JP2016040366A - Decolorant for refined oil and fat - Google Patents

Decolorant for refined oil and fat Download PDF

Info

Publication number
JP2016040366A
JP2016040366A JP2015109823A JP2015109823A JP2016040366A JP 2016040366 A JP2016040366 A JP 2016040366A JP 2015109823 A JP2015109823 A JP 2015109823A JP 2015109823 A JP2015109823 A JP 2015109823A JP 2016040366 A JP2016040366 A JP 2016040366A
Authority
JP
Japan
Prior art keywords
component
activated clay
oils
sio
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015109823A
Other languages
Japanese (ja)
Other versions
JP6473661B2 (en
Inventor
大補 塚原
Daisuke Tsukahara
大補 塚原
充生 太田
Mitsuo Ota
充生 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2015109823A priority Critical patent/JP6473661B2/en
Publication of JP2016040366A publication Critical patent/JP2016040366A/en
Application granted granted Critical
Publication of JP6473661B2 publication Critical patent/JP6473661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fats And Perfumes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decolorant for refined oil and fat capable of exhibiting excellent decoloration capacity to a physical purification treated refined oil and fat and providing a decolored oil with low acid value.SOLUTION: A decolorant consists of active white clay and silica-magnesia formulation, the total amount of a Mg component (MgO) and an Al component (AlO) is in a range of 10 to 45 pts.mass per 100 pts.mass of total amount of a Si component (SiO) derived from the active white clay and a Si component (SiO) derived from the silica-magnesia formulation and anionic adsorption performance represented by the orange II adsorption amount is in the range of 30 to 70 mmol/100 g.SELECTED DRAWING: None

Description

本発明は、物理的精製がされた油脂についての脱色処理に適用される精製油脂用脱色剤に関する。   The present invention relates to a decoloring agent for refined fats and oils that is applied to a decolorization treatment for fats and oils that have been physically refined.

動植物から採取した油脂(以下、「粗油」と呼ぶことがある)は、一般に、リン脂質を除去する脱ガム処理、遊離脂肪酸を除去する脱酸処理、石ケン分を除去する水洗処理、色素を除去する脱色処理を経て、最後に有臭成分を除去する脱臭処理を経て、食用油等の用途に供される。   Oils and fats collected from animals and plants (hereinafter sometimes referred to as “crude oil”) are generally degumming treatment to remove phospholipids, deoxidation treatment to remove free fatty acids, water washing treatment to remove soap, pigment It passes through the decoloring process which removes odor, and finally passes through the deodorizing process which removes an odorous component, and is used for uses, such as cooking oil.

上記で用いる脱色剤としては、例えば、ジオクタヘドラル型スメクタイト粘土鉱物(フラーズアース或いはブリーチングアースとも呼ばれる)を酸処理することにより比表面積等を増大して活性化した活性白土が知られている(特許文献1参照)。
また、活性白土ほどの脱色性能は有していないが、本出願人が提案したシリカマグネシア製剤も油脂に対する脱色性能を有している(特許文献2参照)。
As the decolorizing agent used above, for example, an activated clay activated by increasing the specific surface area by acid treatment of dioctahedral smectite clay mineral (also called fuller's earth or bleaching earth) is known (patent). Reference 1).
Moreover, although it does not have the decoloring performance like activated clay, the silica magnesia formulation which the present applicant proposed also has the decoloring performance with respect to fats and oils (refer patent document 2).

ところで、上記のような油脂の精製にあたっては、200〜250℃の加熱下で水蒸気蒸留により、最後の脱臭処理が行われるが、この脱臭処理をより低温、短時間で行うことが望まれている。長時間かけて脱臭処理を行うと、トランス脂肪酸や3MCPD(3−モノクロロプロパンジオール)等の有害物質の含有量が増加するばかりか、トコフェノールやステロール等の油脂中の有効成分が減少する傾向があるためである。脱臭処理を低温、短時間で行うためには、脱色処理された脱色油の酸価を低くすればよいことが知られている。   By the way, in refining the above fats and oils, the final deodorization treatment is performed by steam distillation under heating at 200 to 250 ° C., and it is desired to perform this deodorization treatment at a lower temperature and in a shorter time. . When deodorizing treatment is performed for a long time, not only the content of harmful substances such as trans fatty acids and 3MCPD (3-monochloropropanediol) increases, but the active ingredients in fats and oils such as tocophenol and sterol tend to decrease. Because there is. In order to perform the deodorizing process at a low temperature and in a short time, it is known that the acid value of the decolorized oil subjected to the decoloring process may be lowered.

一方、最近では、物理的精製処理(フィジカル精製処理)によって精製された油脂が販売されている。物理的精製処理は、粗油を脱ガム処理、脱色処理した後に、脱臭(フィジカル脱酸)処理するというものである。即ち、アルカリ処理を行わず、蒸留による脱臭によって脱臭と共に遊離脂肪酸を除去するというものであり、水酸化ナトリウム等のアルカリを使用しないことから、安価に精製処理が行われるという利点がある。特に輸入品に、このような物理的精製処理されたものが多く、例えばこのような処理がされたパーム油は、RBD(Refined Bleached Deodorized)パーム油と呼ばれている(例えば、特許文献3参照)。
ところで、上記のように物理的精製処理がなされた油脂(即ち、精製油脂)は、安価ではあるが、精製が十分に行われておらず、このため、日本国内では更に常法による精製処理が行われる場合がほとんどである。
しかるに、上記のように、一旦精製処理がなされた油脂について再度の精製処理を行う場合には、脱色を行い難いという問題がある。恐らく、油脂中に含まれる色素等が、物理的精製処理で行われる蒸留時に重合して高分子量化してしまうためではないかと考えられている。
On the other hand, recently, fats and oils purified by physical refining treatment (physical refining treatment) have been sold. The physical refining treatment is to deodorize (physical deacidification) treatment after the crude oil is degummed and decolorized. That is, alkali treatment is not performed, and free fatty acids are removed together with deodorization by deodorization by distillation. Since an alkali such as sodium hydroxide is not used, there is an advantage that purification treatment is performed at low cost. In particular, many imported products have been subjected to such physical refining treatment. For example, palm oil that has undergone such treatment is called RBD (Refined Bleached Deodorized) palm oil (see, for example, Patent Document 3). ).
By the way, fats and oils that have been physically refined as described above (that is, refined fats and oils) are inexpensive, but have not been sufficiently refined. Mostly done.
However, as described above, there is a problem that it is difficult to perform decolorization when the refining process is performed again on the oil and fat that has been once purified. Probably, it is thought that the pigments contained in the fats and oils are polymerized during the distillation performed in the physical refining process to increase the molecular weight.

例えば、活性白土を用いて脱色処理を行う場合、脱色を効果的に行うためには、活性がより高い活性白土を使用するか、活性白土の使用量をかなり多くする必要があり、そうすると、得られる脱色油の酸価が高くなってしまう。
また、シリカマグネシア製剤を用いた場合には、酸価の増大は抑制することができるのであるが、活性白土ほどの脱色能を得ることができない。
For example, when performing decoloring treatment using activated clay, it is necessary to use activated clay with higher activity or use a large amount of activated clay in order to effectively perform decolorization. The acid value of the decolorized oil produced becomes high.
Further, when a silica magnesia preparation is used, an increase in acid value can be suppressed, but a decoloring ability as high as that of activated clay cannot be obtained.

特開2008−31411号JP 2008-31411 A 特開2005−6510号JP 2005-6510 A 特開2011−30482号JP2011-30482A

従って、本発明の目的は、物理的精製処理がなされた精製油脂に対して優れた脱色能を示し且つ低酸価の脱色油を得ることが可能な精製油脂用脱色剤を提供することにある。
本発明の他の目的は、特にRBDパーム油に対して優れた脱色能と低酸価能とを有する精製油脂用脱色剤を提供することにある。
Accordingly, an object of the present invention is to provide a decolorizing agent for refined fats and oils that exhibits excellent decolorizing ability with respect to refined fats and oils that have undergone a physical refining treatment and that can obtain a decolorized oil having a low acid value. .
Another object of the present invention is to provide a bleaching agent for refined fats and oils that has excellent decolorizing ability and low acid value ability, particularly for RBD palm oil.

