock resistance As a result of the evaluation test, the result of the explosion resistance evaluation test was also good. On the other hand, in Comparative Example 2, the proportion of used silica brick exceeds the provisions of the present invention, the proportion of fused silica is less than the provisions of the present invention, and the thermal expansion coefficient under load when reaching 1400 ° C. is large. As a result of the thermal shock resistance evaluation test at 1200 ° C., cracks occurred.

表8に示すように、実施例9〜11は、骨材配合比率が、溶融石英72〜77質量%、結晶質シリカ10質量%、未使用珪石れんが0〜10質量%であり、全て、圧縮強度はコークス炉用れんが規格である20Mpa以上であって、1400℃到達時の荷重下熱膨張率は−0.11〜−0.16%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験の結果、耐爆裂性評価試験の結果も良好であった。一方、比較例3〜4は、結晶質シリカ及び未使用珪石れんがのトータル配合割合が本発明の規定を超え、かつ溶融石英の配合割合が本発明の規定未満であり、熱衝撃抵抗性評価試験の結果、亀裂が発生した。また、未使用珪石れんがの配合割合が本発明の規定を超える比較例4は、荷重下熱膨張率が大きい収縮性を示した。   As shown in Table 8, in Examples 9 to 11, the aggregate blending ratio was 72 to 77% by mass of fused silica, 10% by mass of crystalline silica, and 0 to 10% by mass of unused silica brick, and all were compressed. The strength is 20 Mpa or more, which is the standard for coke oven bricks, and the thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.11 to −0.16%, and the creep resistance and thermal shock resistance As a result of the evaluation test, the result of the explosion resistance evaluation test was also good. On the other hand, in Comparative Examples 3 to 4, the total blending ratio of crystalline silica and unused silica brick exceeds the provisions of the present invention, and the blending ratio of fused silica is less than the provisions of the present invention, and the thermal shock resistance evaluation test As a result, cracks occurred. Moreover, the comparative example 4 in which the mixture ratio of an unused silica brick exceeds the prescription | regulation of this invention showed the shrinkability with a large thermal expansion coefficient under load.

[試験3]
珪石質耐火原料配合物(骨材)が、溶融石英及び結晶質シリカを用いた実施例3と同じ比較例5,6と実施例12,13、溶融石英、結晶質シリカ及び使用済珪石れんがを用いた実施例7と同じ実施例14,15と比較例7について、外掛けで添加するポルトランドセメント量を変化させて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。その結果を表9に示す。表9には、1日養生後又は3日養生後の養生後圧縮強度測定値も示す。
[Test 3]
Comparative Examples 5, 6 and Examples 12 and 13, same as Example 3 using fused silica and crystalline silica, where the siliceous refractory raw material composition (aggregate) is fused quartz, crystalline silica and used silica brick For Examples 14 and 15 and Comparative Example 7 which were the same as Example 7 used, the amount of Portland cement to be added as an outer shell was changed, physical property values were measured in the same manner as in [Test 1], and thermal shock resistance was used. An evaluation test and an explosion resistance evaluation test were performed. The results are shown in Table 9. Table 9 also shows post-curing compressive strength measurements after 1-day curing or 3-day curing.

Figure 2016052960
Figure 2016052960

実施例12、実施例3、実施例13は、ポルトランドセメント添加量が本発明の規定範囲内(0.7〜2質量%)であり、いずれも圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は0.06〜−0.27の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験の結果、耐爆裂性評価試験の結果も良好であった。一方、比較例5は、ポルトランドセメント添加量が0.5質量%で本発明の規定未満であり、110℃×24h乾燥後圧縮強度は20MPa未満であった。比較例6はポルトランドセメント添加量が3質量%で本発明の規定を超え、1400℃到達時の荷重下熱膨張率は−0.65%であり、クリープ変形率も大きい。   In Example 12, Example 3, and Example 13, the amount of Portland cement added is within the specified range of the present invention (0.7 to 2% by mass), and the compressive strength is 20 MPa or more which is the standard for coke oven bricks. The thermal expansion coefficient under load when reaching 1400 ° C. is in the range of 0.06 to −0.27, and the results of the creep resistance and thermal shock resistance evaluation test and the explosion resistance evaluation test are also shown. It was good. On the other hand, in Comparative Example 5, the amount of Portland cement added was 0.5 mass%, which was less than that of the present invention, and the compressive strength after drying at 110 ° C. × 24 h was less than 20 MPa. In Comparative Example 6, the amount of Portland cement added was 3% by mass, exceeding the definition of the present invention, the thermal expansion coefficient under load when reaching 1400 ° C. was −0.65%, and the creep deformation ratio was also large.

実施例14、実施例7、実施例15のポルトランドセメント添加量が本発明の規定範囲内(0.7〜1.3質量%)であり、いずれも圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は0.03〜−0.3%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験、耐爆裂性評価試験の結果も良好であった。一方、比較例7はポルトランドセメント添加量が1.6質量%で本発明の規定を超え、1400℃到達時の荷重下熱膨張率は−0.50%であり、クリープ変形率も大きい。   The amount of Portland cement added in Example 14, Example 7, and Example 15 is within the specified range of the present invention (0.7 to 1.3% by mass), and the compressive strength is 20 MPa, which is the standard for coke oven bricks. The coefficient of thermal expansion under load when reaching 1400 ° C. is in the range of 0.03 to −0.3%, and the results of creep resistance, thermal shock resistance evaluation test, and explosion resistance evaluation test are also obtained. It was good. On the other hand, in Comparative Example 7, the amount of Portland cement added was 1.6% by mass, exceeding the regulation of the present invention, the thermal expansion coefficient under load when reaching 1400 ° C. was −0.50%, and the creep deformation ratio was also large.

