JP2016044576A - Cylinder air-fuel ratio control device for internal combustion engine - Google Patents

Cylinder air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP2016044576A
JP2016044576A JP2014168000A JP2014168000A JP2016044576A JP 2016044576 A JP2016044576 A JP 2016044576A JP 2014168000 A JP2014168000 A JP 2014168000A JP 2014168000 A JP2014168000 A JP 2014168000A JP 2016044576 A JP2016044576 A JP 2016044576A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
value
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014168000A
Other languages
Japanese (ja)
Inventor
教昭 岩瀬
Noriaki Iwase
教昭 岩瀬
向井 弥寿夫
Yasuo Mukai
向井  弥寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014168000A priority Critical patent/JP2016044576A/en
Priority to US14/825,455 priority patent/US9890726B2/en
Publication of JP2016044576A publication Critical patent/JP2016044576A/en
Priority to US15/585,227 priority patent/US9790882B2/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder air-fuel ratio control device for an internal combustion engine, which is enabled to suppress the increase in the air-fuel ratio dispersion between cylinders due to the fluctuation of a main F/B (feedback) correction value.SOLUTION: A main F/B correction value is so calculated to correct the air/fuel ratios of individual cylinders generally that the air-fuel ratio of exhaust gases may be identical to a target air/fuel ratio on the basis of the output of an air-fuel ratio sensor 36. On the basis of the detected value of the air/fuel ratios of the air/fuel ratio sensor 36, moreover, the air-fuel ratio of each cylinder is estimated on the basis of the detected value of the air/fuel ratio sensor so that the air/fuel ratio of each cylinder is controlled on the basis of the estimated air/fuel ratio of each cylinder. At this time, it is decided, on the basis of the magnitude of an initial estimation air/fuel ratio, whether or not an inter-cylinder imbalance trouble is possible in an engine 11 (or whether or not an air-fuel ratio dispersion between the cylinders is relatively high). If it is decided that the imbalance trouble between the cylinders is possible, and that the load on the engine 11 is at or higher than a predetermined value, the variation of the main F/B correction value is restricted by a predetermined guard value thereby to suppress the fluctuation of the main F/B correction value.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の各気筒の空燃比を推定し、その推定空燃比に基づいて各気筒の空燃比を制御する内燃機関の気筒別空燃比制御装置に関する発明である。   The present invention relates to a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that estimates the air-fuel ratio of each cylinder of the internal combustion engine and controls the air-fuel ratio of each cylinder based on the estimated air-fuel ratio.

従来より、内燃機関の排出ガス浄化用の触媒の排出ガス浄化率を高めることを目的として、排気管に設置した空燃比センサの出力に基づいて排出ガスの空燃比を目標空燃比に一致させるようにメインフィードバック補正値を算出して各気筒の空燃比(例えば燃料噴射量)を一律に補正するメインフィードバック制御を行うようにしたものがある。   Conventionally, in order to increase the exhaust gas purification rate of a catalyst for purifying exhaust gas of an internal combustion engine, the air-fuel ratio of the exhaust gas is made to coincide with the target air-fuel ratio based on the output of the air-fuel ratio sensor installed in the exhaust pipe. In addition, there is a type in which main feedback control is performed in which the main feedback correction value is calculated and the air-fuel ratio (for example, fuel injection amount) of each cylinder is uniformly corrected.

更に、内燃機関の気筒間の空燃比ばらつきを小さくする技術として、例えば、特許文献1(特開2013−253593号公報)に記載されているように、空燃比センサの検出値に基づいて各気筒の空燃比を気筒毎に推定し、各気筒の推定空燃比に基づいて各気筒の空燃比を気筒毎に制御する気筒別空燃比制御を行うようにしたものがある。   Further, as a technique for reducing variation in air-fuel ratio between cylinders of an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-253593), each cylinder is based on a detection value of an air-fuel ratio sensor. The air-fuel ratio of each cylinder is estimated for each cylinder, and the cylinder-by-cylinder air-fuel ratio control is performed in which the air-fuel ratio of each cylinder is controlled for each cylinder based on the estimated air-fuel ratio of each cylinder.

特開2013−253593号公報JP 2013-253593 A

ところで、内燃機関の気筒間の空燃比ばらつきが比較的大きいときに、内燃機関の負荷が大きい(つまり排気流速が速い)と、空燃比センサ出力の振幅が大きくなって空燃比センサ出力が大きく変動する。このような場合、メインフィードバック制御によるメインフィードバック補正値が大きく変動するため、これが原因で気筒間の空燃比ばらつきが増大してしまうことがある。このため、気筒別空燃比制御により気筒間の空燃比ばらつきを小さくする(各気筒の推定空燃比を収束させる)ことが困難になり、排気エミッションの悪化を招く可能性がある。   By the way, when the air-fuel ratio variation between the cylinders of the internal combustion engine is relatively large, if the load on the internal combustion engine is large (that is, the exhaust flow rate is fast), the amplitude of the air-fuel ratio sensor output increases and the air-fuel ratio sensor output fluctuates greatly. To do. In such a case, the main feedback correction value by the main feedback control fluctuates greatly, which may increase the air-fuel ratio variation between the cylinders. For this reason, it becomes difficult to reduce the variation in air-fuel ratio among the cylinders by the cylinder-by-cylinder air-fuel ratio control (to converge the estimated air-fuel ratio of each cylinder), which may cause deterioration in exhaust emission.

そこで、本発明が解決しようとする課題は、メインフィードバック補正値の変動による気筒間の空燃比ばらつきの増大を抑制することができる内燃機関の気筒別空燃比制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine that can suppress an increase in variation in air-fuel ratio among cylinders due to fluctuations in a main feedback correction value.

上記課題を解決するために、請求項1に係る発明は、内燃機関(11)の各気筒の排出ガスが合流して流れる排気集合部(34a)に該排出ガスの空燃比を検出する空燃比センサ(36)を設置し、空燃比センサ(36)の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるようにメインフィードバック補正値を算出して各気筒の空燃比を一律に補正するメインフィードバック制御手段(39)と、各気筒の空燃比検出タイミング毎に検出された空燃比センサ(36)の検出値に基づいて各気筒の空燃比を気筒毎に推定する気筒別空燃比推定を実行する気筒別空燃比推定手段(39)と、各気筒の推定空燃比に基づいて各気筒の空燃比を気筒毎に制御する気筒別空燃比制御を実行する気筒別空燃比制御手段(39)とを備えた内燃機関の気筒別空燃比制御装置において、内燃機関(11)の気筒間インバランス故障の可能性有りか否かを判定する判定手段(39)と、気筒間インバランス故障の可能性有りと判定され且つ内燃機関(11)の負荷が所定値以上のときに、メインフィードバック補正値の変化量を所定のガード値で制限する制限手段(39)とを備えた構成としたものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to an air-fuel ratio for detecting the air-fuel ratio of the exhaust gas in the exhaust collecting portion (34a) through which the exhaust gas of each cylinder of the internal combustion engine (11) flows. A sensor (36) is installed, and based on the output of the air-fuel ratio sensor (36), the main feedback correction value is calculated so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio, and the air-fuel ratio of each cylinder is uniformly corrected. The cylinder-by-cylinder air-fuel ratio estimation for estimating the air-fuel ratio of each cylinder for each cylinder based on the detected value of the main feedback control means (39) and the air-fuel ratio sensor (36) detected at each air-fuel ratio detection timing of each cylinder And a cylinder-by-cylinder air-fuel ratio control means (39) for performing cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio of each cylinder for each cylinder based on the estimated air-fuel ratio of each cylinder. ) In the cylinder-by-cylinder air-fuel ratio control apparatus, a determination means (39) for determining whether or not there is a possibility of an imbalance failure between cylinders of the internal combustion engine (11); When the load of the internal combustion engine (11) is equal to or greater than a predetermined value, a limiting means (39) is provided for limiting the amount of change in the main feedback correction value with a predetermined guard value.

気筒間インバランス故障の可能性有り(つまり気筒間の空燃比ばらつきが比較的大きい)と判定され且つ内燃機関の負荷が所定値以上(つまり排気流速が比較的速い状態)のときには、空燃比センサ出力の振幅が大きくなって、メインフィードバック補正値が大きく変動する可能性がある。   When it is determined that there is a possibility of imbalance failure between cylinders (that is, the air-fuel ratio variation between cylinders is relatively large) and the load of the internal combustion engine is equal to or higher than a predetermined value (that is, the exhaust flow rate is relatively high), the air-fuel ratio sensor There is a possibility that the main feedback correction value fluctuates greatly as the output amplitude increases.

従って、気筒間インバランス故障の可能性有りと判定され且つ内燃機関の負荷が所定値以上のときに、メインフィードバック補正値の変化量を所定のガード値で制限することで、メインフィードバック補正値の変動を適度に抑制して、メインフィードバック補正値の変動による気筒間の空燃比ばらつきの増大を抑制することができる。これにより、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定された場合でも、気筒別空燃比制御により速やかに気筒間の空燃比ばらつきを小さくする(各気筒の推定空燃比を収束させる)ことが可能となり、排気エミッションの悪化を抑制することができる。   Therefore, when it is determined that there is a possibility of an imbalance failure between cylinders and the load of the internal combustion engine is equal to or greater than a predetermined value, the amount of change in the main feedback correction value is limited by a predetermined guard value. The fluctuation can be moderately suppressed, and an increase in the air-fuel ratio variation between the cylinders due to the fluctuation of the main feedback correction value can be suppressed. Thus, even when it is determined that there is a possibility of an imbalance failure between cylinders (the air-fuel ratio variation between cylinders is relatively large), the air-fuel ratio variation between cylinders is quickly reduced by the air-fuel ratio control for each cylinder (each The estimated air-fuel ratio of the cylinder can be converged), and the exhaust emission can be prevented from deteriorating.

図1は本発明の一実施例におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in one embodiment of the present invention. 図2は空燃比制御機能を説明するブロック図である。FIG. 2 is a block diagram illustrating the air-fuel ratio control function. 図3はメインF/B制御ルーチンの処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of processing of the main F / B control routine. 図4は気筒別空燃比推定ルーチンの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of the cylinder-by-cylinder air-fuel ratio estimation routine. 図5は気筒別空燃比制御及び収束判定ルーチンの処理の流れを示すフローチャート(その1)である。FIG. 5 is a flowchart (No. 1) showing the flow of processing of the cylinder-by-cylinder air-fuel ratio control and convergence determination routine. 図6は気筒別空燃比制御及び収束判定ルーチンの処理の流れを示すフローチャート(その2)である。FIG. 6 is a flowchart (No. 2) showing the flow of processing of the cylinder-by-cylinder air-fuel ratio control and convergence determination routine. 図7は実施例1のインバランス故障可能性判定ルーチンの処理の流れを示すフローチャートである。FIG. 7 is a flowchart illustrating a process flow of an imbalance failure possibility determination routine according to the first embodiment. 図8は実施例1の制御の実行例を示すタイムチャートである。FIG. 8 is a time chart illustrating an execution example of the control according to the first embodiment. 図9は実施例1の効果を示すタイムチャートである。FIG. 9 is a time chart showing the effect of the first embodiment. 図10は実施例2のインバランス故障可能性判定ルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart illustrating a process flow of an imbalance failure possibility determination routine according to the second embodiment. 図11は実施例3のインバランス故障可能性判定ルーチンの処理の流れを示すフローチャートである。FIG. 11 is a flowchart illustrating a process flow of an imbalance failure possibility determination routine according to the third embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図9に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11は、第1気筒#1〜第4気筒#4の四つの気筒を有し、このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15と、このスロットルバルブ15の開度(スロットル開度)を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An in-line four-cylinder engine 11 that is an internal combustion engine, for example, has four cylinders, a first cylinder # 1 to a fourth cylinder # 4, and an air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11. An air flow meter 14 for detecting the intake air amount is provided on the downstream side of the air cleaner 13. A throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the opening (throttle opening) of the throttle valve 15 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19に接続された吸気ポート又はその近傍に、それぞれ吸気ポートに燃料を噴射する燃料噴射弁20が取り付けられている。或は、エンジン11の各気筒に、それぞれ筒内に燃料を直接噴射する燃料噴射弁20が取り付けられているようにしても良い。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and fuel is injected into the intake port at or near the intake port connected to the intake manifold 19 of each cylinder. A fuel injection valve 20 is attached. Alternatively, a fuel injection valve 20 that directly injects fuel into the cylinder may be attached to each cylinder of the engine 11. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26のバルブタイミング(開閉タイミング)をそれぞれ変化させる可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられていると共に、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30CA毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the valve timing (opening / closing timing) of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the crank of the engine 11. A crank angle sensor 33 that outputs a pulse of a crank angle signal every predetermined crank angle (for example, every 30 CA) in synchronization with the rotation of the shaft is provided.