本発明者等は、精製油脂に対する脱色性について多くの実験を行った結果、活性白土とシリカマグネシア製剤とを一定の割合で混合して用いた場合には、活性白土の優れた脱色能を維持したまま、低酸価の脱色油が得られることを見出し、本発明を完成させるに至った。   As a result of conducting many experiments on the decolorization property to refined fats and oils, the inventors maintained an excellent decolorizing ability of the activated clay when the activated clay and the silica magnesia preparation were mixed at a certain ratio. As such, the present inventors have found that a decolorized oil having a low acid value can be obtained and completed the present invention.

本発明によれば、活性白土とシリカマグネシア製剤との混合物からなり、酸化物換算で、活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当り、Mg成分(MgO)とAl成分(Al)との合計量が10〜45質量部の範囲にあり、且つオレンジII吸着量で表されるアニオン吸着能が30〜70mmol/100gの範囲にあることを特徴とする精製油脂用脱色剤が提供される。 According to the present invention, consists of a mixture of activated clay and silica magnesia formulation, in terms of oxide, the total amount of the Si component derived from activated clay (SiO 2) and silica magnesia preparation derived Si component (SiO 2) 100 The total amount of Mg component (MgO) and Al component (Al 2 O 3 ) is in the range of 10 to 45 parts by mass per part by mass, and the anion adsorption capacity represented by Orange II adsorption amount is 30 to 70 mmol / Provided is a bleaching agent for refined fats and oils, characterized by being in the range of 100 g.

本発明の精製油脂用脱色剤においては、酸化物換算で、Mg成分(MgO)とAl成分(Al)との質量比(Al/MgO)が0.10〜4.00の範囲にあることが望ましい。 In the bleaching agent for refined fats and oils of the present invention, the mass ratio (Al 2 O 3 / MgO) of Mg component (MgO) to Al component (Al 2 O 3 ) is 0.10 to 4.00 in terms of oxide. It is desirable to be in the range.

本発明の脱色剤によれば、物理的精製処理が行われた油脂の脱色を行ったとき、活性白土だけを使用した処理に比べ、酸価を低減させながら効果的に脱色を行うことができる。   According to the decoloring agent of the present invention, when decolorization of fats and oils that have been subjected to physical refining treatment, it is possible to effectively decolorize while reducing the acid value compared to treatment using only activated clay. .

油脂の色調は、ロビボンド比色計を用いて測定されるY値(黄色度を示す指数)とR値(赤色度を示す指数)とから算出される色調指数(Y+10R)により評価され、この値が小さくなるほど、無色に近く、脱色が効果的に行われていることを示す。
例えば、後述する実施例の実験例に示されているように、物理的精製処理が行われたRBDパーム油(色調指数68、酸価0.19)について活性白土を用いて脱色処理を行うと、得られる脱色油の色調指数は28であり、効果的に脱色が行われているものの、酸価(KOHmg/g)は、0.27であり、酸価は低くなるというよりも、むしろ増大してしまう(比較例1)。即ち、活性白土では、遊離脂肪酸の除去が行われていないことに加え、活性白土自体が固体酸を有しており、この結果、酸価が増大してしまっているものと考えられる。一方、シリカマグネシア製剤を用いて脱色処理を行った場合には、酸価が0.07とかなり低くなり、遊離脂肪酸の吸着除去が効果的に行われているのであるが、色調指数は34であり、脱色の程度は、活性白土と比較すると低い(比較例2)。
しかるに、本発明にしたがい、活性白土とシリカマグネシア製剤とを一定の割合で混合した本発明の脱色剤を用いて脱色処理を行った場合には、色調指数が28であり、活性白土を単独で用いた場合と同等に脱色処理が行われ、しかも得られた脱色油の酸価は、0.25以下と低減される(実施例1〜実施例4)。
The color tone of fats and oils is evaluated by a color tone index (Y + 10R) calculated from a Y value (index indicating yellowness) and an R value (index indicating redness) measured using a Robibond colorimeter. The smaller the is, the closer it is to colorless, indicating that decolorization is effectively performed.
For example, as shown in the experimental examples of Examples described later, when RBD palm oil (color tone index 68, acid value 0.19) subjected to physical refining treatment is subjected to decolorization treatment using activated clay. The obtained decolorized oil has a color tone index of 28 and is effectively decolored, but the acid value (KOHmg / g) is 0.27 and the acid value increases rather than decreases. (Comparative Example 1). That is, in the activated clay, in addition to the removal of free fatty acids, the activated clay itself has a solid acid, and as a result, it is considered that the acid value has increased. On the other hand, when the decolorization treatment is performed using the silica magnesia preparation, the acid value is as low as 0.07, and adsorption and removal of free fatty acids are effectively performed, but the color index is 34. Yes, the degree of decolorization is low compared to activated clay (Comparative Example 2).
However, according to the present invention, when the bleaching treatment is performed using the bleaching agent of the present invention in which activated clay and silica magnesia preparation are mixed at a certain ratio, the color index is 28, and the activated clay is used alone. Decolorization treatment is performed in the same manner as when used, and the acid value of the obtained decolorized oil is reduced to 0.25 or less (Examples 1 to 4).

このことから理解されるように、本発明では、活性白土の優れた脱色能を維持したまま、酸価を大きく低減させることが可能となる。即ち、活性白土は、クロロフィル等の色素に対しての吸着性が高く、一方、シリカマグネシア製剤は、活性白土ほどではないが、色素に対してある程度以上の吸着性を示すと同時に、遊離脂肪酸に対する吸着性を示す。シリカマグネシア製剤中のマグネシア成分が遊離脂肪酸に対する吸着性を示すものと考えられる。この結果、活性白土の一部をシリカマグネシア製剤に置き換えることにより、活性白土に由来する酸価の増大を抑制するだけではなく、遊離脂肪酸に対する吸着性を増大させ、酸価を大きく低減させることができ、しかも、活性白土の置き換えによる色素に対する吸着性の低下が、シリカマグネシア製剤によって補われ、優れた脱色性能をも維持することが可能となる。   As understood from this, in the present invention, it is possible to greatly reduce the acid value while maintaining the excellent decolorizing ability of the activated clay. That is, activated clay is highly adsorbable to pigments such as chlorophyll, while silica magnesia formulation is not as active as activated clay, but at the same time exhibits adsorbability to a certain level and to free fatty acids. Adsorbability is shown. It is considered that the magnesia component in the silica magnesia preparation exhibits adsorptivity to free fatty acids. As a result, by replacing part of the activated clay with a silica magnesia formulation, not only the increase in the acid value derived from the activated clay can be suppressed, but also the adsorptivity to free fatty acids can be increased and the acid value can be greatly reduced. In addition, the decrease in the adsorptivity to the pigment due to the replacement of the activated clay is compensated by the silica magnesia preparation, and it is possible to maintain excellent decolorization performance.

このように本発明によれば、物理的精製処理が行われた油脂の脱色と酸価の低減を効果的に行うことができ、特に酸価を低減できることから、脱色処理後に行われる蒸留による脱臭処理をより低温、短時間で行うことができ、有害物質の増大や有効成分の減少を回避できることが期待される。
かかる本発明の精製油脂用脱色剤は、特に食用油として多く使用される安価なRBDパーム油の脱色に特に効果的に適用される。
As described above, according to the present invention, it is possible to effectively perform decolorization and reduction of the acid value of fats and oils that have been subjected to physical refining treatment, and in particular, the acid value can be reduced. It is expected that the treatment can be performed at a lower temperature and in a shorter time, and an increase in harmful substances and a decrease in active ingredients can be avoided.
Such a decolorizing agent for refined fats and oils of the present invention is particularly effectively applied to decoloring inexpensive RBD palm oil that is often used as an edible oil.

