JP2016047872A - Resin composition, cured product and electronic component sealing material - Google Patents

Resin composition, cured product and electronic component sealing material Download PDF

Info

Publication number
JP2016047872A
JP2016047872A JP2014172653A JP2014172653A JP2016047872A JP 2016047872 A JP2016047872 A JP 2016047872A JP 2014172653 A JP2014172653 A JP 2014172653A JP 2014172653 A JP2014172653 A JP 2014172653A JP 2016047872 A JP2016047872 A JP 2016047872A
Authority
JP
Japan
Prior art keywords
resin composition
formula
cured product
thermosetting resin
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014172653A
Other languages
Japanese (ja)
Inventor
友輔 田中
Tomosuke Tanaka
友輔 田中
講平 中西
Kohei Nakanishi
講平 中西
孝介 池内
Kosuke Ikeuchi
孝介 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2014172653A priority Critical patent/JP2016047872A/en
Publication of JP2016047872A publication Critical patent/JP2016047872A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition for sealing a semiconductor which is excellent in long term heat resistance and thermal expansion coefficient and has a proper flexural modulus.SOLUTION: A thermosetting resin composition comprises the following (A)-(D) components: (A) a maleimide compound represented by formula (1); (B) an aromatic allylamine compound represented by formula (2); (C) a curing accelerator; and (D) an inorganic filler.SELECTED DRAWING: None

Description

本発明は、半導体素子等の封止に用いられる電子部品封止用樹脂組成物に関する。   The present invention relates to an electronic component sealing resin composition used for sealing semiconductor elements and the like.

従来から、トランジスター、IC、LSI等の各種半導体素子は、外部環境からの保護及び半導体素子の取り扱いを容易にするため、セラミックパッケージやプラスチックパッケージ等により封止され半導体装置化されている。前者のセラミックパッケージは、構成材料そのものが耐熱性を有し、耐湿性にも優れているため、高温高湿雰囲気下に対しても耐久性を備えており、機械的強度にも優れ、信頼性の高い封止が可能であるという利点を有している。   2. Description of the Related Art Conventionally, various semiconductor elements such as transistors, ICs, and LSIs are encapsulated by a ceramic package, a plastic package, or the like to be a semiconductor device in order to protect from the external environment and facilitate the handling of the semiconductor elements. The former ceramic package has heat resistance and excellent moisture resistance, so it has durability even in high-temperature and high-humidity atmospheres, and has excellent mechanical strength and reliability. It has the advantage that high sealing is possible.

しかしながら、上記セラミックパッケージは、構成材料が比較的高価であることや、量産性に劣るという問題点を有することから、近年は後者のプラスチックパッケージによる樹脂封止が主流となっている。プラスチックパッケージによる樹脂封止には、従来から成形性、接着性、電気特性、機械特性、耐湿性等に優れているためエポキシ樹脂組成物を用いることが一般的である。   However, since the ceramic package has a problem that the constituent material is relatively expensive and is inferior in mass productivity, resin sealing with the latter plastic package has become mainstream in recent years. For resin sealing with a plastic package, an epoxy resin composition is generally used because of its excellent moldability, adhesiveness, electrical properties, mechanical properties, moisture resistance, and the like.

しかし、半導体装置が高密度化、小型化されていくにつれ、半導体装置の駆動温度が高くなり、封止樹脂(硬化物)として、より長期耐熱性に優れ、熱膨張率の小さいものが要求されている。耐熱性をより優れたものとするために、エポキシ樹脂系の組成物が種々検討されてきたが、比較的耐熱性が劣る特性を有するエポキシ樹脂を用いる限り限界があった。   However, as the density of semiconductor devices increases, the driving temperature of the semiconductor devices increases, and as the sealing resin (cured product), a resin having excellent long-term heat resistance and a low coefficient of thermal expansion is required. ing. Various epoxy resin-based compositions have been studied in order to make the heat resistance more excellent, but there is a limit as long as an epoxy resin having a relatively poor heat resistance is used.

またエポキシ樹脂を始めとする各種有機材料は金属、セラミックに比べて一般に熱膨張率が大きい。そのため例えば耐熱性を向上させるために無機材料と組み合わせた複合組成物では硬化物における熱膨張のミスマッチにより、剥離、変形、クラック腐食等の様々な不良の発生原因となっている。   In addition, various organic materials such as epoxy resins generally have a larger coefficient of thermal expansion than metals and ceramics. Therefore, for example, in a composite composition combined with an inorganic material in order to improve heat resistance, various defects such as peeling, deformation, and crack corrosion are caused due to thermal expansion mismatch in the cured product.

