JP2013189322A - Silica-based castable refractory and silica-based precast block refractory - Google Patents

Silica-based castable refractory and silica-based precast block refractory Download PDF

Info

Publication number
JP2013189322A
JP2013189322A JP2012035847A JP2012035847A JP2013189322A JP 2013189322 A JP2013189322 A JP 2013189322A JP 2012035847 A JP2012035847 A JP 2012035847A JP 2012035847 A JP2012035847 A JP 2012035847A JP 2013189322 A JP2013189322 A JP 2013189322A
Authority
JP
Japan
Prior art keywords
silica
mass
siliceous
refractory
fused quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035847A
Other languages
Japanese (ja)
Other versions
JP5763569B2 (en
Inventor
Jun Ishihara
順 石原
Yoshiyasu Endo
善康 遠藤
Koji Nishijima
浩司 西嶋
Junya Takenami
潤哉 竹並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Rozai KK
Original Assignee
Nippon Tokushu Rozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Rozai KK filed Critical Nippon Tokushu Rozai KK
Priority to JP2012035847A priority Critical patent/JP5763569B2/en
Publication of JP2013189322A publication Critical patent/JP2013189322A/en
Application granted granted Critical
Publication of JP5763569B2 publication Critical patent/JP5763569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a silica-based castable refractory which has excellent thermal shock resistance during heating, suppresses shrinkage under load at high temperatures, exhibits good creep resistance at high temperatures, and hardens within a proper time.SOLUTION: A silica-based castable refractory is obtained by adding, to 100 mass% of a silica-based refractory raw material mixture comprising fused quartz and fired silica stone, 3.0-9.3 mass% (expressed in terms of solid SiO) of colloidal silica and 0.04-0.30 mass% (expressed in terms of solid NaO) of sodium silicate. The fired silica stone consists mainly of tridymite, blending percentages of fused quartz and fired silica stone are 40-100 mass% of fused quartz and 0-60 mass% of fired silica stone, and a total addition amount of sodium components is 0.06-0.32 mass% (expressed in terms of solid NaO) externally relative to 100 mass% of the composition. The fired silica stone may consist mainly of tridymite and cristobalite. In this case, blending percentages of fused quartz and fired silica stone are set to 60-100 mass% of fused quartz and 0-40 mass% of fired silica.

Description

本発明は、加熱時の熱衝撃抵抗性に優れ、かつ高温での荷重下収縮が抑制され、クリープ変形し難い珪石質キャスタブル耐火物、及びそれを用いた珪石質プレキャストブロック耐火物に関する。   The present invention relates to a siliceous castable refractory material that is excellent in thermal shock resistance during heating, is suppressed from shrinkage under load at high temperatures, and hardly undergoes creep deformation, and a siliceous precast block refractory using the same.

一般的に、コークス炉では、珪石れんががライニングされて30年以上の長期間使用され、その長期間使用中損傷したライニング部位の補修は、れんがの交換あるいは耐火材料の溶射などによって行われている。このうち、補修用れんがは、500℃前後で保温されたコークス炉内壁に築造されるため、熱衝撃抵抗性が要求される。   Generally, in a coke oven, silica brick is lined for a long period of 30 years or more, and repair of damaged lining parts during long-term use is performed by replacing bricks or spraying refractory materials. . Among these, the repair brick is required to have thermal shock resistance because it is built on the inner wall of the coke oven kept at around 500 ° C.

ライニング用の珪石れんがは、結晶相として主にトリジマイトとクリストバライトとからなるが、それぞれの結晶は、低温領域で、低温型から高温型転移による異常体積変化を生じるために、熱衝撃抵抗性が劣り、熱間補修用れんがとしては不適である。トリジマイトは117℃と163℃で相転移し、それぞれ0.15%と0.2%の線変化が生じ、また、クリストバライトは230℃〜270℃で転移し、約0.4%の線変化が生じる。   Silica brick for lining mainly consists of tridymite and cristobalite as crystal phases, but each crystal has an abnormal volume change due to transition from low temperature type to high temperature type in low temperature region, so thermal shock resistance is inferior. It is not suitable as a hot repair brick. Tridymite undergoes phase transitions at 117 ° C and 163 ° C, resulting in 0.15% and 0.2% linear changes, respectively, and cristobalite transitions at 230 ° C to 270 ° C, with a linear change of approximately 0.4%. Arise.

そのため、通常、熱間補修用の珪石れんがとしては、焼成珪石と低熱膨張性である溶融石英を使用したれんがが使用されている。クリストバライトとトリジマイトの1000℃における熱間膨張率は、それぞれ、1.5%と1.0%であるのに対して溶融石英は0.1%と非常に小さく、そのため、れんが全体の熱膨張率を小さくすることができて熱衝撃抵抗性が生じる。例えば特許文献1〜5に、クリストバライト及び/又はトリジマイトを主成分とする焼成珪石と溶融石英とからなる、熱衝撃抵抗性を有する珪石れんがが記載されている。   Therefore, as a silica brick for hot repair, a brick using a fused silica and a fused silica having a low thermal expansion is usually used. The hot expansion coefficients of cristobalite and tridymite at 1000 ° C. are 1.5% and 1.0%, respectively, whereas that of fused quartz is very small, 0.1%. Can be reduced, and thermal shock resistance is generated. For example, Patent Documents 1 to 5 describe silica impact bricks having thermal shock resistance, which are made of calcined silica mainly composed of cristobalite and / or tridymite and fused silica.

溶融石英は、その粒度に関係なく、温度に依存した速度で結晶化する性質をもつ。れんがは、製造過程で、通常1200℃〜1400℃で焼成される。焼成前に配合された溶融石英が、焼成工程で結晶化が進むと熱衝撃抵抗性が減少する。溶融石英は、焼成過程で粒子表面から結晶化するので、微粉部に使うと焼成工程で内部まで結晶化してしまい、非晶質部が消失するため、れんがでは、粗粒部に溶融石英を用いて焼成工程での非晶質部の完全消失を回避している。   Fused quartz has the property of crystallizing at a temperature dependent rate regardless of its particle size. The brick is usually fired at 1200 ° C. to 1400 ° C. in the manufacturing process. When the fused quartz blended before firing is crystallized in the firing process, the thermal shock resistance decreases. Since fused quartz is crystallized from the particle surface during the firing process, if it is used in the fine powder part, it will crystallize to the inside during the firing process, and the amorphous part disappears. Thus, complete disappearance of the amorphous part in the firing process is avoided.

一方、キャスタブル耐火物は、耐火性骨材と硬化剤を混合した粉体の耐火物で、水和性又は化学結合を有し、加水して混練後、振動、突き硬め等種々の形式で施工される。硬化後急昇温すると、施工体内部の水蒸気圧が高まって爆裂する恐れがあるため、数日かけて、数百℃に達するまで、段階的に昇温して乾燥する必要がある。
キャスタブル耐火物用硬化剤としては、通常アルミナセメントが使用されるが、珪石質キャスタブル耐火物にアルミナセメントを使用すると、アルミナセメントの主成分であるCaO・Alが骨材の主成分であるSiOと反応して、アルミニウム・カルシウムシリケート(CaO−Al−SiO)系低融点物を生成し、高温域では骨材粒子の結合を失って荷重下熱膨張率が著しく低下するため、低温域での使用に限定される。
Castable refractories, on the other hand, are powder refractories mixed with refractory aggregates and hardeners. They have hydration properties or chemical bonds. Is done. If the temperature rises rapidly after curing, the water vapor pressure inside the construction body may increase and explode. Therefore, it is necessary to raise the temperature stepwise until it reaches several hundred degrees C over several days and dry it.
As a hardener for castable refractories, alumina cement is usually used. However, when alumina cement is used for siliceous castable refractories, CaO · Al 2 O 3 which is the main component of alumina cement is the main component of aggregate. Reacts with a certain SiO 2 to produce a low-melting material of aluminum / calcium silicate (CaO—Al 2 O 3 —SiO 2 ), which loses aggregate particle bonding at a high temperature range and significantly lowers the thermal expansion coefficient under load. Therefore, it is limited to use in a low temperature range.

ポルトランドセメントは、主成分がカルシウムシリケートで、珪石質キャスタブル耐火物に使用したとき、CaO−Al−SiO系低融点物の生成量が少なく、高融点のCaO−SiO系化合物が結合材としての機能を維持するため、アルミナセメントを硬化剤とした場合に比べて、より高温域で使用できる。このため、ポルトランドセメントは、珪石質キャスタブル耐火物の硬化剤として主流となっている。例えば特許文献6,7に、硬化剤としてポルトランドセメントを使用した珪石質キャスタブル耐火物が記載されている。特許文献6は、溶融石英を主原料とし、ポルトランドセメント2〜10質量%、シリカ超微粉1〜8質量%からなる珪石質キャスタブル耐火物に関する。特許文献7は、主要鉱物相としてトリジマイト70質量%以上を含む使用後珪石れんがや焼成後の珪石れんが規格外品を主原料とし、ポルトランドセメントを2〜5重量%、フュームドシリカを8〜22質量%で配合して調整した珪石質キャスタブル耐火物に関する。 Portland cement is mainly composed of calcium silicate, and when used in siliceous castable refractories, the amount of CaO-Al 2 O 3 —SiO 2 low melting point product is small and high melting point CaO—SiO 2 type compound is In order to maintain the function as a binder, it can be used in a higher temperature range than when alumina cement is used as a hardener. For this reason, Portland cement has become the mainstream as a hardener for siliceous castable refractories. For example, Patent Documents 6 and 7 describe a siliceous castable refractory using Portland cement as a curing agent. Patent Document 6 relates to a siliceous castable refractory material containing 2-10% by mass of Portland cement and 1-8% by mass of silica ultrafine powder using fused quartz as a main raw material. Patent Document 7 discloses a post-use silica brick that contains 70% by mass or more of tridymite as a main mineral phase or a non-standard product of a fired silica brick, 2-5% by weight of Portland cement, and 8-22 of fumed silica. The present invention relates to a siliceous castable refractory blended and adjusted by mass%.

しかし、ポルトランドセメントの主成分であるカルシウムシリケート(その主物質はエーライト(3CaO・SiO))は、下記化学反応式に示すように、水和して3CaO・2SiO・3HOと多量のCa(OH)を生成するが、その水和速度はアルミナセメントを構成する主物質であるCaO・Alと比べると遅い。また、Ca(OH)の脱水温度は500℃〜600℃で高い。このため、ポルトランドセメントを硬化剤とした珪石質キャスタブル耐火物は、硬化促進剤を添加するなどの手段のほか、充分な爆裂対策が必要である。 However, calcium silicate which is the main component of Portland cement (its main substance is alite (3CaO · SiO 2 )) is hydrated and contains a large amount of 3CaO · 2SiO 2 · 3H 2 O as shown in the chemical reaction formula below. Ca (OH) 2 is produced, but its hydration rate is slower than that of CaO.Al 2 O 3 which is the main material constituting the alumina cement. Moreover, the dehydration temperature of Ca (OH) 2 is high at 500 ° C to 600 ° C. For this reason, siliceous castable refractories using Portland cement as a curing agent need to take sufficient measures against explosion in addition to means such as adding a curing accelerator.