発明が実施しようとする形態DETAILED DESCRIPTION OF THE INVENTION

本発明の精製油脂用脱色剤は、活性白土とシリカマグネシア製剤との混合物である。   The bleaching agent for refined fats and oils of the present invention is a mixture of activated clay and silica magnesia preparation.

1.活性白土
本発明において用いる活性白土は、それ自体公知であり、ジオクタヘドラル型スメクタイト粘土鉱物を使用し、これを粉砕、分級して所定の粒度の粉末に調整、この粉末を所定の条件で酸処理することにより製造される。
1. Activated clay The activated clay used in the present invention is known per se, and uses dioctahedral smectite clay mineral, pulverized and classified to prepare powder of a predetermined particle size, and this powder is acid-treated under predetermined conditions. It is manufactured by.

原料粘土として用いるジオクタヘドラル型スメクタイト粘土鉱物は、火山岩や溶岩等が海水の影響下で変性したものと考えられており、SiO四面体層−AlO八面体層−SiO四面体層からなり、且つこれらの四面体層と八面体層が部分的に異種金属で同型置換された三層構造を基本構造(単位層)としており、このような三層構造の積層層間には、Ca,K,Na等の陽イオンや水素イオンとそれに配位している水分子が存在している。また、基本三層構造の八面体層中のAlの一部がMgやFe(II)に置換し、四面体層中のSiの一部がAlに置換しているため、結晶格子はマイナスの電荷を有しており、このマイナスの電荷が基本層間に存在する金属陽イオンや水素イオンにより中和されている。このようなスメクタイト系粘土には、酸性白土、ベントナイト、フラーズアースなどがあり、金属層間に存在する金属陽イオンの種類や量、及び水素イオン量などによってそれぞれ異なる特性を示す。例えば、ベントナイトでは、基本層間に存在するNaイオン量が多く、このため、水に懸濁分散させた分散液のpHが高く、一般に高アルカリサイドにあり、また、水に対して高い膨潤性を示し、さらにはゲル化して固結するという性質を示す。一方、酸性白土では、基本層間に存在する水素イオン量が多く、このため、水に懸濁分散させた分散液のpHが低く、一般に酸性サイドにあり、また、水に対して膨潤性を示すものの、ベントナイトと比較すると、その膨潤性は総じて低く、ゲル化には至らない。 Dioctahedral smectite clay minerals used as raw clay is believed to volcanic rock and lava is modified under the influence of sea water, consists SiO 4 tetrahedral layers -AlO 6 octahedral layer -SiO 4 tetrahedra layer, In addition, a three-layer structure in which the tetrahedral layer and the octahedral layer are partially replaced by the same type of metal is used as a basic structure (unit layer), and Ca, K, There are cations such as Na and hydrogen ions and water molecules coordinated with them. In addition, a part of Al in the octahedral layer of the basic trilayer structure is replaced with Mg or Fe (II) , and a part of Si in the tetrahedral layer is replaced with Al, so the crystal lattice is negative. The negative charge is neutralized by metal cations and hydrogen ions existing between the basic layers. Such smectite clay includes acid clay, bentonite, fuller's earth, and the like, and shows different characteristics depending on the kind and amount of metal cations existing between metal layers, the amount of hydrogen ions, and the like. For example, bentonite has a large amount of Na ions present between the basic layers, and therefore, the pH of the dispersion suspended in water is high, generally on the high alkali side, and has high swellability with respect to water. Furthermore, it shows the property of gelling and solidifying. On the other hand, in the acid clay, the amount of hydrogen ions present between the basic layers is large, and therefore, the pH of the dispersion suspended and dispersed in water is low, generally on the acidic side, and swellable with water. However, compared with bentonite, its swelling property is generally low, and it does not cause gelation.

活性白土の製造に用いるジオクタヘドラル型スメクタイト系粘土は、特に限定されるものではなく、上述した各種の何れをも使用することができる。また、かかる原料粘土は、粘土の成因、産地及び同じ産地でも埋蔵場所(切羽)等によっても相違するが、一般的には、酸化物換算で以下のような組成を有している。
SiO;50〜75質量%
Al;14〜25質量%
Fe;2〜20質量%
MgO;3〜7質量%
CaO;0.1〜3質量%
NaO;0.1〜3質量%
O;0.1〜3質量%
その他の酸化物(TiOなど);1質量%以下
Ig−loss(1050℃);5〜10質量%
The dioctahedral smectite clay used for the production of the activated clay is not particularly limited, and any of the various types described above can be used. In addition, such a raw clay generally has the following composition in terms of oxides, although it varies depending on the origin of the clay, the production area, and the same production area depending on the buried place (face).
SiO 2; 50 to 75 wt%
Al 2 O 3; 14~25 wt%
Fe 2 O 3 ; 2 to 20% by mass
MgO; 3-7 mass%
CaO; 0.1-3 mass%
Na 2 O; 0.1 to 3 wt%
K 2 O; 0.1 to 3 wt%
Other oxides (such as TiO 2); 1 wt% or less Ig-loss (1050 ℃); 5~10 wt%

上記のジオクタヘドラル型スメクタイト粘土鉱物を酸処理するにあたっては、これに先立って、必要により石砂分離、浮力選鉱、磁力選鉱、水簸、風簸等の精製操作に賦した後、粒度調整し、一般に、体積換算での平均粒径(D50)が20〜30μmとなるように粒度調整して粉末とするのがよい。
酸処理は、硫酸等の鉱酸水溶液を用いてそれ自体公知の方法で行えばよい。このような微粒の粉末を酸処理に付することにより、スメクタイト中のAl成分の一部が除去され、比表面積の増大や細孔容積の増大がもたらされ、クロロフィル等の色素の吸着に好適な物性を有しており、優れた脱色性能を有する活性白土を得ることができる。
Prior to acid treatment of the above-mentioned dioctahedral smectite clay mineral, after subjecting it to refining operations such as stone sand separation, buoyancy beneficiation, magnetic beneficiation, elutriation, wind dredging, etc., the particle size is adjusted. It is preferable to adjust the particle size so that the average particle size (D 50 ) in terms of volume is 20 to 30 μm to obtain a powder.
The acid treatment may be performed by a method known per se using an aqueous mineral acid solution such as sulfuric acid. By subjecting such fine powder to acid treatment, a part of the Al component in the smectite is removed, resulting in an increase in specific surface area and an increase in pore volume, which is suitable for adsorption of pigments such as chlorophyll. An activated clay with excellent physical properties and excellent decolorization performance can be obtained.

酸処理の後には、得られた活性白土を、必要により、水に懸濁分散された状態で静置して水簸を行い、沈降分離によって5μm以下の微粒子分を15体積%程度となるように除き、乾燥を行うことにより、目的とする活性白土を得ることができる。   After the acid treatment, the obtained activated clay is allowed to stand in a state of being suspended and dispersed in water, if necessary, and then subjected to water pouring, so that fine particles of 5 μm or less become about 15% by volume by sedimentation separation. In addition, the target activated clay can be obtained by drying.

かくして得られる活性白土の粉末は、原料粘土粉末と同様、体積換算での平均粒径(D50)が20〜30μmの範囲にあり、且つ5μm以下の微粒子含有量が15体積%以下の範囲にあり、さらに、表面シラノール基の濃度が減少し、吸湿性、膨潤性などが低減され、さらには微粒分の除去によりろ過性も優れ、脱色処理に好適である。 Like the raw clay powder, the activated clay powder thus obtained has an average particle size (D 50 ) in terms of volume in the range of 20 to 30 μm, and the content of fine particles of 5 μm or less in the range of 15% by volume or less. Furthermore, the concentration of the surface silanol group is reduced, the hygroscopicity, the swellability, etc. are reduced. Furthermore, the filterability is excellent due to the removal of fine particles, which is suitable for decolorization treatment.