エポキシ樹脂よりも耐熱性に優れた熱硬化性樹脂としては、ポリマレイミド系樹脂が知られているが、ポリマレイミド樹脂を用いて得られる硬化成形物は、弾性率が高く、かつ破断伸びが小さいために強度が低く、堅くて脆いものしか得られないという欠点があった。
また、IC、LSI等の表面での熱応力を低減する目的で、熱膨張係数の低いシリカ粒子を樹脂組成物に高充填して熱膨張率の低下を図る手法が良く行われているが、マレイミド系の樹脂でこの方法を用いると、その樹脂硬化物の弾性率が上昇してしまう課題が有る。
A polymaleimide resin is known as a thermosetting resin superior in heat resistance to an epoxy resin, but a cured molded product obtained using the polymaleimide resin has a high elastic modulus and a small elongation at break. For this reason, the strength is low, and only hard and brittle materials can be obtained.
In addition, for the purpose of reducing thermal stress on the surface of IC, LSI, etc., a technique for reducing the thermal expansion coefficient by frequently filling silica particles having a low coefficient of thermal expansion into a resin composition is often performed. When this method is used with a maleimide resin, there is a problem that the elastic modulus of the cured resin is increased.

耐熱性に優れたマレイミド系樹脂の曲げ弾性率の改善を図る手法として、特許文献1のようなポリシロキサンを加える方法等が知られている。
このように耐熱性を有し、熱膨張率が低く、適正な弾性率を有する電子部品封止用樹脂組成物はこれまで検討されていなかった。
As a technique for improving the flexural modulus of a maleimide resin having excellent heat resistance, a method of adding polysiloxane as in Patent Document 1 is known.
Thus, the resin composition for electronic component sealing which has heat resistance, a low thermal expansion coefficient, and an appropriate elastic modulus has not been examined until now.

特開平7−138483号公報Japanese Patent Laid-Open No. 7-138483

本発明は、長期耐熱性、低熱膨張性に優れ、適切な曲げ弾性率を有する半導体封止用熱硬化性樹脂組成物を提供することを課題とする。   This invention makes it a subject to provide the thermosetting resin composition for semiconductor sealing which is excellent in long-term heat resistance and low thermal expansibility, and has an appropriate bending elastic modulus.

本発明者らは上記課題を解決すべく鋭意検討を行った結果、下記の(A)〜(D)成分を含有する熱硬化性樹脂組成物により発明の目的を達成できることを見い出した。
(A)式(1)で示されるマレイミド化合物

Figure 2016047872
(式(1)において、nは0以上の整数を示す)
(B)式(2)で示される芳香族アリルアミン化合物
Figure 2016047872
(R1、R2、R3、R4は各々独立に水素、炭素数1〜5のアルキル基及びハロゲンのうちいずれかを示す。)
(C)硬化促進剤
(D)無機充填材 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the object of the invention can be achieved by a thermosetting resin composition containing the following components (A) to (D).
(A) Maleimide compound represented by formula (1)
Figure 2016047872
(In formula (1), n represents an integer of 0 or more)
(B) Aromatic allylamine compound represented by formula (2)
Figure 2016047872
(R1, R2, R3, and R4 each independently represent hydrogen, an alkyl group having 1 to 5 carbon atoms, or halogen.)
(C) Curing accelerator (D) Inorganic filler

式(1)で示されるマレイミド化合物(A)と式(2)で示される芳香族アリルアミン化合物(B)、硬化促進剤(C)、無機充填材(D)を用いることで、長期耐熱性、低熱膨張性に優れ、適切な曲げ弾性率を有する半導体封止用熱硬化性樹脂組成物が得られる。   By using the maleimide compound (A) represented by the formula (1) and the aromatic allylamine compound (B) represented by the formula (2), the curing accelerator (C), and the inorganic filler (D), long-term heat resistance, A thermosetting resin composition for semiconductor encapsulation having an excellent low thermal expansibility and an appropriate flexural modulus can be obtained.

本発明の熱硬化性樹脂組成物は、式(1)で示されるマレイミド化合物(A)、式(2)で示される芳香族アリルアミン化合物(B)、硬化促進剤(C)及び無機充填材(D)を含有するものである。   The thermosetting resin composition of the present invention comprises a maleimide compound (A) represented by the formula (1), an aromatic allylamine compound (B) represented by the formula (2), a curing accelerator (C) and an inorganic filler ( D) is contained.