表9に示す実施例3、実施例7、実施例12〜15、比較例5〜7の1日養生後圧縮強度及び乾燥後(110℃×24h)圧縮強度はポルトランドセメント添加量が増えるのに伴って大きくなっている。養生後強度不足の場合、脱枠時に角欠けが生じ易くなるので、養生強度は大きい方が望ましい。
珪石質耐火原料配合物として溶融石英及び結晶質シリカを用いた場合では、ポルトランドセメントの適正な添加量範囲が0.7〜2質量%であるのに対して、珪石質耐火原料配合合物として溶融石英、結晶質シリカ及び使用済珪石れんがを用いた場合、ポルトランドセメントの適正な添加量範囲は0.7〜1.3質量%であり、前者に比べて、ポルトランドセメントを多用できない。
The compressive strength after daily curing and after drying (110 ° C. × 24 h) of Example 3, Example 7, Examples 12 to 15 and Comparative Examples 5 to 7 shown in Table 9 increase in the amount of Portland cement added. Along with it. In the case of insufficient strength after curing, corner breakage is liable to occur when the frame is removed, so it is desirable that the curing strength is large.
When fused silica and crystalline silica are used as the siliceous refractory raw material composition, the appropriate addition amount range of Portland cement is 0.7 to 2% by mass, whereas as the siliceous refractory raw material composition, When fused silica, crystalline silica, and used silica brick are used, the appropriate addition amount range of Portland cement is 0.7 to 1.3% by mass, and Portland cement cannot be used much as compared with the former.

[試験4]
珪石質耐火原料配合物(骨材)として、結晶質シリカ及び溶融石英を用い、シリカ質超微粉の配合比率を変化させた原料配合物100質量%に対して、外掛けで、珪酸ソーダ及び難溶性珪酸ソーダのトータルが固形NaOに換算して0.09質量%、有機質減水剤を0.2質量%、有機質繊維を0.05質量%添加し、キャスタブル耐火物の軟らかさが一定になるように添加水量を調整し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。その結果を表10に示す。なお、表10の実施例16〜18及び比較例8,9の原料配合物の欄は、各耐火原料の合計が100質量%を超える。
[Test 4]
As a siliceous refractory raw material composition (aggregate), crystalline silica and fused silica are used, and with respect to 100% by mass of the raw material composition in which the mixing ratio of the ultrafine siliceous powder is changed, sodium silicate and difficult The total amount of soluble sodium silicate is 0.09% by mass in terms of solid Na 2 O, 0.2% by mass of organic water reducing agent, 0.05% by mass of organic fiber is added, and the softness of the castable refractory is constant. Using the refractory specimen obtained by adjusting the amount of water added, kneading, molding, and de-framed, the measurement of physical properties and the thermal shock resistance evaluation test, An explosive evaluation test was conducted. The results are shown in Table 10. In addition, in the column of the raw material blends of Examples 16 to 18 and Comparative Examples 8 and 9 in Table 10, the total of each refractory raw material exceeds 100% by mass.

Figure 2016052960
Figure 2016052960

シリカ質超微粉の配合比率が本発明の規定範囲内(各耐火原料の合計を100質量%としたとき3.8〜10質量%)である実施例3、実施例16〜18は、全て、圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.30〜−0.04%の範囲内にあり、耐クリープ性も良好であり、熱衝撃抵抗性評価試験、耐爆裂性評価試験の結果も良好であった。一方、シリカ質超微粉の配合比率が3質量%の比較例8は、添加水量が比較的多くなり、110℃乾燥後の圧縮強度は20MPa未満であり、1400℃到達時の荷重下膨張率は−0.38%であった。シリカ質超微粉の配合比率が12質量%比較例9は、耐爆裂性評価試験の結果爆裂した。   Examples 3 and 16 to 18 in which the blending ratio of the siliceous ultrafine powder is within the specified range of the present invention (3.8 to 10% by mass when the total of each refractory raw material is 100% by mass) The compressive strength is 20 MPa or more, which is the standard for coke oven bricks, the thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.30 to −0.04%, and the creep resistance is also good. The results of the thermal shock resistance evaluation test and the explosion resistance evaluation test were also good. On the other hand, Comparative Example 8 in which the mixing ratio of the siliceous ultrafine powder is 3% by mass has a relatively large amount of added water, the compressive strength after drying at 110 ° C is less than 20 MPa, and the expansion coefficient under load when reaching 1400 ° C is -0.38%. In Comparative Example 9 in which the mixing ratio of the siliceous ultrafine powder was 12% by mass, explosion occurred as a result of the explosion resistance evaluation test.