Figure 2013189322
Figure 2013189322

コロイダルシリカのゲル化作用を用いて硬化させるキャスタブル耐火物が、例えば特許文献8,9に記載されている。特許文献8に記載されたキャスタブル耐火物は、耐火組成物100質量部に対し、シリカゾルなどの珪酸質化学結合材を固形SiOに換算して0.05〜5.0質量部と、ポリアクリル酸及び/又はその塩0.001〜1.0質量部とを配合したもので、主たる用途は溶融金属容器の内張り用である。ポリアクリル酸及び/又はその塩は、ゲル化時間(硬化時間)の調整剤として使用されており、実施例ではゲル化剤として1規定塩酸又は1規定水酸化ナトリウムの水溶液が0.1〜1.0質量%用いられている。また、実施例ではアルミナセメントを2%配合している。 For example, Patent Documents 8 and 9 describe castable refractories that are cured using the gelation action of colloidal silica. The castable refractory disclosed in Patent Document 8 is 0.05 to 5.0 parts by mass in terms of 100 to part by mass of the refractory composition, with a siliceous chemical binder such as silica sol converted to solid SiO 2 , and polyacrylic. It is an acid and / or salt thereof blended in an amount of 0.001 to 1.0 parts by mass, and its main use is for the lining of molten metal containers. Polyacrylic acid and / or a salt thereof is used as a regulator for gelation time (curing time), and in the examples, 1N hydrochloric acid or 1N sodium hydroxide aqueous solution is 0.1 to 1 as a gelling agent. 0.0% by mass is used. In the examples, 2% of alumina cement is blended.

特許文献9に記載されたキャスタブル耐火物は、通常の耐火性原料100質量部に対し、結合材として難溶性珪酸ソーダを0.3〜5質量部及びコロイダルシリカを固形分換算で0.09〜3質量部添加したものである。このキャスタブル耐火物は、難溶性珪酸ソーダがコロイダルシリカをゲル化させることにより自硬性をもたせているが、適時に充分な硬化性をもたせるには、コロイダルシリカ固形分と難溶性珪酸ソーダとの質量比を5以下とする必要があり、難溶性珪酸ソーダの添加量が多くなる。
なお、難溶性珪酸ソーダは、珪砂と水酸化ナトリウムを高温で溶融後冷却したオートクレーブ処理前の粉砕物(カレット)であり、これをオートクレーブ処理後脱水して得られる粉末又は水溶液が一般に珪酸ソーダと呼ばれているものである。珪酸ソーダは水に易溶性であるが、難溶性珪酸ソーダは、水に対する溶解速度が珪酸ソーダに比べて非常に小さい。
The castable refractory described in Patent Document 9 is 0.39 to 5 parts by mass of a hardly soluble sodium silicate as a binder and 0.09 to 0.09 in terms of solid content with respect to 100 parts by mass of a normal refractory raw material. 3 parts by mass is added. This castable refractory has a self-hardening property because the hardly soluble sodium silicate gels the colloidal silica, but the mass of the colloidal silica solid content and the hardly soluble sodium silicate so as to have sufficient curability in a timely manner. The ratio needs to be 5 or less, and the amount of hardly soluble sodium silicate added increases.
Slightly soluble sodium silicate is a pulverized product (cullet) before autoclave treatment in which silica sand and sodium hydroxide are melted at a high temperature and cooled, and a powder or an aqueous solution obtained by dehydration after autoclave treatment generally contains sodium silicate and It is what is called. Although sodium silicate is readily soluble in water, poorly soluble sodium silicate has a much lower dissolution rate in water than sodium silicate.

特公平1−38073号公報Japanese Patent Publication No. 1-338073 特公平1−38074号公報JP-B-1-38074 特開平05−132355号公報JP 05-132355 A 特開2003−55035号公報JP 2003-55035 A 特開2007−302540号公報JP 2007-302540 A 特開昭56−78476号公報JP 56-78476 A 特開2006−290657号公報JP 2006-290657 A 特開7−149575号公報JP-A-7-149575 特開昭55−167182号公報JP-A-55-167182

珪石質キャスタブル耐火物は、珪石れんがの製造に必要な焼成工程が無く、熱衝撃抵抗性を付与するために配合される溶融石英の焼成工程での結晶化対策を必要としないという利点がある。また、珪石質キャスタブル耐火物の硬化剤として、特許文献8,9に記載されたコロイダルシリカのゲル化作用を用いると、アルミナセメントやポルトランドセメントを用いた場合に比べて、CaO、Al等の不純物を含有しないため、珪石れんが相当の品質を有するキャスタブル耐火物が得られる可能性がある。
しかし、特許文献8,9には加熱時の熱衝撃抵抗性、高温下での耐クリープ性についての記載はなく、また、特許文献9の技術を珪石質キャスタブル耐火物に適用した場合、ゲル化剤として多量の難溶性珪酸ソーダを必要とし、耐熱性(耐荷重下収縮、耐クリープ性)が低くなることが懸念される。
Silicic castable refractories have the advantage that there is no firing step necessary for the production of silica bricks and no crystallization countermeasures are required in the firing step of the fused quartz compounded to impart thermal shock resistance. Further, when the gelling action of colloidal silica described in Patent Documents 8 and 9 is used as a curing agent for siliceous castable refractories, CaO and Al 2 O 3 are used as compared with the case of using alumina cement or Portland cement. Therefore, there is a possibility that a castable refractory having a considerable quality of silica brick can be obtained.
However, Patent Documents 8 and 9 do not describe thermal shock resistance during heating and creep resistance under high temperature, and if the technique of Patent Document 9 is applied to a siliceous castable refractory, gelation occurs. A large amount of poorly soluble sodium silicate is required as an agent, and there is a concern that the heat resistance (shrinkage under load, creep resistance) is lowered.

本発明は、珪石質キャスタブル耐火物に係る上記従来技術の問題点に鑑みてなされたもので、加熱時の熱衝撃抵抗性に優れ、かつ高温での荷重下収縮が抑制され、高温下での耐クリープ性が良好で、適時に十分な硬化性を有する珪石質キャスタブル耐火物、珪石質プレキャストブロック耐火物を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art relating to siliceous castable refractories, is excellent in thermal shock resistance during heating, and is suppressed from shrinkage under load at high temperatures, An object of the present invention is to provide a siliceous castable refractory and a siliceous precast block refractory having good creep resistance and sufficient curability at the appropriate time.

本発明に係る珪石質キャスタブル耐火物は、溶融石英と焼成珪石からなる珪石質耐火原料配合物100質量%に対して、外掛けでコロイダルシリカを固形SiOに換算して3.0〜9.3質量%、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%添加したもので、焼成珪石がトリジマイトを主成分とし、珪石質耐火原料配合物の溶融石英と焼成珪石の配合割合が、溶融石英40〜100質量%、焼成珪石0〜60質量%(0質量%を含む)とされる。また、外掛けでのトータルのソーダ成分添加量(コロイダルシリカ等に含まれるソーダ成分の合計)が、固形NaOに換算して0.06〜0.32質量%とされる。 The siliceous castable refractory according to the present invention is obtained by converting colloidal silica into solid SiO 2 by 3.0 to 9.9 with respect to 100% by mass of a siliceous refractory raw material composition composed of fused quartz and calcined silica. 3% by mass, sodium silicate in terms of solid Na 2 O added in an amount of 0.04 to 0.30% by mass, calcined quartz is mainly composed of tridymite, fused quartz and calcined silica of siliceous refractory raw material composition The blending ratio is set to 40 to 100% by mass of fused quartz and 0 to 60% by mass (including 0% by mass) of calcined silica. Further, the total amount of soda components added to the outer shell (the total amount of soda components contained in the colloidal silica or the like) is 0.06 to 0.32% by mass in terms of solid Na 2 O.

本発明に係る珪石質キャスタブル耐火物は、トリジマイトを主成分とする焼成珪石に代えて、トリジマイト及びクリストバライトを主成分とする焼成珪石を用いることができる。この場合、溶融石英と焼成珪石の配合割合は、溶融石英60〜100質量%、焼成珪石0〜40質量%(0質量%を含む)とされる。
上記珪石質キャスタブル耐火物は、珪石質耐火原料配合物の一部として、シリカフラワーを8質量%以下含むことができる。
In the siliceous castable refractory according to the present invention, a calcined silica mainly composed of tridymite and cristobalite can be used instead of the calcined silica mainly composed of tridymite. In this case, the blending ratio of the fused silica and the fired silica is 60-100% by weight of fused silica and 0-40% by weight (including 0% by weight) of the fired silica.
The siliceous castable refractory can contain 8% by mass or less of silica flour as a part of the siliceous refractory raw material composition.

本発明によれば、加熱時の熱衝撃抵抗性に優れ、高温での荷重下収縮が抑制され、高温下での耐クリープ性が良好で、乾燥が容易で、適時に十分な硬化性を有する珪石質キャスタブル耐火物、珪石質プレキャストブロック耐火物を提供することができる。   According to the present invention, the thermal shock resistance during heating is excellent, the shrinkage under load at high temperature is suppressed, the creep resistance at high temperature is good, the drying is easy, and the curability is sufficient in a timely manner. A siliceous castable refractory and a siliceous precast block refractory can be provided.

実施例及び比較例の熱膨張曲線のグラフである。It is a graph of the thermal expansion curve of an Example and a comparative example. 実施例及び比較例の荷重下熱膨張曲線のグラフである。It is a graph of the thermal expansion curve under a load of an Example and a comparative example. 別の実施例及び比較例の荷重下熱膨張曲線のグラフである。It is a graph of the thermal expansion curve under load of another Example and a comparative example. 別の実施例及び比較例の熱膨張曲線のグラフである。It is a graph of the thermal expansion curve of another Example and a comparative example. 別の実施例及び比較例の荷重下熱膨張曲線のグラフである。It is a graph of the thermal expansion curve under load of another Example and a comparative example.

以下、本発明に係る珪石質キャスタブル耐火物の珪石質耐火原料配合物及び硬化剤についてより具体的に説明する。
(珪石質耐火原料配合物)
本発明に係る珪石質キャスタブル耐火物は、珪石質耐火原料配合物(骨材)として、溶融石英と焼成珪石(結晶質珪石)を用いる。焼成珪石としては、トリジマイトを主成分とする焼成珪石、又はトリジマイト及びクリストバライトを主成分とする焼成珪石を用いる。溶融石英としては、水晶、石英を2000℃以上の高温で溶融したものを急冷固化したいわゆる石英ガラス、金属アルコキシドの溶液から加水分解法によって石英ガラスの多孔質ゲルを作製し、これを乾燥・焼成して得られた高純度溶融石英などが使用できる。
Hereinafter, the siliceous refractory raw material composition and the curing agent of the siliceous castable refractory according to the present invention will be described more specifically.
(Siliceous refractory raw material composition)
The siliceous castable refractory according to the present invention uses fused quartz and calcined silica (crystalline silica) as a siliceous refractory raw material composition (aggregate). As the calcined silica, calcined silica mainly composed of tridymite or calcined silica mainly composed of tridymite and cristobalite is used. As fused quartz, quartz glass, which is a quartz glass melted at a high temperature of 2000 ° C. or higher, is rapidly cooled and solidified, and a porous gel of quartz glass is prepared by a hydrolysis method from a solution of metal alkoxide, which is dried and fired. The high-purity fused quartz obtained in this way can be used.