本発明の熱硬化性樹脂組成物に用いられる、マレイミド化合物(A)は、式(1)で示される。

Figure 2016047872
(式(1)において、nは0以上の整数を示す)
このようなマレイミド化合物を用いることで、得られる硬化物のガラス転移温度(Tg)が優れたものとなる。
式(1)で示されるマレイミド化合物は公知の方法で得ることができるが、市販品として入手することもできる。市販品としては、大和化成工業BMI−2300が挙げられる。
式(1)で示されるマレイミド化合物(A)は、(A)成分と(B)成分の合計100質量%のうち、40〜85質量%であることが好ましい。このような範囲とすることで、樹脂組成物の耐熱性に優れるからである。 The maleimide compound (A) used in the thermosetting resin composition of the present invention is represented by the formula (1).
Figure 2016047872
(In formula (1), n represents an integer of 0 or more)
By using such a maleimide compound, the glass transition temperature (Tg) of the obtained cured product is excellent.
The maleimide compound represented by the formula (1) can be obtained by a known method, but can also be obtained as a commercial product. As a commercial item, Daiwa Kasei Kogyo BMI-2300 is mentioned.
The maleimide compound (A) represented by the formula (1) is preferably 40 to 85% by mass in a total of 100% by mass of the component (A) and the component (B). It is because it is excellent in the heat resistance of a resin composition by setting it as such a range.

本発明の熱硬化性樹脂組成物に用いられる、芳香族アリルアミン化合物(B)は、式(2)で示される。

Figure 2016047872
(R1、R2、R3、R4は各々独立に水素、炭素数1〜5のアルキル基及びハロゲンのうちいずれかを示す。)
芳香族アリルアミン化合物(B)は、式(1)で示されるマレイミド化合物(A)を硬化させる作用を有し、このような構造のものを用いることで、得られる硬化物が長期耐熱性に優れたものとなる。
式(2)で示される芳香族アリルアミン化合物は、例えば芳香族ジアミン化合物とハロゲン化アリル化合物との脱ハロゲン化水素反応等、公知の方法で得ることができる。
式(2)で示される芳香族アリルアミン化合物(B)は、(A)成分と(B)成分の合計100質量%のうち、15〜60質量%であることが好ましい。このような範囲とすることで、流動性に優れるからである。
式(1)で示されるマレイミド化合物(A)と式(2)で示される芳香族アリルアミン化合物(B)の樹脂組成物における質量比は、(A):(B)=40:60〜85:15であることが好ましい。このような範囲とすることで、流動性及び硬化性に優れた樹脂組成物が得られるからである。 The aromatic allylamine compound (B) used in the thermosetting resin composition of the present invention is represented by the formula (2).
Figure 2016047872
(R1, R2, R3, and R4 each independently represent hydrogen, an alkyl group having 1 to 5 carbon atoms, or halogen.)
The aromatic allylamine compound (B) has an action of curing the maleimide compound (A) represented by the formula (1), and the cured product obtained by using such a structure has excellent long-term heat resistance. It will be.
The aromatic allylamine compound represented by the formula (2) can be obtained by a known method such as a dehydrohalogenation reaction between an aromatic diamine compound and a halogenated allyl compound.
The aromatic allylamine compound (B) represented by the formula (2) is preferably 15 to 60% by mass in a total of 100% by mass of the component (A) and the component (B). It is because it is excellent in fluidity by setting it as such a range.
The mass ratio in the resin composition of the maleimide compound (A) represented by the formula (1) and the aromatic allylamine compound (B) represented by the formula (2) is (A) :( B) = 40: 60 to 85: 15 is preferable. It is because the resin composition excellent in fluidity | liquidity and sclerosis | hardenability is obtained by setting it as such a range.