上述した酸処理によって得られる活性白土は、一般に、酸化物換算で、下記の化学組成を有している。
SiO;60〜85質量%
Al;6〜13質量%
Fe;1〜10質量%
MgO;1〜4質量%
CaO;0.1〜2質量%
NaO;0.1〜1質量%
O;0.1〜1質量%
その他の酸化物(TiOなど);1質量%以下
Ig−loss(1050℃);4〜8質量%
The activated clay obtained by the acid treatment described above generally has the following chemical composition in terms of oxide.
SiO 2; 60 to 85 wt%
Al 2 O 3; 6~13 wt%
Fe 2 O 3; 1~10 wt%
MgO; 1-4% by mass
CaO; 0.1 to 2% by mass
Na 2 O; 0.1 to 1 wt%
K 2 O; 0.1 to 1 wt%
Other oxides (such as TiO 2); 1 wt% or less Ig-loss (1050 ℃); 4~8 wt%

また、かかる活性白土は、1.7〜100nmでの細孔直径における細孔容積(窒素吸着法による)が0.25〜0.50cm/gの範囲にあり、嵩密度が0.50〜0.70g/cm範囲にあり、BET比表面積は、一般に、150〜350m/gの範囲にあり、このような物性により、油脂に対して優れた脱色性が発現するわけである。即ち、クロロフィル等の色素は、油脂類中に分子が会合した状態で存在しており、このため、酸処理により形成された粒子表面部分の比較的大きな細孔内に吸着保持されるが、上述した活性白土は、このような大きな細孔が形成されているため、後述する実施例に示されているように、優れた脱色性を示すのである。 Further, such activated clay has a pore volume (by nitrogen adsorption method) at a pore diameter of 1.7 to 100 nm in a range of 0.25 to 0.50 cm 3 / g and a bulk density of 0.50 to 0.50. In the range of 0.70 g / cm 3 , the BET specific surface area is generally in the range of 150 to 350 m 2 / g, and such physical properties exhibit excellent decolorization properties for fats and oils. That is, pigments such as chlorophyll are present in a state in which molecules are associated in fats and oils. Therefore, they are adsorbed and held in relatively large pores on the surface of the particles formed by acid treatment. Since the activated clay has such large pores formed, it exhibits excellent decolorization properties as shown in Examples described later.

2.シリカマグネシア製剤;
本発明において、上述した活性白土と混合するシリカマグネシア製剤は、シリカ粒子とマグネシア粒子とが原子の交換や組み換えを伴うような化学結合を伴うことなく、混合され、複合一体化した形態を有するものである。即ち、物理的手段により分離しないように一体化されたものである。
2. Silica magnesia formulation;
In the present invention, the silica magnesia preparation to be mixed with the activated clay described above has a form in which the silica particles and the magnesia particles are mixed and combined and integrated without any chemical bond such as exchange of atoms or recombination. It is. That is, they are integrated so as not to be separated by physical means.

このようなシリカマグネシア製剤は、シリカ(SiO)とマグネシア(MgO)との質量比(SiO/MgO)が、1.3〜3.0の範囲にあり、例えば、特開2005−8676号等に記載された公知の方法によって製造される。
即ち、ゲル法或いは沈降法で得られる非晶質シリカの水性スラリーと、マグネシアまたはその水和物の水性スラリーとを、シリカとマグネシアとの量比が上記範囲内となる量で使用し、これら水性スラリーを、100℃以下、特に50〜97℃の温度で、0.5時間以上、特に1〜24時間かけて均質混合及び熟成し、冷却後、ボールミルやコロイドミル等により湿式粉砕して約5μm以下の粒子を得、最後に乾燥によって水分を除去することにより、シリカ粒子とマグネシア粒子とが緊密に複合化したシリカマグネシア製剤を得ることができる。
Such a silica magnesia preparation has a mass ratio (SiO 2 / MgO) of silica (SiO 2 ) to magnesia (MgO) in the range of 1.3 to 3.0, for example, Japanese Patent Application Laid-Open No. 2005-8676. It is produced by a known method described in the above.
That is, an amorphous silica aqueous slurry obtained by a gel method or a sedimentation method and an aqueous slurry of magnesia or its hydrate are used in such amounts that the amount ratio of silica and magnesia falls within the above range. The aqueous slurry is homogeneously mixed and aged at a temperature of 100 ° C. or less, particularly 50 to 97 ° C. for 0.5 hours or more, particularly 1 to 24 hours, and after cooling, wet pulverization is performed by a ball mill or a colloid mill. By obtaining particles of 5 μm or less and finally removing moisture by drying, a silica magnesia preparation in which silica particles and magnesia particles are intimately combined can be obtained.

このようなシリカマグネシア製剤は、適宜、乾式粉砕、分級し、例えば5μmよりも小さな粒径の微細粒子の含有量が20体積%以下であり、且つレーザー回折散乱法により測定される体積基準での平均粒径D50が20〜200μm程度の大きさの粒子として使用に供される。 Such a silica magnesia preparation is appropriately dry pulverized and classified, for example, the content of fine particles having a particle size smaller than 5 μm is 20% by volume or less, and is based on a volume basis measured by a laser diffraction scattering method. The average particle diameter D50 is used as a particle having a size of about 20 to 200 μm.

かかるシリカマグネシア製剤は、一般に、5%懸濁液でのpHが7〜10であり、塩基性を示し、嵩密度が0.2〜0.4g/cm、BET比表面積が500〜800m/g、細孔直径が1.7〜300nmの細孔容積が0.5〜1.5cm/gの範囲にあり、活性白土ほどではないが、精製油脂に対しての脱色性能が高い。即ち、シリカマグネシア製剤は、蒸留等により生成する高分子量成分に対して、高い吸着性を示すためと考えられる。
このようなシリカマグネシア製剤は、例えば水澤化学工業株式会社より、ミズカライフの商品名で市販されている。
Such a silica magnesia preparation generally has a pH of 7 to 10 in a 5% suspension, exhibits basicity, a bulk density of 0.2 to 0.4 g / cm 3 , and a BET specific surface area of 500 to 800 m 2. / G, the pore volume is 1.7 to 300 nm, and the pore volume is in the range of 0.5 to 1.5 cm 3 / g. That is, it is considered that the silica magnesia preparation exhibits high adsorptivity with respect to a high molecular weight component produced by distillation or the like.
Such a silica magnesia preparation is commercially available, for example, from Mizusawa Chemical Co., Ltd. under the trade name Mizuka Life.

3.精製油脂用脱色剤;
本発明においては、上述した活性白土とシリカマグネシア製剤とを乾式混合して、精製油脂用脱色剤として使用する。
即ち、活性白土単独では、精製油脂に対しては高い脱色性を発現させるために、その使用量が多量になり、多量の活性白土の使用は、得られる脱色油の酸価の増大をもたらす。しかるに、本発明では、シリカマグネシア製剤を併用することにより、脱色油の酸価を低減させるばかりか、活性白土の優れた脱色性をも維持させることができる。例えば、活性白土の一部がシリカマグネシア製剤に置き換えられているにもかかわらず、このような置き換えがされていない活性白土と同等の脱色性能を発現することができる。
3. Decoloring agent for refined fats and oils;
In the present invention, the above-described activated clay and silica magnesia preparation are dry-mixed and used as a decolorizer for refined fats and oils.
That is, the activated clay alone exhibits a high decoloring property with respect to the refined fats and oils, so the amount of the activated clay increases, and the use of a large amount of the activated clay increases the acid value of the resulting decolorized oil. However, in the present invention, by using the silica magnesia preparation together, not only the acid value of the decolorized oil can be reduced, but also the excellent decolorization property of the activated clay can be maintained. For example, although a part of the activated clay is replaced with a silica magnesia preparation, it is possible to develop a decoloring performance equivalent to that of the activated clay without such replacement.