珪石質耐火原料配合物における溶融石英と焼成珪石の配合割合は、焼成珪石がトリジマイトを主成分とする場合、溶融石英40〜100質量%、焼成珪石0〜60質量%とし、トリジマイト及びクリストバライトを主成分とする場合、溶融石英60〜100質量%、焼成珪石0〜40質量%とする。溶融石英100質量%、すなわち珪石質耐火原料配合物中に焼成珪石を含まない場合もあり得る。トリジマイトを主成分とする焼成珪石を使用する場合において、焼成珪石の割合が60質量%を超え(溶融石英の配合割合が40質量%より少ない)、又は、トリジマイト及びクリストバライトを主成分とする焼成珪石を使用する場合において、焼成珪石の割合が40質量%を超える(溶融石英の配合割合が60質量%より少ない)と、熱衝撃抵抗性が低下する。   In the siliceous refractory raw material composition, the proportion of fused quartz and calcined silica is 40 to 100% by mass of fused quartz and 0 to 60% by mass of calcined silica when the calcined silica is mainly composed of tridymite, and mainly tridymite and cristobalite. When it makes it into a component, it is set as 60-100 mass% of fused quartz, and 0-40 mass% of baked silica. There may be a case where the fused silica is not contained in the fused silica 100 mass%, that is, the siliceous refractory raw material composition. When using calcined silica with tridymite as a main component, the ratio of calcined silica exceeds 60% by mass (the blending ratio of fused silica is less than 40% by mass), or calcined silica with tridimite and cristobalite as main components. When the ratio of calcined silica exceeds 40% by mass (the blending ratio of fused silica is less than 60% by mass), the thermal shock resistance decreases.

トリジマイトを主成分とする焼成珪石は、例えば使用済珪石質れんがを破砕して粒度調整したもの、トリジマイト及びクリストバライトを主成分とする焼成珪石は、例えば未使用珪石質れんが(規格外品や不要品で使用しなかったもの)を破砕して粒度調整したものが使用できる。使用済み珪石質れんがは、トリジマイトとクリストバライトのX線回折強度比は概ね100対10以上であり、本発明ではこのようなX線回折強度比を有するものを、トリジマイトを主成分とする焼成硅石という。また、未使用珪石質れんがは、トリジマイトとクリストバライトのX線回折強度比は概ね100対90〜140の範囲内であり、本発明ではこのようなX線回折強度比を有するものを、トリジマイト及びクリストバライトを主成分とする焼成硅石という。焼成珪石の配合割合が多いとき、焼成珪石は1mm以下の細粒、微粉域に用い、溶融石英は1mm超の粗粒域に用いることが望ましい。   The calcined silica with tridymite as the main component is, for example, one obtained by crushing used siliceous brick and adjusting the particle size. Can be used after crushing and adjusting the particle size. The used siliceous brick has an X-ray diffraction intensity ratio of tridymite and cristobalite of approximately 100 to 10 or more, and in the present invention, the one having such an X-ray diffraction intensity ratio is called a calcined meteorite mainly composed of tridymite. . In addition, the unused siliceous brick has an X-ray diffraction intensity ratio of tridymite and cristobalite generally in the range of 100 to 90 to 140. In the present invention, those having such an X-ray diffraction intensity ratio are treated with tridymite and cristobalite. It is called calcined meteorite with the main component. When the blending ratio of calcined silica is large, it is desirable to use calcined silica in fine and fine powder regions of 1 mm or less and fused quartz in coarse particle regions of more than 1 mm.

前記珪石質耐火原料配合物は、溶融石英と焼成珪石のほか、必要に応じてシリカフラワーを含むことができる。また、溶融石英として、積算平均粒子径が概ね1μm未満の溶融石英超微粉を含むことができる。シリカフラワー及び溶融石英超微粉は、コロイダルシリカの添加量及び添加水量を低減し、嵩比重や圧縮強度を向上させる作用がある。シリカフラワーは、添加量が多くなると混練後のキャスタブル耐火物の流動性、充填性が低下するため、珪石質耐火原料配合物中のシリカフラワーの配合割合は8質量%以下が好ましい。   The siliceous refractory raw material composition may contain silica flour as necessary, in addition to fused quartz and calcined silica. In addition, the fused quartz can include fused quartz ultrafine powder having an integrated average particle diameter of less than about 1 μm. Silica flour and fused silica ultrafine powder have the effect of reducing the amount of colloidal silica added and the amount of water added, and improving bulk specific gravity and compressive strength. As the amount of silica flour increases, the flowability and filling properties of the castable refractory after kneading deteriorate, so the blending proportion of silica flour in the siliceous refractory raw material composition is preferably 8% by mass or less.

(硬化剤)
本発明に係る珪石質キャスタブル耐火物は、硬化剤として、コロイダルシリカ及び珪酸ソーダを用いる。珪酸ソーダはコロイダルシリカのゲル化剤であり、前記のとおり、カレット(難水溶性珪酸ソーダ)を、オートクレーブ処理後脱水して得られた通常のものである。この珪酸ソーダは、SiO/NaOのモル比が1〜3.3で易水溶性であり、粉末又は水溶液の形態で使用することができる。前記珪石質耐火原料配合物100質量%に対して、コロイダルシリカは外掛けで3.0〜9.3質量%(固形SiOに換算)、珪酸ソーダは0.04〜0.30質量%(固形NaOに換算)添加する。珪石質キャスタブル耐火物の製造にあたっては、例えば、前記珪石質耐火原料配合物に珪酸ソーダを添加し、原液若しくは水で希釈したコロイダルシリカで混練し、型枠内に流し込み施工し、乾燥する。
(Curing agent)
The siliceous castable refractory according to the present invention uses colloidal silica and sodium silicate as a curing agent. Sodium silicate is a colloidal silica gelling agent, and, as described above, is an ordinary product obtained by dehydrating cullet (slightly water-soluble sodium silicate) after autoclaving. This sodium silicate has a SiO 2 / Na 2 O molar ratio of 1 to 3.3 and is readily water-soluble, and can be used in the form of a powder or an aqueous solution. Colloidal silica is 3.0-9.3 mass% (converted to solid SiO 2 ) as an outer shell, and sodium silicate is 0.04-0.30 mass% with respect to 100 mass% of the siliceous refractory raw material composition. (Converted to solid Na 2 O). In the production of the siliceous castable refractory, for example, sodium silicate is added to the siliceous refractory raw material composition, kneaded with colloidal silica diluted with an undiluted solution or water, cast into a mold, and dried.

コロイダルシリカは、固形分の99%以上がSiOであるため、本発明に係る珪石質キャスタブル耐火物の化学成分は不純物が少なく、珪石れんがと略同等である。このため、CaO−Al−SiO系低融点化合物の生成量が少なく、荷重下熱収縮が緩和され、耐クリープ性が良好な珪石質キャスタブル耐火物を得ることができる。また、シリカゲルに吸着する水分の大部分は100〜150℃で脱水するので、容易に乾燥でき、加熱時の耐爆裂性も良好である。 Since 99% or more of the solid content of the colloidal silica is SiO 2 , the chemical component of the siliceous castable refractory according to the present invention has few impurities and is substantially equivalent to the silica brick. Therefore, it is possible to obtain a siliceous castable refractory having a small amount of CaO—Al 2 O 3 —SiO 2 -based low melting point compound, relaxing thermal contraction under load, and having good creep resistance. Moreover, since most of the water | moisture content adsorb | sucked to a silica gel is spin-dry | dehydrated at 100-150 degreeC, it can dry easily and the explosion resistance at the time of a heating is also favorable.

本発明に係るキャスタブル耐火物は、珪石質耐火原料配合物に珪酸ソーダを添加し、原液もしくは水で希釈したコロイダルシリカで混練し、型枠内に流し込み施工するものであるが、流し込み可能な柔らかさを維持できる可使時間、脱枠できる程の硬さになるまでの硬化時間は、コロイダルシリカの固形SiO量が多い程、また、ゲル化剤として添加される珪酸ソーダの固形NaO量が多い程短くなる。可使時間が短かいと流し込みが困難となり、硬化時間が長過ぎると施工工程が延長するので、通常、可使時間は0.5時間以上必要とされ、硬化時間は72時間以内であることが要求される。さらに、可使時間は1時間以上、硬化時間は24時間以内が望ましいとされる。 The castable refractory according to the present invention is one in which sodium silicate is added to a siliceous refractory raw material composition, kneaded with a colloidal silica diluted with a stock solution or water, and poured into a formwork. The pot life that can maintain the hardness, and the curing time until it becomes so hard that it can be removed, the more the amount of solid SiO 2 in colloidal silica, and the solid Na 2 O of sodium silicate added as a gelling agent The higher the amount, the shorter. If the pot life is short, pouring becomes difficult, and if the curing time is too long, the construction process is extended. Therefore, the pot life is usually required to be 0.5 hours or more, and the curing time is 72 hours or less. Required. Further, the pot life is preferably 1 hour or longer and the curing time is preferably within 24 hours.

珪酸ソーダには、コロイダルシリカのゲル化剤としての機能の他に、1000℃〜1400℃の高温での荷重下収縮を緩和し、耐クリープ性を向上させる作用がある。コロイダルシリカは、pH変化、電解質の添加によって常温でゲル化する。ゲル化剤としては、塩化アンモニウム、珪弗化ソーダ、アンモニウム明礬、石膏、硫酸マグネシウム等、種々のものが知られており、単にコロイダルシリカをゲル化させるだけであれば、これらのゲル化剤を適宜添加すればよいが、これらには高温での荷重下収縮を緩和する作用がない。   In addition to the function as a gelling agent for colloidal silica, sodium silicate has the effect of relaxing the shrinkage under load at a high temperature of 1000 ° C. to 1400 ° C. and improving the creep resistance. Colloidal silica gels at room temperature by pH change and addition of electrolyte. Various gelling agents such as ammonium chloride, sodium silicofluoride, ammonium alum, gypsum, magnesium sulfate, etc. are known, and these gelling agents can be used only if gelling colloidal silica. These may be added as appropriate, but they do not have the effect of reducing shrinkage under load at high temperatures.

適切な可使時間及び硬化時間を得るとともに、高温での荷重下収縮の緩和を図るとの観点から、コロイダルシリカは外掛けで3.0〜9.3質量%(固形SiOに換算)、珪酸ソーダは同じく0.04〜0.30質量%(固形NaOに換算)の範囲内で添加することとした。珪酸ソーダのNaO固形分が0.04質量%より少ないと、高温での荷重下収縮の緩和作用が小さく、0.30質量%より多いと耐クリープ性が低下する。
なお、本発明に係る珪石質キャスタブル耐火物において、珪石質耐火原料配合物の大部分を占める溶融石英は、1000℃程度以上の温度で結晶化する性質をもち、この結晶化はアルカリ金属又はアルカリ土類金属の存在下で加速し、またアルカリ金属はSiOと反応して低融点物を生成する。従って、技術常識的には、本発明に係る珪石質キャスタブル耐火物は高温での荷重下収縮が大きくなってもおかしくないが、実際には逆に高温での荷重下収縮が抑制される。
珪酸ソーダのゲル化作用を補助するため、少量の塩化アンモニウムや硫酸ソーダ等、他のゲル化剤を添加することができる。例えば塩化アンモニウムは0.2質量%以下、硫酸ソーダは固形NaOに換算して0.02質量%以下程度が適当である。
From the standpoint of obtaining an appropriate pot life and curing time and reducing the shrinkage under load at a high temperature, colloidal silica is 3.0 to 9.3 mass% (in terms of solid SiO 2 ) as an outer shell, Similarly, sodium silicate was added within a range of 0.04 to 0.30 mass% (in terms of solid Na 2 O). When the Na 2 O solid content of sodium silicate is less than 0.04% by mass, the relaxation effect of shrinkage under load at high temperature is small, and when it is more than 0.30% by mass, creep resistance is lowered.
In addition, in the siliceous castable refractory according to the present invention, fused quartz, which occupies most of the siliceous refractory raw material composition, has a property of crystallizing at a temperature of about 1000 ° C. or more. It accelerates in the presence of earth metals, and alkali metals react with SiO 2 to produce low melting point products. Therefore, technically, the siliceous castable refractory according to the present invention is not strange even if the shrinkage under load at high temperature is increased, but actually the shrinkage under load at high temperature is suppressed.
In order to assist the gelation action of sodium silicate, other gelling agents such as a small amount of ammonium chloride and sodium sulfate can be added. For example, ammonium chloride is suitably 0.2% by mass or less, and sodium sulfate is suitably 0.02% by mass or less in terms of solid Na 2 O.