[試験5]
珪石質耐火原料配合物(骨材)として、結晶質シリカ及び未使用珪石れんが及び溶融石英を用い、シリカ質超微粉の配合比率を変化させた原料配合物100質量%に対して、外掛けで、珪酸ソーダ及び難溶性珪酸ソーダのトータルが固形NaOに換算して0.09質量%、有機質減水剤を0.2質量%、有機質繊維を0.05質量%添加し、キャスタブル耐火物の軟らかさが一定になるように添加水量を調整し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。この結果を表11に示す。なお、表11の実施例21及び比較例11の原料配合物の欄は、各耐火原料の合計が100質量%を超える。
[Test 5]
As a siliceous refractory raw material composition (aggregate), crystalline silica, unused silica brick and fused quartz are used, and it is externally applied to 100% by mass of the raw material composition in which the mixing ratio of siliceous ultrafine powder is changed. The total of sodium silicate and sparingly soluble sodium silicate is 0.09% by mass in terms of solid Na 2 O, 0.2% by mass of organic water reducing agent, 0.05% by mass of organic fiber is added, and castable refractory Using the refractory test piece obtained by adjusting the amount of added water so that the softness is constant, kneading, molding, and de-framed, measurement of physical properties and thermal shock resistance in the same manner as in [Test 1] An evaluation test and an explosion resistance evaluation test were performed. The results are shown in Table 11. In the column of raw material blends of Example 21 and Comparative Example 11 in Table 11, the total of each refractory raw material exceeds 100% by mass.

Figure 2016052960
Figure 2016052960

シリカ質超微粉の配合比率が本発明の規定範囲内(各耐火原料の合計を100質量%としたとき3.8〜10質量%)の実施例10、実施例19〜〜21は、全て、圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.29〜−0.15%の範囲内にあり、耐クリープ性も良好であり、熱衝撃抵抗性評価試験の結果、耐爆裂性評価試験の結果も良好であった。一方、シリカ質超微粉の配合比率が3質量%の比較例10は、添加水量が比較的多くなり、110℃乾燥後の圧縮強度は20MPa未満であり、1400℃到達時の荷重下膨張率は−0.43%である。シリカ質超微粉の配合比率が12質量%の比較例11は、熱衝撃抵抗性評価試験の結果、1200℃に保持した電気炉に投入した試験体に亀裂が発生し、耐爆裂性評価試験の結果亀裂が発生した。   Examples 10 and 19 to 21 in which the blending ratio of the siliceous ultrafine powder is within the specified range of the present invention (3.8 to 10% by mass when the total of each refractory raw material is 100% by mass) The compressive strength is 20 MPa or more, which is the standard for coke oven bricks, the thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.29 to −0.15%, and the creep resistance is also good. As a result of the thermal shock resistance evaluation test, the result of the explosion resistance evaluation test was also good. On the other hand, Comparative Example 10 in which the mixing ratio of the siliceous ultrafine powder is 3% by mass has a relatively large amount of added water, the compressive strength after drying at 110 ° C. is less than 20 MPa, and the expansion coefficient under load when reaching 1400 ° C. is -0.43%. In Comparative Example 11 in which the blending ratio of the siliceous ultrafine powder is 12% by mass, the test specimen placed in the electric furnace maintained at 1200 ° C. was cracked as a result of the thermal shock resistance evaluation test. As a result, cracks occurred.

[試験6]
結晶質シリカ、溶融石英、及びシリカ質超微粉の配合比率を一定とする耐火原料配合物100質量%に対して、外掛けで、珪酸ソーダ、難溶性珪酸ソーダの量を変化させ、ポルトランドセメント、減水剤、有機質繊維、水を一定量として添加し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。その結果を表12に示す。
[Test 6]
With respect to 100% by mass of the refractory raw material composition in which the blending ratio of crystalline silica, fused silica, and siliceous ultrafine powder is constant, the amount of sodium silicate and sparingly soluble silicate soda is changed on the outside, Portland cement, Using a refractory test piece obtained by adding water-reducing agent, organic fiber and water in constant amounts, kneading, molding, and de-framed, measuring physical properties and heat shock resistance in the same manner as [Test 1] An evaluation test and an explosion resistance evaluation test were conducted. The results are shown in Table 12.

Figure 2016052960
Figure 2016052960

珪酸ソーダ及び/又は難溶性珪酸ソーダ量の外掛け添加量が、本発明の規定範囲内(NaOに換算して0.04〜0.30質量%)の実施例3、実施例22〜24は、全て、圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.24〜−0.07%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験、耐爆裂性評価試験の結果も良好であった。一方、比較例12,13は、珪酸ソーダ及び難溶性珪酸ソーダの合量が、固形NaOに換算して0.00又は0.02質量%であり、1400℃到達時の荷重下膨張率が、それぞれ−1.06%、−0.58%で大きい収縮性を示した。比較例14は、珪酸ソーダ及び難溶性珪酸ソーダの合量が、固形NaOに換算して0.40質量%であり、クリープ変形率が大きい。 Example 3 and Examples 22 to 13 in which the amount of the outer addition of the amount of sodium silicate and / or the hardly soluble sodium silicate is within the specified range of the present invention (in terms of Na 2 O, 0.04 to 0.30% by mass). No. 24 has a compressive strength of 20 MPa or more, which is the standard for coke oven bricks, and a thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.24 to −0.07%, and is resistant to creep. The results of the evaluation test for the heat resistance, the thermal shock resistance and the explosion resistance evaluation were also good. On the other hand, in Comparative Examples 12 and 13, the total amount of sodium silicate and hardly soluble sodium silicate was 0.00 or 0.02% by mass in terms of solid Na 2 O, and the expansion coefficient under load when reaching 1400 ° C. However, they showed large shrinkage at −1.06% and −0.58%, respectively. In Comparative Example 14, the total amount of sodium silicate and hardly soluble sodium silicate is 0.40% by mass in terms of solid Na 2 O, and the creep deformation rate is large.