式(2)で示される芳香族アリルアミン化合物(B)を得る方法として、芳香族ジアミン化合物とハロゲン化アリル化合物との脱ハロゲン化水素反応を用いる場合は、例えば原料である芳香族ジアミンとして、4,4’−ジアミノジフェニルメタン、ビス(4−アミノ−3−メチルフェニル)メタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3−エチルフェニル)メタン、ビス(4−アミノ−3−エチル−5−メチルフェニル)メタン、ビス(4−アミノ−3−クロロフェニル)メタンを用いることができる。
一方、ハロゲン化アリル化合物として、塩化アリル、臭化アリル、ヨウ化アリルを用いることができる。
As a method for obtaining the aromatic allylamine compound (B) represented by the formula (2), when a dehydrohalogenation reaction between an aromatic diamine compound and an allyl halide compound is used, for example, as an aromatic diamine as a raw material, 4 , 4′-diaminodiphenylmethane, bis (4-amino-3-methylphenyl) methane, bis (4-amino-3,5-dimethylphenyl) methane, bis (4-amino-3-ethylphenyl) methane, bis ( 4-Amino-3-ethyl-5-methylphenyl) methane and bis (4-amino-3-chlorophenyl) methane can be used.
On the other hand, as the halogenated allyl compound, allyl chloride, allyl bromide, and allyl iodide can be used.

前記芳香族ジアミン化合物にハロゲン化アリル化合物を反応させて芳香族アリルアミンを得る反応の条件としては、例えば大気圧、窒素雰囲気下で非プロトン性極性溶媒に塩基と芳香族ジアミン化合物を加えて、60℃〜80℃にて溶媒を加熱し、ハロゲン化アリル化合物の使用量を芳香族ジアミン化合物のモル量の4〜6倍となるように添加し、4〜8時間撹拌を行うというものがある。   The reaction conditions for obtaining an aromatic allylamine by reacting an aromatic allyl compound with the aromatic diamine compound include, for example, adding a base and an aromatic diamine compound to an aprotic polar solvent under atmospheric pressure and a nitrogen atmosphere, and 60 There exists a thing which heats a solvent at -80 degreeC, adds the usage-amount of an allyl halide compound so that it may become 4 to 6 times the molar amount of an aromatic diamine compound, and stirs for 4 to 8 hours.

本発明の熱硬化性樹脂組成物に用いられる、硬化促進剤(C)は、樹脂組成物の熱硬化反応を促進させるものであれば特に限定されない。例えば、トリフェニルフォスフィン等の有機リン系硬化促進剤、2−エチル−4−メチルイミダゾールやトリフェニルイミダゾール等のイミダゾール系硬化促進剤、1,8−ジアザビシクロ(5.4.0)−7−ウンデセン等の三級アミン系硬化促進剤等が挙げられる。これらは単独、若しくは2種類以上合わせ得用いられる。
中でも汎用性やコストの点からトリフェニルフォスフィンやトリフェニルイミダゾールの硬化促進剤が好ましく用いられる。
The curing accelerator (C) used in the thermosetting resin composition of the present invention is not particularly limited as long as it accelerates the thermosetting reaction of the resin composition. For example, organophosphorus curing accelerators such as triphenylphosphine, imidazole curing accelerators such as 2-ethyl-4-methylimidazole and triphenylimidazole, 1,8-diazabicyclo (5.4.0) -7- And tertiary amine-based curing accelerators such as undecene. These may be used alone or in combination of two or more.
Among these, from the viewpoint of versatility and cost, a curing accelerator for triphenylphosphine or triphenylimidazole is preferably used.

硬化促進剤(C)の樹脂組成物における含有量は成分(A)及び(B)の合計量に対して0.05〜10質量%であることが、成形性及び硬化性の観点から好ましく、その中でも0.1〜5質量%であることがさらに好ましい。このような範囲に設定することで硬化ムラや混練性の低下が無く、適切な時間で硬化させることが可能となる。   The content of the curing accelerator (C) in the resin composition is preferably 0.05 to 10% by mass with respect to the total amount of the components (A) and (B), from the viewpoint of moldability and curability, Among these, it is more preferable that it is 0.1-5 mass%. By setting it in such a range, there is no curing unevenness or deterioration in kneadability, and curing can be performed in an appropriate time.