一方、エンジン11の排気管34のうちの各気筒の排出ガスが合流して流れる排気集合部34a(各気筒の排気マニホールド35が集合する部分又はそれよりも下流側)には、排出ガスの空燃比を検出する空燃比センサ36が設けられている。この空燃比センサ36の下流側に、排出ガス中のCO,HC,NOX 等を浄化する三元触媒等の触媒37が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ38が取り付けられている。 On the other hand, in the exhaust pipe 34 of the engine 11, exhaust gas in the exhaust collecting portion 34 a (the portion where the exhaust manifold 35 of each cylinder gathers or the downstream side thereof) flows. An air-fuel ratio sensor 36 for detecting the fuel ratio is provided. A catalyst 37 such as a three-way catalyst for purifying CO, HC, NO x and the like in the exhaust gas is provided on the downstream side of the air-fuel ratio sensor 36. A cooling water temperature sensor 38 for detecting the cooling water temperature is attached to the cylinder block of the engine 11.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)39に入力される。このECU39は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 39. The ECU 39 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby depending on the engine operating state, the fuel injection amount, the ignition timing. The throttle opening (intake air amount) and the like are controlled.

その際、ECU39は、後述する図3のメインF/B制御ルーチンを実行することで、所定のメインF/B制御実行条件が成立したときに、空燃比センサ36の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるようにメインF/B補正値を算出して各気筒の空燃比(例えば燃料噴射量)を一律に補正するメインF/B制御を実行する。ここで、「F/B」は「フィードバック」を意味する(以下、同様)。   At that time, the ECU 39 executes a main F / B control routine of FIG. 3 to be described later, so that when a predetermined main F / B control execution condition is satisfied, the exhaust gas emission is determined based on the output of the air-fuel ratio sensor 36. A main F / B control is performed in which the main F / B correction value is calculated so that the air-fuel ratio matches the target air-fuel ratio and the air-fuel ratio (for example, fuel injection amount) of each cylinder is uniformly corrected. Here, “F / B” means “feedback” (hereinafter the same).

具体的には、図2に示すように、まず、空燃比偏差算出部40で、検出空燃比(空燃比センサ36で検出した排出ガスの空燃比)と目標空燃比との偏差を算出し、メインF/B制御部41で、検出空燃比と目標空燃比との偏差が小さくなるようにメインF/B補正値を算出する。そして、噴射量算出部42で、エンジン回転速度や負荷(吸気管圧力や吸入空気量等)に基づいて算出されたベース噴射量やメインF/B補正値等に基づいて燃料噴射量を算出し、その燃料噴射量に基づいて各気筒の燃料噴射弁20を制御する。   Specifically, as shown in FIG. 2, first, the air-fuel ratio deviation calculating unit 40 calculates the deviation between the detected air-fuel ratio (the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 36) and the target air-fuel ratio, The main F / B control unit 41 calculates the main F / B correction value so that the deviation between the detected air-fuel ratio and the target air-fuel ratio becomes small. Then, the injection amount calculation unit 42 calculates the fuel injection amount based on the base injection amount, the main F / B correction value, etc. calculated based on the engine speed and load (intake pipe pressure, intake air amount, etc.). The fuel injection valve 20 of each cylinder is controlled based on the fuel injection amount.

更に、ECU39は、後述する図4乃至図6の各ルーチンを実行することで、各気筒の空燃比検出タイミング毎に検出された空燃比センサ36の検出値に基づいて各気筒の空燃比を気筒毎に推定する気筒別空燃比推定を実行し、各気筒の推定空燃比に基づいて各気筒の空燃比を気筒毎に制御する気筒別空燃比制御を実行する。   Further, the ECU 39 executes the routines of FIGS. 4 to 6 to be described later, thereby calculating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 36 detected at each air-fuel ratio detection timing of each cylinder. The cylinder-by-cylinder air-fuel ratio estimation is performed for each cylinder, and the cylinder-by-cylinder air-fuel ratio control is performed to control the air-fuel ratio of each cylinder for each cylinder based on the estimated air-fuel ratio of each cylinder.

具体的には、図2に示すように、まず、気筒別空燃比推定部43で、後述する気筒別空燃比推定モデルを用いて空燃比センサ36の検出値(排気集合部34aを流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を気筒毎に推定し、基準空燃比算出部44で、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比に設定する。この後、気筒別空燃比偏差算出部45で、各気筒の推定空燃比と基準空燃比との偏差を気筒毎に算出し、気筒別空燃比制御部46で、各気筒の推定空燃比と基準空燃比との偏差が小さくなるように気筒別補正値として例えば燃料補正量(燃料噴射量の補正量)を気筒毎に算出する。その算出結果に基づいて各気筒の燃料噴射量を気筒毎に補正することで、各気筒に供給する混合気の空燃比を気筒毎に補正して気筒間の空燃比ばらつきを小さくする。   Specifically, as shown in FIG. 2, first, the cylinder-by-cylinder air-fuel ratio estimation unit 43 uses a detection value of the air-fuel ratio sensor 36 (exhaust gas flowing through the exhaust collecting unit 34 a) using a cylinder-by-cylinder air-fuel ratio estimation model described later. Based on the actual air-fuel ratio), the air-fuel ratio of each cylinder is estimated for each cylinder, the reference air-fuel ratio calculating unit 44 calculates the average value of the estimated air-fuel ratios of all the cylinders, and the average value is used as the reference air-fuel ratio. Set. Thereafter, the cylinder-by-cylinder air-fuel ratio deviation calculating unit 45 calculates the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio for each cylinder, and the cylinder-by-cylinder air-fuel ratio control unit 46 calculates the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio. For example, a fuel correction amount (a fuel injection amount correction amount) is calculated for each cylinder as a cylinder specific correction value so that the deviation from the air-fuel ratio becomes small. By correcting the fuel injection amount of each cylinder for each cylinder based on the calculation result, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder to reduce the air-fuel ratio variation among the cylinders.

ここで、空燃比センサ36の検出値(排気集合部34aを流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。   Here, a specific model for estimating the air-fuel ratio of each cylinder based on the detected value of the air-fuel ratio sensor 36 (actual air-fuel ratio of the exhaust gas flowing through the exhaust collecting portion 34a) (hereinafter referred to as "cylinder-specific air-fuel ratio estimation model"). An example will be described.

排気集合部34aにおけるガス交換に着目して、空燃比センサ36の検出値を、排気集合部34aにおける各気筒の推定空燃比の履歴と空燃比センサ36の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、このモデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Paying attention to the gas exchange in the exhaust collecting portion 34a, the detected value of the air-fuel ratio sensor 36 is given a predetermined weight to the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 36 in the exhaust collecting portion 34a. The model is obtained by multiplying and adding, and the air-fuel ratio of each cylinder is estimated using this model. At this time, a Kalman filter is used as an observer.

より具体的には、排気集合部34aにおけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、ys は空燃比センサ36の検出値、uは排気集合部34aに流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust collecting portion 34a is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, ys is a detected value of the air-fuel ratio sensor 36, u is an air-fuel ratio of the gas flowing into the exhaust collecting portion 34a, and k1 to k4 are constants.

排気系では、排気集合部34aにおけるガス流入及び混合の一次遅れ要素と、空燃比センサ36の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a first-order lag element for gas inflow and mixing in the exhaust collecting portion 34 a and a first-order lag element due to a response delay of the air-fuel ratio sensor 36. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ36の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 36, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。   As described above, the cylinder-by-cylinder air-fuel ratio estimation model is configured by the Kalman filter type observer, whereby the air-fuel ratio of each cylinder can be sequentially estimated as the combustion cycle proceeds.

次に、各気筒の空燃比検出タイミング(空燃比センサ36の出力のサンプルタイミング)の設定方法について説明する。各気筒から排出される排出ガスが空燃比センサ36付近に到達してその空燃比が検出されるまでの遅れ(以下「排気系の応答遅れ」という)がエンジン運転状態によって変化する。これを考慮して、本実施例では、エンジン運転状態(例えばエンジン回転速度や負荷)に応じてマップにより各気筒の空燃比検出タイミングを設定し、空燃比センサ36の出力をECU39に取り込むようにしている。一般に、エンジン11の負荷が小さくなるほど、排気系の応答遅れが大きくなるため、各気筒の空燃比検出タイミングは、エンジン11の負荷が小さくなるほど、遅角側にシフトされるように設定されている。   Next, a method for setting the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 36) will be described. The delay until the exhaust gas discharged from each cylinder reaches the vicinity of the air-fuel ratio sensor 36 and the air-fuel ratio is detected (hereinafter referred to as “exhaust system response delay”) varies depending on the engine operating state. In consideration of this, in this embodiment, the air-fuel ratio detection timing of each cylinder is set by a map according to the engine operating state (for example, engine speed and load), and the output of the air-fuel ratio sensor 36 is taken into the ECU 39. ing. In general, as the load on the engine 11 decreases, the response delay of the exhaust system increases, so the air-fuel ratio detection timing of each cylinder is set to shift to the retard side as the load on the engine 11 decreases. .

しかしながら、各気筒の排気ポートから空燃比センサ36までの排気マニホールド35の長さが各気筒毎に異なると共に、各気筒の排出ガスの流れがエンジン運転状態(エンジン回転速度や筒内充填空気量等)によって複雑に変化する。しかも、エンジン11の製造ばらつきや経年変化によっても排気系の応答遅れが変化するため、エンジン設計・製造過程で、各気筒の排気系の応答遅れ(各気筒の空燃比検出タイミング)と負荷との関係を精度良くマップ化しておくことは困難である。このため、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれる可能性がある。   However, the length of the exhaust manifold 35 from the exhaust port of each cylinder to the air-fuel ratio sensor 36 is different for each cylinder, and the flow of exhaust gas in each cylinder is in the engine operating state (engine rotation speed, in-cylinder charged air amount, etc.). ). In addition, since the response delay of the exhaust system also changes due to manufacturing variations and aging of the engine 11, the response delay of the exhaust system of each cylinder (air-fuel ratio detection timing of each cylinder) and the load in the engine design and manufacturing process. It is difficult to map the relationship accurately. For this reason, the air-fuel ratio detection timing of each cylinder may deviate from the proper air-fuel ratio detection timing.

もし、各気筒の空燃比検出タイミングがずれると、各気筒の空燃比の推定精度が悪化して、気筒別空燃比制御を続けても各気筒の推定空燃比が収束しない状態(気筒間の推定空燃比のばらつきが小さくならない状態)となる。   If the air-fuel ratio detection timing of each cylinder shifts, the estimation accuracy of the air-fuel ratio of each cylinder deteriorates, and the estimated air-fuel ratio of each cylinder does not converge even if the cylinder-by-cylinder air-fuel ratio control is continued (estimation between cylinders). The variation of the air-fuel ratio is not reduced).

そこで、ECU39は、気筒別空燃比制御中に推定空燃比に基づいて空燃比検出タイミングのずれの有無を判定する空燃比検出タイミング判定を行い、空燃比検出タイミングのずれ有りと判定されたときに空燃比検出タイミングを補正する。   Therefore, the ECU 39 performs air-fuel ratio detection timing determination for determining whether there is a deviation in the air-fuel ratio detection timing based on the estimated air-fuel ratio during the cylinder-by-cylinder air-fuel ratio control, and when it is determined that there is a deviation in the air-fuel ratio detection timing Correct the air-fuel ratio detection timing.