本発明に係るキャスタブル耐火物において、珪酸ソーダは固形NaOに換算して0.04〜0.30質量%添加されるが、コロイダルシリカに微量含まれるソーダ成分も荷重下収縮を緩和する作用があると考えられる。従って、本発明では、珪酸ソーダの添加量だけでなく、コロイダルシリカに含まれるソーダ成分をプラスしたトータルのソーダ成分添加量を、固形NaOに換算して、0.06〜0.32質量%と規定した。 In the castable refractory according to the present invention, sodium silicate is added in an amount of 0.04 to 0.30% by mass in terms of solid Na 2 O, but the soda component contained in a small amount in colloidal silica also acts to alleviate shrinkage under load. It is thought that there is. Therefore, in the present invention, not only the amount of sodium silicate added, but also the total amount of soda components added to the soda component contained in the colloidal silica is 0.06 to 0.32 mass in terms of solid Na 2 O. %.

(添加水量)
先に述べたとおり、珪石質キャスタブル耐火物の製造にあたっては、珪石質耐火原料配合物(骨材)に珪酸ソーダを添加し、原液若しくは水で希釈したコロイダルシリカで混練し、型枠内に流し込み施工し、乾燥させる。流し込み施工時のキャスタブル耐火物が硬すぎると充填不足が生じ、軟らかすぎると特に振動テーブルを用いた施工方法において珪石質耐火原料配合物の粗粒部と微粉部が分離しやすくなり、均質な施工体が得られない。流し込み施工時のキャスタブル耐火物の軟らかさは、添加水量(コロイダルシリカの分散媒として添加されるものを含む)で調整することができる。流し込み施工時のキャスタブル耐火物の最適な軟らかさは、突き棒、バイブレーター、振動テーブルといった施工方法によって異なるが、概ね6〜12質量%の範囲内で施工方法に適する添加水量を実験的に求めればよい。
(Additional water amount)
As mentioned earlier, in the production of siliceous castable refractories, sodium silicate is added to the siliceous refractory raw material composition (aggregate), kneaded with colloidal silica diluted with stock solution or water, and poured into the mold Install and dry. If castable refractories are too hard during casting, filling will be insufficient, and if they are too soft, the coarse and fine parts of the siliceous refractory raw material composition will be easily separated, especially in the construction method using a vibration table, and the construction will be homogeneous. I can't get a body. The softness of the castable refractory at the time of casting construction can be adjusted by the amount of added water (including that added as a dispersion medium for colloidal silica). The optimum softness of the castable refractory during casting works depends on the construction method such as a stick, vibrator and vibration table, but if the amount of water added suitable for the construction method is experimentally determined within the range of 6 to 12% by mass. Good.

[共通事項]
トリジマイトを主成分とする焼成珪石として、熱風炉で長期間使用後回収した使用済珪石れんが屑を用い、トリジマイト及びクリストバライトを主成分とする焼成硅石として、規格外や不要となった未使用珪石れんが屑を用いた。使用済珪石れんが屑と未使用珪石れんが屑は、それぞれ約300Kgを無作為に採取し、3mm以下に破砕混合し、3−1mm、1−0.150mm、0.150mm以下に粒度分けした。
[Common subject matter]
Unused silica bricks that are out of specification or unnecessary are used as fired silica stones that have been collected after a long period of use in a hot-blast furnace as fired silica stones containing tridymite as the main component, and fired silica stones mainly containing tridymite and cristobalite. Waste was used. About 300 kg of used silica brick waste and unused silica brick waste were each randomly collected, crushed and mixed to 3 mm or less, and divided into particle sizes of 3-1 mm, 1-0.150 mm, and 0.150 mm or less.

3mm以下に破砕混合した使用済珪石れんが屑と未使用珪石れんが屑の中から、無作為に2Kg採取し、二分器で100gに縮分後、全量粉砕したものを試料として、それぞれの化学成分及び結晶相を調べた。結晶相はX線回折法で解析した。使用済珪石れんが屑と未使用珪石れんが屑の化学成分を表1に、結晶相及びX線回折強度を表2に示す。表2に示すように、使用済珪石れんが屑と未使用珪石れんが屑共に、結晶層は低温型のトリジマイトと低温型クリストバライトが認められた。表2において、クリストバライトのX線回折強度(最大回折強度)はトリジマイトのX線回折強度(最大回折強度)を100としたときの相対値である。
使用済珪石れんが屑はトリジマイトを主成分とし、未使用珪石れんが屑はトリジマイト及びクリストバライトを主成分としている。
Randomly sample 2Kg of used silica bricks and unused silica bricks that were crushed and mixed to 3mm or less. The crystal phase was examined. The crystal phase was analyzed by X-ray diffraction method. Table 1 shows chemical components of used silica brick waste and unused silica brick waste, and Table 2 shows crystal phases and X-ray diffraction intensities. As shown in Table 2, low-temperature type tridymite and low-temperature type cristobalite were observed in the crystal layer for both used silica brick waste and unused silica brick waste. In Table 2, the X-ray diffraction intensity (maximum diffraction intensity) of cristobalite is a relative value when the X-ray diffraction intensity (maximum diffraction intensity) of tridymite is 100.
Spent silica brick waste is mainly composed of tridymite, and unused silica brick waste is mainly composed of tridymite and cristobalite.

Figure 2013189322
Figure 2013189322

Figure 2013189322
Figure 2013189322

溶融石英として、3−1mm、1−0.150mm、0.150mm以下に粒度分けした、SiO含有量が99.9重量%以上の高純度非結晶質品を用いた。
コロイダルシリカとして、水を分散媒としたコロイダルシリカを用いた。実施例で用いた2種類のコロイダルシリカA,Bの材質を表3に示す。実施例では、コロイダルシリカA又はコロイダルシリカBの原液、若しくはそれらの希釈液を用いた。
As the fused quartz, a high-purity amorphous product having a SiO 2 content of 99.9% by weight or more and divided into particle sizes of 3-1 mm, 1-0.150 mm, and 0.150 mm or less was used.
As colloidal silica, colloidal silica using water as a dispersion medium was used. Table 3 shows the materials of the two types of colloidal silica A and B used in the examples. In the examples, a stock solution of colloidal silica A or colloidal silica B, or a diluted solution thereof was used.

Figure 2013189322
Figure 2013189322

[実施例1]
珪石質耐火原料配合物(骨材)として、前記使用済珪石れんが及び溶融石英を用い、両骨材の配合比率を変化させ、原料配合物100質量%に対して、外掛けで、珪酸ソーダを固形NaOとして0.14質量%、コロイダルシリカを固形SiOに換算して6.7質量%、水を10.0質量%になるように添加し、混練、成形、脱枠して得た耐火物試験片を用いて、物性値(嵩比重、圧縮強度、熱膨張率、荷重下熱膨張率、クリープ値)の測定、及び熱衝撃抵抗性評価を行った。
混練は、株式会社ダルトン製の万能混練機を用いた。混練後のキャスタブル耐火物の軟らかさは実施例1〜6及び比較例1でほぼ同じであった。成形は、林バイブレーター株式会社製の振動テーブルを用い、振動数50Hz、振動時間5分の条件で行った。混練後及び成形後のキャスタブル耐火物を用い、室温(25℃)における可使時間及び硬化時間を測定した。
[Example 1]
As the siliceous refractory raw material composition (aggregate), the spent silica brick and fused silica are used, the blending ratio of both aggregates is changed, and sodium silicate is added as an outer shell to 100% by mass of the raw material composition. Obtained by adding 0.14% by mass as solid Na 2 O, colloidal silica to 6.7% by mass in terms of solid SiO 2 , and 10.0% by mass of water, kneading, molding, and de-framed. Using the refractory test pieces, physical property values (bulk specific gravity, compressive strength, thermal expansion coefficient, thermal expansion coefficient under load, creep value) and thermal shock resistance evaluation were performed.
For the kneading, a universal kneader manufactured by Dalton Co., Ltd. was used. The softness of the castable refractory after kneading was almost the same in Examples 1 to 6 and Comparative Example 1. Molding was performed using a vibration table manufactured by Hayashi Vibrator Co., Ltd. under conditions of a frequency of 50 Hz and a vibration time of 5 minutes. Using the castable refractories after kneading and molding, the pot life and curing time at room temperature (25 ° C.) were measured.

混練後のキャスタブル耐火物の一部(約500g)を、ビニール袋に入れ、25℃の一定温度に保持した恒温槽内に保存し、可使時間及び硬化時間測定用とした。このとき、ビニール袋の袋口を輪ゴムで閉じて恒温槽内に保存し、キャスタブル耐火物が乾燥しないようにした。キャスタブル耐火物の流動性を15分ごとに手触り感や目視で確認し、混練後から流動性低下(振動施工法で充填不足が生じるほどの流動性低下)が生じるまでの時間を一応の可使時間(仮にT1とする)とした。可使時間の測定開始から72時間を経過した時点で流動性低下が確認できなかった場合、以後の測定を中止した。
流動性低下が生じたと判断されたキャスタブル耐火物は、ビニール袋ごと振動テーブル上に置き5分間振動を与えて高密度化した後、再度流動性を前記の要領で確認し、流動性低下を再確認した場合は、当該キャスタブル耐火物の可使時間をT1と確定した。このキャスタブル耐火物は恒温槽内に戻して硬化時間測定用とした。一方、流動性低下を再確認しなかった(流動性が戻った)場合は、再度恒温槽に戻し、15分後に再びビニール袋ごと振動テーブル上に置き5分間振動を与えた後、再び流動性を前期要領で確認し、このとき流動性低下を再確認した場合は、当該キャスタブル耐火物の可使時間をT1+15分と確定した。流動性低下を再確認しなかった場合は、さらに以上のプロセスを繰り返した。
A part (about 500 g) of the castable refractory after kneading was put in a plastic bag and stored in a thermostat kept at a constant temperature of 25 ° C., and used for measuring the pot life and the curing time. At this time, the bag mouth of the plastic bag was closed with a rubber band and stored in a thermostatic bath so that the castable refractory was not dried. Check the fluidity of castable refractories every 15 minutes with the touch and visual sense, and use the time from kneading until the fluidity is lowered (flowiness is lowered enough to cause insufficient filling by vibration construction method). It was time (assuming T1). If no decrease in fluidity was confirmed after 72 hours had elapsed from the start of the pot life measurement, the subsequent measurement was stopped.
Castable refractories that have been judged to have deteriorated in fluidity are placed on a vibration table with plastic bags and subjected to vibration for 5 minutes to increase the density. Then, the fluidity is confirmed again as described above, and the decrease in fluidity is re-established. When confirmed, the pot life of the castable refractory was determined as T1. This castable refractory was returned to the thermostat for curing time measurement. On the other hand, if fluidity decline was not reconfirmed (fluidity returned), it was returned to the thermostatic bath again, and after 15 minutes, the plastic bag was placed on the vibration table again and subjected to vibration for 5 minutes. Was confirmed in the previous term, and when the fluidity drop was reconfirmed at this time, the pot life of the castable refractory was determined to be T1 + 15 minutes. If the fluidity decline was not reconfirmed, the above process was repeated.