本発明の熱硬化性樹脂組成物に用いられる、無機充填材(D)は、当業界で用いられるものであれば特に限定されないが、例えば溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、酸化チタン等が用いられる。これらは単独、若しくは2種類以上合わせて用いられる。
これら無機充填材は、破砕状、球状等の何れの物でも使用可能である
これらの中でも得られる硬化物の熱膨張係数を低減することができるシリカ粉末を用いることが好ましく、中でも球状溶融シリカは、高充填性、高流動性という点から特に好ましい。
また、無機充填材(D)の平均粒子径は1〜30μmの範囲であることが好ましく、より好ましくは3〜20μmの範囲である。
なお、本発明における平均粒子径とは、メジアン径を意味し、測定した粉体の粒度分布を2つに分けたときの大きい側と小さい側が等量となる径である。平均粒子径は、一般的には湿式レーザー回折・散乱法により測定される。
The inorganic filler (D) used in the thermosetting resin composition of the present invention is not particularly limited as long as it is used in the art. For example, silica such as fused silica and crystalline silica, alumina, nitriding Silicon, aluminum nitride, titanium oxide, or the like is used. These may be used alone or in combination of two or more.
These inorganic fillers can be used in any form such as crushed, spherical, etc. Among these, it is preferable to use silica powder that can reduce the thermal expansion coefficient of the cured product obtained. Particularly preferred from the viewpoints of high fillability and high fluidity.
Moreover, it is preferable that the average particle diameter of an inorganic filler (D) is the range of 1-30 micrometers, More preferably, it is the range of 3-20 micrometers.
In addition, the average particle diameter in this invention means a median diameter, and is a diameter in which the larger side and the smaller side are equivalent when the particle size distribution of the measured powder is divided into two. The average particle diameter is generally measured by a wet laser diffraction / scattering method.

無機充填材(D)の樹脂組成物における含有量は、硬化物の熱膨張係数を小さくする観点から、樹脂組成物全体の70〜90質量%とすることが好ましい。その中でも、80〜90質量%であることがさらに好ましい。   The content of the inorganic filler (D) in the resin composition is preferably 70 to 90% by mass with respect to the entire resin composition from the viewpoint of reducing the thermal expansion coefficient of the cured product. Among these, it is more preferable that it is 80-90 mass%.

さらに本発明の樹脂組成物は、無機充填材(D)と樹脂との結合を強化するため、無機充填材(D)の表面処理剤として、シランカップリング剤等のカップリング剤を含有させることが好ましい。
このような目的に使用するシランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類;N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン類;γ−メルカプトプロピルトリメトキシシラン等のメルカプトシラン類等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。また、表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。
Furthermore, the resin composition of the present invention contains a coupling agent such as a silane coupling agent as a surface treatment agent for the inorganic filler (D) in order to reinforce the bond between the inorganic filler (D) and the resin. Is preferred.
As silane coupling agents used for such purposes, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, Epoxysilanes such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ -Aminosilanes such as aminopropyltrimethoxysilane; mercaptosilanes such as γ-mercaptopropyltrimethoxysilane; These can be used singly or in combination of two or more. Further, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の樹脂組成物は、所期の目的が損なわれない範囲において、各種の添加剤を含有させることができる。
例えばシリコーン系等の低応力剤、カルナバワックス、高級脂肪酸、合成ワックス等の離型剤、カーボンブラック等の着色剤、酸化アンチモン等の難燃化剤、ハロゲントラップ剤等の添加剤を含有させることができる。
The resin composition of the present invention can contain various additives as long as the intended purpose is not impaired.
For example, it contains a low stress agent such as silicone, a release agent such as carnauba wax, higher fatty acid and synthetic wax, a colorant such as carbon black, a flame retardant such as antimony oxide, and an additive such as a halogen trap agent. Can do.

本発明の樹脂組成物は、(A)、(B)、(C)及び(D)成分及びその他の添加物を所定の組成比で混合し、これをミキサー、ボールミル等によって均一に混合して得ることができる。さらに、粘度を下げ、ハンドリング性を向上させるために有機溶媒を添加しても良い。   In the resin composition of the present invention, the components (A), (B), (C) and (D) and other additives are mixed at a predetermined composition ratio, and this is uniformly mixed by a mixer, a ball mill or the like. Can be obtained. Furthermore, an organic solvent may be added in order to lower the viscosity and improve the handleability.

このように得られる樹脂組成物の硬化物を作成する場合、トランスファー成形、シート成形、コンプレッション成形、プレス成形等の成形法が挙げられる。本発明の樹脂組成物の硬化・成形に関しては、150〜250℃で反応させることが好ましく、反応時間は2〜150分間加熱することが好ましい。ポストキュアは200〜250℃で2〜10時間の条件で行うことが好ましい。   In the case of producing a cured product of the resin composition thus obtained, there are molding methods such as transfer molding, sheet molding, compression molding, and press molding. Regarding the curing and molding of the resin composition of the present invention, the reaction is preferably performed at 150 to 250 ° C., and the reaction time is preferably heated for 2 to 150 minutes. Post cure is preferably performed at 200 to 250 ° C. for 2 to 10 hours.