例えば、エンジン11の1サイクル(720CA)内で空燃比センサ36の検出値のばらつき(変動)が最大となるように空燃比検出タイミングを補正するLocal学習を実行する。このLocal学習の実行後に、気筒別空燃比制御中に少なくとも一つの気筒の推定空燃比の変化とその気筒の気筒別補正値(例えば燃料補正量)の変化との関係に基づいて空燃比検出タイミングを補正するGlobal学習を実行する。このGlobal学習では、各気筒の推定空燃比が想定している各気筒番号を仮想的に複数通り変更した場合の各々において少なくとも一つの気筒の推定空燃比の変化とその推定空燃比の変更後の気筒番号の気筒別補正値の変化との相関値を算出し、この相関値が最大となるように空燃比検出タイミングを補正する。   For example, the local learning for correcting the air-fuel ratio detection timing is executed so that the variation (fluctuation) of the detection value of the air-fuel ratio sensor 36 is maximized within one cycle (720 CA) of the engine 11. After the execution of the local learning, the air-fuel ratio detection timing is determined based on the relationship between the change in the estimated air-fuel ratio of at least one cylinder and the change in the cylinder-specific correction value (for example, fuel correction amount) of the cylinder during the cylinder-by-cylinder air-fuel ratio control. The global learning for correcting is performed. In this global learning, the change in the estimated air-fuel ratio of at least one cylinder and the change in the estimated air-fuel ratio in each of the cases where each cylinder number assumed for the estimated air-fuel ratio of each cylinder is virtually changed in plural ways. A correlation value with a change in the cylinder-specific correction value of the cylinder number is calculated, and the air-fuel ratio detection timing is corrected so that this correlation value becomes maximum.

或は、Local学習の実行後(つまりLocal学習により空燃比検出タイミングが補正された後)、空燃比検出タイミングがずれていると判定される毎に該空燃比検出タイミングをエンジン11の燃焼間隔(4気筒の場合には180CA)又はその複数倍ずつ補正するGlobal学習を実行することで、各気筒の空燃比検出タイミングを他の気筒の空燃比検出タイミングと入れ替えて、各気筒の空燃比検出タイミングを正しい空燃比検出タイミングに補正するようにしても良い。   Alternatively, after the local learning is executed (that is, after the air-fuel ratio detection timing is corrected by the local learning), the air-fuel ratio detection timing is set to the combustion interval ( (In the case of four cylinders, 180 CA) or a global learning that corrects multiple times of each is performed to replace the air-fuel ratio detection timing of each cylinder with the air-fuel ratio detection timing of the other cylinders. May be corrected to the correct air-fuel ratio detection timing.

ところで、エンジン11の気筒間の空燃比ばらつきが比較的大きいときに、エンジン11の負荷が大きい(つまり排気流速が速い)と、図9に破線で示すように、空燃比センサ36出力の振幅が大きくなって空燃比センサ36出力が大きく変動する。このような場合、通常通りにメインF/B制御を実行すると、メインF/B補正値が大きく変動するため、これが原因で気筒間の空燃比ばらつきが増大してしまうことがある。このため、気筒別空燃比制御により気筒間の空燃比ばらつきを小さくする(各気筒の推定空燃比を収束させる)ことが困難になり、排気エミッションの悪化を招く可能性がある。   Incidentally, when the air-fuel ratio variation between the cylinders of the engine 11 is relatively large, if the load on the engine 11 is large (that is, the exhaust flow rate is fast), the amplitude of the output of the air-fuel ratio sensor 36 increases as shown by the broken line in FIG. As a result, the output of the air-fuel ratio sensor 36 fluctuates greatly. In such a case, if the main F / B control is executed as usual, the main F / B correction value fluctuates greatly, which may increase the variation in air-fuel ratio among the cylinders. For this reason, it becomes difficult to reduce the variation in air-fuel ratio among the cylinders by the cylinder-by-cylinder air-fuel ratio control (to converge the estimated air-fuel ratio of each cylinder), which may cause deterioration in exhaust emission.

この対策として、ECU39は、後述する図3及び図7の各ルーチンを実行することで、エンジン11の気筒間インバランス故障の可能性有りか否かを判定し、気筒間インバランス故障の可能性有りと判定され且つエンジン11の負荷が所定値以上のときに、メインF/B補正値の変化量を所定のガード値で制限するようにしている。   As a countermeasure against this, the ECU 39 determines whether or not there is a possibility of an imbalance failure between cylinders of the engine 11 by executing routines of FIGS. 3 and 7 described later, and the possibility of an imbalance failure between cylinders. When it is determined that there is a load and the load on the engine 11 is greater than or equal to a predetermined value, the change amount of the main F / B correction value is limited by a predetermined guard value.

ここで、気筒間インバランス故障とは、例えば、気筒間の空燃比ばらつきが許容レベルを越えた状態である。また、気筒間インバランス故障の可能性有りとは、気筒間インバランス故障が発生する可能性が有る状態であり、例えば、気筒間の空燃比ばらつきが比較的大きい状態(許容レベルを越えない程度に大きい状態)である。   Here, the inter-cylinder imbalance failure is, for example, a state in which the variation in air-fuel ratio between cylinders exceeds an allowable level. In addition, the possibility of an imbalance failure between cylinders is a state in which an imbalance failure between cylinders may occur. For example, there is a relatively large variation in air-fuel ratio between cylinders (a level that does not exceed an allowable level). Is a large state).

気筒間インバランス故障の可能性有り(つまり気筒間の空燃比ばらつきが比較的大きい)と判定され且つエンジン11の負荷が所定値以上(つまり排気流速が比較的速い状態)のときには、空燃比センサ36出力の振幅が大きくなって、メインF/B補正値が大きく変動する可能性がある。   When it is determined that there is a possibility of an imbalance failure between cylinders (that is, the air-fuel ratio variation between cylinders is relatively large) and the load of the engine 11 is equal to or greater than a predetermined value (that is, the exhaust flow rate is relatively fast), There is a possibility that the main F / B correction value fluctuates greatly as the amplitude of the 36 outputs increases.

従って、気筒間インバランス故障の可能性有りと判定され且つエンジン11の負荷が所定値以上のときに、メインF/B補正値の変化量を所定のガード値で制限することで、図9に実線で示すように、メインF/B補正値の変動を適度に抑制して、メインF/B補正値の変動による気筒間の空燃比ばらつきの増大を抑制することができる。   Therefore, when it is determined that there is a possibility of an imbalance failure between cylinders and the load of the engine 11 is equal to or greater than a predetermined value, the amount of change in the main F / B correction value is limited by a predetermined guard value, so that FIG. As indicated by the solid line, fluctuations in the main F / B correction value can be moderately suppressed, and an increase in air-fuel ratio variation between cylinders due to fluctuations in the main F / B correction value can be suppressed.

また、本実施例1では、気筒別空燃比推定による初期推定空燃比の大きさ(例えば各気筒の初期推定空燃比の絶対値のうちの最大値)に基づいて気筒間インバランス故障の可能性有りか否かを判定するようにしている。   Further, in the first embodiment, the possibility of an imbalance failure between cylinders based on the magnitude of the initial estimated air-fuel ratio by the cylinder-by-cylinder air-fuel ratio estimation (for example, the maximum value among the absolute values of the initial estimated air-fuel ratio of each cylinder). Whether or not there is is determined.

気筒間の空燃比ばらつきが小さければ、気筒別空燃比制御の開始前又は開始直後でも各気筒の推定空燃比が所定範囲内に収まるが、気筒間の空燃比ばらつきが大きいと、気筒別空燃比制御の開始前又は開始直後は各気筒の推定空燃比が所定範囲内には収まらない(少なくとも一つの気筒の推定空燃比が所定範囲外となる)。従って、初期推定空燃比(気筒別空燃比制御の開始前又は開始直後の推定空燃比)の大きさを監視すれば、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)か否かを精度良く判定することができる。
以下、本実施例1でECU39が実行する図3乃至図7の各ルーチンの処理内容を説明する。
If the variation in air-fuel ratio between cylinders is small, the estimated air-fuel ratio of each cylinder is within a predetermined range even before or immediately after the start of cylinder-by-cylinder air-fuel ratio control. Before or immediately after the start of control, the estimated air-fuel ratio of each cylinder does not fall within the predetermined range (the estimated air-fuel ratio of at least one cylinder falls outside the predetermined range). Accordingly, if the magnitude of the initial estimated air-fuel ratio (the estimated air-fuel ratio before or after the start of the cylinder-by-cylinder air-fuel ratio control) is monitored, there is a possibility of an imbalance failure between cylinders (the variation in air-fuel ratio between cylinders is relatively small). It is possible to accurately determine whether or not it is large.
Hereinafter, the processing content of each routine of FIG. 3 thru | or FIG. 7 which ECU39 performs in the present Example 1 is demonstrated.

[メインF/B制御ルーチン]
図3に示すメインF/B制御ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30CA毎)に起動され、特許請求の範囲でいうメインフィードバック制御手段及び制限手段としての役割を果たす。
[Main F / B control routine]
The main F / B control routine shown in FIG. 3 is started at every predetermined crank angle (for example, every 30 CA) in synchronization with the output pulse of the crank angle sensor 33, and serves as a main feedback control means and a limiting means in the claims. To play a role.

本ルーチンが起動されると、まず、ステップ101で、メインF/B制御の実行条件が成立しているか否かを判定する。このメインF/B制御の実行条件としては、例えば、次の条件(1) ,(2) がある。
(1) 空燃比センサ36が活性状態であること
(2) 空燃比センサ36が異常(故障)と判定されていないこと
When this routine is started, first, at step 101, it is determined whether or not an execution condition for main F / B control is satisfied. As execution conditions of the main F / B control, for example, there are the following conditions (1) and (2).
(1) The air-fuel ratio sensor 36 is in an active state
(2) The air-fuel ratio sensor 36 is not judged to be abnormal (failure)

これら二つの条件(1) と(2) を両方とも満したときにメインF/B制御の実行条件が成立し、いずれか一つでも満たさない条件があれば、実行条件が不成立となる。実行条件が不成立の場合は、ステップ102以降の処理を行うことなく、本ルーチンを終了する。   When both of these two conditions (1) and (2) are satisfied, the execution condition of the main F / B control is satisfied, and if there is a condition that does not satisfy any one of them, the execution condition is not satisfied. If the execution condition is not satisfied, this routine is terminated without performing the processing after step 102.

一方、実行条件が成立している場合は、ステップ102に進み、エンジン11の負荷(例えば吸入空気量や吸気管圧力)が所定値以上か否かを判定する。この所定値は、例えば、気筒間インバランス故障の可能性有りの場合に、空燃比センサ36出力の振幅が比較的大きくなるような値である。   On the other hand, if the execution condition is satisfied, the routine proceeds to step 102 where it is determined whether or not the load of the engine 11 (for example, intake air amount or intake pipe pressure) is equal to or greater than a predetermined value. This predetermined value is, for example, such a value that the amplitude of the air-fuel ratio sensor 36 output becomes relatively large when there is a possibility of an imbalance failure between cylinders.

このステップ102で、エンジン11の負荷が所定値以上と判定された場合には、ステップ103に進み、気筒間インバランス故障の可能性有りか否かを、後述するインバランス故障可能性フラグが「1」であるか否かによって判定する。   If it is determined in step 102 that the load of the engine 11 is equal to or greater than the predetermined value, the process proceeds to step 103, and an imbalance failure possibility flag described later indicates whether or not there is a possibility of an imbalance failure between cylinders. Judgment is made based on whether or not it is “1”.

上記ステップ102でエンジン11の負荷が所定値以上と判定され且つ上記ステップ103で気筒間インバランス故障の可能性有り(インバランス故障可能性フラグ=1)と判定された場合には、ステップ104に進み、メインF/B補正値の変化量を制限するための変化量ガード値を所定値に設定する。   If it is determined in step 102 that the load of the engine 11 is equal to or greater than a predetermined value and it is determined in step 103 that there is a possibility of an imbalance failure between cylinders (imbalance failure possibility flag = 1), the process proceeds to step 104. Then, the change guard value for limiting the change amount of the main F / B correction value is set to a predetermined value.

一方、上記ステップ102でエンジン11の負荷が所定値よりも小さいと判定された場合、又は、上記ステップ103で気筒間インバランス故障の可能性無し(インバランス故障可能性フラグ=0)と判定された場合には、ステップ105に進み、変化量ガード値を無しにする(設定しない)。   On the other hand, if it is determined in step 102 that the load of the engine 11 is smaller than a predetermined value, or it is determined in step 103 that there is no possibility of an imbalance failure between cylinders (imbalance failure possibility flag = 0). If YES in step 105, the flow advances to step 105 to make no change amount guard value (not set).