[試験7]
珪石質耐火原料配合物(骨材)として、結晶質シリカ、溶融石英及び使用済珪石れんがを用い、この3種骨材の配合比率を一定とし、シリカ質超微粉を8質量%を含有する原料配合物100質量%に対して、外掛けで、有機質繊維の量を変化させ、ポルトランドセメント1.0質量%、珪酸ソーダを固形NaOに換算して0.02質量%、難溶性珪酸ソーダを固形NaOに換算して0.07質量%、有機質減水剤0.2質量%添加し、キャスタブル耐火物の軟らかさが一定になるように添加水量を調整し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。その結果を表13に示す。
[Test 7]
Raw material containing 8% by mass of siliceous ultrafine powder, using crystalline silica, fused silica and spent silica brick as a siliceous refractory raw material composition (aggregate), with a constant mixing ratio of these three types of aggregate The amount of the organic fiber is changed as an outer shell with respect to 100% by mass of the blend, and 1.0% by mass of Portland cement, 0.02% by mass of sodium silicate converted to solid Na 2 O, and hardly soluble sodium silicate 0.07% by mass in terms of solid Na 2 O and 0.2% by mass of organic water reducing agent are added, and the amount of water added is adjusted so that the softness of the castable refractory is constant, kneading, molding, de-framework Using the refractory specimens obtained in this manner, the physical property values, the thermal shock resistance evaluation test, and the explosion resistance evaluation test were performed in the same manner as in [Test 1]. The results are shown in Table 13.

Figure 2016052960
Figure 2016052960

有機質繊維の外掛けの添加量が、本発明の規定範囲内(0.03〜0.20質量%)の範囲にある実施例7、実施施例25〜27は、全て、圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.22〜−0.30%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験、耐爆裂性評価試験の結果も良好であった。一方、有機質繊維の外掛け添加量が0.02質量%の比較例15は、耐爆裂性評価試験の結果亀裂が発生した。有機質繊維の外掛け添加量が0.3質量%の比較例16は、添加水量が比較的多くなり、110℃乾燥後の圧縮強度は20MPa未満であり、1400℃到達時の荷重下膨張率は−0.54%となり、収縮性が大きい。   In Examples 7 and 25 to 27, the amount of the organic fiber outer sheath added is within the specified range (0.03 to 0.20% by mass) of the present invention. Brick is 20 MPa or more which is a standard, and the thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.22 to −0.30%, and the creep resistance, thermal shock resistance evaluation test, The result of the explosiveness evaluation test was also good. On the other hand, in Comparative Example 15 in which the amount of the outer coating of the organic fiber was 0.02% by mass, cracks occurred as a result of the explosion resistance evaluation test. In Comparative Example 16 in which the outer fiber addition amount of the organic fiber is 0.3% by mass, the amount of added water is relatively large, the compressive strength after drying at 110 ° C. is less than 20 MPa, and the expansion coefficient under load when reaching 1400 ° C. is -0.54%, showing high shrinkage.

[試験8]
珪石質耐火原料配合物(骨材)として、前記使用済珪石れんが及び溶融石英を用い、両骨材の配合比率を変化させ、シリカ質超微粉を8質量%を含有する原料配合物100質量%に対して、外掛けで、ポルトランドセメントの量を変化させ、珪酸ソーダを固形NaOに換算して0.02質量%、難溶性珪酸ソーダを固形NaOに換算して0.05質量%、有機質減水剤を0.2質量%、有機質繊維を0.05%添加し、キャスタブル耐火物の軟らかさが一定になるように添加水量を調整し、混練、成形、脱枠して得た耐火物試験片を用いて、[試験1]と同じ要領で物性値の測定、及び、熱衝撃抵抗性評価試験、耐爆裂性評価試験を行った。その結果を表14に示す。なお、表14の実施例28,29の原料配合物の欄は、各耐火原料の合計が100質量%を超える。
[Test 8]
As the siliceous refractory raw material mixture (aggregate), the used silica brick and fused quartz are used, the mixing ratio of both aggregates is changed, and the raw material mixture containing 8% by mass of siliceous ultrafine powder is 100% by mass. On the other hand, the amount of Portland cement was changed as an outer shell, and the sodium silicate was converted to solid Na 2 O at 0.02% by mass, and the hardly soluble sodium silicate was converted to solid Na 2 O at 0.05% by mass. %, Organic water-reducing agent 0.2% by mass, organic fiber 0.05% was added, the amount of water added was adjusted so that the softness of the castable refractory was constant, and kneaded, molded, and unframed. Using the refractory test pieces, physical property values, thermal shock resistance evaluation tests, and explosion resistance evaluation tests were performed in the same manner as in [Test 1]. The results are shown in Table 14. In the column of raw material blends of Examples 28 and 29 in Table 14, the total of each refractory raw material exceeds 100% by mass.