硬化時間とは、混練後から成形体が損傷することなく脱枠できる程度に強度が発現するまでの時間である。この実施例では、硬化時間測定用のキャスタブル耐火物の強度を15分ごとに確認し、当該キャスタブル耐火物が腕力で潰れたり亀裂が生じたりしない程度に強度が発現するまでの時間を硬化時間とした。
一方、混練後のキャスタブル耐火物の一部は、JISR2553の規程に準ずる型枠に流し込み、型枠ごと上記と同じ恒温槽で養生し、これを硬化確認用とした。養生中はキャスタブル耐火物の流し込み面をビニールシートで覆い乾燥を防いだ。硬化時間測定用のキャスタブル耐火物が硬化時間に達した時点で、硬化確認用のキャスタブル耐火物を恒温槽から取り出し脱枠して、正常に脱枠できるかどうか確認するとともに、直ぐにJISR2553の規程に準じて圧縮強度を測定した。なお、本発明の実施例、比較例については、硬化時間到達時点において全て正常に脱枠可能で、かつ圧縮強度は全て4MPa以上であった。
The curing time is the time from when kneading until strength is developed to such an extent that the molded body can be removed without damage. In this embodiment, the strength of the castable refractory for measuring the curing time is confirmed every 15 minutes, and the time until the strength is developed to such an extent that the castable refractory is not crushed or cracked by arm force is defined as the curing time. did.
On the other hand, a part of the castable refractory after the kneading was poured into a mold conforming to the regulations of JISR2553, and the entire mold was cured in the same thermostatic bath as described above, and this was used for confirmation of curing. During curing, the castable refractories were covered with a plastic sheet to prevent drying. When the castable refractory for measuring the curing time reaches the curing time, take out the castable refractory for confirmation of curing from the thermostatic bath and check whether it can be removed normally, and immediately comply with the regulations of JISR2553. The compressive strength was measured accordingly. In addition, about the Example of this invention, and the comparative example, all could be removed normally normally at the time of hardening time arrival, and all the compressive strengths were 4 Mpa or more.

嵩比重、圧縮強度試験用試験片は、JIS−R−2553に記載の成形型を用いて成形した。圧縮強度はJIS−R−2553の規定に準じて測定した。表4に、110℃で24時間乾燥後、及び1200℃(昇温速度5℃/分)で3時間焼成後の冷間での嵩比重、及び圧縮強度の測定値を示す。
熱膨張率はJIS−R−2207−1(可視光投影方式)の規定に準じて測定した。表4に、1000℃での熱膨張率の測定値を示す。
The test piece for bulk specific gravity and compressive strength test was molded using a molding die described in JIS-R-2553. The compressive strength was measured in accordance with JIS-R-2553. Table 4 shows the measured values of bulk specific gravity and compressive strength after drying at 110 ° C. for 24 hours and after baking at 1200 ° C. (heating rate 5 ° C./min) for 3 hours.
The coefficient of thermal expansion was measured in accordance with JIS-R-2207-1 (visible light projection method). Table 4 shows the measured values of the coefficient of thermal expansion at 1000 ° C.

荷重下熱膨張率及びクリープ値は品川リフラクトリーズ株式会社製熱間クリープ試験炉(SRC−15型)を用い、0.2MPaの圧力を付加してJIS−R−2658の規定に準じて測定した。荷重下熱膨張率は、試験片を加熱速度5℃/分で1400℃まで加熱して測定した。表4には、1400℃に到達した時の荷重下熱膨張率の測定値を示す。続いて、そのまま1400℃で50時間保持し、50時間保持後の荷重下熱膨張率を測定した。表4に、1400℃で50時間保持後の荷重下熱膨張率と1400℃到達時の荷重下熱膨張率の差をクリープ値として示す。   The thermal expansion coefficient and creep value under load were measured in accordance with JIS-R-2658 using a hot creep test furnace (SRC-15 type) manufactured by Shinagawa Refractories Co., Ltd. with a pressure of 0.2 MPa. did. The thermal expansion coefficient under load was measured by heating the test piece to 1400 ° C. at a heating rate of 5 ° C./min. Table 4 shows the measured values of the coefficient of thermal expansion under load when the temperature reaches 1400 ° C. Then, it kept at 1400 degreeC for 50 hours as it was, and measured the thermal expansion coefficient under the load after holding for 50 hours. Table 4 shows the difference between the thermal expansion coefficient under load after holding at 1400 ° C. for 50 hours and the thermal expansion coefficient under load when reaching 1400 ° C. as a creep value.

熱衝撃抵抗性評価は、一辺100mmの立方体に成形し110℃×24時間乾燥後自然冷却した試験体を用い、この試験体を600℃又は1200℃に保持した電気炉中に投入し、3時間経過後に電気炉の電源を切って自然放冷した後に、試験体の外観を肉眼で観察する方法で行った。熱衝撃抵抗性は亀裂の有無で評価した。その結果を表4に示す。   The thermal shock resistance evaluation was performed by using a test body which was molded into a cube having a side of 100 mm, dried at 110 ° C. × 24 hours and then naturally cooled, and placed in an electric furnace maintained at 600 ° C. or 1200 ° C. for 3 hours. After the elapse of time, the electric furnace was turned off and allowed to cool naturally, and then the appearance of the specimen was observed with the naked eye. Thermal shock resistance was evaluated by the presence or absence of cracks. The results are shown in Table 4.

Figure 2013189322
Figure 2013189322

表4に示すように、実施例1〜6及び比較例1は全て、圧縮強度はコークス炉用珪石れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.13〜0.25%の範囲内にあり、耐クリープ性も良好であった。また、実施例1〜6は、熱衝撃抵抗性評価試験の結果も良好であった。これに対し、比較例1は、使用済珪石れんが(トリジマイトを主成分とする焼成硅石)から得た骨材の配合割合が過剰で、耐熱衝撃性評価試験で亀裂が発生した。
なお、実施例2と実施例3は、溶融石英と使用済珪石れんがの配合割合は同じであるが、実施例2は使用済珪石れんがを0.150mm以下の微粉域に、実施例3は使用済珪石れんがを0.150mm〜3mmの細粒、粗粒域に用いている。実施例3の1000℃での熱膨張率が実施例2より大きいのは、このためと考えられる。
As shown in Table 4, in all of Examples 1 to 6 and Comparative Example 1, the compressive strength is 20 MPa or more, which is the standard for coke oven quartzite brick, and the thermal expansion coefficient under load when reaching 1400 ° C. is −0. It was in the range of 13 to 0.25%, and the creep resistance was also good. In addition, in Examples 1 to 6, the result of the thermal shock resistance evaluation test was also good. On the other hand, in Comparative Example 1, the proportion of the aggregate obtained from used silica brick (fired meteorite composed mainly of tridymite) was excessive, and cracks occurred in the thermal shock resistance evaluation test.
In Examples 2 and 3, the blending ratio of fused silica and used silica brick is the same, but in Example 2, the used silica brick is used in a fine powder area of 0.150 mm or less, and Example 3 is used. Pre-silica brick is used for fine and coarse grained areas of 0.150 mm to 3 mm. The reason why the thermal expansion coefficient at 1000 ° C. of Example 3 is larger than that of Example 2 is considered for this reason.

[実施例2]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんが及び溶融石英を用い、両骨材の配合比率を変化させ、原料配合物100質量%に対して、外掛けで、珪酸ソーダを固形NaOとして0.14質量%、コロイダルシリカを固形SiOに換算して6.7重量%、水を10.0質量%になるように添加し、[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表5に示す。
[Example 2]
As the siliceous refractory raw material composition (aggregate), the above-mentioned unused silica brick and fused quartz are used, the blending ratio of both aggregates is changed, and sodium silicate is added as an outer shell to 100% by mass of the raw material composition. 0.14% by weight as solid Na 2 O, 6.7% by weight of colloidal silica in terms of solid SiO 2 and 10.0% by weight of water were added, and kneaded in the same manner as in [Example 1]. Using the refractory test pieces obtained by molding and deframement, the physical property values were measured and the thermal shock resistance was evaluated in the same manner as in [Example 1]. The results are shown in Table 5.

Figure 2013189322
Figure 2013189322

実施例1、実施例7〜10、比較例2〜3は全て、圧縮強度はコークス炉用珪石れんが規格である20MPa以上であって、1400℃到達時の荷重下熱膨張率は−0.13〜0.32%の範囲内にあり、耐クリープ性も良好であった。また、実施例1、実施例7〜10は、熱衝撃抵抗性評価試験の結果も良好であった。これに対し、比較例2,3は、未使用珪石れんが(トリジマイト及びクリストバライトを主成分とする焼成硅石)から得た骨材の配合割合が過剰で、熱衝撃抵抗性評価試験では亀裂が発生した。
なお、実施例7と実施例8は、溶融石英と未使用珪石質骨材との配合割合は同じであるが、実施例7は未使用珪石れんがを0.150mm以下の微粉域に20質量%使用しているのに対して、実施例8は未使用珪石れんがを0.150mm以下の微粉域に12質量%、0.150〜1mmの細粒域に8質量%使用している。実施例8の1000℃での熱膨張率が実施例7より大きいのは、このためと考えられる。
In all of Examples 1, Examples 7 to 10, and Comparative Examples 2 to 3, the compressive strength is 20 MPa or more, which is the standard for coke oven siliceous brick, and the thermal expansion coefficient under load when reaching 1400 ° C. is −0.13. It was in the range of ˜0.32%, and the creep resistance was also good. In addition, in Example 1 and Examples 7 to 10, the result of the thermal shock resistance evaluation test was also good. On the other hand, in Comparative Examples 2 and 3, the proportion of aggregate obtained from unused silica brick (fired meteorite composed mainly of tridymite and cristobalite) was excessive, and cracks occurred in the thermal shock resistance evaluation test. .
In Example 7 and Example 8, the blending ratio of fused quartz and unused siliceous aggregate is the same, but in Example 7, unused silica brick is 20% by mass in a fine powder region of 0.150 mm or less. On the other hand, Example 8 uses 12% by mass of unused silica brick in the fine powder region of 0.150 mm or less and 8% by mass in the fine particle region of 0.150 to 1 mm. The reason why the thermal expansion coefficient at 1000 ° C. of Example 8 is larger than that of Example 7 is considered for this reason.

表4,5に示すように、1000℃での熱膨張率は、珪石れんがの配合割合が多いほど大きくなる傾向がある。また、未使用珪石れんがを使用した比較例2,3では、使用済み珪石れんがを使用した比較例1に比べて、少ない配合割合で熱膨張率が1%を超え、かつ衝撃抵抗性評価試験で亀裂が発生している。
表4の実施例2,3及び表5の実施例7,8を比較すると、1000℃での熱膨張率は珪石れんがの粒度によっても変化し、珪石れんがを微粉域で多用した実施例2,7の方が、実施例3,8より熱膨張率が低くなっている。一方、熱膨張率が大きくなると熱衝撃抵抗性が低下する傾向になることは周知である
従って、本発明に係るキャスタブル耐火物において珪石れんがを配合する場合、衝撃抵抗性の観点からは、少ない配合割合で、微粉域で使用することが望ましく、かつ使用済み珪石れんが(トリジマイトを主成分とする焼成珪石)を使用することが望ましい。
As shown in Tables 4 and 5, the thermal expansion coefficient at 1000 ° C. tends to increase as the blending ratio of silica brick increases. Moreover, in Comparative Examples 2 and 3 using unused silica brick, the thermal expansion coefficient exceeds 1% with a small blending ratio compared to Comparative Example 1 using used silica brick, and in an impact resistance evaluation test. A crack has occurred.
Comparing Examples 2 and 3 in Table 4 and Examples 7 and 8 in Table 5, the coefficient of thermal expansion at 1000 ° C. also varies depending on the particle size of the silica brick, and Example 2 in which the silica brick is frequently used in the fine powder region. 7 has a lower coefficient of thermal expansion than Examples 3 and 8. On the other hand, it is well known that thermal shock resistance tends to decrease as the coefficient of thermal expansion increases. Therefore, when silica brick is blended in the castable refractory according to the present invention, the blending is small from the viewpoint of impact resistance. In proportion, it is desirable to use in the fine powder region, and it is desirable to use used silica brick (calcined silica with tridymite as the main component).