本発明の電子部品封止材は、本発明の樹脂組成物を熱ロール、ニーダー等を用いて溶融混合処理を行い、冷却固化させ、適当な大きさに粉砕した後に上述の成形方法により成形し、電子部品封止材として利用することができる。封止方法としては、トランスファー成形等の公知の方法により行うことができる。   The electronic component sealing material of the present invention is molded by the above-described molding method after the resin composition of the present invention is melt-mixed using a hot roll, a kneader, etc., cooled and solidified, and pulverized to an appropriate size. It can be used as an electronic component sealing material. As a sealing method, it can carry out by well-known methods, such as transfer molding.

以下に実施例と比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

以下本実施例で用いた成分を示す。
(A)マレイミド樹脂
マレイミド化合物(a):フェニルメタンマレイミド(BMI−2300:大和化成工業社製)
マレイミド化合物(b):4,4”−ジフェニルメタンビスマレイミド(BMI−1000:大和化成工業社製)
アリル化フェノール化合物:2,2’−ビス(3−アリル−4−ヒドロキシフェニル)メタン(小西化学工業社製)
硬化促進剤:トリフェニルホスフィン(和光純薬工業社製)
無機充填材:溶融球状シリカ粉末(平均粒子径13.1μm、電気化学工業社製)
離型剤:カルナバワックス(東亜化成社製)
着色剤:カーボンブラックMA600(三菱化学社製)
シランカップリング剤:N−フェニル−γ−アミノプロピルトリメトキシシラン(東京化成工業社製)
The components used in this example are shown below.
(A) Maleimide resin Maleimide compound (a): Phenylmethane maleimide (BMI-2300: manufactured by Daiwa Kasei Kogyo Co., Ltd.)
Maleimide compound (b): 4,4 ″ -diphenylmethane bismaleimide (BMI-1000: manufactured by Daiwa Kasei Kogyo Co., Ltd.)
Allylated phenol compound: 2,2′-bis (3-allyl-4-hydroxyphenyl) methane (manufactured by Konishi Chemical Industries)
Curing accelerator: Triphenylphosphine (Wako Pure Chemical Industries, Ltd.)
Inorganic filler: fused spherical silica powder (average particle size 13.1 μm, manufactured by Denki Kagaku Kogyo)
Mold release agent: Carnauba wax (manufactured by Toa Kasei)
Colorant: Carbon Black MA600 (Mitsubishi Chemical Corporation)
Silane coupling agent: N-phenyl-γ-aminopropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.)

合成例1
(B)下記構造式で示される芳香族アリルアミン化合物の合成

Figure 2016047872
還流管を接続した500mlの反応容器に4,4’−ジアミノジフェニルメタン(DDM、東京化成工業社製)79.3g(0.40mol)、メチルエチルケトン(和光純薬工業社製)230g、水酸化ナトリウム(和光純薬工業社製)67.2g(1.68mol)、テトラブチルアンモニウムブロミド(東京化成工業社製)5.1g(0.016mol)を加え80℃で10分攪拌した。
溶液の色が黄色に変化した後、臭化アリル(和光純薬工業社製)241.9g(2.0mol)を1時間かけて滴下ロートを用いて滴下し、80℃で6時間攪拌を行った。得られた反応液に酢酸エチル(和光純薬工業社製)及び水を加え、酢酸エチルで抽出操作を行った後、有機溶媒を留去したところ赤褐色オイルを106g得た。NMR、GC−MS測定で上記構造式で示される芳香族アリルアミンであることを確認した。純度は94%、モル収率は75%であった。 Synthesis example 1
(B) Synthesis of aromatic allylamine compound represented by the following structural formula
Figure 2016047872
In a 500 ml reaction vessel connected with a reflux tube, 79.3 g (0.40 mol) of 4,4′-diaminodiphenylmethane (DDM, manufactured by Tokyo Chemical Industry Co., Ltd.), 230 g of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.), sodium hydroxide ( 67.2 g (1.68 mol) manufactured by Wako Pure Chemical Industries, Ltd.) and 5.1 g (0.016 mol) tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred at 80 ° C. for 10 minutes.
After the color of the solution changed to yellow, 241.9 g (2.0 mol) of allyl bromide (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise using a dropping funnel over 1 hour, followed by stirring at 80 ° C. for 6 hours. It was. Ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) and water were added to the resulting reaction solution, and after performing extraction with ethyl acetate, the organic solvent was distilled off to obtain 106 g of a reddish brown oil. It was confirmed by NMR and GC-MS that it was an aromatic allylamine represented by the above structural formula. The purity was 94% and the molar yield was 75%.