即ち、本発明で用いるシリカマグネシア製剤は、マグネシア成分が遊離脂肪酸等の酸に対する吸着性を示すため、脱色油の酸価を低減させることができると同時に、その細孔分布等の物性が、おそらく、精製油脂に特有の高分子量不純物の吸着に有効な範囲となっており、これにより、活性白土と同等の脱色性能を確保できるのではないかと考えられる。   That is, in the silica magnesia preparation used in the present invention, since the magnesia component exhibits adsorptivity to acids such as free fatty acids, the acid value of the decolorized oil can be reduced, and at the same time, the physical properties such as pore distribution are probably This is an effective range for adsorption of high molecular weight impurities peculiar to refined fats and oils, and it is considered that the decolorization performance equivalent to that of activated clay can be secured.

本発明の脱色剤においては、酸化物換算で、活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当り、Mg成分(MgO)とAl成分(Al)との合計量が10〜45質量部、特に20〜35質量部の範囲にあり、且つオレンジII吸着量で表されるアニオン吸着能が30〜70mmol/100g、特に35〜50mmol/100gの範囲にあることが必須であり、このような条件を満足するように、活性白土とシリカマグネシア製剤とを混合しなければならない。 In the decolorizing agent of the present invention, in terms of oxide, Mg component (MgO) per 100 parts by mass of the total amount of Si component derived from activated clay (SiO 2 ) and Si component derived from silica magnesia preparation (SiO 2 ) The total amount of the Al component (Al 2 O 3 ) is in the range of 10 to 45 parts by mass, particularly 20 to 35 parts by mass, and the anion adsorption capacity expressed by Orange II adsorption amount is 30 to 70 mmol / 100 g, particularly It is essential to be in the range of 35-50 mmol / 100 g, and the activated clay and the silica magnesia preparation must be mixed so as to satisfy such conditions.

即ち、活性白土は、ジオクタヘドラル型スメクタイト粘土鉱物を酸処理することにより得られるものであるため、先に説明したように、シリカマグネシア製剤と同様、シリカ成分(SiO)とマグネシウム成分とを含有している。シリカマグネシア製剤が有する酸価低減機能(即ち、遊離脂肪酸吸着機能)は、マグネシア(MgO)成分によるものであるため、前述した脱色性能と酸価低減機能とを発揮させるためには、この脱色剤中に適度な量のマグネシア成分が存在していることが必要であるが、シリカ成分とマグネシウム成分が共通成分として存在しているため、脱色剤中のマグネシア成分量を単純に特定することができない。しかるに、シリカマグネシア製剤は、マグネシア成分に由来してアニオン性色素(オレンジII)に対して吸着性を示すが、活性白土は、アニオン性色素に対する吸着性はほとんど示さない。活性白土中のMg成分は、結晶中(Al八面体層中)に組み込まれているため、アニオン性色素に対する吸着性を示さないからである。このため、シリカ成分の合計量に対するMg成分とAl成分(Al成分はシリカマグネシア製剤には含まれていない)との合計量の割合と、オレンジIIによるアニオン吸着能とから、活性白土とシリカマグネシア製剤との適正な混合比を規定したものである。
例えば、Mg成分とAl成分との合計量が上記範囲よりも多い場合或いはアニオン吸着能が上記範囲よりも大きい場合には、シリカマグネシア製剤の量が過剰であり、この結果、酸価低減機能は満足し得るとしても、精製油脂に対する脱色性能が低くなってしまう。また、Mg成分とAl成分との合計量が上記範囲よりも少ない場合或いはアニオン吸着能が上記範囲よりも小さい場合には、活性白土の量が過剰であり、酸価低減機能が損なわれてしまう。
That is, the activated clay is obtained by acid treatment of dioctahedral smectite clay mineral, and as described above, it contains a silica component (SiO 2 ) and a magnesium component as in the silica magnesia preparation. ing. Since the acid value reducing function (that is, the free fatty acid adsorption function) of the silica magnesia preparation is based on the magnesia (MgO) component, this decoloring agent is used in order to exert the above-described decoloring performance and acid value reducing function. It is necessary that an appropriate amount of magnesia component is present, but since the silica component and magnesium component are present as common components, the amount of magnesia component in the decoloring agent cannot be simply specified. . However, although the silica magnesia preparation is derived from the magnesia component and exhibits an adsorptivity to the anionic dye (Orange II), the activated clay shows little adsorptivity to the anionic dye. This is because the Mg component in the activated clay is incorporated in the crystal (in the Al octahedral layer) and therefore does not exhibit adsorptivity to the anionic dye. Therefore, from the ratio of the total amount of Mg component and Al component (Al component is not included in the silica magnesia preparation) to the total amount of silica component and the anion adsorption ability by Orange II, activated clay and silica magnesia It defines the appropriate mixing ratio with the drug product.
For example, when the total amount of Mg component and Al component is larger than the above range or when the anion adsorption capacity is larger than the above range, the amount of silica magnesia preparation is excessive, and as a result, the acid value reducing function is Even if it can be satisfied, the decolorization performance with respect to the refined fats and oils is lowered. Further, when the total amount of the Mg component and the Al component is less than the above range or when the anion adsorption capacity is less than the above range, the amount of the activated clay is excessive, and the acid value reducing function is impaired. .

また、本発明の脱色剤においては、酸化物換算で、Mg成分(MgO)とAl成分(Al)との質量比(Al/MgO)が0.10〜4.00、特に0.10〜3.00の範囲にあることが好適である。即ち、活性白土中に含まれるMg成分の量には、酸処理に供するスメクタイト粘土鉱物の産地等によってかなりのバラつきがあるため、かかる質量比(Al/MgO)を上記範囲に設定することにより、優れた脱色能と酸価低減機能とをより確実に発現させることができる。 In the decolorizing agent of the present invention, the mass ratio (Al 2 O 3 / MgO) of Mg component (MgO) to Al component (Al 2 O 3 ) is 0.10 to 4.00 in terms of oxide. In particular, it is preferable to be in the range of 0.10 to 3.00. That is, since the amount of the Mg component contained in the activated clay varies considerably depending on the production area of the smectite clay mineral subjected to the acid treatment, the mass ratio (Al 2 O 3 / MgO) is set in the above range. By this, the outstanding decoloring ability and an acid value reduction function can be expressed more reliably.

このような本発明の精製油脂用脱色剤は、物理的精製が行われた油脂に対して優れた脱色性と共に、酸価低減機能を有している。従って、このような精製油脂について常法にしたがって、リン脂質を除去するための脱ガム処理(水添加による水脱ガムとリン酸等の酸添加による酸脱ガム)、水酸化ナトリウム等のアルカリ添加による脱酸処理、遠心分離、石ケン分除去のための水洗処理、及び遠心分離等による脱水処理を行った後に、本発明の脱色剤を用いて脱色処理を行い、ろ過することにより、例えば酸価(KOHmg/g)が0.25以下であり、色調指数(Y+10R)が28以下の脱色油を得ることができる(実施例1〜実施例4)。
即ち、この脱色油は、酸価が低く、遊離脂肪酸量が少ないため、次に行う水蒸気蒸留による脱臭処理をより低温、短時間で行うことができる。例えば、従来は、脱臭処理を200〜250℃での加熱下で40〜90分程度の時間、水蒸気蒸留を行っていたが、この水蒸気蒸留を、より低温で且つ短時間で行って悪臭成分を除去できることが期待される。この結果、脱臭処理に起因するトランス脂肪酸や3−MCPDなどの有害物質の増大やトコフェノールやステロールなどの有効成分の減少等を有効に抑制することができる。
Such a decoloring agent for refined fats and oils according to the present invention has an acid value reducing function as well as excellent decolorizing properties for fats and oils subjected to physical refining. Therefore, degumming treatment (water degumming by adding water and acid degumming by adding acid such as phosphoric acid) to remove phospholipids according to conventional methods for such refined fats and oils, addition of alkali such as sodium hydroxide After performing deoxidation treatment, centrifugation, water washing treatment for removing soap, and dehydration treatment by centrifugation, etc., decolorization treatment using the decoloring agent of the present invention is performed, and filtration is performed, for example, A decolorized oil having a value (KOHmg / g) of 0.25 or less and a color tone index (Y + 10R) of 28 or less can be obtained (Examples 1 to 4).
That is, since this decolorized oil has a low acid value and a small amount of free fatty acid, the deodorizing treatment by steam distillation performed next can be performed at a lower temperature and in a shorter time. For example, in the past, the steam was distilled for about 40 to 90 minutes under heating at 200 to 250 ° C., but this steam distillation was performed at a lower temperature and in a shorter time to remove malodorous components. It is expected that it can be removed. As a result, it is possible to effectively suppress an increase in harmful substances such as trans fatty acids and 3-MCPD and a decrease in active ingredients such as tocophenol and sterol resulting from the deodorization treatment.