[実施例3]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんが及び溶融石英を用い、両骨材の配合比率を一定とし、かつコロイダルシリカの添加量(固形SiOに換算した添加量)及び水の添加量を一定とし、珪酸ソーダの添加量(固形NaOに換算した添加量)のみを変化させ、珪酸ソーダの添加量と硬化性の関係を調べた。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表6に示す。
[Example 3]
As the siliceous refractory raw material composition (aggregate), the unused silica brick and fused quartz are used, the blending ratio of both aggregates is constant, and the amount of colloidal silica added (added in terms of solid SiO 2 ) and The amount of water added was constant, only the amount of sodium silicate added (added in terms of solid Na 2 O) was changed, and the relationship between the amount of sodium silicate added and the curability was examined. Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 6.

Figure 2013189322
Figure 2013189322

表6に示すように、珪酸ソーダ添加量が多くなるに従い、可使時間及び硬化時間は短縮傾向を示した。表6に示す全ての実施例(実施例11〜14,7,15)において、可使時間及び硬化時間は通常要求される時間の範囲内である。また、実施例12〜14、実施例7及び実施例15は、珪酸ソーダ添加量(固形NaOに換算した添加量)が0.08〜0.16質量%であり、この範囲で好ましいとされる1時間以上の可使時間及び24時間以内の硬化時間が得られている。このときトータルのソーダ分(固形NaOに換算した添加量)は0.10〜0.18質量%である。なお、耐火物の物性値は、全ての実施例(実施例11〜14,7,15)においてほぼ同等であり、圧縮強度、1400℃到達時の荷重下熱膨張率、耐クリープ性及び熱衝撃抵抗性も良好であった。
一方、比較例4は珪酸ソーダ添加量(固形NaOに換算した添加量)がゼロであったため、72時間以内に硬化しなかった。従って、比較例4では、耐火物の物性値を測定していない。
As shown in Table 6, the pot life and the curing time tended to be shortened as the amount of sodium silicate added increased. In all the examples shown in Table 6 (Examples 11 to 14, 7, and 15), the pot life and the curing time are within the normally required time range. In Examples 12 to 14, Example 7 and Example 15, the amount of sodium silicate added (added in terms of solid Na 2 O) is 0.08 to 0.16% by mass, which is preferable in this range. A pot life of 1 hour or more and a curing time of 24 hours or less are obtained. At this time, the total soda content (added amount converted to solid Na 2 O) is 0.10 to 0.18% by mass. In addition, the physical property value of a refractory is substantially the same in all Examples (Examples 11 to 14, 7, and 15), and compressive strength, thermal expansion coefficient under load when reaching 1400 ° C., creep resistance, and thermal shock Resistance was also good.
On the other hand, Comparative Example 4 was not cured within 72 hours because the amount of sodium silicate added (the amount added in terms of solid Na 2 O) was zero. Therefore, in Comparative Example 4, the physical property value of the refractory is not measured.

[実施例4]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんが及び溶融石英を用い、両骨材の配合比率を一定とし、かつ珪酸ソーダの添加量(固形NaOに換算した添加量)及び水の添加量を一定とし、コロイダルシリカの添加量(固形SiOに換算した添加量)のみを変化させ、コロイダルシリカの添加量と硬化性の関係を調べた。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表7に示す。
[Example 4]
As the siliceous refractory raw material composition (aggregate), the unused silica brick and fused quartz are used, the blending ratio of both aggregates is constant, and the addition amount of sodium silicate (addition amount converted to solid Na 2 O) The amount of colloidal silica and the amount of curability were examined by changing only the amount of colloidal silica added (the amount added in terms of solid SiO 2 ). Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 7.

Figure 2013189322
Figure 2013189322

表7に示すように、コロイダルシリカの添加量が少なくなるに従い、可使時間及び硬化時間は延長傾向を示した。表7に示す全ての実施例(実施例16〜22)において、可使時間及び硬化時間は通常要求される時間の範囲内である。また、実施例16〜21は、コロイダルシリカ添加量(固形SiOに換算した添加量)が4.2〜9.3質量%であり、この範囲で好ましいとされる1時間以上の可使時間及び24時間以内の硬化時間が得られている。なお、耐火物の物性値は、全ての実施例(実施例16〜22)においてほぼ同等でああり、圧縮強度、1400℃到達時の荷重下熱膨張率、耐クリープ性及び熱衝撃抵抗性も良好であった。 As shown in Table 7, as the amount of colloidal silica added decreased, the pot life and the curing time tended to be extended. In all the examples shown in Table 7 (Examples 16 to 22), the pot life and the curing time are within the normally required time range. In Examples 16 to 21, the colloidal silica addition amount (addition amount converted to solid SiO 2 ) is 4.2 to 9.3 mass%, and the pot life of 1 hour or more which is preferable in this range is used. And a curing time within 24 hours is obtained. The physical properties of the refractories are almost the same in all Examples (Examples 16 to 22), and the compressive strength, thermal expansion coefficient under load when reaching 1400 ° C., creep resistance and thermal shock resistance are also shown. It was good.

[実施例5]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんがと溶融石英に加え、シリカフラワー又は溶融シリカ超微粉を使用し、シリカフラワー又は溶融石英超微粉の配合比率を変化させ、硬化剤として、珪酸ソーダの添加量(固形NaOに換算した添加量)を一定とし、混練直後のキャスタブル耐火物の軟らかさがほぼ同じになるように、コロイダルシリカの添加量を調整した。使用した溶融石英超微粉は、SiO含有量が99.7%、積算平均粒子径が1μm以下の球状粒子、シリカフラワーはSiO含有量が97.1%である。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表8に示す。
[Example 5]
As a siliceous refractory raw material composition (aggregate), in addition to the unused silica brick and fused quartz, silica flour or fused silica ultrafine powder is used, and the blending ratio of silica flour or fused quartz ultrafine powder is changed, and a curing agent is used. As described above, the addition amount of colloidal silica was adjusted so that the addition amount of sodium silicate (addition amount converted to solid Na 2 O) was constant and the softness of the castable refractory immediately after kneading became substantially the same. The used fused silica ultrafine powder has a SiO 2 content of 99.7%, spherical particles having an integrated average particle diameter of 1 μm or less, and silica flour has a SiO 2 content of 97.1%. Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 8.

Figure 2013189322
Figure 2013189322

シリカフラワーは、シリカ質超微粉で、ポルトランドセメントを硬化剤とした珪石質キャスタブルや一般の低セメントキャスタブル耐火物では、数質量%のシリカフラワーと微量の減水剤とを組み合わせて添加することによって、添加水量の低減化、高強度化ができるので広く使用されている。
表8の実施例13及び実施例23〜26に示すように、シリカフラワーの配合量が多くなるに従い、コロイダルシリカ添加量が低減し、嵩比重や圧縮強度が大きくなる傾向がある。シリカフラワーから微量の電解質成分が溶出するためか、シリカフラワーの配合量が多くなるに従い、可使時間及び硬化時間が短くなる。
Silica flour is a siliceous ultrafine powder, and in siliceous castable and general low cement castable refractory with Portland cement as a hardener, by adding a combination of several mass% silica flour and a small amount of water reducing agent, Since the amount of added water can be reduced and the strength can be increased, it is widely used.
As shown in Example 13 and Examples 23 to 26 in Table 8, as the blending amount of silica flour increases, the amount of colloidal silica added tends to decrease, and the bulk specific gravity and compressive strength tend to increase. The pot life and the curing time are shortened as the amount of silica flour is increased because the trace amount of the electrolyte component is eluted from the silica flour.

表8の実施例27,28は、シリカフラワーの代わりに溶融石英超微粉を使用したものである。溶融石英超微粉は、シリカフラワーよりも高純度で溶出電解質成分が極めて少なく、実施例24と実施例27、及び実施例26と実施例28を比較すると、シリカフラワーよりも溶融石英超微粉を使用した方が、コロイダルシリカ添加量を少なくすることができ、振動成形時の流動性が大きく充填性の良い成形体が得られ、嵩比重や圧縮強度が大きくなる。
表8に示す実施例23〜25及び実施例27,28は、シリカフラワーと溶融石英超微粉を共に添加していない実施例13に比べ、荷重下熱膨張及びクリープ値に顕著な違いはみられず、熱衝撃抵抗性も良好である。ただし、シリカフラワーの添加量が多い実施例26は、振動成形時の流動性が小さいため充填性が比較的悪く、荷重下収縮が大きく、かつクリープ変形が実施例13に比べ比べてやや大きくなった。
Examples 27 and 28 in Table 8 use fused silica ultrafine powder instead of silica flour. The fused silica ultrafine powder is higher in purity than the silica flour and has very little elution electrolyte component. When comparing the examples 24 and 27 and the examples 26 and 28, the fused quartz ultrafine powder uses the fused quartz ultrafine powder rather than the silica flour. By doing so, the amount of colloidal silica added can be reduced, and a molded article having high fluidity and good filling properties during vibration molding can be obtained, and the bulk specific gravity and compressive strength are increased.
Examples 23 to 25 and Examples 27 and 28 shown in Table 8 show significant differences in thermal expansion and creep values under load compared to Example 13 in which neither silica flour nor fused silica ultrafine powder was added. Furthermore, the thermal shock resistance is also good. However, in Example 26 with a large amount of silica flour added, the fluidity at the time of vibration molding is small, so the filling property is relatively poor, the shrinkage under load is large, and the creep deformation is slightly larger than that of Example 13. It was.

[実施例6]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんがと溶融石英に加え、前記シリカフラワー又は溶融シリカ超微粉を使用し、これらの配合比率を一定とし、適切な可使時間及び硬化時間が得られるように、コロイダルシリカの添加量及び珪酸ソーダの添加量(固形NaOに換算した添加量)を調整した。珪酸ソーダを使用しないものでは、ゲル化剤として塩化アンモニウム又は特許文献9に記載された難溶性珪酸ソーダを使用した。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表9に示す。
[Example 6]
In addition to the unused silica brick and fused quartz, the silica flour or fused silica ultrafine powder is used as the siliceous refractory raw material composition (aggregate), the blending ratio is constant, and the appropriate pot life and hardening The addition amount of colloidal silica and the addition amount of sodium silicate (addition amount converted to solid Na 2 O) were adjusted so that time was obtained. In the case of using no sodium silicate, ammonium chloride or the hardly soluble sodium silicate described in Patent Document 9 was used as a gelling agent. Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 9.