この後、ステップ106に進み、検出空燃比(空燃比センサ36で検出した排出ガスの空燃比)と目標空燃比との偏差が小さくなるようにメインF/B補正値を算出する。
この後、ステップ107に進み、今回のメインF/B補正値と所定期間前(例えば1燃焼前又は1TDC前)のメインF/B補正値との差を、メインF/B補正値の変化量として算出する。
Thereafter, the routine proceeds to step 106, where the main F / B correction value is calculated so that the deviation between the detected air-fuel ratio (the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 36) and the target air-fuel ratio becomes small.
Thereafter, the process proceeds to step 107, where the difference between the current main F / B correction value and the main F / B correction value before a predetermined period (for example, one before combustion or one TDC) is determined as the change amount of the main F / B correction value. Calculate as

この後、ステップ108に進み、上記ステップ104で変化量ガード値を設定した場合には、メインF/B補正値の変化量を変化量ガード値で制限する。具体的には、メインF/B補正値の変化量が変化量ガード値よりも大きい場合には、メインF/B補正値の変化量を変化量ガード値でガード処理して、メインF/B補正値の変化量を変化量ガード値に設定する(メインF/B補正値の変化量=変化量ガード値)。一方、メインF/B補正値の変化量が変化量ガード値以下の場合には、メインF/B補正値の変化量をそのまま採用する。尚、上記ステップ105で変化量ガード値を無しにした場合には、メインF/B補正値の変化量をそのまま採用する。   Thereafter, the process proceeds to step 108, and when the change amount guard value is set in step 104, the change amount of the main F / B correction value is limited by the change amount guard value. Specifically, when the change amount of the main F / B correction value is larger than the change amount guard value, the main F / B correction value is guarded with the change amount guard value, and the main F / B correction value is guarded. The change amount of the correction value is set as a change amount guard value (main F / B correction value change amount = change amount guard value). On the other hand, when the change amount of the main F / B correction value is equal to or less than the change guard value, the change amount of the main F / B correction value is adopted as it is. If the change amount guard value is omitted in step 105, the main F / B correction value change amount is used as it is.

この後、ステップ109に進み、所定期間前のメインF/B補正値にメインF/B補正値の変化量を加算して、最終的なメインF/B補正値を求める。尚、上記ステップ105で変化量ガード値を無しにした場合には、上記ステップ106で算出したメインF/B補正値をそのまま最終的なメインF/B補正値として採用するようにしても良い。   Thereafter, the process proceeds to step 109, and the final main F / B correction value is obtained by adding the amount of change of the main F / B correction value to the main F / B correction value before a predetermined period. If the change amount guard value is omitted in step 105, the main F / B correction value calculated in step 106 may be directly used as the final main F / B correction value.

この後、ステップ110に進み、最終的なメインF/B補正値に基づいてメインF/B補正値の学習値を算出する。具体的には、メインF/B補正値をフィルタ処理(例えば、なまし処理、平均化処理、一次遅れ処理)してメインF/B補正値の学習値を求める。このメインF/B補正値の学習値をECU39のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU39の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶することで、メインF/B補正値を学習する。この際、メインF/B補正値の変化量の制限中(つまり上記ステップ104で変化量ガード値を設定した場合)には、メインF/B補正値の学習更新速度を低下させる(メインF/B補正値の学習値を更新する間隔を通常よりも長くする)又はメインF/B補正値の学習を停止する(メインF/B補正値の学習値の算出を停止する)。   Thereafter, the process proceeds to step 110, where the learning value of the main F / B correction value is calculated based on the final main F / B correction value. Specifically, the main F / B correction value is subjected to filter processing (for example, smoothing processing, averaging processing, and first-order lag processing) to obtain a learning value of the main F / B correction value. By storing the learning value of the main F / B correction value in a rewritable nonvolatile memory (a rewritable memory that retains stored data even when the ECU 39 is powered off) such as a backup RAM (not shown) of the ECU 39, The main F / B correction value is learned. At this time, while the change amount of the main F / B correction value is limited (that is, when the change amount guard value is set in step 104), the learning update speed of the main F / B correction value is reduced (main F / B). The interval for updating the learning value of the B correction value is made longer than usual) or the learning of the main F / B correction value is stopped (the calculation of the learning value of the main F / B correction value is stopped).

[気筒別空燃比推定ルーチン]
図4に示す気筒別空燃比推定ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30CA毎)に起動され、特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。
[Individual air-fuel ratio estimation routine]
The cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 4 is started at predetermined crank angles (for example, every 30 CA) in synchronization with the output pulse of the crank angle sensor 33, and serves as cylinder-by-cylinder air-fuel ratio estimation means. Play a role.

本ルーチンが起動されると、まず、ステップ201で、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この気筒別空燃比制御の実行条件としては、例えば、次の条件(1) 〜(3) がある。
(1) 空燃比センサ36が活性状態であること
(2) 空燃比センサ36が異常(故障)と判定されていないこと
(3) エンジン運転領域(例えばエンジン回転速度と吸気管圧力)が空燃比推定精度を確保できる運転領域であること
When this routine is started, first, at step 201, it is determined whether or not an execution condition for the cylinder-by-cylinder air-fuel ratio control is satisfied. The execution conditions of the cylinder-by-cylinder air-fuel ratio control include, for example, the following conditions (1) to (3).
(1) The air-fuel ratio sensor 36 is in an active state
(2) The air-fuel ratio sensor 36 is not judged to be abnormal (failure)
(3) The engine operating range (for example, engine speed and intake pipe pressure) must be an operating range where air-fuel ratio estimation accuracy can be ensured.

これら三つの条件(1) 〜(3) を全て満したときに気筒別空燃比制御の実行条件が成立し、いずれか1つでも満たさない条件があれば、実行条件が不成立となる。実行条件が不成立の場合は、ステップ202以降の処理を行うことなく、本ルーチンを終了する。   The execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied when all of these three conditions (1) to (3) are satisfied. If any one of the conditions is not satisfied, the execution condition is not satisfied. If the execution condition is not satisfied, this routine is terminated without performing the processing from step 202 onward.

一方、実行条件が成立している場合は、ステップ202に進み、各気筒の空燃比検出タイミング(空燃比センサ36の出力のサンプルタイミング)を、その時点のエンジン11の負荷(例えば吸気管圧力)に応じてマップにより設定する。尚、各気筒の空燃比検出タイミングをエンジン11の負荷とエンジン回転速度に応じてマップにより設定しても良い。この空燃比検出タイミングを設定するマップは、図示しない空燃比検出タイミング補正用のルーチン(例えばLocal学習実行ルーチンやGlobal学習実行ルーチン)によって学習補正される。   On the other hand, if the execution condition is satisfied, the routine proceeds to step 202, where the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 36) is set to the load of the engine 11 at that time (for example, intake pipe pressure). Set according to the map. Note that the air-fuel ratio detection timing of each cylinder may be set by a map according to the load of the engine 11 and the engine speed. The map for setting the air-fuel ratio detection timing is learned and corrected by an unillustrated routine for correcting the air-fuel ratio detection timing (for example, a local learning execution routine or a global learning execution routine).

この後、ステップ203に進み、現在のクランク角が上記ステップ202で設定した空燃比検出タイミングであるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。   Thereafter, the routine proceeds to step 203, where it is determined whether or not the current crank angle is the air-fuel ratio detection timing set in step 202. If it is not the air-fuel ratio detection timing, this routine is executed without performing the subsequent processing. Exit.

これに対して、現在のクランク角が上記ステップ202で設定した空燃比検出タイミングであれば、ステップ204に進み、空燃比センサ36の出力(空燃比検出値)を読み込む。この後、ステップ205に進み、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ36の検出値に基づいて推定する。   On the other hand, if the current crank angle is the air-fuel ratio detection timing set in step 202, the process proceeds to step 204, and the output of the air-fuel ratio sensor 36 (air-fuel ratio detection value) is read. Thereafter, the routine proceeds to step 205, where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detected value of the air-fuel ratio sensor 36 using the cylinder-by-cylinder air-fuel ratio estimation model.

[気筒別空燃比制御及び収束判定ルーチン]
図5及び図6に示す気筒別空燃比制御及び収束判定ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30CA毎)に起動され、特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ301で、気筒別空燃比制御の実行条件(前記図4のステップ201と同じ条件)が成立しているか否かを判定する。実行条件が不成立の場合は、ステップ302以降の処理を行うことなく、本ルーチンを終了する。
[Cylinder-specific air-fuel ratio control and convergence determination routine]
The cylinder-by-cylinder air-fuel ratio control and convergence determination routine shown in FIG. 5 and FIG. 6 is started at every predetermined crank angle (for example, every 30 CA) in synchronization with the output pulse of the crank angle sensor 33. Serves as air-fuel ratio control means. When this routine is started, first, in step 301, it is determined whether or not the execution condition of the cylinder-by-cylinder air-fuel ratio control (the same condition as in step 201 in FIG. 4) is satisfied. If the execution condition is not satisfied, this routine is terminated without performing the processing after step 302.

一方、実行条件が成立している場合は、ステップ302に進み、空燃比センサ36の検出値φ(排気集合部34aを流れる排出ガスの実空燃比)と推定空燃比φ^とに基づいて観測残差errを次の(4)式により算出する。その際、空燃比センサ36の検出値φの振幅(目標空燃比 tφとの差)を用いて観測残差errを正規化する。尚、空燃比センサ36の検出値φ、推定空燃比φ^、目標空燃比 tφは、それぞれ等量比(空気過剰率の逆数)で算出される。   On the other hand, if the execution condition is satisfied, the routine proceeds to step 302, where observation is performed based on the detected value φ of the air-fuel ratio sensor 36 (actual air-fuel ratio of exhaust gas flowing through the exhaust collecting portion 34a) and the estimated air-fuel ratio φ ^. The residual err is calculated by the following equation (4). At this time, the observation residual err is normalized using the amplitude of the detected value φ of the air-fuel ratio sensor 36 (difference from the target air-fuel ratio tφ). The detected value φ of the air-fuel ratio sensor 36, the estimated air-fuel ratio φ ^, and the target air-fuel ratio tφ are each calculated with an equivalence ratio (the reciprocal of the excess air ratio).

Figure 2016044576
Figure 2016044576

ここで、τは時定数であり、sはラプラス演算子である。
この後、ステップ303に進み、気筒別空燃比制御の許可フラグが「1」である(気筒別空燃比制御が許可されている)か否かを判定する。このステップ303で、気筒別空燃比制御の許可フラグが「0」である(気筒別空燃比制御が禁止されている)と判定された場合には、ステップ304に進み、観測残差errが気筒別空燃比制御の許可閾値K1on よりも小さいか否かを判定する。
Here, τ is a time constant, and s is a Laplace operator.
Thereafter, the routine proceeds to step 303, where it is determined whether or not the per-cylinder air-fuel ratio control permission flag is “1” (cylinder-by-cylinder air-fuel ratio control is permitted). If it is determined in step 303 that the cylinder-by-cylinder air-fuel ratio control permission flag is “0” (cylinder-by-cylinder air-fuel ratio control is prohibited), the process proceeds to step 304 where the observation residual err is It is determined whether or not it is smaller than the permission threshold value K1on for the separate air-fuel ratio control.

このステップ304で、観測残差errが許可閾値K1on 以上であると判定された場合には、ステップ306に進み、気筒別空燃比制御の許可フラグを「0」に維持すると共に、収束判定許可フラグを「0」に維持する。その後、上記ステップ304で、観測残差errが許可閾値K1on よりも小さいと判定された場合には、ステップ307に進み、気筒別空燃比制御の許可フラグを「1」にセットすると共に、収束判定許可フラグを「1」にセットする。   If it is determined in step 304 that the observation residual err is greater than or equal to the permission threshold value K1on, the process proceeds to step 306 where the cylinder-by-cylinder air-fuel ratio control permission flag is maintained at “0” and the convergence determination permission flag. Is maintained at “0”. Thereafter, if it is determined in step 304 that the observation residual err is smaller than the permission threshold K1on, the process proceeds to step 307, the permission flag for cylinder-by-cylinder air-fuel ratio control is set to “1”, and convergence determination is performed. The permission flag is set to “1”.

一方、上記ステップ303で、気筒別空燃比制御の許可フラグが「1」である(気筒別空燃比制御が許可されている)と判定された場合には、ステップ305に進み、観測残差errが気筒別空燃比制御の禁止閾値K1offよりも小さいか否かを判定する。この禁止閾値K1offは、許可閾値K1on よりも大きい値に設定されている。   On the other hand, if it is determined in step 303 that the cylinder-by-cylinder air-fuel ratio control permission flag is “1” (cylinder-by-cylinder air-fuel ratio control is permitted), the process proceeds to step 305 and the observation residual err Is smaller than the prohibition threshold K1off of the cylinder-by-cylinder air-fuel ratio control. This prohibition threshold value K1off is set to a value larger than the permission threshold value K1on.