従って、本発明の脱色剤は、特に海外から多量に輸入され、マーガリンなどの用途に多く使用されているRBDパーム油など、食用油としての用途に適用される精製油脂の脱色に極めて効果的である。   Therefore, the decoloring agent of the present invention is extremely effective for decolorizing refined fats and oils applied to edible oils such as RBD palm oil that is imported in large quantities from overseas and used in many applications such as margarine. is there.

本発明を次の実験例で説明する。なお、実施例における測定方法は、以下の通りである。   The invention is illustrated by the following experimental example. In addition, the measuring method in an Example is as follows.

(1)化学組成
試料の分解をアルカリ溶融で行い、SiOは重量法、AlはEDTA−亜鉛逆滴定法、MgOはキレート滴定でそれぞれ測定し、各金属成分を定量した。なお、試料は110℃で3時間乾燥した物を基準とする。
(1) Chemical composition Samples were decomposed by alkali melting, SiO 2 was measured by gravimetric method, Al 2 O 3 was measured by EDTA-zinc back titration method, and MgO was measured by chelate titration, and each metal component was quantified. In addition, a sample is based on the thing dried at 110 degreeC for 3 hours.

(2)オレンジII吸着量
本実施例におけるオレンジII吸着能は、10mmol/L濃度のオレンジII水溶液から、1gの試料が吸着できるオレンジIIのmmol数とし、下記の方法により測定し、算出した。
先ず、オレンジII(試薬特級、和光純薬工業(株)製)を水に溶かし、10mmol/L濃度のオレンジII水溶液を得る。
この10mmol/L濃度のオレンジII水溶液20mlを50ml容の遠沈管に秤取し、試験粉末0.20gを加えて振とう機(ヤマト科学(株)製SA300、振とうスピード5)により7.5時間振とうする。振とう終了後、12時間以上静置する。
次に遠心分離機((株)クボタ製 5200)により遠心加速度3000rpmで15分処理した液の上澄みを0.5mL採取し、これをイオン交換水により200倍に希釈した液の484nm波長光の吸光度を分光光度計(日本分光(株)製V−630)により測定した。そして、オレンジII水溶液のオレンジII含有量と484nm波長光の吸光度の関係を示す検量線を用いて試料液のオレンジII残存量を算出した。この値を、試料へのオレンジII添加量から差し引いた値をオレンジII吸着量とする。
(2) Orange II adsorption amount The orange II adsorption capacity in this example was measured and calculated by the following method using the number of mmols of orange II that can be adsorbed by a 1 g sample from an orange II aqueous solution having a concentration of 10 mmol / L.
First, Orange II (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in water to obtain an Orange II aqueous solution having a concentration of 10 mmol / L.
20 ml of this 10 mmol / L orange II aqueous solution was weighed into a 50 ml centrifuge tube, added with 0.20 g of test powder, and shaken (SA300 manufactured by Yamato Scientific Co., Ltd., shake speed 5) to 7.5. Shake time. Allow to stand for at least 12 hours after shaking.
Next, 0.5 mL of the supernatant of the liquid treated for 15 minutes at a centrifugal acceleration of 3000 rpm was collected with a centrifuge (5200 manufactured by Kubota Co., Ltd.), and the absorbance of 484 nm wavelength light of the liquid diluted 200 times with ion-exchanged water. Was measured with a spectrophotometer (V-630 manufactured by JASCO Corporation). And the orange II residual amount of the sample liquid was computed using the analytical curve which shows the relationship of the orange II content of orange II aqueous solution, and the light absorbency of 484 nm wavelength light. The value obtained by subtracting this value from the amount of Orange II added to the sample is taken as Orange II adsorption amount.

(3)脱色試験法
本実施例における脱色剤の性能は、RBDパーム油(色調指数68、酸価0.19)を減圧下にて脱色剤で処理することで得た脱色油の色調および酸価の測定値により評価した。
先ず、300mL丸底フラスコにRBDパーム油200gを採取し、各脱色剤サンプルを4g(油に対して2.0質量%)加えて攪拌機でよく混ぜる。このフラスコを40mmHgまで減圧した状態でヒーターを用いて110℃に加熱し、バキュームスターラにより20分間攪拌を行った。次に、室温下まで冷却した後に大気圧状態にし、油と脱色剤の混合懸濁液をろ過することにより各脱色油を得た。
各脱色油の色調は、ロビボンド比色計(ティントメタ−社製モデルF)を用いて測定されるY値(黄色度を示す指数)とR値(赤色度を示す指数)とから算出される色調指数(Y+10R)により評価し、この値が小さくなるほど、無色に近く、脱色が効果的に行われていることを示す。
各脱色油の酸価は、日本油化学会が制定する基準油脂分析法2.3.1−1996に準拠し測定した。この値が低いほど、遊離脂肪酸含有量が少なく、遊離脂肪酸の除去が効果的に行われていることを示す。
(3) Decoloring test method The performance of the decoloring agent in this example is the color tone and acid of the decoloring oil obtained by treating RBD palm oil (color tone index 68, acid value 0.19) with the decoloring agent under reduced pressure. It was evaluated by the measured value.
First, 200 g of RBD palm oil is collected in a 300 mL round bottom flask, and 4 g (2.0% by mass with respect to the oil) of each decolorizer sample is added and mixed well with a stirrer. The flask was heated to 110 ° C. using a heater while reducing the pressure to 40 mmHg, and stirred for 20 minutes with a vacuum stirrer. Next, after cooling to room temperature, it was brought to atmospheric pressure, and each decolorized oil was obtained by filtering the mixed suspension of oil and decolorizer.
The color tone of each decolorized oil is a color tone calculated from a Y value (index indicating yellowness) and an R value (index indicating redness) measured using a Robibond colorimeter (Model F manufactured by Tintometa). Evaluation is based on an index (Y + 10R), and the smaller this value is, the closer it is to colorless and the more effective decolorization is performed.
The acid value of each decolorized oil was measured according to the standard oil analysis method 2.3.1-1996 established by the Japan Oil Chemists' Society. The lower this value, the less the free fatty acid content, indicating that free fatty acids are effectively removed.

(比較例1)
新潟県胎内市産のスメクタイト系粘土を原料として用い、この原料を粗砕、混練し5mm径に造粒した。得られた造粒物の水分は37%であった。
この造粒物1500gを処理槽に充填し、そこに35質量%硫酸水溶液2000mlを循環させ酸処理を行った。その時の処理温度は90℃、処理時間は7時間であった。酸処理終了後、酸処理物に洗浄水を循環して水洗を行った後110℃で乾燥、粉砕、分級して活性白土粉末を得た。
得られた活性白土粉末について、各種物性測定を行い、その結果を表2に示した。
(Comparative Example 1)
Using smectite clay produced in the womb of Niigata Prefecture as a raw material, this raw material was roughly crushed, kneaded and granulated to a diameter of 5 mm. The water content of the obtained granulated product was 37%.
1500 g of this granulated product was filled into a treatment tank, and 2000 ml of 35% by mass sulfuric acid aqueous solution was circulated therein for acid treatment. The treatment temperature at that time was 90 ° C., and the treatment time was 7 hours. After completion of the acid treatment, washing water was circulated through the acid-treated product, followed by washing with water, followed by drying, pulverization and classification at 110 ° C. to obtain an activated clay powder.
The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 2.