Figure 2016052960
Figure 2016052960

実施例1,28,29は、全て、圧縮強度はコークス炉用れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.37〜−0.14%の範囲内にあり、耐クリープ性、熱衝撃抵抗性評価試験の結果、耐爆裂性評価試験の結果も良好であった。   In Examples 1, 28, and 29, the compressive strength is 20 MPa or more, which is the standard for coke oven bricks, and the thermal expansion coefficient under load when reaching 1400 ° C. is in the range of −0.37 to −0.14%. The results of the creep resistance and thermal shock resistance evaluation tests and the explosion resistance evaluation tests were also good.

[試験9]
コークス炉熱間積替用キャスタブル耐火物としては、加熱時の熱衝撃抵抗性に優れ、かつ、高温での荷重下収縮が抑制され、高温下でのクリープ変形率が小さく、適時に十分な硬化性を有し、容易に流し込み成形が可能なものが適している。前記の[試験1]〜[試験8]のラボ試験で、コークス炉熱間積替用キャスタブル耐火物に適した実施例を選び、養生後、乾燥後、1000℃焼成後、1200℃焼成後、1400℃焼成後の曲げ強度及び圧縮強度をJIS−R−2553に準じて測定した。この結果を表15に示す。
[Test 9]
Castable refractories for coke oven hot transfer are excellent in thermal shock resistance during heating, with reduced shrinkage under load at high temperature, low creep deformation rate at high temperature, and sufficient hardening in a timely manner And those that can be easily cast and molded are suitable. In the laboratory tests of [Test 1] to [Test 8] above, select an example suitable for a castable refractory for coke oven hot transfer, after curing, after drying, after firing at 1000 ° C., after firing at 1200 ° C., The bending strength and compressive strength after firing at 1400 ° C. were measured according to JIS-R-2553. The results are shown in Table 15.

Figure 2016052960
Figure 2016052960

表15に示した各実施例の焼成後の圧縮強度は、全て、養生後の圧縮強度及び乾燥後の圧縮強度より大きい。
一方、各実施例の乾燥後曲げ強度は、全て養生後曲げ強度より大きい。また、各実施例において、1000℃及び/又は1200℃焼成後の曲げ強度は乾燥後曲げ強度に劣るが、1400℃焼成後曲げ強度は1000℃及び/又は1200℃焼成後の曲げ強度より大きい。実施例13はポルトランドセメントの含有量が最も多く、養生後強度及び乾燥後強度が最も大きい。
実施例1の原料配合物は結晶を含有せず全てガラス質であり、1200℃焼成後曲げ強度が著しく低下するが、1000℃焼成後曲げ強度は実施例1が最も大きく、乾燥後曲げ強度からの低下率が最も小さい。
The compressive strength after firing in each example shown in Table 15 is all greater than the compressive strength after curing and the compressive strength after drying.
On the other hand, the bending strength after drying of each example is higher than the bending strength after curing. In each example, the bending strength after baking at 1000 ° C. and / or 1200 ° C. is inferior to the bending strength after drying, but the bending strength after baking at 1400 ° C. is larger than the bending strength after baking at 1000 ° C. and / or 1200 ° C. In Example 13, the content of Portland cement is the highest, and the strength after curing and the strength after drying are the largest.
The raw material composition of Example 1 does not contain crystals and is all glassy. The bending strength after firing at 1200 ° C. is remarkably reduced, but the bending strength after firing at 1000 ° C. is the largest in Example 1, and from the bending strength after drying. The rate of decline is the smallest.

実施例1,28,29は、実施例13,7,15,10と比べて、原料配合物にガラス相含有量が多く結晶相含有量は少ない。本発明では、珪酸ソーダ、難溶性珪酸ソーダを添加して、溶融石英の結晶化を促進させ、高温での荷重下収縮を抑制している。1200℃は、溶融石英の結晶化速度が大きくなる温度域であり、試験片内部で構造変化が生じる。結晶相含有量が比較的多い実施例7,15,10では、溶融石英の結晶化により影響が少ないので、1200℃焼成後の曲げ強度が1000℃焼成後の曲げ強度と略同等になったと推測される。   In Examples 1, 28, and 29, compared to Examples 13, 7, 15, and 10, the raw material blend has a high glass phase content and a low crystal phase content. In the present invention, sodium silicate and hardly soluble sodium silicate are added to promote crystallization of fused quartz and to suppress shrinkage under load at high temperature. 1200 ° C. is a temperature range in which the crystallization speed of the fused silica increases, and a structural change occurs inside the test piece. In Examples 7, 15, and 10 having a relatively large crystal phase content, the bending strength after firing at 1200 ° C. is almost equal to the bending strength after firing at 1000 ° C. because there is little influence due to crystallization of fused quartz. Is done.