実施例1,比較例1〜2
表1に示す成分をニーダーにて均一に溶融混合し、冷却、粉砕して樹脂組成物を得た。この樹脂組成物を用いて、温度:200℃、時間:2時間の条件で真空プレス成形にて100mm×100mm×1.5mmの硬化物を作製し、その後240℃、8時間ポストキュアを行った。得られた硬化物に対し、次の諸特性を測定した。
Example 1, Comparative Examples 1-2
The components shown in Table 1 were uniformly melt-mixed with a kneader, cooled and pulverized to obtain a resin composition. Using this resin composition, a cured product of 100 mm × 100 mm × 1.5 mm was produced by vacuum press molding under the conditions of temperature: 200 ° C., time: 2 hours, and then post-cured at 240 ° C. for 8 hours. . The following characteristics were measured for the obtained cured product.

1.ガラス転移温度(Tg)
上記ポストキュアを行ったものを6mm×6mmに切断し、試験を行った。
2.曲げ強度
上記ポストキュアを行ったものを10mm×46mmに切断し、25℃、250℃の条件で試験を行った。
3.曲げ弾性率
上記ポストキュアを行ったものを10mm×46mmに切断し、25℃、250℃の条件で試験を行った。
4.熱膨張率
上記ポストキュアを行ったものを6mm×6mmに切断し、試験を行った。
5.長期耐熱性
上記ポストキュアを行ったものを10mm×46mmに切断し、試験片を作製した。これを250℃の環境下にて500時間ごとに試験片を取り出し、曲げ強度を測定して曲げ強度保持率を算出し、長期耐熱性を評価した。
1. Glass transition temperature (Tg)
What performed the said post-cure was cut | disconnected to 6 mm x 6 mm, and the test was done.
2. Bending strength The post-cured material was cut into 10 mm × 46 mm and tested under conditions of 25 ° C. and 250 ° C.
3. Bending elastic modulus The post-cured material was cut into 10 mm x 46 mm and tested under conditions of 25 ° C and 250 ° C.
4). The coefficient of thermal expansion The above-mentioned post cure was cut into 6 mm × 6 mm and tested.
5). Long-term heat resistance The post-cured material was cut into 10 mm x 46 mm to prepare test pieces. A test piece was taken out every 500 hours in an environment of 250 ° C., the bending strength was measured to calculate the bending strength retention, and the long-term heat resistance was evaluated.

Figure 2016047872
Figure 2016047872

Figure 2016047872
Figure 2016047872

実施例1はTgが325℃と比較例1よりも優れており、表2より実施例1が長期耐熱においても優れていることが分かる。また実施例1の熱膨張率は2〜4(ppm/℃)と低い良好な値を示した。比較例2はニーダーにて均一に混練することができなかった。   Example 1 shows that Tg is 325 ° C., which is superior to that of Comparative Example 1, and Table 2 shows that Example 1 is also superior in long-term heat resistance. Moreover, the thermal expansion coefficient of Example 1 was 2-4 (ppm / ° C.), which was a low and good value. Comparative Example 2 could not be uniformly kneaded with a kneader.

表2の結果より、本発明の樹脂組成物は、その硬化物が長期耐熱性、熱膨張率に優れ、適切な曲げ弾性率を有するため、ICやLSI等の半導体素子の封止用途に適しているものである。   From the results of Table 2, the resin composition of the present invention is suitable for sealing semiconductor devices such as ICs and LSIs because the cured product has excellent long-term heat resistance and thermal expansion coefficient and has an appropriate flexural modulus. It is what.

Claims (4)