(比較例2)
シリカマグネシア製剤(水澤化学工業(株)製)について、各種物性測定を行い、その結果を表2に示した。
(Comparative Example 2)
Various properties of the silica magnesia preparation (manufactured by Mizusawa Chemical Co., Ltd.) were measured, and the results are shown in Table 2.

(実施例1)
比較例1で得られた活性白土粉末と、比較例2のシリカマグネシア製剤を、活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当りの、Mg成分(MgO)とAl成分(Al)との合計量が17になるように乾式混合し得られた粉末について各種物性測定を行い、その結果を表1に示した。
Example 1
And activated clay obtained in Comparative Example 1, the silica magnesia preparation of Comparative Example 2, the total amount of 100 parts by mass of the Si component derived from activated clay (SiO 2) and silica magnesia preparation derived Si component (SiO 2) Various physical properties were measured on the powder obtained by dry mixing so that the total amount of Mg component (MgO) and Al component (Al 2 O 3 ) was 17, and the results are shown in Table 1.

(実施例2)
実施例1における活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当りの、Mg成分(MgO)とAl成分(Al)との合計量を25に代えて得られた粉末について各種物性測定を行い、その結果を表1に示した。
(Example 2)
Si components derived from activated clay in Example 1 (SiO 2) and silica magnesia preparation derived from Si component of total amount per 100 parts by weight of the (SiO 2), Mg component (MgO) and Al component (Al 2 O 3) Various physical properties of the powder obtained by substituting 25 for the total amount were measured, and the results are shown in Table 1.

(実施例3)
実施例1における活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当りの、Mg成分(MgO)とAl成分(Al)との合計量を32に代えて得られた粉末について各種物性測定を行い、その結果を表1に示した。
(Example 3)
Si components derived from activated clay in Example 1 (SiO 2) and silica magnesia preparation derived from Si component of total amount per 100 parts by weight of the (SiO 2), Mg component (MgO) and Al component (Al 2 O 3) Various physical properties of the powder obtained by substituting 32 for the total amount were measured, and the results are shown in Table 1.

(実施例4)
実施例1における活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当りの、Mg成分(MgO)とAl成分(Al)との合計量を41に代えて得られた粉末について各種物性測定を行い、その結果を表1に示した。
Example 4
Si components derived from activated clay in Example 1 (SiO 2) and silica magnesia preparation derived from Si component of total amount per 100 parts by weight of the (SiO 2), Mg component (MgO) and Al component (Al 2 O 3) Various physical properties of the powder obtained by substituting 41 for the total amount were measured, and the results are shown in Table 1.

(比較例3)
比較例1で得られた活性白土粉末と、酸化マグネシウム(神島化学工業(株)製スターマグU)を、活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当りの、Mg成分(MgO)とAl成分(Al)との合計量が48になるように乾式混合し得られた粉末について各種物性測定を行い、その結果を表2に示した。
(Comparative Example 3)
And activated clay powder obtained in Comparative Example 1, the magnesium oxide (Konoshima Chemical Co., Ltd. Sutamagu U), and Si components derived from activated clay (SiO 2) and silica magnesia preparation derived Si component (SiO 2) Measure various physical properties of the powder obtained by dry mixing so that the total amount of Mg component (MgO) and Al component (Al 2 O 3 ) per 100 parts by mass of the total amount of It is shown in Table 2.

(比較例4)
市販の二酸化ケイ素(水澤化学工業(株)製ミズカソーブC―1)と市販の水酸化カルシウム(和光純薬工業(株)製水酸化カルシウム)を用い、シリカ(SiO)とカルシウム(CaO)との質量比(SiO/CaO)が9となり、且つ両原料のSiO換算でのシリカ成分含有量とCaO換算でのカルシウム成分含有量の合計が150gとなるように原料を量りとる。次に、容量2Lのステンレススチール製タンクに、後から加える粉末原料との合計が1150gとなるように水道水を入れ、攪拌下、あらかじめ量りとった粉末原料を少しずつ加えいれる。攪拌を続け、加熱により約15分で95℃まで昇温し、以後10時間かけて均質混合及び熟成を行う。スラリーを減圧ろ過により脱水し、得られたケーキを電気乾燥機に入れ、110℃で乾燥する。最後に乾燥ケーキをサンプルミル(ハンマーミル型粉砕機)で粉砕し、ケイ酸カルシウム粉末を得た。
このケイ酸カルシウム粉末と、比較例1で得られた活性白土粉末を、活性白土:ケイ酸カルシウムで示す重量比が2:1になるように乾式混合し得られた粉末について各種物性測定を行い、その結果を表2に示した。
(Comparative Example 4)
Using commercially available silicon dioxide (Mizusawa Chemical Co., Ltd. Mizuka Sorb C-1) and commercially available calcium hydroxide (Wako Pure Chemical Industries, Ltd. calcium hydroxide), silica (SiO 2 ) and calcium (CaO) The raw material is weighed so that the mass ratio of (SiO 2 / CaO) is 9 and the total of the silica component content in terms of SiO 2 and the calcium component content in terms of CaO is 150 g. Next, tap water is added to a 2 L stainless steel tank so that the total of the powder raw material added later becomes 1150 g, and the powder raw material weighed in advance is added little by little while stirring. Stirring is continued, and the temperature is raised to 95 ° C. in about 15 minutes by heating, followed by homogeneous mixing and aging over 10 hours. The slurry is dehydrated by vacuum filtration, and the resulting cake is put into an electric dryer and dried at 110 ° C. Finally, the dried cake was pulverized with a sample mill (hammer mill type pulverizer) to obtain calcium silicate powder.
Various physical properties of the powder obtained by dry-mixing the calcium silicate powder and the activated clay obtained in Comparative Example 1 so that the weight ratio of active clay: calcium silicate is 2: 1 were measured. The results are shown in Table 2.

Claims (3)

活性白土とシリカマグネシア製剤との混合物からなり、酸化物換算で、活性白土由来のSi成分(SiO)とシリカマグネシア製剤由来のSi成分(SiO)とのトータル量100質量部当り、Mg成分(MgO)とAl成分(Al)との合計量が10〜45質量部の範囲にあり、且つオレンジII吸着量で表されるアニオン吸着能が30〜70mmol/100gの範囲にあることを特徴とする精製油脂用脱色剤。 It consists of a mixture of activated clay and silica magnesia preparation, and in terms of oxide, Mg component per 100 parts by mass of the total amount of Si component derived from activated clay (SiO 2 ) and Si component derived from silica magnesia preparation (SiO 2 ) The total amount of (MgO) and the Al component (Al 2 O 3 ) is in the range of 10 to 45 parts by mass, and the anion adsorption capacity represented by the orange II adsorption amount is in the range of 30 to 70 mmol / 100 g. A decolorizing agent for refined fats and oils characterized by 酸化物換算で、Mg成分(MgO)とAl成分(Al)との質量比(Al/MgO)が0.10〜4.00の範囲にある請求項1に記載の精製油脂用脱色剤。 The purification according to claim 1, wherein the mass ratio (Al 2 O 3 / MgO) of Mg component (MgO) and Al component (Al 2 O 3 ) is in the range of 0.10 to 4.00 in terms of oxide. Degreasing agent for oils and fats. 精製パーム油の脱色に使用される、請求項1または2に記載の精製油脂用脱色剤。   The decoloring agent for refined fats and oils according to claim 1 or 2, which is used for decolorizing refined palm oil.
JP2015109823A 2014-08-12 2015-05-29 Decolorization method of RBD palm oil Active JP6473661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109823A JP6473661B2 (en) 2014-08-12 2015-05-29 Decolorization method of RBD palm oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014164459 2014-08-12
JP2014164459 2014-08-12
JP2015109823A JP6473661B2 (en) 2014-08-12 2015-05-29 Decolorization method of RBD palm oil