Figure 2013189322
Figure 2013189322

表9をみると、実施例29〜32は、圧縮強度が高く、荷重下収縮が抑制され、耐クリープ性を有する。このように、珪酸ソーダには、コロイダルシリカのゲル化剤としての機能の他に、加熱昇温時における荷重下収縮を緩和する作用がある。
一方、珪酸ソーダを無添加とし、塩化アンモニウムをゲル化剤として用いた比較例5,6は、荷重下熱膨張率が小さい(荷重下収縮が大きい)。また、珪酸ソーダの添加量(固形NaOに換算した添加量)が過剰な比較例7は、耐クリープ性が低下している。ゲル化剤として難溶性珪酸ソーダを添加した比較例8は、72時間以内に硬化せず、耐火物物性が測定できなかった。
When Table 9 is seen, Examples 29-32 have high compressive strength, shrinkage | contraction under load is suppressed, and it has creep resistance. Thus, in addition to the function as a gelling agent for colloidal silica, sodium silicate has the effect of alleviating shrinkage under load during heating and heating.
On the other hand, Comparative Examples 5 and 6 in which sodium silicate was not added and ammonium chloride was used as a gelling agent had a small thermal expansion coefficient under load (large shrinkage under load). Further, in Comparative Example 7 in which the amount of sodium silicate added (the amount added in terms of solid Na 2 O) is excessive, the creep resistance is lowered. Comparative Example 8 to which hardly soluble sodium silicate was added as a gelling agent did not cure within 72 hours, and the refractory physical properties could not be measured.

比較例5、実施例29,31,32について、図1に熱膨張曲線のグラフ、図2に荷重下熱膨張曲線のグラフを示す。熱膨張曲線をみると、比較例5、実施例29,31,32の間に大差がないが、荷重下熱膨張曲線をみると、珪酸ソーダの添加量(固形NaOに換算した添加量)が適正な実施例29,31,32では、珪酸ソーダが無添加の比較例5に比べ、900℃付近からの荷重下収縮が緩和され、特に添加量が増えた実施例31,32においてより緩和されていることが分かる。 For Comparative Example 5 and Examples 29, 31, and 32, FIG. 1 shows a graph of thermal expansion curves, and FIG. 2 shows a graph of thermal expansion curves under load. Looking at the thermal expansion curve, there is no significant difference between Comparative Example 5 and Examples 29, 31, and 32. However, when looking at the thermal expansion curve under load, the addition amount of sodium silicate (addition amount converted to solid Na 2 O) In Examples 29, 31, and 32, which are appropriate), compared with Comparative Example 5 in which no sodium silicate was added, the shrinkage under load from around 900 ° C. was alleviated, and in Examples 31 and 32 in which the amount added was particularly increased. It can be seen that it has been relaxed.

[実施例7]
珪石質耐火原料配合物(骨材)として、前記未使用珪石れんがと溶融石英に加え、前記溶融シリカ超微粉を使用し、これらの配合比率を一定とし、かつコロイダルシリカの添加量及び珪酸ソーダの添加量(固形NaOに換算した添加量)を一定とし、さらにゲル化剤として塩化アンモニウム又は硫酸ソーダを添加した。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表10に示す。
[Example 7]
As the siliceous refractory raw material composition (aggregate), in addition to the unused silica brick and fused quartz, the fused silica ultrafine powder is used, the blending ratio thereof is constant, and the amount of colloidal silica added and sodium silicate The addition amount (addition amount converted to solid Na 2 O) was kept constant, and ammonium chloride or sodium sulfate was added as a gelling agent. Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 10.

Figure 2013189322
Figure 2013189322

表10に示すように、実施例29は、ゲル化剤としての珪酸ソーダの添加量(固形NaOに換算した添加量)が比較的少ないために硬化時間が24時間となっている。これに対し、ゲル化剤として塩化アンモニウムを併用した実施例33及び硫酸ソーダを併用した実施例34は、硬化時間が短縮されている。このように、珪酸ソーダに別種のゲル化剤を併用することで、本発明に係るキャスタブル耐火物に早硬性をもたせることが可能である。なお、実施例33,34の物性値は,実施例29とほぼ同等である。 As shown in Table 10, in Example 29, the addition time of sodium silicate as the gelling agent (addition amount converted to solid Na 2 O) is relatively small, so the curing time is 24 hours. On the other hand, Example 33 using ammonium chloride as a gelling agent and Example 34 using sodium sulfate together have a shorter curing time. Thus, by using another type of gelling agent in combination with sodium silicate, it is possible to give the castable refractory according to the present invention fast hardening. The physical property values of Examples 33 and 34 are almost the same as those of Example 29.

[実施例8]
珪石質耐火原料配合物(骨材)として、前記溶融石英のみを使用し、コロイダルシリカの添加量を一定とし、ゲル化剤として珪酸ソーダ(実施例1)又は塩化アンモニウム(比較例9)を添加した。[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用いて、[実施例1]と同じ要領で物性値の測定、及び熱衝撃抵抗性評価を行った。その結果を表11に示す。また、図3に実施例1及び比較例9の荷重下熱膨張曲線のグラフを示す。
[Example 8]
As the siliceous refractory raw material composition (aggregate), only the fused silica is used, the amount of colloidal silica added is constant, and sodium silicate (Example 1) or ammonium chloride (Comparative Example 9) is added as a gelling agent. did. Using the refractory specimens obtained by kneading, molding, and deframeation in the same manner as in [Example 1], measurement of physical properties and evaluation of thermal shock resistance were performed in the same manner as in [Example 1]. The results are shown in Table 11. Moreover, the graph of the thermal expansion curve under a load of Example 1 and Comparative Example 9 is shown in FIG.

Figure 2013189322
Figure 2013189322

表11及び図3に示すように、ゲル化剤として塩化アンモニウムを用いた比較例9では、900℃付近から著しく荷重下収縮しているが、ゲル化剤として珪酸ソーダを用いた実施例1では、この荷重下収縮が緩和されている。   As shown in Table 11 and FIG. 3, in Comparative Example 9 using ammonium chloride as the gelling agent, the resin contracts significantly under the load from around 900 ° C., but in Example 1 using sodium silicate as the gelling agent, This shrinkage under load is alleviated.

図3及び先に示した図2において、ゲル化剤として塩化アンモニウムを用いた比較例5,9は、900℃付近から著しく荷重下収縮し、一方、ゲル化剤として珪酸ソーダを用いた実施例1,29,31,32は、900℃付近からの荷重下収縮が緩和されている。ソーダ成分はNaO−SiO系の低融点物を生成するので、ゲル化剤として珪酸ソーダを用いた場合、技術常識的には、この荷重下収縮は大きくなると考えられるが、実測した荷重下熱膨張曲線は逆の結果となっている。
比較例5,9にみられる900℃付近からの荷重下収縮は、シリカゲルの焼結に伴う細気孔の減少に起因すると考えられるが、本発明に係る実施例1,29,31,32等では、ゲル化剤として珪酸ソーダを用いたことによって、珪酸ソーダのソーダ成分が溶融石英の表面に拡散浸透して万遍に付着し、かつ溶融石英やシリカゲルがソーダ成分による結晶化促進作用を受け、密度の低い高温型クリストバライトへの変化が速く進行し、これにより荷重下収縮が抑制されたものと推察される。なお、表12にシリカの結晶相及び溶融石英の密度を示す。
In FIG. 3 and FIG. 2 shown above, Comparative Examples 5 and 9 using ammonium chloride as the gelling agent remarkably shrunk under load from around 900 ° C., whereas examples using sodium silicate as the gelling agent 1, 29, 31, and 32 are relaxed under load from around 900 ° C. Since the soda component produces a Na 2 O—SiO 2 low melting point product, when sodium silicate is used as the gelling agent, it is considered technically common that this shrinkage under load increases, but the measured load The lower thermal expansion curve has the opposite result.
The shrinkage under load from around 900 ° C. seen in Comparative Examples 5 and 9 is considered to be caused by the decrease in fine pores accompanying the sintering of silica gel, but in Examples 1, 29, 31, 32, etc. according to the present invention. By using sodium silicate as a gelling agent, the soda component of sodium silicate diffuses and penetrates the surface of the fused silica and adheres to the surface of the fused silica, and the fused quartz and silica gel are subjected to crystallization promoting action by the soda component, It is presumed that the change to high-temperature type cristobalite with a low density progressed rapidly, and this caused the shrinkage under load to be suppressed. Table 12 shows the crystal phase of silica and the density of fused quartz.

Figure 2013189322
Figure 2013189322

[実施例9]
本発明に係る珪石質キャスタブル耐火物と、従来の珪石質キャスタブル耐火物及び珪石れんがの特性を比較した。比較例10は硬化剤として普通ポルトランドセメントを使用し、爆裂防止材として有機質繊維を添加している。比較例11は、硬化剤としてアルミナセメントを使用している。比較例12は、コークス炉に実際に使用されている通常の珪石れんがである。実施例35,36及び比較例10,11については、[実施例1]と同様に混練、成形、脱枠して得た耐火物試験片を用い、比較例12については通常の条件で焼成された珪石れんがから切り出した耐火物試験片を用い、[実施例1]と同じ要領で物性値の測定及び熱衝撃抵抗性評価を行い、さらに爆裂試験(比較例12を除く)を行った。
[Example 9]
The characteristics of the siliceous castable refractory according to the present invention were compared with those of conventional siliceous castable refractories and silica bricks. In Comparative Example 10, ordinary Portland cement is used as a curing agent, and organic fibers are added as an explosion preventing material. In Comparative Example 11, alumina cement is used as a curing agent. Comparative Example 12 is a normal silica brick actually used in a coke oven. For Examples 35 and 36 and Comparative Examples 10 and 11, refractory specimens obtained by kneading, molding, and deframing were used in the same manner as in [Example 1], and Comparative Example 12 was fired under normal conditions. Using the refractory test piece cut out from the silica brick, the physical property value was measured and the thermal shock resistance was evaluated in the same manner as in [Example 1], and a blast test (excluding Comparative Example 12) was performed.

爆裂試験は、5℃恒温槽内で48時間養生した一辺100mmの立方体硬化試験体を、予め800℃に保持した電気炉内に投入して、爆裂の有無を観察した。養生中、型枠上部の流しこみ面をビニールで被い乾燥を防止した。
なお、熱衝撃抵抗性評価において、比較例10のみ(爆裂しやすいため)、乾燥のため電気炉で昇温速度1℃/分で600℃まで昇温し、同温度で3時間焼成した後、電気炉内で自然冷却したものを試験体として用いた。
その結果を表13,14に示す。また、図4に熱膨張曲線のグラフ、図5に荷重下熱膨張曲線のグラフを示す。
In the explosion test, a cube-hardened specimen having a side of 100 mm that was cured for 48 hours in a 5 ° C. constant temperature bath was placed in an electric furnace previously held at 800 ° C., and the presence or absence of explosion was observed. During curing, the casting surface at the top of the mold was covered with vinyl to prevent drying.
In thermal shock resistance evaluation, only Comparative Example 10 (because it is easy to explode) was heated to 600 ° C. at a heating rate of 1 ° C./min in an electric furnace for drying, and baked at the same temperature for 3 hours. What was naturally cooled in an electric furnace was used as a test specimen.
The results are shown in Tables 13 and 14. FIG. 4 shows a graph of thermal expansion curve, and FIG. 5 shows a graph of thermal expansion curve under load.