このステップ305で、観測残差errが禁止閾値K1offよりも小さいと判定された場合には、ステップ307に進み、気筒別空燃比制御の許可フラグを「1」に維持すると共に、収束判定許可フラグを「1」に維持する。その後、上記ステップ305で、観測残差errが禁止閾値K1off以上であると判定された場合には、ステップ306に進み、気筒別空燃比制御の許可フラグを「0」にリセットすると共に、収束判定許可フラグを「0」にリセットする。   If it is determined in step 305 that the observation residual err is smaller than the prohibition threshold K1off, the process proceeds to step 307, where the permission flag for cylinder-by-cylinder air-fuel ratio control is maintained at “1” and the convergence determination permission flag. Is maintained at “1”. Thereafter, if it is determined in step 305 that the observation residual err is greater than or equal to the prohibition threshold value K1off, the process proceeds to step 306 where the per-cylinder air-fuel ratio control permission flag is reset to “0” and the convergence determination is performed. The permission flag is reset to “0”.

気筒別空燃比制御の許可フラグが「1」の期間中(つまり収束判定許可フラグが「1」の期間中)は、図6のステップ308に進み、初期値算出終了フラグが「1」である(初期推定空燃比の算出が終了している)か否かを判定する。このステップ308で、初期値算出終了フラグが「0」である(初期推定空燃比の算出が終了していない)と判定された場合には、ステップ309に進み、次式により各気筒の初期推定空燃比initφ^#iを算出する。
initφ^#i={1/(τ×2×s+1)}×φ^#i
ここで、φ^#iは第i気筒#iの推定空燃比であり、initφ^#iは第i気筒#iの初期推定空燃比である。
During the period when the cylinder-by-cylinder air-fuel ratio control permission flag is “1” (that is, during the period when the convergence determination permission flag is “1”), the routine proceeds to step 308 in FIG. 6 and the initial value calculation end flag is “1”. It is determined whether or not the calculation of the initial estimated air-fuel ratio has been completed. If it is determined in step 308 that the initial value calculation end flag is “0” (calculation of the initial estimated air-fuel ratio has not been completed), the process proceeds to step 309 and the initial estimation of each cylinder is performed by the following equation. Calculate the air-fuel ratio initφ ^ # i.
initφ ^ # i = {1 / (τ × 2 × s + 1)} × φ ^ # i
Here, φ ^ # i is the estimated air-fuel ratio of i-th cylinder #i, and init φ ^ # i is the initial estimated air-fuel ratio of i-th cylinder #i.

この後、ステップ310に進み、初期値算出カウンタのカウント値をインクリメントした後、ステップ311に進み、初期値算出カウンタのカウント値が所定値よりも大きいか否かを判定する。このステップ311で、初期値算出カウンタのカウント値が所定値以下であると判定された場合には、初期値算出終了フラグを「0」に維持したまま、本ルーチンを終了する。   Thereafter, the process proceeds to step 310, the count value of the initial value calculation counter is incremented, and then the process proceeds to step 311 to determine whether or not the count value of the initial value calculation counter is larger than a predetermined value. If it is determined in step 311 that the count value of the initial value calculation counter is equal to or smaller than the predetermined value, this routine is ended while the initial value calculation end flag is maintained at “0”.

その後、上記ステップ311で、初期値算出カウンタのカウント値が所定値よりも大きいと判定された場合には、ステップ312に進み、初期値算出終了フラグを「1」にセットして、本ルーチンを終了する。   Thereafter, if it is determined in step 311 that the count value of the initial value calculation counter is larger than the predetermined value, the process proceeds to step 312 and the initial value calculation end flag is set to “1”, and this routine is executed. finish.

これらのステップ308〜312の処理により、気筒別空燃比制御の開始前の所定期間における各気筒の推定空燃比φ^#iに基づいて各気筒の初期推定空燃比initφ^#iを気筒毎に算出すると共に、初期推定空燃比initφ^#iの算出が終了するまで気筒別空燃比制御を禁止する。   By performing the processing in steps 308 to 312, the initial estimated air-fuel ratio init φ ^ # i of each cylinder is determined for each cylinder based on the estimated air-fuel ratio φ ^ # i of each cylinder in a predetermined period before the start of the cylinder-by-cylinder air-fuel ratio control. While calculating, the cylinder-by-cylinder air-fuel ratio control is prohibited until the calculation of the initial estimated air-fuel ratio initφ ^ # i is completed.

一方、上記ステップ308で、初期値算出終了フラグが「1」である(初期推定空燃比の算出が終了している)と判定された場合には、ステップ313〜315の気筒別空燃比制御に関する処理を実行すると共に、ステップ316〜322の推定空燃比の収束判定に関する処理を実行する。
まず、ステップ313で、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比baseφに設定する。
On the other hand, if it is determined in step 308 that the initial value calculation end flag is “1” (calculation of the initial estimated air-fuel ratio is ended), the air-fuel ratio control for each cylinder in steps 313 to 315 is performed. In addition to executing the processing, the processing related to the convergence determination of the estimated air-fuel ratio in steps 316 to 322 is executed.
First, in step 313, an average value of estimated air-fuel ratios of all cylinders is calculated, and the average value is set as a reference air-fuel ratio baseφ.

この後、ステップ314に進み、各気筒の推定空燃比φ^#iと基準空燃比baseφとの偏差(baseφ−φ^#i)を算出して、その偏差(baseφ−φ^#i)が小さくなるように各気筒の気筒別補正値として燃料補正量Cmp#iを次式により算出する。
Cmp#i=∫(baseφ−φ^#i)dt
ここで、Cmp#iは第i気筒#iの燃料補正量である。
Thereafter, the process proceeds to step 314, where a deviation (baseφ−φ ^ # i) between the estimated air-fuel ratio φ ^ # i and the reference air-fuel ratio baseφ of each cylinder is calculated, and the deviation (baseφ−φ ^ # i) is calculated. The fuel correction amount Cmp # i is calculated by the following equation as a cylinder-specific correction value for each cylinder so as to decrease.
Cmp # i = ∫ (baseφ−φ ^ # i) dt
Here, Cmp # i is the fuel correction amount of the i-th cylinder #i.

この後、ステップ315に進み、各気筒の燃料補正量Cmp#iに基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを小さくするように制御する。   Thereafter, the process proceeds to step 315, and the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder by correcting the fuel injection amount of each cylinder based on the fuel correction amount Cmp # i of each cylinder. Control is performed so as to reduce variations in the air-fuel ratio between cylinders.

この後、ステップ316に進み、各気筒の初期推定空燃比initφ^#iに応じて各気筒の収束判定閾値を気筒毎にマップ又は数式等により設定する(第i気筒#iの初期推定空燃比initφ^#iに応じて第i気筒#iの収束判定閾値を設定する)。収束判定閾値のマップ又は数式等は、例えば、初期推定空燃比の基準空燃比に対する偏差が大きいほど収束判定閾値の基準空燃比に対する偏差が大きくなるように設定されている。   Thereafter, the process proceeds to step 316, and a convergence determination threshold value of each cylinder is set for each cylinder by a map or a mathematical formula or the like according to the initial estimated air-fuel ratio initφ ^ # i of each cylinder (initial estimated air-fuel ratio of i-th cylinder #i The convergence determination threshold value of the i-th cylinder #i is set according to initφ ^ # i). For example, the convergence determination threshold map or formula is set such that the deviation of the convergence determination threshold from the reference air-fuel ratio increases as the deviation of the initial estimated air-fuel ratio from the reference air-fuel ratio increases.

更に、初期推定空燃比initφ^#i(例えば各気筒の初期推定空燃比initφ^#iの最大値)に応じて全気筒共通の収束判定時間をマップ又は数式等により設定する。収束判定時間のマップ又は数式等は、例えば、初期推定空燃比の最大値の基準空燃比に対する偏差が小さいほど収束判定時間が長くなるように設定されている。   Further, a convergence determination time common to all the cylinders is set by a map or a mathematical expression in accordance with the initial estimated air-fuel ratio initφ ^ # i (for example, the maximum value of the initial estimated air-fuel ratio initφ ^ # i of each cylinder). For example, the convergence determination time map or formula is set such that the convergence determination time becomes longer as the deviation of the maximum value of the initial estimated air-fuel ratio from the reference air-fuel ratio is smaller.

この後、ステップ317に進み、各気筒の推定空燃比φ^#iが収束判定閾値よりも目標値(例えば基準空燃比)側であるか否かによって、各気筒の推定空燃比φ^#iが収束判定領域内であるか否かを判定する。   Thereafter, the routine proceeds to step 317, where the estimated air-fuel ratio φ ^ # i of each cylinder is determined depending on whether or not the estimated air-fuel ratio φ ^ # i of each cylinder is closer to the target value (for example, the reference air-fuel ratio) than the convergence determination threshold value. Is within the convergence determination region.

このステップ317で、少なくとも一つの気筒の推定空燃比φ^#iが収束判定領域外であると判定された場合には、ステップ320に進み、推定空燃比収束状態(各気筒の推定空燃比が収束した状態)ではないと判定して収束判定フラグを「0」に維持したまま、本ルーチンを終了する。   If it is determined in step 317 that the estimated air-fuel ratio φ ^ # i of at least one cylinder is outside the convergence determination region, the process proceeds to step 320, where the estimated air-fuel ratio convergence state (the estimated air-fuel ratio of each cylinder is This routine is terminated while the convergence determination flag is maintained at “0”.

その後、上記ステップ317で、各気筒の推定空燃比φ^#iが収束判定領域内である(全ての気筒の推定空燃比φ^#iが収束判定閾値よりも目標値側である)と判定された場合には、ステップ318に進み、収束判定カウンタのカウント値をインクリメントする。   Thereafter, in step 317, it is determined that the estimated air-fuel ratio φ ^ # i of each cylinder is within the convergence determination region (the estimated air-fuel ratios φ ^ # i of all cylinders are on the target value side of the convergence determination threshold). If so, the process proceeds to step 318 to increment the count value of the convergence determination counter.

この後、ステップ319に進み、収束判定カウンタのカウント値が収束判定時間以上であるか否かを判定する。このステップ319で、収束判定カウンタのカウント値が収束判定時間よりも小さいと判定された場合には、収束判定フラグを「0」に維持したまま、本ルーチンを終了する。   Thereafter, the process proceeds to step 319, where it is determined whether or not the count value of the convergence determination counter is equal to or longer than the convergence determination time. If it is determined in step 319 that the count value of the convergence determination counter is smaller than the convergence determination time, this routine is terminated while the convergence determination flag is maintained at “0”.

その後、上記ステップ319で、収束判定カウンタのカウント値が収束判定時間以上であると判定された場合には、各気筒の推定空燃比φ^#iが収束判定閾値よりも目標値側になった状態が収束判定時間以上継続したと判断して、ステップ321に進み、推定空燃比収束状態であると判定して収束判定フラグを「1」にセットする。   Thereafter, when it is determined in step 319 that the count value of the convergence determination counter is equal to or greater than the convergence determination time, the estimated air-fuel ratio φ ^ # i of each cylinder is closer to the target value than the convergence determination threshold value. When it is determined that the state has continued for the convergence determination time or longer, the process proceeds to step 321, where it is determined that the estimated air-fuel ratio convergence state is set, and the convergence determination flag is set to “1”.

この後、ステップ322に進み、推定空燃比収束状態であると判定されたときに推定空燃比φ^#iの変化量(例えば各気筒の推定空燃比φ^#iの変化量の平均値)と燃料補正量Cmp#iの変化量(例えば各気筒の燃料補正量Cmp#iの変化量の平均値)との比に基づいて定常ゲインKdcを算出し、この定常ゲインKdcを気筒別空燃比推定モデルに反映させる。具体的には、上記(2a)式のパラメータBに定常ゲインKdcを乗算する。   Thereafter, the process proceeds to step 322, and when it is determined that the estimated air-fuel ratio has converged, the amount of change of the estimated air-fuel ratio φ ^ # i (for example, the average value of the amount of change of the estimated air-fuel ratio φ ^ # i of each cylinder) The steady gain Kdc is calculated based on the ratio between the change amount of the fuel correction amount Cmp # i and the change amount of the fuel correction amount Cmp # i (for example, the average value of the change amount of the fuel correction amount Cmp # i of each cylinder). Reflect in the estimation model. Specifically, the parameter B in the above equation (2a) is multiplied by the steady gain Kdc.