実施例13,7,15,10,28,29は、低温型クリストバライト及び/又は低温型トリジマイト及び/又は低温型クオーツからなるSiO質結晶相を有する。これらのSiO質結晶相は、150〜600℃の温度域で、低温型から高温型へ相転移し、急激な膨張性を示す。1000℃焼成後曲げ強度の低下はSiO質結晶相の相転移がある程度関与していると推測される。実施例1はSiO質結晶相を有しないので、1000℃焼成後曲げ強度の低下はほとんどない。
溶融石英の結晶化による構造的スポーリングの発生や,SiO質結晶相の転移による熱的スポーリングの発生を回避するためには、1200℃及び1000℃焼成後の曲げ強度が、乾燥後の曲げ強度に比べて著しく低下しないものがより望ましいと推測される。実施例7,15,10の1200℃及び1000℃焼成後曲げ強度は、乾燥後の曲げ強度からの強度低下率が小さい。実施例28はポルトランドセメントの含有量が最も少ないので、他の実施例に比べて強度は劣るが,焼成による強度変化は小さくなっている。
Examples 13, 7, 15, 10, 28, and 29 have a SiO 2 crystalline phase composed of low-temperature type cristobalite and / or low-temperature type tridymite and / or low-temperature type quartz. These SiO 2 crystalline phases undergo a phase transition from a low temperature type to a high temperature type in a temperature range of 150 to 600 ° C., and exhibit rapid expansibility. The decrease in bending strength after firing at 1000 ° C. is presumed to involve some degree of phase transition of the SiO 2 crystalline phase. Since Example 1 does not have a SiO 2 crystalline phase, there is almost no decrease in bending strength after firing at 1000 ° C.
In order to avoid structural spalling due to crystallization of fused quartz and thermal spalling due to transition of SiO 2 crystalline phase, the bending strength after firing at 1200 ° C. and 1000 ° C. is It is presumed that a material that does not significantly decrease the bending strength is more desirable. The bending strength after firing at 1200 ° C. and 1000 ° C. in Examples 7, 15, and 10 has a small strength reduction rate from the bending strength after drying. In Example 28, since the content of Portland cement is the smallest, the strength is inferior to that of the other examples, but the strength change due to firing is small.

[試験10]
表16に示す実施例13,15,10,28は、外掛けで添加したポルトランドセメント量が2〜0.7質量%の範囲内で差があり、養生後及び乾燥後の曲げ強度及び圧縮強度の大きさもポルトランドセメント添加量に従っている(表15参照)。
プレキャストブロック耐火物は、一般的に、プレキャスト製造工場で成形、乾燥して出荷される。実施例13,15,10,28について、プレキャストブロック耐火物製造工場で、並型及び大型プレキャストブロック耐火物を実際に製造し、振動成形、養生、脱枠、乾燥を経て、正常なキャスタブルブロック耐火物乾燥品が得られるかを試験した。
[Test 10]
Examples 13, 15, 10, and 28 shown in Table 16 have a difference in the amount of Portland cement added as an outer shell within a range of 2 to 0.7% by mass, and bending strength and compressive strength after curing and after drying. The size also follows the amount of Portland cement added (see Table 15).
The precast block refractory is generally molded and dried at a precast manufacturing factory. For Examples 13, 15, 10, and 28, normal and large-sized precast block refractories were actually manufactured at a precast block refractory manufacturing plant, and after normal vibration molding, curing, deframement, and drying, normal castable block refractories were manufactured. It was tested whether a dried product could be obtained.

この時、混練はボルテックスミキサーを用い、振動成形時間は、並型プレキャストブロックは15分、大型プレキャストブロックは50分とした。いずれも25℃×24h養生後脱枠し、乾燥器中で300℃×24時間(昇温速度1℃/分)乾燥後、通常室内で自然冷却した。
並型プレキャストブロック耐火物(乾燥後質量約15Kg)の概略図を図2に、大型プレキャストブロック耐火物(乾燥後重量:約550Kg)の概略図を図3に示す。
大型プレキャスト耐火物については、脱枠時の型枠を横倒しにする必要が生じた場合、及び、乾燥後成形品の吊り上げ吊り下げ、移動は、工場天井に設置されているホイスト式クレーンを利用し、吊りベルトや吊りクランプを用いて行った。このプレキャストブロック耐火物製造試験結果を表16に示す。
At this time, a vortex mixer was used for kneading, and the vibration molding time was 15 minutes for the normal precast block and 50 minutes for the large precast block. All were deframed after curing at 25 ° C. × 24 h, dried in a dryer at 300 ° C. × 24 hours (temperature increase rate 1 ° C./min), and then naturally cooled in a normal room.
FIG. 2 shows a schematic diagram of a parallel type precast block refractory (mass after drying of about 15 kg), and FIG. 3 shows a schematic diagram of a large precast block refractory (weight after drying: about 550 kg).
For large precast refractories, the hoist type crane installed on the factory ceiling should be used when it is necessary to lay the formwork sideways when unframed, and when the molded product is lifted, suspended, and moved after drying. This was done using a suspension belt or suspension clamp. The precast block refractory production test results are shown in Table 16.

Figure 2016052960
Figure 2016052960

実施例13,15,10,28は、全て、正常な並型プレキャストブロック耐火物乾燥品として成形できた。
500Kgを超える大型プレキャストブロック耐火物の脱枠は、ホイスト式クレーンやフォークリフトを駆使して、成形体を横倒しにしたり、さかさまにして行う作業があり、成形体の角やダボ部を、床面、型枠、フォークリフトの爪に接触させて傷つけ易い。
実施例28は、実施例13,15,10に比べるとポルトランドセメント添加量が少なく、養生強度が小さく、脱枠作業に慎重を要する。
実施例13,15,10,28の大型プレキャストブロック耐火物乾燥品は、全て、吊りクランプや吊りベルトを装着したホイスト式クレーンにより、吊り上げ、吊り下ろし、水平移動は問題なく実行できた。
Examples 13, 15, 10, and 28 could all be molded as normal, parallel-type precast block refractory dried products.
The removal of large-sized precast block refractories exceeding 500Kg is carried out by using a hoist crane or forklift to lay the molded product on its side or upside down. The corners and dowels of the molded product are placed on the floor surface. It can be easily damaged by contact with the claws of the formwork and forklift.
In Example 28, compared with Examples 13, 15, and 10, the amount of Portland cement added is small, the curing strength is small, and careful removal work is required.
All of the large precast block refractory dried products of Examples 13, 15, 10, and 28 were lifted and suspended by a hoist type crane equipped with a suspension clamp and a suspension belt, and the horizontal movement could be performed without any problem.