Figure 2013189322
Figure 2013189322

Figure 2013189322
Figure 2013189322

表13,14及び図4,5に示すように、実施例35,36は、硬化剤としてポルトランドセメントを使用した比較例10、アルミナセメントを使用した比較例11に比べ、CaO,Alなどの不純物が少ないため、700℃付近からの荷重下収縮が抑制され、乾燥が容易で耐爆裂性にも優れている。また、珪石れんがである比較例12とほぼ同等の耐クリープ性を有する一方で、比較例12より熱膨張率が低く、熱衝撃抵抗性を有している。 As shown in Tables 13 and 14 and FIGS. 4 and 5, Examples 35 and 36 are CaO, Al 2 O 3 compared to Comparative Example 10 using Portland cement as a curing agent and Comparative Example 11 using alumina cement. Therefore, shrinkage under load from around 700 ° C. is suppressed, drying is easy and explosion resistance is excellent. Moreover, while it has the creep resistance substantially equivalent to the comparative example 12 which is a silica brick, it has a thermal expansion coefficient lower than the comparative example 12, and has thermal shock resistance.

Claims (4)

溶融石英と焼成珪石からなる珪石質耐火原料配合物100質量%に対して、外掛けでコロイダルシリカを固形SiOに換算して3.0〜9.3質量%、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%添加した珪石質キャスタブル耐火物であり、前記焼成珪石がトリジマイトを主成分とし、前記珪石質耐火原料配合物の溶融石英と焼成珪石の配合割合が、溶融石英40〜100質量%、焼成珪石0〜60質量%であり、外掛けでのトータルのソーダ成分添加量が固形NaOに換算して0.06〜0.32質量%であることを特徴とする珪石質キャスタブル耐火物。 Colloidal silica is converted into solid SiO 2 by the outer coating with respect to 100% by mass of the siliceous refractory raw material composition composed of fused quartz and calcined silica, and sodium silicate is solid Na 2 O. It is a siliceous castable refractory added in an amount of 0.04 to 0.30% by mass, and the calcined silica is composed mainly of tridymite, and the blending ratio of the fused quartz and calcined silica of the siliceous refractory raw material composition is Fused quartz 40-100% by mass, calcined silica 0-60% by mass, and the total amount of soda component added to the outer shell is 0.06-0.32% by mass in terms of solid Na 2 O Silica castable refractory characterized by 溶融石英と焼成珪石からなる珪石質耐火原料配合物100質量%に対して、外掛けでコロイダルシリカを固形SiOに換算して3.0〜9.3質量%、珪酸ソーダを固形NaOに換算して0.04〜0.30質量%添加した珪石質キャスタブル耐火物であり、前記焼成珪石がトリジマイト及びクリストバライトを主成分とし、前記珪石質耐火原料配合物の溶融石英と焼成珪石の配合割合が、溶融石英60〜100質量%、焼成珪石0〜40質量%であり、外掛けでのトータルのソーダ成分添加量が固形NaOに換算して0.06〜0.32質量%であることを特徴とする珪石質キャスタブル耐火物。 Colloidal silica is converted into solid SiO 2 by the outer coating with respect to 100% by mass of the siliceous refractory raw material composition composed of fused quartz and calcined silica, and sodium silicate is solid Na 2 O. A siliceous castable refractory added in an amount of 0.04 to 0.30% by mass in terms of the above, wherein the calcined silica is composed mainly of tridymite and cristobalite, and the blend of fused quartz and calcined silica of the siliceous refractory raw material composition The ratio is 60 to 100% by mass of fused quartz, 0 to 40% by mass of calcined silica, and the total amount of soda components added to the outer shell is 0.06 to 0.32% by mass in terms of solid Na 2 O. A siliceous castable refractory characterized by being. 前記珪石質耐火原料配合物が、シリカフラワーを8質量%以下含むことを特徴とする請求項1又は2に記載された珪石質キャスタブル耐火物。 The siliceous castable refractory according to claim 1 or 2, wherein the siliceous refractory raw material composition contains 8% by mass or less of silica flour. 請求項1〜3のいずれかに記載された珪石質キャスタブル耐火物に必要に応じて水を加えて混練し、型枠内に流し込み、乾燥することにより得られる珪石質プレキャストブロック耐火物。 A siliceous precast block refractory obtained by adding water to the siliceous castable refractory according to any one of claims 1 to 3 and kneading as necessary, pouring into a mold and drying.
JP2012035847A 2012-02-13 2012-02-22 Silica castable refractories and siliceous precast block refractories Active JP5763569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035847A JP5763569B2 (en) 2012-02-13 2012-02-22 Silica castable refractories and siliceous precast block refractories

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012028926 2012-02-13
JP2012028926 2012-02-13
JP2012035847A JP5763569B2 (en) 2012-02-13 2012-02-22 Silica castable refractories and siliceous precast block refractories

Publications (2)

Publication Number Publication Date
JP2013189322A true JP2013189322A (en) 2013-09-26
JP5763569B2 JP5763569B2 (en) 2015-08-12

Family

ID=49390005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035847A Active JP5763569B2 (en) 2012-02-13 2012-02-22 Silica castable refractories and siliceous precast block refractories

Country Status (1)

Country Link
JP (1) JP5763569B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052960A (en) * 2014-09-02 2016-04-14 日本特殊炉材株式会社 Silica castable refractory and silica precast block refractory
JP2016064956A (en) * 2014-09-25 2016-04-28 黒崎播磨株式会社 Silica brick for hot repairing
JP2016210643A (en) * 2015-05-01 2016-12-15 新日鐵住金株式会社 Refractory composition and refractory concrete block using the same
WO2017146254A1 (en) 2016-02-25 2017-08-31 新日鐵住金株式会社 Precast-block refractory for coke oven
JP2017526798A (en) * 2014-09-15 2017-09-14 サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー Coke oven with monolith component structure
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
WO2020213629A1 (en) * 2019-04-17 2020-10-22 黒崎播磨株式会社 Precast block for coke oven and coke oven using same
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
CN113354401A (en) * 2021-06-25 2021-09-07 中冶武汉冶金建筑研究院有限公司 Ammonium ion stable silica sol combined iron runner castable
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136179A (en) * 1979-04-07 1980-10-23 Kogyo Gijutsuin Joint material for quartz glass refractories
JPS55167182A (en) * 1979-06-11 1980-12-26 Harima Refractories Co Ltd Selffhardening indefiniteeform refractories
JPH01500106A (en) * 1986-04-14 1989-01-19 ユ−エスエックス・エンジニア−ズ・アンド・コンサルタント・インク High strength coke oven mortar
JPH09309771A (en) * 1996-05-20 1997-12-02 Shinagawa Rozai Kk Silica-based spraying material
JPH11302084A (en) * 1998-04-17 1999-11-02 Shinagawa Refract Co Ltd Monolithic refractory material for wet spraying
JP2003055035A (en) * 2001-08-10 2003-02-26 Sumitomo Metal Ind Ltd Silica brick for hot repair and method of manufacturing the same
JP2003171182A (en) * 2001-11-30 2003-06-17 Shinagawa Refract Co Ltd Carbon-containing unburned brick
JP2006290657A (en) * 2005-04-08 2006-10-26 Nippon Steel Corp Refractory and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136179A (en) * 1979-04-07 1980-10-23 Kogyo Gijutsuin Joint material for quartz glass refractories
JPS55167182A (en) * 1979-06-11 1980-12-26 Harima Refractories Co Ltd Selffhardening indefiniteeform refractories
JPH01500106A (en) * 1986-04-14 1989-01-19 ユ−エスエックス・エンジニア−ズ・アンド・コンサルタント・インク High strength coke oven mortar
JPH09309771A (en) * 1996-05-20 1997-12-02 Shinagawa Rozai Kk Silica-based spraying material
JPH11302084A (en) * 1998-04-17 1999-11-02 Shinagawa Refract Co Ltd Monolithic refractory material for wet spraying
JP2003055035A (en) * 2001-08-10 2003-02-26 Sumitomo Metal Ind Ltd Silica brick for hot repair and method of manufacturing the same
JP2003171182A (en) * 2001-11-30 2003-06-17 Shinagawa Refract Co Ltd Carbon-containing unburned brick
JP2006290657A (en) * 2005-04-08 2006-10-26 Nippon Steel Corp Refractory and method for producing the same

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11845037B2 (en) 2012-12-28 2023-12-19 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
JP2016052960A (en) * 2014-09-02 2016-04-14 日本特殊炉材株式会社 Silica castable refractory and silica precast block refractory
JP7241722B2 (en) 2014-09-15 2023-03-17 サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー Coke oven with monolithic component structure
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
JP2020176277A (en) * 2014-09-15 2020-10-29 サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー Coke ovens having monolith component construction
JP2017526798A (en) * 2014-09-15 2017-09-14 サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー Coke oven with monolith component structure
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
JP2016064956A (en) * 2014-09-25 2016-04-28 黒崎播磨株式会社 Silica brick for hot repairing
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
JP2016210643A (en) * 2015-05-01 2016-12-15 新日鐵住金株式会社 Refractory composition and refractory concrete block using the same
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
JPWO2017146254A1 (en) * 2016-02-25 2018-12-20 黒崎播磨株式会社 Precast block refractory for coke oven
KR20180112843A (en) 2016-02-25 2018-10-12 신닛테츠스미킨 카부시키카이샤 Pre-cast block refractory for coke ovens
WO2017146254A1 (en) 2016-02-25 2017-08-31 新日鐵住金株式会社 Precast-block refractory for coke oven
US11845898B2 (en) 2017-05-23 2023-12-19 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11845897B2 (en) 2018-12-28 2023-12-19 Suncoke Technology And Development Llc Heat recovery oven foundation
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
JPWO2020213629A1 (en) * 2019-04-17 2021-04-30 黒崎播磨株式会社 Precast block for coke oven and coke oven using it
WO2020213629A1 (en) * 2019-04-17 2020-10-22 黒崎播磨株式会社 Precast block for coke oven and coke oven using same
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
CN113354401A (en) * 2021-06-25 2021-09-07 中冶武汉冶金建筑研究院有限公司 Ammonium ion stable silica sol combined iron runner castable
US11851724B2 (en) 2021-11-04 2023-12-26 Suncoke Technology And Development Llc. Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Also Published As

Publication number Publication date
JP5763569B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5763569B2 (en) Silica castable refractories and siliceous precast block refractories
JP6189268B2 (en) Silica castable refractories
JP5879414B2 (en) Sintered refractories with improved thermal shock resistance
JP5927287B2 (en) Composition for refractory or kiln tools of regular or irregular shape
JP2010530353A (en) AZS fire resistant composition
WO2011066336A1 (en) Low thermal expansion doped fused silica crucibles
JP2007303011A (en) Inorganic fiber and monolithic refractory using the same
CN104926340A (en) Preparation method of self-flow refractory castable
JP6498515B2 (en) Refractory composition and refractory concrete block using the same
JP4598672B2 (en) Zirconia amorphous refractory
CN107151134A (en) A kind of industrial kiln high-strength high-alumina fire-resistant slurry
EP3421571B1 (en) Precast refractory block for coke oven
CN110317049A (en) A kind of siliceous prefabricated component of low-porosity and preparation method
JP6330877B2 (en) Method for producing cordierite castable refractories
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
RU2426707C1 (en) Heat insulation mass
JP2022063147A (en) Method for producing ceramic molded body
JP4861269B2 (en) Gypsum mold for casting crystal glass and composition for producing gypsum mold
JP3071060B2 (en) Ceramic-metal insert and method of manufacturing the same
CN109400126A (en) A kind of preparation method of Aluminum sol combination castable
RU2576067C1 (en) Composition for production of heat resistant concretes
JP2019006630A (en) Alumina-magnesia based castable refractory
JP6358736B2 (en) Dry coat material
JP2773904B2 (en) Manufacturing method of lightweight refractories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5763569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250