推定空燃比収束状態であると判定した後、上記ステップ317で、少なくとも一つの気筒の推定空燃比φ^#iが収束判定領域外であると判定された場合、つまり、推定空燃比収束状態であると判定した後に推定空燃比φ^#iが発散した場合には、ステップ320に進み、判定をリセットする。つまり、推定空燃比収束状態ではないと判定して収束判定フラグを「0」にリセットする。   After determining that the estimated air-fuel ratio has converged, if it is determined in step 317 that the estimated air-fuel ratio φ ^ # i of at least one cylinder is outside the convergence determination region, that is, in the estimated air-fuel ratio converged state. If the estimated air-fuel ratio φ ^ # i diverges after it is determined that there is, the process proceeds to step 320 and the determination is reset. That is, it is determined that the estimated air-fuel ratio convergence state is not established, and the convergence determination flag is reset to “0”.

[インバランス故障可能性判定ルーチン]
図7に示すインバランス故障可能性判定ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30CA毎)に起動され、特許請求の範囲でいう判定手段としての役割を果たす。
[Imbalance failure possibility determination routine]
The imbalance failure possibility determination routine shown in FIG. 7 is started at every predetermined crank angle (for example, every 30 CA) in synchronization with the output pulse of the crank angle sensor 33, and serves as a determination means in the claims. .

本ルーチンが起動されると、まず、ステップ401で、後述するインバランス故障可能性フラグが「0」であるか否かを判定する。このステップ401で、インバランス故障可能性フラグが「0」であると判定された場合には、ステップ402に進み、各気筒の初期推定空燃比initφ^#iの絶対値のうちの最大値max[abs(初期推定空燃比)]が所定値A1 以上であるか否かを判定する。   When this routine is started, first, at step 401, it is determined whether or not an imbalance failure possibility flag described later is “0”. If it is determined in this step 401 that the imbalance failure possibility flag is “0”, the routine proceeds to step 402 where the maximum value max of the absolute values of the initial estimated air-fuel ratio initφ ^ # i of each cylinder is reached. It is determined whether [abs (initial estimated air-fuel ratio)] is equal to or greater than a predetermined value A1.

このステップ402で、最大値max[abs(初期推定空燃比)]が所定値A1 よりも小さいと判定された場合には、ステップ406に進み、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」に維持したまま、本ルーチンを終了する。   If it is determined in step 402 that the maximum value max [abs (initial estimated air-fuel ratio)] is smaller than the predetermined value A1, the process proceeds to step 406, where it is determined that there is no possibility of an inter-cylinder imbalance failure. The routine is terminated while the imbalance failure possibility flag is maintained at “0”.

一方、上記ステップ402で、最大値max[abs(初期推定空燃比)]が所定値A1 以上であると判定された場合には、ステップ403に進み、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定して、インバランス故障可能性フラグを「1」にセットした後、本ルーチンを終了する。   On the other hand, if it is determined in step 402 that the maximum value max [abs (initial estimated air-fuel ratio)] is greater than or equal to the predetermined value A1, the process proceeds to step 403, where there is a possibility of an imbalance failure between cylinders (cylinders). After determining that the imbalance failure possibility flag is set to “1”, the routine is terminated.

その後、上記ステップ401で、インバランス故障可能性フラグが「1」であると判定された場合には、ステップ404に進み、各気筒の推定空燃比が収束したか否かを、収束判定フラグが「1」であるか否かによって判定する。   Thereafter, when it is determined in the above step 401 that the imbalance failure possibility flag is “1”, the process proceeds to step 404 where the convergence determination flag indicates whether or not the estimated air-fuel ratio of each cylinder has converged. Judgment is made based on whether or not it is “1”.

このステップ404で、各気筒の推定空燃比が収束していない(収束判定フラグ=0)と判定された場合には、ステップ405に進む。このステップ405で、各気筒の推定空燃比φ^#iの絶対値のうちの最大値max[abs(推定空燃比)]が所定値A2 よりも小さい状態が所定時間以上継続した(つまり各気筒の推定空燃比が所定値A2 よりも目標値側になった状態が所定時間以上継続した)か否かを判定する。ここで、所定値A2 は、所定値A1 と同じ値か又は所定値A1 よりも小さい値に設定されている。   If it is determined in step 404 that the estimated air-fuel ratio of each cylinder has not converged (convergence determination flag = 0), the process proceeds to step 405. In this step 405, a state where the maximum value max [abs (estimated air-fuel ratio)] of the absolute values of the estimated air-fuel ratio φ ^ # i of each cylinder is smaller than a predetermined value A2 continues for a predetermined time or more (that is, each cylinder It is determined whether or not the estimated air-fuel ratio of the engine has reached the target value side of the predetermined value A2 for a predetermined time or longer). Here, the predetermined value A2 is set to the same value as the predetermined value A1 or a value smaller than the predetermined value A1.

このステップ405で、最大値max[abs(推定空燃比)]が所定値A2 よりも小さい状態が所定時間以上継続していないと判定された場合には、インバランス故障可能性フラグを「1」に維持したまま、本ルーチンを終了する。   If it is determined in step 405 that the state where the maximum value max [abs (estimated air-fuel ratio)] is smaller than the predetermined value A2 does not continue for the predetermined time or longer, the imbalance failure possibility flag is set to “1”. This routine is terminated while maintaining the above.

その後、上記ステップ404で各気筒の推定空燃比が収束した(収束判定フラグ=1)と判定された場合、又は、上記ステップ405で最大値max[abs(推定空燃比)]が所定値A2 よりも小さい状態が所定時間以上継続したと判定された場合には、ステップ406に進む。このステップ406で、気筒間インバランス故障の可能性有りの判定をリセットして、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」にリセットした後、本ルーチンを終了する。   Thereafter, when it is determined in step 404 that the estimated air-fuel ratio of each cylinder has converged (convergence determination flag = 1), or in step 405, the maximum value max [abs (estimated air-fuel ratio)] is greater than the predetermined value A2. If it is determined that the smaller state has continued for a predetermined time or longer, the process proceeds to step 406. In step 406, the determination that there is a possibility of an imbalance failure between cylinders is reset, it is determined that there is no possibility of an imbalance failure between cylinders, and the imbalance failure possibility flag is reset to “0”. This routine ends.

以上説明した本実施例1の制御の実行例を図8を用いて説明する。
気筒別空燃比制御の実行条件が成立した時点t1 で、各気筒の空燃比検出タイミング毎に検出された空燃比センサ36の検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定を開始する。更に、空燃比センサ36の検出値と推定空燃比とに基づいて観測残差errを算出する処理を開始する。
An execution example of the control of the first embodiment described above will be described with reference to FIG.
Cylinder air-fuel ratio estimation for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 36 detected at each air-fuel ratio detection timing of each cylinder at the time t1 when the execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied. To start. Furthermore, processing for calculating the observation residual err based on the detected value of the air-fuel ratio sensor 36 and the estimated air-fuel ratio is started.

この観測残差errが気筒別空燃比制御の許可閾値K1on 以上のときには、気筒別空燃比制御の許可フラグを「0」に維持して気筒別空燃比制御を禁止すると共に収束判定許可フラグを「0」に維持して推定空燃比の収束判定を禁止する。   When the observation residual err is equal to or greater than the cylinder-by-cylinder air-fuel ratio control permission threshold K1on, the cylinder-by-cylinder air-fuel ratio control permission flag is maintained at “0” to prohibit the cylinder-by-cylinder air-fuel ratio control and set the convergence determination permission flag to “ “0” is maintained, and the convergence determination of the estimated air-fuel ratio is prohibited.

その後、観測残差errが気筒別空燃比制御の許可閾値K1on よりも小さくなった時点t2 で、気筒別空燃比制御の許可フラグを「1」にセットして気筒別空燃比制御を許可すると共に収束判定許可フラグを「1」にセットして推定空燃比の収束判定を許可する。   Thereafter, at time t2 when the observation residual err becomes smaller than the cylinder-by-cylinder air-fuel ratio control permission threshold K1on, the cylinder-by-cylinder air-fuel ratio control permission flag is set to “1” and the cylinder-by-cylinder air-fuel ratio control is permitted. The convergence determination permission flag is set to “1” and the convergence determination of the estimated air-fuel ratio is permitted.

気筒別空燃比制御が許可されると、気筒別空燃比制御の開始前の所定期間Aにおける各気筒の推定空燃比に基づいて各気筒の初期推定空燃比を気筒毎に算出する。更に、各気筒の初期推定空燃比に応じて各気筒の収束判定閾値を気筒毎に設定すると共に、初期推定空燃比(例えば各気筒の初期推定空燃比の最大値)に応じて収束判定時間を設定する。   When the cylinder-by-cylinder air-fuel ratio control is permitted, the initial estimated air-fuel ratio of each cylinder is calculated for each cylinder based on the estimated air-fuel ratio of each cylinder in a predetermined period A before the start of the cylinder-by-cylinder air-fuel ratio control. Further, a convergence determination threshold value for each cylinder is set for each cylinder according to the initial estimated air-fuel ratio of each cylinder, and a convergence determination time is set according to the initial estimated air-fuel ratio (for example, the maximum value of the initial estimated air-fuel ratio for each cylinder). Set.

初期推定空燃比の算出が終了した時点t3 で、気筒別空燃比制御を開始する。また、各気筒の初期推定空燃比の絶対値のうちの最大値max[abs(初期推定空燃比)]が所定値A1 以上であると判定された場合には、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定して、インバランス故障可能性フラグを「1」にセットする。   At the time t3 when the calculation of the initial estimated air-fuel ratio is completed, the cylinder-by-cylinder air-fuel ratio control is started. Further, if it is determined that the maximum value max [abs (initial estimated air-fuel ratio)] of the absolute values of the initial estimated air-fuel ratio of each cylinder is equal to or greater than the predetermined value A1, there is a possibility of an inter-cylinder imbalance failure. It is determined that there is (the air-fuel ratio variation between cylinders is relatively large), and the imbalance failure possibility flag is set to “1”.

更に、気筒間インバランス故障の可能性有り(インバランス故障可能性フラグ=1)と判定され且つエンジン11の負荷が所定値以上のときには、変化量ガード値を設定し、この変化量ガード値でメインF/B補正値の変化量を制限する。これにより、メインF/B補正値の変化量が変化量ガード値よりも大きい場合には、メインF/B補正値の変化量を変化量ガード値でガード処理して、メインF/B補正値の変化量を変化量ガード値に設定する(メインF/B補正値の変化量=変化量ガード値)。一方、メインF/B補正値の変化量が変化量ガード値以下の場合には、メインF/B補正値の変化量をそのまま採用する。   Furthermore, when it is determined that there is a possibility of an imbalance failure between cylinders (imbalance failure possibility flag = 1) and the load of the engine 11 is equal to or greater than a predetermined value, a change amount guard value is set. The amount of change in the main F / B correction value is limited. Thereby, when the change amount of the main F / B correction value is larger than the change amount guard value, the change amount of the main F / B correction value is guarded with the change amount guard value, and the main F / B correction value Is set as a change amount guard value (main F / B correction value change amount = change amount guard value). On the other hand, when the change amount of the main F / B correction value is equal to or less than the change guard value, the change amount of the main F / B correction value is adopted as it is.

その後、各気筒の推定空燃比が収束判定閾値よりも目標値側になった時点t4 で、収束判定カウンタのカウント値をインクリメントする処理を開始する。この収束判定カウンタのカウント値が収束判定時間に達するまでは、推定空燃比収束状態ではないと判定して収束判定フラグを「0」に維持する。   Thereafter, at a time point t4 when the estimated air-fuel ratio of each cylinder is closer to the target value than the convergence determination threshold value, a process of incrementing the count value of the convergence determination counter is started. Until the count value of the convergence determination counter reaches the convergence determination time, it is determined that the estimated air-fuel ratio convergence state is not established, and the convergence determination flag is maintained at “0”.

その後、収束判定カウンタのカウント値が収束判定時間以上になった時点t5 で、推定空燃比収束状態であると判定して収束判定フラグを「1」にセットすると共に、気筒間インバランス故障の可能性有りの判定をリセットして、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」にリセットする。これにより、メインF/B補正値の変化量の制限を終了(変化量ガード値による制限を解除)する。   Thereafter, at the time t5 when the count value of the convergence determination counter becomes equal to or longer than the convergence determination time, it is determined that the estimated air-fuel ratio convergence state is set, the convergence determination flag is set to “1”, and an inter-cylinder imbalance failure is possible. It is determined that there is no possibility of imbalance failure between cylinders, and the imbalance failure possibility flag is reset to “0”. Thereby, the restriction on the change amount of the main F / B correction value is ended (the restriction by the change guard value is released).