Claims (5)

溶融石英と、クリストバライト及びクオーツからなる結晶質シリカと、シリカ質超微粉からなる珪石質耐火原料配合物100質量%に対して、外掛けでポルトランドセメントを0.7〜2質量%と、減水剤を0.03〜0.3質量%と、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%を添加した珪石質キャスタブルであり、前記珪石質耐火原料配合物の配合割合が、溶融石英96〜70質量%、クリストバライト及びクオーツからなる結晶質シリカ0〜20質量%、シリカ質超微粉3.8〜10質量%であることを特徴とする珪石質キャスタブル耐火物。 With respect to 100% by mass of fused silica, crystalline silica composed of cristobalite and quartz, and 100% by mass of siliceous refractory raw material composed of ultrafine siliceous powder, 0.7-2% by mass of Portland cement is used as a water reducing agent. Is a siliceous castable in which 0.04 to 0.30 mass% is added in terms of 0.03-0.3 mass% and sodium silicate converted to solid Na 2 O, and the composition of the siliceous refractory raw material composition A siliceous castable refractory characterized in that the proportion is 96 to 70% by mass of fused silica, 0 to 20% by mass of crystalline silica composed of cristobalite and quartz, and 3.8 to 10% by mass of siliceous ultrafine powder. 溶融石英と、クリストバライト及びクオーツからなる結晶質シリカと、焼成珪石と、シリカ質超微粉からなる珪石質耐火原料配合物100質量%に対して、外掛けでポルトランドセメントを0.7〜1.3質量%と、減水剤を0.03〜0.3質量%と、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%を添加した珪石質キャスタブル耐火物であり、前記珪石質耐火原料配合物の配合割合が、溶融石英96〜70質量%、クリストバライト及びクオーツからなる結晶質シリカ0〜20質量%、焼成珪石10質量%以下、シリカ質超微粉3.8〜10質量%であり、かつ前記結晶質シリカと焼成珪石の合量が20質量%以下であることを特徴とする珪石質キャスタブル耐火物。 0.7 to 1.3 Portland cement is externally applied to 100% by mass of the fused silica, crystalline silica composed of cristobalite and quartz, calcined silica, and siliceous refractory raw material composition composed of siliceous ultrafine powder. mass%, and 0.03 to 0.3 mass% of water-reducing agent, a silica castable refractory supplemented with 0.04 to 0.30 wt% in terms of sodium silicate into solid Na 2 O, wherein The blending ratio of the siliceous refractory raw material composition is 96 to 70% by mass of fused quartz, 0 to 20% by mass of crystalline silica composed of cristobalite and quartz, 10% by mass or less of calcined silica, and 3.8 to 10% by mass of siliceous ultrafine powder. %, And the total amount of the crystalline silica and the calcined silica is 20% by mass or less. 前記焼成珪石がトリジマイトを主成分とし、又はトリジマイト及びクリストバライトを主成分とすることを特徴とする請求項2に記載された珪石質キャスタブル耐火物。 The siliceous castable refractory according to claim 2, wherein the calcined silica is composed mainly of tridymite, or mainly composed of tridymite and cristobalite. 珪石質耐火骨材配合物100質量%に対して、外掛けで0.03〜0.20質量%以下の有機質繊維を含むことを特徴とする請求項1〜3のいずれかに記載された珪石質キャスタブル耐火物。 The silica stone according to any one of claims 1 to 3, comprising 0.03 to 0.20 mass% or less of organic fiber as an outer shell with respect to 100 mass% of the siliceous refractory aggregate composition. Quality castable refractory. 請求項1〜4のいずれかに記載された珪石質キャスタブル耐火物に水を加えて混練し、型枠内に流し込み、乾燥することにより得られる珪石質プレキャストブロック耐火物。 A siliceous precast block refractory obtained by adding water to the siliceous castable refractory according to any one of claims 1 to 4, kneading, pouring into a mold and drying.
JP2014178578A 2014-09-02 2014-09-02 Silica castable refractories Active JP6189268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178578A JP6189268B2 (en) 2014-09-02 2014-09-02 Silica castable refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178578A JP6189268B2 (en) 2014-09-02 2014-09-02 Silica castable refractories

Publications (2)

Publication Number Publication Date
JP2016052960A true JP2016052960A (en) 2016-04-14
JP6189268B2 JP6189268B2 (en) 2017-08-30

Family

ID=55744189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178578A Active JP6189268B2 (en) 2014-09-02 2014-09-02 Silica castable refractories

Country Status (1)