下記の(A)〜(D)成分を含有する熱硬化性樹脂組成物。
(A)式(1)で示されるマレイミド化合物
Figure 2016047872
(式中、nは0以上の整数を示す。)
(B)式(2)で示される芳香族アリルアミン化合物
Figure 2016047872
(式中、R1、R2、R3、R4は各々独立に水素、炭素数1〜5のアルキル基及びハロゲンのうちいずれかを示す。)
(C)硬化促進剤
(D)無機充填材
A thermosetting resin composition containing the following components (A) to (D).
(A) Maleimide compound represented by formula (1)
Figure 2016047872
(In the formula, n represents an integer of 0 or more.)
(B) Aromatic allylamine compound represented by formula (2)
Figure 2016047872
(In the formula, R 1, R 2, R 3, and R 4 each independently represent hydrogen, an alkyl group having 1 to 5 carbon atoms, or halogen.)
(C) Curing accelerator (D) Inorganic filler
前記(A)成分と(B)成分の含有割合が、質量比率で(A):(B)=40:60〜85:15である、請求項1記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the content ratio of the component (A) and the component (B) is (A) :( B) = 40: 60 to 85:15 in terms of mass ratio. 請求項1又は2に記載の熱硬化性樹脂組成物を硬化して得られる、硬化物。   A cured product obtained by curing the thermosetting resin composition according to claim 1. 請求項1又は2に記載の樹脂組成物を用いた電子部品封止材。   The electronic component sealing material using the resin composition of Claim 1 or 2.
JP2014172653A 2014-08-27 2014-08-27 Resin composition, cured product and electronic component sealing material Pending JP2016047872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172653A JP2016047872A (en) 2014-08-27 2014-08-27 Resin composition, cured product and electronic component sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172653A JP2016047872A (en) 2014-08-27 2014-08-27 Resin composition, cured product and electronic component sealing material

Publications (1)

Publication Number Publication Date
JP2016047872A true JP2016047872A (en) 2016-04-07

Family

ID=55648961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172653A Pending JP2016047872A (en) 2014-08-27 2014-08-27 Resin composition, cured product and electronic component sealing material

Country Status (1)

Country Link
JP (1) JP2016047872A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474156A (en) * 1990-07-11 1992-03-09 Sumitomo Chem Co Ltd Aromatic allylamine compound
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2011162631A (en) * 2010-02-08 2011-08-25 Mitsubishi Rayon Co Ltd Resin composition and prepreg and fiber-reinforced composite material using the same
JP2012180482A (en) * 2011-03-02 2012-09-20 Jnc Corp Composition containing maleimide-based polymer, and method for producing copolymer of maleimide-based polymer
JP2013064136A (en) * 2009-03-27 2013-04-11 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate plate and multilayer printed wiring board each obtained using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474156A (en) * 1990-07-11 1992-03-09 Sumitomo Chem Co Ltd Aromatic allylamine compound
JP2010100802A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy-based resin composition, sheet-like molded product, prepreg, cured product, laminated plate, and multilayer laminated plate
JP2010100803A (en) * 2008-09-24 2010-05-06 Sekisui Chem Co Ltd Epoxy resin composition, sheet-like form, prepreg, cured product, laminated board, and multilayered laminated board
JP2013064136A (en) * 2009-03-27 2013-04-11 Hitachi Chemical Co Ltd Thermosetting resin composition, and prepreg, laminate plate and multilayer printed wiring board each obtained using the same
JP2011162631A (en) * 2010-02-08 2011-08-25 Mitsubishi Rayon Co Ltd Resin composition and prepreg and fiber-reinforced composite material using the same
JP2012180482A (en) * 2011-03-02 2012-09-20 Jnc Corp Composition containing maleimide-based polymer, and method for producing copolymer of maleimide-based polymer

Similar Documents

Publication Publication Date Title
JP4793565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6886770B2 (en) Epoxy resin composition for sealing semiconductor devices and semiconductor packages sealed using this
JP2012062448A (en) Resin composition for sealing semiconductor and resin-sealed semiconductor device
JP2010280804A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
TW201305320A (en) Flame-retardant epoxy resin composition and use thereof
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
JPH11263826A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
KR101865417B1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6771369B2 (en) Thermosetting resin composition
JP2011236318A (en) Epoxy resin composition for sealing optical semiconductor device and optical semiconductor device using the same
JP4958720B2 (en) Molded products and semiconductor packages
JP4950010B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP2019104887A (en) Epoxy resin composition for sealing, cured product, and semiconductor device
JP2012241177A (en) Epoxy resin composition for compression molding and semiconductor device
JP2016047872A (en) Resin composition, cured product and electronic component sealing material
JP5938741B2 (en) Epoxy resin composition for sealing, method for producing the same, and semiconductor device
JP5547680B2 (en) Epoxy resin composition for sealing and semiconductor device
KR101845134B1 (en) Phosphonium compound, epoxy resin composition comprising the same and semiconductor device prepared from using the same
JP2003268071A (en) Epoxy resin composition and semiconductor device using the same
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same
KR20190053057A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2017082052A (en) Epoxy resin composition and semiconductor device using the same
JP4489611B2 (en) Optical electronics
KR102112865B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305