以上説明した本実施例1では、エンジン11の気筒間インバランス故障の可能性有りか否かを判定し、気筒間インバランス故障の可能性有りと判定され且つエンジン11の負荷が所定値以上のときに、メインF/B補正値の変化量を変化量ガード値で制限するようにしている。これにより、図9に実線で示すように、メインF/B補正値の変動を適度に抑制して、メインF/B補正値の変動による気筒間の空燃比ばらつきの増大を抑制することができる。これにより、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定された場合でも、気筒別空燃比制御により速やかに気筒間の空燃比ばらつきを小さくする(各気筒の推定空燃比を収束させる)ことが可能となり、排気エミッションの悪化を抑制することができる。   In the first embodiment described above, it is determined whether or not there is a possibility of an imbalance failure between cylinders of the engine 11, it is determined that there is a possibility of an imbalance failure between cylinders, and the load of the engine 11 is greater than or equal to a predetermined value. Sometimes, the change amount of the main F / B correction value is limited by the change amount guard value. As a result, as shown by the solid line in FIG. 9, fluctuations in the main F / B correction value can be moderately suppressed, and increase in air-fuel ratio variation between cylinders due to fluctuations in the main F / B correction value can be suppressed. . Thus, even when it is determined that there is a possibility of an imbalance failure between cylinders (the air-fuel ratio variation between cylinders is relatively large), the air-fuel ratio variation between cylinders is quickly reduced by the air-fuel ratio control for each cylinder (each The estimated air-fuel ratio of the cylinder can be converged), and the exhaust emission can be prevented from deteriorating.

また、本実施例1では、気筒間インバランス故障の可能性有りと判定した後、各気筒の推定空燃比が収束したと判定されたとき、又は、各気筒の推定空燃比が所定値よりも目標値側になった状態が所定時間以上継続したときに、気筒間インバランス故障の可能性有りの判定をリセットして、気筒間インバランス故障の可能性無しと判定するようにしている。このようにすれば、各気筒の推定空燃比が収束したと判定されるタイミングと、各気筒の推定空燃比が所定値よりも目標値側になった状態が所定時間以上継続したタイミングのうちの早い方のタイミングで、メインF/B補正値の変化量の制限を終了(変化量ガード値による制限を解除)して、通常のメインF/B制御に復帰することができる。   Further, in the first embodiment, after determining that there is a possibility of an imbalance failure between cylinders, when it is determined that the estimated air-fuel ratio of each cylinder has converged, or the estimated air-fuel ratio of each cylinder is lower than a predetermined value. When the state of the target value side continues for a predetermined time or more, the determination that there is a possibility of an imbalance failure between cylinders is reset, and it is determined that there is no possibility of an imbalance failure between cylinders. In this way, the timing at which it is determined that the estimated air-fuel ratio of each cylinder has converged and the timing at which the estimated air-fuel ratio of each cylinder has reached the target value side from the predetermined value have continued for a predetermined time or longer. At the earlier timing, the restriction of the change amount of the main F / B correction value is finished (the restriction by the change amount guard value is released), and the normal main F / B control can be restored.

また、本実施例1では、メインF/B補正値の変化量の制限中(つまり変化量ガード値を設定した場合)には、メインF/B補正値の学習更新速度を低下させる又はメインF/B補正値の学習を停止するようにしている。このようにすれば、メインF/B補正値の変化量の制限中に、メインF/B補正値の変動が小さくなるのに対応して、メインF/B補正値の学習更新速度を低下させる又はメインF/B補正値の学習を停止して、ECU39の演算負荷を低減することができる。   In the first embodiment, while the change amount of the main F / B correction value is limited (that is, when the change guard value is set), the learning update speed of the main F / B correction value is reduced or the main F / B correction value is reduced. / B correction value learning is stopped. In this way, the learning update speed of the main F / B correction value is reduced in response to the fluctuation of the main F / B correction value becoming smaller while the change amount of the main F / B correction value is limited. Alternatively, the learning of the main F / B correction value can be stopped to reduce the calculation load on the ECU 39.

次に、図10を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU39により後述する図10のインバランス故障可能性判定ルーチンを実行することで、気筒別空燃比制御による気筒別補正値の大きさ(例えば各気筒の気筒別補正値の絶対値のうちの最大値)に基づいて気筒間インバランス故障の可能性有りか否かを判定するようにしている。   In the second embodiment, the ECU 39 executes an imbalance failure possibility determination routine shown in FIG. 10 to be described later, whereby the magnitude of the correction value for each cylinder by the air-fuel ratio control for each cylinder (for example, the absolute value of the correction value for each cylinder of each cylinder). It is determined whether or not there is a possibility of an imbalance failure between cylinders based on the maximum value).

気筒間の空燃比ばらつきが小さければ、各気筒の気筒別補正値(燃料補正量Cmp#i)が所定範囲内に収まるが、気筒間の空燃比ばらつきが大きいと、各気筒の気筒別補正値が所定範囲内には収まらない(少なくとも一つの気筒の気筒別補正値が所定範囲外となる)。従って、気筒別補正値の大きさを監視すれば、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)か否かを精度良く判定することができる。   If the variation in air-fuel ratio between cylinders is small, the correction value for each cylinder (fuel correction amount Cmp # i) falls within a predetermined range. If the variation in air-fuel ratio between cylinders is large, the correction value for each cylinder in each cylinder. Does not fall within the predetermined range (the cylinder-specific correction value of at least one cylinder is outside the predetermined range). Accordingly, by monitoring the magnitude of the cylinder specific correction value, it is possible to accurately determine whether or not there is a possibility of an imbalance failure between cylinders (the air-fuel ratio variation between cylinders is relatively large).

本実施例2で実行する図10のルーチンは、前記実施例1で説明した図7のルーチンのステップ402の処理を、ステップ402aの処理に変更したものであり、それ以外の各ステップの処理は図7と同じである。   The routine of FIG. 10 executed in the second embodiment is obtained by changing the process of step 402 of the routine of FIG. 7 described in the first embodiment to the process of step 402a. It is the same as FIG.

図10のインバランス故障可能性判定ルーチンでは、ステップ401で、インバランス故障可能性フラグが「0」であると判定された場合には、ステップ402aに進み、各気筒の気筒別補正値(燃料補正量Cmp#i)の絶対値のうちの最大値max[abs(気筒別補正値)]が所定値以上であるか否かを判定する。   In the imbalance failure possibility determination routine of FIG. 10, when it is determined in step 401 that the imbalance failure possibility flag is “0”, the process proceeds to step 402a and the cylinder-specific correction value (fuel) for each cylinder is determined. It is determined whether or not the maximum value max [abs (correction value for each cylinder)] among the absolute values of the correction amount Cmp # i) is equal to or greater than a predetermined value.

このステップ402aで、最大値max[abs(気筒別補正値)]が所定値よりも小さいと判定された場合には、ステップ406に進み、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」に維持する。   If it is determined in step 402a that the maximum value max [abs (correction value for each cylinder)] is smaller than a predetermined value, the process proceeds to step 406, where it is determined that there is no possibility of an imbalance failure between cylinders. The imbalance failure possibility flag is maintained at “0”.

一方、上記ステップ402aで、最大値max[abs(気筒別補正値)]が所定値以上であると判定された場合には、ステップ403に進み、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定して、インバランス故障可能性フラグを「1」にセットする。   On the other hand, if it is determined in step 402a that the maximum value max [abs (correction value for each cylinder)] is equal to or greater than a predetermined value, the process proceeds to step 403, where there is a possibility of an imbalance failure between cylinders (inter-cylinder). And the imbalance failure possibility flag is set to “1”.

その後、上記ステップ401で、インバランス故障可能性フラグが「1」であると判定された場合には、ステップ404で、各気筒の推定空燃比が収束した(収束判定フラグ=1)か否かを判定し、ステップ405で、最大値max[abs(推定空燃比)]が所定値A2 よりも小さい状態が所定時間以上継続したか否かを判定する。   Thereafter, if it is determined in step 401 that the imbalance failure possibility flag is “1”, whether or not the estimated air-fuel ratio of each cylinder has converged in step 404 (convergence determination flag = 1). In step 405, it is determined whether or not a state where the maximum value max [abs (estimated air-fuel ratio)] is smaller than a predetermined value A2 has continued for a predetermined time or more.

上記ステップ404で「Yes」と判定された場合、又は、上記ステップ405で「Yes」と判定された場合には、ステップ406に進み、気筒間インバランス故障の可能性有りの判定をリセットして、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」にリセットする。   If “Yes” is determined in Step 404 or “Yes” is determined in Step 405, the process proceeds to Step 406 to reset the determination that there is a possibility of an imbalance failure between cylinders. Then, it is determined that there is no possibility of an imbalance failure between cylinders, and the imbalance failure possibility flag is reset to “0”.

以上説明した本実施例2においても前記実施例1とほぼ同様の効果を得ることができる。   In the second embodiment described above, substantially the same effects as those of the first embodiment can be obtained.

次に、図11を用いて本発明の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例3では、ECU39により後述する図11のインバランス故障可能性判定ルーチンを実行することで、空燃比センサ36の出力の1サイクル間の振幅値に基づいて気筒間インバランス故障の可能性有りか否かを判定するようにしている。   In the third embodiment, the possibility of an imbalance failure between cylinders is determined based on the amplitude value during one cycle of the output of the air-fuel ratio sensor 36 by executing an imbalance failure possibility determination routine of FIG. Whether or not there is is determined.

気筒間の空燃比ばらつきが小さければ、空燃比センサ36の出力の1サイクル間の振幅値が小さくなるが、気筒間の空燃比ばらつきが大きいと、空燃比センサ36の出力の1サイクル間の振幅値が大きくなる。従って、空燃比センサ36の出力の1サイクル間の振幅値を監視すれば、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)か否かを精度良く判定することができる。   If the variation in the air-fuel ratio between the cylinders is small, the amplitude value during one cycle of the output of the air-fuel ratio sensor 36 becomes small. If the variation in the air-fuel ratio between the cylinders is large, the amplitude during one cycle of the output of the air-fuel ratio sensor 36. The value increases. Therefore, by monitoring the amplitude value of the output of the air-fuel ratio sensor 36 for one cycle, it is possible to accurately determine whether there is a possibility of imbalance failure between cylinders (the air-fuel ratio variation between cylinders is relatively large). Can do.

本実施例3で実行する図11のルーチンは、前記実施例1で説明した図7のルーチンのステップ402の処理を、ステップ402bの処理に変更したものであり、それ以外の各ステップの処理は図7と同じである。   In the routine of FIG. 11 executed in the third embodiment, the process of step 402 in the routine of FIG. 7 described in the first embodiment is changed to the process of step 402b. It is the same as FIG.

図11のインバランス故障可能性判定ルーチンでは、ステップ401で、インバランス故障可能性フラグが「0」であると判定された場合には、ステップ402bに進み、空燃比センサ36の出力の1サイクル間の振幅値が所定値以上であるか否かを判定する。ここで、空燃比センサ36の出力の1サイクル間の振幅値は、例えば、空燃比センサ36の出力の1サイクル間の最大値と最小値との差、或は、最大値と目標空燃比との差とする。   In the imbalance failure possibility determination routine of FIG. 11, when it is determined in step 401 that the imbalance failure possibility flag is “0”, the process proceeds to step 402 b and one cycle of the output of the air-fuel ratio sensor 36 is performed. It is determined whether or not the amplitude value between them is greater than or equal to a predetermined value. Here, the amplitude value during one cycle of the output of the air-fuel ratio sensor 36 is, for example, the difference between the maximum value and the minimum value during one cycle of the output of the air-fuel ratio sensor 36, or the maximum value and the target air-fuel ratio. Difference.

このステップ402bで、振幅値が所定値よりも小さいと判定された場合には、ステップ406に進み、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」に維持する。   If it is determined in step 402b that the amplitude value is smaller than the predetermined value, the process proceeds to step 406, where it is determined that there is no possibility of an imbalance failure between cylinders, and the imbalance failure possibility flag is set to “0”. To maintain.