Country Link
JP (1) JP6189268B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028030A (en) * 2016-08-19 2018-02-22 株式会社メガテック Repair method of coke oven
JP2018145356A (en) * 2017-03-08 2018-09-20 新日鐵住金株式会社 Method for constructing furnace top part of chamber oven type coke oven and structure of furnace top part of chamber oven type coke oven
CN108911763A (en) * 2018-06-19 2018-11-30 佘春霞 A kind of large size coke dry quenching furnace cooling section high abrasion indefinite form castable
JP2019112503A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Method of constructing coke oven of chamber oven type, and refractory structure of coke oven of chamber oven type
CN110981509A (en) * 2019-12-16 2020-04-10 江苏诺明高温材料股份有限公司 Preparation method of low-cost low-water-demand siliceous heat supplementing material
WO2020213629A1 (en) * 2019-04-17 2020-10-22 黒崎播磨株式会社 Precast block for coke oven and coke oven using same
JP2021050275A (en) * 2019-09-25 2021-04-01 Jfeスチール株式会社 Block refractory material
CN113788692A (en) * 2021-10-12 2021-12-14 浙江锦诚新材料股份有限公司 Anti-skinning castable and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397281B2 (en) 2019-09-05 2023-12-13 日本製鉄株式会社 Manufacturing method of precast blocks for coke ovens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734084A (en) * 1980-08-08 1982-02-24 Nippon Steel Corp Flow casting refractories
JPS61116213A (en) * 1984-11-10 1986-06-03 Harima Refract Co Ltd Method for manufacturing small-sized incinerator
JPH0632667A (en) * 1992-07-16 1994-02-08 Suchiraito Kogyo Kk Refractory coating material with hydrogencarbonic acid compound
JP2013189322A (en) * 2012-02-13 2013-09-26 Nippon Tokushu Rozai Kk Silica-based castable refractory and silica-based precast block refractory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734084A (en) * 1980-08-08 1982-02-24 Nippon Steel Corp Flow casting refractories
JPS61116213A (en) * 1984-11-10 1986-06-03 Harima Refract Co Ltd Method for manufacturing small-sized incinerator
JPH0632667A (en) * 1992-07-16 1994-02-08 Suchiraito Kogyo Kk Refractory coating material with hydrogencarbonic acid compound
JP2013189322A (en) * 2012-02-13 2013-09-26 Nippon Tokushu Rozai Kk Silica-based castable refractory and silica-based precast block refractory

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028030A (en) * 2016-08-19 2018-02-22 株式会社メガテック Repair method of coke oven
JP2018145356A (en) * 2017-03-08 2018-09-20 新日鐵住金株式会社 Method for constructing furnace top part of chamber oven type coke oven and structure of furnace top part of chamber oven type coke oven
JP2019112503A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Method of constructing coke oven of chamber oven type, and refractory structure of coke oven of chamber oven type
CN108911763A (en) * 2018-06-19 2018-11-30 佘春霞 A kind of large size coke dry quenching furnace cooling section high abrasion indefinite form castable
WO2020213629A1 (en) * 2019-04-17 2020-10-22 黒崎播磨株式会社 Precast block for coke oven and coke oven using same
JPWO2020213629A1 (en) * 2019-04-17 2021-04-30 黒崎播磨株式会社 Precast block for coke oven and coke oven using it
JP2021050275A (en) * 2019-09-25 2021-04-01 Jfeスチール株式会社 Block refractory material
JP7276044B2 (en) 2019-09-25 2023-05-18 Jfeスチール株式会社 block refractories
CN110981509A (en) * 2019-12-16 2020-04-10 江苏诺明高温材料股份有限公司 Preparation method of low-cost low-water-demand siliceous heat supplementing material
CN113788692A (en) * 2021-10-12 2021-12-14 浙江锦诚新材料股份有限公司 Anti-skinning castable and preparation method thereof

Also Published As

Publication number Publication date
JP6189268B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189268B2 (en) Silica castable refractories
JP5763569B2 (en) Silica castable refractories and siliceous precast block refractories
JP5879414B2 (en) Sintered refractories with improved thermal shock resistance
JP5927287B2 (en) Composition for refractory or kiln tools of regular or irregular shape
JP2007303011A (en) Inorganic fiber and monolithic refractory using the same
CN102295460A (en) Making method of high-strength alumina magnesia spinel pouring material for ladles
CN106167398A (en) honeycomb ceramic heat accumulator and preparation method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
EA035245B1 (en) Unshaped product for repairing glass melting furnaces
JP6498515B2 (en) Refractory composition and refractory concrete block using the same
CN101663251B (en) Tempered refractory concrete block having controlled deformation
CN103508740A (en) Ramming mass for repairing gap bridge magnesia-alumina spinel bricks of sleeve lime kiln
CN104529488A (en) High-strength thermal-shock-resisting light heat-insulting fireproof brick and preparation method thereof
JP6207423B2 (en) Lightweight alkali-proof fireproof insulation brick and method for producing the same
CN108484127A (en) A kind of highiy refractory brick and preparation method
EP3421571B1 (en) Precast refractory block for coke oven
JP6330877B2 (en) Method for producing cordierite castable refractories
CN108752027A (en) A kind of refractory brick and preparation method thereof
CN107602136A (en) A kind of refractory material liner body for tundish and preparation method thereof
RU2426707C1 (en) Heat insulation mass
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
CN105016747B (en) A kind of anti-thermal shock fire resisting zircon corundum brick
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
CN108455917A (en) A kind of novel glass brick and preparation method thereof
JP6386317B2 (en) Silica brick for hot repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R150 Certificate of patent or registration of utility model

Ref document number: 6189268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250