Publications (2)

Publication Number Publication Date
JP2016040366A true JP2016040366A (en) 2016-03-24
JP6473661B2 JP6473661B2 (en) 2019-02-20

Family

ID=55540795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109823A Active JP6473661B2 (en) 2014-08-12 2015-05-29 Decolorization method of RBD palm oil

Country Status (1)

Country Link
JP (1) JP6473661B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139995A (en) * 2016-02-10 2017-08-17 株式会社Adeka Purification method of edible oil-and-fat
CN107262040A (en) * 2017-05-05 2017-10-20 东至县鸿棉工贸有限责任公司 A kind of cottonseed processing decolorising agent
WO2018116909A1 (en) * 2016-12-20 2018-06-28 日清オイリオグループ株式会社 Method for manufacturing fat or oil
JP2019055369A (en) * 2017-09-21 2019-04-11 水澤化学工業株式会社 Adsorbent used for the adsorption of functional component
JP2019076836A (en) * 2017-10-25 2019-05-23 水澤化学工業株式会社 Naringin adsorbent
WO2019157141A1 (en) * 2018-02-07 2019-08-15 Cargill, Incorporated Liquid oils without unwanted contaminants
WO2019157143A1 (en) * 2018-02-07 2019-08-15 Cargill, Incorporated Palm oil without unwanted contaminants
CN112717876A (en) * 2020-12-11 2021-04-30 安徽阜阳宝鼎粮油有限责任公司 Decolorizing agent for refined oil and preparation method of refined oil
CN114075480A (en) * 2021-08-27 2022-02-22 中粮营养健康研究院有限公司 Method for removing chlorophyll in vegetable oil
RU2784487C2 (en) * 2018-02-07 2022-11-28 Карджилл, Инкорпорейтед Palm oil without undesired contaminants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157829A (en) * 1997-12-02 1999-06-15 Mizusawa Ind Chem Ltd Activated clay, its production and its use
JP2005006510A (en) * 2003-06-16 2005-01-13 Mizusawa Ind Chem Ltd Silica-magnesia-based preparation excellent in base adsorptivity, and method for producing the same
JP2005008675A (en) * 2003-06-16 2005-01-13 Mizusawa Ind Chem Ltd Silica-magnesia formulation and method for producing the same
JP2008031411A (en) * 2006-06-28 2008-02-14 Mizusawa Ind Chem Ltd Decoloring agent for oil-and-fat or mineral oil
JP2010031190A (en) * 2008-07-31 2010-02-12 Mizusawa Ind Chem Ltd Purifying method for transesterified oil
JP2010095436A (en) * 2008-09-18 2010-04-30 Mizusawa Ind Chem Ltd New activated clay and bleaching agent for animal or vegetable fats or oils or mineral oil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157829A (en) * 1997-12-02 1999-06-15 Mizusawa Ind Chem Ltd Activated clay, its production and its use
JP2005006510A (en) * 2003-06-16 2005-01-13 Mizusawa Ind Chem Ltd Silica-magnesia-based preparation excellent in base adsorptivity, and method for producing the same
JP2005008675A (en) * 2003-06-16 2005-01-13 Mizusawa Ind Chem Ltd Silica-magnesia formulation and method for producing the same
JP2008031411A (en) * 2006-06-28 2008-02-14 Mizusawa Ind Chem Ltd Decoloring agent for oil-and-fat or mineral oil
JP2010031190A (en) * 2008-07-31 2010-02-12 Mizusawa Ind Chem Ltd Purifying method for transesterified oil
JP2010095436A (en) * 2008-09-18 2010-04-30 Mizusawa Ind Chem Ltd New activated clay and bleaching agent for animal or vegetable fats or oils or mineral oil

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139995A (en) * 2016-02-10 2017-08-17 株式会社Adeka Purification method of edible oil-and-fat
WO2018116909A1 (en) * 2016-12-20 2018-06-28 日清オイリオグループ株式会社 Method for manufacturing fat or oil
CN107262040A (en) * 2017-05-05 2017-10-20 东至县鸿棉工贸有限责任公司 A kind of cottonseed processing decolorising agent
JP2019055369A (en) * 2017-09-21 2019-04-11 水澤化学工業株式会社 Adsorbent used for the adsorption of functional component
JP2019076836A (en) * 2017-10-25 2019-05-23 水澤化学工業株式会社 Naringin adsorbent
WO2019157143A1 (en) * 2018-02-07 2019-08-15 Cargill, Incorporated Palm oil without unwanted contaminants
WO2019157141A1 (en) * 2018-02-07 2019-08-15 Cargill, Incorporated Liquid oils without unwanted contaminants
CN111683537A (en) * 2018-02-07 2020-09-18 嘉吉公司 Palm oil free of undesirable contaminants
CN111683536A (en) * 2018-02-07 2020-09-18 嘉吉公司 Liquid oil free of undesired contaminants
RU2784487C2 (en) * 2018-02-07 2022-11-28 Карджилл, Инкорпорейтед Palm oil without undesired contaminants
US11643617B2 (en) * 2018-02-07 2023-05-09 Cargill, Incorporated Palm oil without unwanted contaminants
RU2800880C2 (en) * 2018-02-07 2023-07-31 Карджилл, Инкорпорейтед Liquid oils without unacceptable pollutants
CN112717876A (en) * 2020-12-11 2021-04-30 安徽阜阳宝鼎粮油有限责任公司 Decolorizing agent for refined oil and preparation method of refined oil
CN114075480A (en) * 2021-08-27 2022-02-22 中粮营养健康研究院有限公司 Method for removing chlorophyll in vegetable oil

Also Published As

Publication number Publication date
JP6473661B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6473661B2 (en) Decolorization method of RBD palm oil
CA1282399C (en) Method for refining glyceride oils using acid-treated amorphous silica
JP4404991B2 (en) Active white clay shaped particles, production method thereof and use thereof
EP2841411B1 (en) Purification of unrefined edible oils and fats with magnesium silicate and organic acids
JP4249250B1 (en) Method for refining transesterified oil
US8394975B2 (en) Amorphous adsorbent, method of obtaining the same and its use in the bleaching of fats and/or oils
JP2002522628A (en) Processes and compositions for oil purification using metal-substituted silica xerogels
MX2007015276A (en) Surface-rich clays used for the production of bleaching earth, and method for the activation of said clays.
JP4393579B1 (en) Novel bleaching agent for activated clay and animal or plant oils or mineral oils
JP4912168B2 (en) Degreasing agent for fats and oils or mineral oils
JP6664191B2 (en) Decolorizing agent and method for producing decolorizing agent
US8987487B2 (en) Method for removing phosphorus-containing compounds from triglyceride-containing compositions
US5229013A (en) Material for use in treating edible oils and the method of making such filter materials
EP0573446A1 (en) Adsorbent material
WO2007079981A2 (en) Natural method for bleaching oils
US5264597A (en) Process for refining glyceride oil using precipitated silica
JP6930897B2 (en) Anion adsorbent
DE1949590A1 (en) Cleaning or refining agents for oily substances and processes for their manufacture
AU628084B2 (en) Process for refining glyceride oil
JP3787023B2 (en) Degreasing agent for fats and oils and method for producing the same
DE102010025764A1 (en) Phospholipase-support complex
JP6608293B2 (en) Degreasing agent for oils and fats
JP6489603B2 (en) Oil refiner
JP6618769B2 (en) Activated clay particles
Erten Use of domestic minerals for vegetable oil bleaching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6473661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250