一方、上記ステップ402bで、振幅値が所定値以上であると判定された場合には、ステップ403に進み、気筒間インバランス故障の可能性有り(気筒間の空燃比ばらつきが比較的大きい)と判定して、インバランス故障可能性フラグを「1」にセットする。   On the other hand, if it is determined in step 402b that the amplitude value is greater than or equal to the predetermined value, the process proceeds to step 403, where there is a possibility of an imbalance failure between cylinders (the air-fuel ratio variation between cylinders is relatively large). Determination is made and an imbalance failure possibility flag is set to “1”.

その後、上記ステップ401で、インバランス故障可能性フラグが「1」であると判定された場合には、ステップ404で、各気筒の推定空燃比が収束した(収束判定フラグ=1)か否かを判定し、ステップ405で、最大値max[abs(推定空燃比)]が所定値A2 よりも小さい状態が所定時間以上継続したか否かを判定する。   Thereafter, if it is determined in step 401 that the imbalance failure possibility flag is “1”, whether or not the estimated air-fuel ratio of each cylinder has converged in step 404 (convergence determination flag = 1). In step 405, it is determined whether or not a state where the maximum value max [abs (estimated air-fuel ratio)] is smaller than a predetermined value A2 has continued for a predetermined time or more.

上記ステップ404で「Yes」と判定された場合、又は、上記ステップ405で「Yes」と判定された場合には、ステップ406に進み、気筒間インバランス故障の可能性有りの判定をリセットして、気筒間インバランス故障の可能性無しと判定して、インバランス故障可能性フラグを「0」にリセットする。
以上説明した本実施例3においても前記実施例1とほぼ同様の効果を得ることができる。
If “Yes” is determined in Step 404 or “Yes” is determined in Step 405, the process proceeds to Step 406 to reset the determination that there is a possibility of an imbalance failure between cylinders. Then, it is determined that there is no possibility of an imbalance failure between cylinders, and the imbalance failure possibility flag is reset to “0”.
In the third embodiment described above, substantially the same effect as in the first embodiment can be obtained.

尚、上記各実施例1〜3のインバランス故障可能性判定ルーチン(図7,10,11)のうちの二つ又は三つを組み合わせて実施するようにしても良い。具体的には、ステップ402,402a,402bの処理のうちの二つ又は三つを実施して、ステップ402,402a,402bのうちの二つ又は三つで「Yes」と判定された場合に、ステップ403に進み、気筒間インバランス故障の可能性有りと判定して、インバランス故障可能性フラグを「1」にセットする。   Note that two or three of the imbalance failure possibility determination routines (FIGS. 7, 10, and 11) of the first to third embodiments may be combined. Specifically, when two or three of the processes of steps 402, 402a, and 402b are performed, and “Yes” is determined in two or three of steps 402, 402a, and 402b. In step 403, it is determined that there is a possibility of an imbalance failure between cylinders, and an imbalance failure possibility flag is set to “1”.

また、上記各実施例1〜3のインバランス故障可能性判定ルーチン(図7,10,11)では、ステップ404,405の処理を実施するようにしたが、これに限定されず、ステップ404,405のうちの一方のみを実施する(つまりステップ404,405のうちの一方を省略する)ようにしても良い。   Moreover, in the imbalance failure possibility determination routines (FIGS. 7, 10, and 11) of the first to third embodiments, the processes of steps 404 and 405 are performed. Only one of 405 may be performed (that is, one of steps 404 and 405 is omitted).

また、上記各実施例1〜3では、気筒別空燃比制御の開始前の推定空燃比に基づいて初期推定空燃比を算出するようにしたが、これに限定されず、気筒別空燃比制御の開始直後の推定空燃比に基づいて初期推定空燃比を算出するようにしても良い。   In the first to third embodiments, the initial estimated air-fuel ratio is calculated based on the estimated air-fuel ratio before the start of the cylinder-by-cylinder air-fuel ratio control. However, the present invention is not limited to this. The initial estimated air-fuel ratio may be calculated based on the estimated air-fuel ratio immediately after the start.

また、空燃比検出タイミングのずれ有りと判定されたときに、空燃比検出タイミングを補正する方法は、上記実施例で説明した方法に限定されず、適宜変更しても良い。
また、上記各実施例1〜3では、本発明を4気筒エンジンに適用したが、これに限定されず、2気筒エンジンや3気筒エンジン或は5気筒以上のエンジンに本発明を適用しても良い。
Further, the method of correcting the air-fuel ratio detection timing when it is determined that there is a deviation in the air-fuel ratio detection timing is not limited to the method described in the above embodiment, and may be changed as appropriate.
In the first to third embodiments, the present invention is applied to a four-cylinder engine. However, the present invention is not limited to this, and the present invention can be applied to a two-cylinder engine, a three-cylinder engine, or an engine having five or more cylinders. good.

11…エンジン(内燃機関)、12…吸気管、34…排気管、34a…排気集合部、36…空燃比センサ、39…ECU(メインフィードバック制御手段,気筒別空燃比推定手段,気筒別空燃比制御手段,判定手段,制限手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 34 ... Exhaust pipe, 34a ... Exhaust collecting part, 36 ... Air-fuel ratio sensor, 39 ... ECU (Main feedback control means, Cylinder air-fuel ratio estimation means, Cylinder air-fuel ratio Control means, judgment means, restriction means)

Claims (7)

内燃機関(11)の各気筒の排出ガスが合流して流れる排気集合部(34a)に該排出ガスの空燃比を検出する空燃比センサ(36)を設置し、前記空燃比センサ(36)の出力に基づいて前記排出ガスの空燃比を目標空燃比に一致させるようにメインフィードバック補正値を算出して前記各気筒の空燃比を一律に補正するメインフィードバック制御手段(39)と、前記各気筒の空燃比検出タイミング毎に検出された前記空燃比センサ(36)の検出値に基づいて前記各気筒の空燃比を気筒毎に推定する気筒別空燃比推定を実行する気筒別空燃比推定手段(39)と、前記各気筒の推定空燃比に基づいて前記各気筒の空燃比を気筒毎に制御する気筒別空燃比制御を実行する気筒別空燃比制御手段(39)とを備えた内燃機関の気筒別空燃比制御装置において、
前記内燃機関(11)の気筒間インバランス故障の可能性有りか否かを判定する判定手段(39)と、
前記気筒間インバランス故障の可能性有りと判定され且つ前記内燃機関(11)の負荷が所定値以上のときに、前記メインフィードバック補正値の変化量を所定のガード値で制限する制限手段(39)と
を備えていることを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor (36) for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust collecting part (34a) where the exhaust gas of each cylinder of the internal combustion engine (11) flows and flows, and the air-fuel ratio sensor (36) Main feedback control means (39) for uniformly correcting the air-fuel ratio of each cylinder by calculating a main feedback correction value so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio based on the output, and each cylinder Cylinder-by-cylinder air-fuel ratio estimation means for executing cylinder-by-cylinder air-fuel ratio estimation for estimating the air-fuel ratio of each cylinder for each cylinder based on the detected value of the air-fuel ratio sensor (36) detected at each air-fuel ratio detection timing of 39) and cylinder-by-cylinder air-fuel ratio control means (39) for performing cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio of each cylinder based on the estimated air-fuel ratio of each cylinder. Air-fuel ratio by cylinder In the control device,
Determination means (39) for determining whether or not there is a possibility of an imbalance failure between cylinders of the internal combustion engine (11);
Limiting means (39) for limiting the amount of change in the main feedback correction value with a predetermined guard value when it is determined that there is a possibility of an imbalance failure between cylinders and the load of the internal combustion engine (11) is a predetermined value or more. And an air-fuel ratio control apparatus for each cylinder of an internal combustion engine.
前記判定手段(39)は、前記気筒別空燃比推定による初期推定空燃比の大きさに基づいて前記気筒間インバランス故障の可能性有りか否かを判定することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。   The determination means (39) determines whether or not there is a possibility of an inter-cylinder imbalance failure based on a magnitude of an initial estimated air-fuel ratio by the cylinder-by-cylinder air-fuel ratio estimation. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim. 前記判定手段(39)は、前記気筒別空燃比制御による気筒別補正値の大きさに基づいて前記気筒間インバランス故障の可能性有りか否かを判定することを特徴とする請求項1又は2に記載の内燃機関の気筒別空燃比制御装置。   The determination means (39) determines whether or not there is a possibility of an imbalance failure between cylinders based on a magnitude of a cylinder specific correction value by the cylinder specific air-fuel ratio control. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim 2. 前記判定手段(39)は、前記空燃比センサ(36)の出力の1サイクル間の振幅値に基づいて前記気筒間インバランス故障の可能性有りか否かを判定することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の気筒別空燃比制御装置。   The determination means (39) determines whether or not there is a possibility of an imbalance failure between cylinders based on an amplitude value during one cycle of an output of the air-fuel ratio sensor (36). The air-fuel ratio control apparatus for each cylinder of the internal combustion engine according to any one of 1 to 3. 前記判定手段(39)は、前記気筒間インバランス故障の可能性有りと判定した後、前記各気筒の推定空燃比が収束したと判定されたときに、前記気筒間インバランス故障の可能性有りの判定をリセットすることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の気筒別空燃比制御装置。   After the determination means (39) determines that there is a possibility of an imbalance failure between cylinders and then determines that the estimated air-fuel ratio of each cylinder has converged, there is a possibility of an imbalance failure between cylinders. 5. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the determination is reset. 前記判定手段(39)は、前記気筒間インバランス故障の可能性有りと判定した後、前記各気筒の推定空燃比が所定値よりも目標値側になった状態が所定時間以上継続したときに、前記気筒間インバランス故障の可能性有りの判定をリセットすることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の気筒別空燃比制御装置。   When the determination means (39) determines that there is a possibility of an imbalance failure between the cylinders, the state where the estimated air-fuel ratio of each cylinder has become a target value side from a predetermined value continues for a predetermined time or more. 6. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the determination that there is a possibility of an imbalance failure between cylinders is reset. 前記制限手段(39)は、前記メインフィードバック補正値の変化量の制限中に、前記メインフィードバック補正値の学習更新速度を低下させる又は前記メインフィードバック補正値の学習を停止することを特徴とする請求項1乃至6のいずれかに記載の内燃機関の気筒別空燃比制御装置。   The limiting means (39) reduces the learning update speed of the main feedback correction value or stops learning of the main feedback correction value while limiting the change amount of the main feedback correction value. Item 7. The air-fuel ratio control device for each cylinder of the internal combustion engine according to any one of Items 1 to 6.
JP2014168000A 2014-08-19 2014-08-20 Cylinder air-fuel ratio control device for internal combustion engine Pending JP2016044576A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014168000A JP2016044576A (en) 2014-08-20 2014-08-20 Cylinder air-fuel ratio control device for internal combustion engine
US14/825,455 US9890726B2 (en) 2014-08-19 2015-08-13 Individual cylinder air-fuel ratio control device of internal combustion engine
US15/585,227 US9790882B2 (en) 2014-08-19 2017-05-03 Individual cylinder air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168000A JP2016044576A (en) 2014-08-20 2014-08-20 Cylinder air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016044576A true JP2016044576A (en) 2016-04-04

Family

ID=55635379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168000A Pending JP2016044576A (en) 2014-08-19 2014-08-20 Cylinder air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016044576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003847A (en) * 2016-07-08 2018-01-11 マン・ディーゼル・アンド・ターボ・エスイー Method for inspecting function of gas regulating valve and control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003847A (en) * 2016-07-08 2018-01-11 マン・ディーゼル・アンド・ターボ・エスイー Method for inspecting function of gas regulating valve and control device

Similar Documents

Publication Publication Date Title
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP4706590B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US9790882B2 (en) Individual cylinder air-fuel ratio control device of internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP2005188503A (en) Air-fuel ratio control system by cylinder for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US8645046B2 (en) Controller for internal combustion engine
JP6149828B2 (en) Control device for internal combustion engine
US10760535B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP6213078B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2013253593A (en) Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP2008064078A (en) Control device of internal combustion engine
JP2016044576A (en) Cylinder air-fuel ratio control device for internal combustion engine
JP4600699B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
US20190093533A1 (en) Controller and control method for internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP2016041922A (en) Internal combustion engine cylinder-specific air-fuel ratio control unit
JP2008121632A (en) Each cylinder abnormal diagnosis device of internal combustion engine
US11047332B2 (en) Controller and control method for internal combustion engine
JP2008038786A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2016173040A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160309