JP2016037406A - High fluidity retention type underwater non-separable grout composition - Google Patents

High fluidity retention type underwater non-separable grout composition Download PDF

Info

Publication number
JP2016037406A
JP2016037406A JP2014160064A JP2014160064A JP2016037406A JP 2016037406 A JP2016037406 A JP 2016037406A JP 2014160064 A JP2014160064 A JP 2014160064A JP 2014160064 A JP2014160064 A JP 2014160064A JP 2016037406 A JP2016037406 A JP 2016037406A
Authority
JP
Japan
Prior art keywords
mass
parts
cement
water
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014160064A
Other languages
Japanese (ja)
Other versions
JP6404629B2 (en
Inventor
昌範 柴垣
Masanori Shibagaki
昌範 柴垣
中原 和彦
Kazuhiko Nakahara
和彦 中原
浩 丸田
Hiroshi Maruta
浩 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2014160064A priority Critical patent/JP6404629B2/en
Publication of JP2016037406A publication Critical patent/JP2016037406A/en
Application granted granted Critical
Publication of JP6404629B2 publication Critical patent/JP6404629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide an underwater non-separable grout composition retaining fillable high fluidity for several hours or more and excellent underwater non-separability.SOLUTION: There is provided a high fluidity retention type underwater non-separable grout position containing a binding material containing cement and pozzolan, an aggregate, a polycarboxylic acid-based cement dispersant, and a thickener with the cement of 60 to 85 pts.mass and fly ash of 15 to 30 pts.mass based on 100 pts.mass of the binding material, the polycarboxylic acid-based cement dispersant of 0.5 to 3.5 pts.mass and the thickener of 0.6 to 3.0 pts.mass based on 100 pts.mass of the cement.SELECTED DRAWING: None

Description

本発明は、高流動性を長時間保持する水中不分離性グラウト組成物に関する。   The present invention relates to an underwater non-separable grout composition that retains high fluidity for a long time.

炭鉱等の廃坑、防空壕、廃棄された地下用水路、地下の採石場跡等の地下空洞への充填、水槽や水中構築物等の構築や補修において、セメント系のグラウト材が使用されることがある。セメント系グラウト材を打設する箇所に、地下水や海水等の水が存在することもある。水中にセメント系グラウト材を打設すると、グラウト材に含まれるセメントや混和材が周りの水中に拡散してしまい、周りの水が懸濁しpHが高くなり、更にグラウト材の強度が低下する等の問題が生じる。これらの問題を抑制するために、セメント系グラウト材に水中不分離性混和剤等の増粘剤を混和させ、セメント系グラウト材に水中不分離性を付与した水中不分離性グラウト材の技術が知られている。   Cement-type grout materials may be used in abandoned mines such as coal mines, air defenses, discarded underground irrigation channels, filling underground cavities such as underground quarries, and building and repairing water tanks and underwater structures. Water such as groundwater and seawater may be present at the place where the cement grout material is placed. When a cement-type grout material is placed in water, the cement and admixture contained in the grout material diffuse into the surrounding water, the surrounding water is suspended, the pH is increased, and the strength of the grout material is further reduced. Problem arises. In order to suppress these problems, the technology of underwater non-separable grout materials in which thickeners such as underwater inseparable admixtures are mixed with cement-based grout materials to impart underwater inseparability to cement-based grout materials. Are known.

水中不分離性グラウト材の技術としては、粉末状であり、ドライブレンドできる水中不分離性グラウトモルタル組成物(特許文献1)、環境温度に対する圧縮強度の水中気中強度比が高く、温度依存性が小さい水中不分離型無収縮グラウト(特許文献2)、超速硬性であり、充分な強度発現性を有する水中不分離性グラウトモルタル(特許文献3)が報告されている。   As the technology of the underwater inseparable grout material, it is in powder form and can be dry blended underwater inseparable grout mortar composition (Patent Document 1), the ratio of compressive strength to ambient temperature in air is high, and temperature dependence A non-separable non-shrinkable grout in water (Patent Document 2) and an ultra-fast hardened, non-separable grout mortar (Patent Document 3) having sufficient strength development have been reported.

一方で、地下水等が溜まっている大きな又は長い地下空洞等へ水中不分離性グラウト材を充填する場合、充填作業に長時間を要すことが考えられる。これまでの水中不分離性グラウト材では充填可能な流動性を得られる時間、即ち可使時間が長いもので1時間程度であった。かかる観点から、高流動性を有する水中不分離性セメント組成物として、スランプフローの保持が高く、初期スランプフローを調整することを可能にした水中不分離性高流動セメント組成物が報告されている(特許文献4)。   On the other hand, when filling an underwater non-separable grout material into a large or long underground cavity or the like in which groundwater or the like is accumulated, it can be considered that a long time is required for the filling operation. In the conventional non-separable grout materials in water, the time required to obtain fluidity that can be filled, that is, the pot life is long and is about one hour. From this point of view, an underwater inseparable high-fluidity cement composition that has a high slump flow retention and enables adjustment of the initial slump flow as an underwater inseparable cement composition having high fluidity has been reported. (Patent Document 4).

特開2009−184891号公報JP 2009-184891 A 特開2013−249214号公報JP 2013-249214 A 特開2010−241618号公報JP 2010-241618 A 特開2013−014480号公報JP2013-014480A

しかしながら、従来の高流動性の水中不分離グラウト組成物の流動性保持時間はせいぜい4時間程度であり、それよりも長時間流動性を保持することは困難であり、長時間の充填を確保できるものではなかった。
また、従来の水中不分離性グラウト材を用いて充填すると、長距離圧送後に空洞等の端部まで充填できないことやグラウト材を打ち継ぐことにより打ち継ぎが生じてしまうことがある。未充填部や打ち継ぎがあると、それらの部分に水が流れ易くなり、即ち水道(みずみち)となり、地下水等を止めることはできない。また、これまでの水中不分離性グラウト材を用い、4時間を越えて充填作業を行うと、グラウトポンプやホース内でグラウト材が詰まる虞が高かった。
However, the fluidity retention time of the conventional high fluidity non-separable grout composition in water is at most about 4 hours, and it is difficult to maintain fluidity for a longer time than that, and long time filling can be secured. It was not a thing.
In addition, when filling with a conventional underwater non-separable grout material, it may be impossible to fill the end of a cavity or the like after long-distance pumping, or the grout material may be handed over. If there are unfilled parts or joints, water will easily flow to those parts, that is, it becomes waterworks, and the groundwater cannot be stopped. Moreover, when the filling operation was performed over 4 hours using the conventional non-separable grout material in water, there was a high possibility that the grout material would be clogged in the grout pump or the hose.

従って、本発明の課題は、充填可能な高い流動性を数時間以上保持し、かつ優れた水中不分離性を有する水中不分離性グラウト組成物を提供することにある。   Accordingly, an object of the present invention is to provide an underwater non-separable grout composition that retains high fluidity that can be filled for several hours or more and has excellent underwater inseparability.

そこで本発明者は、前記課題を解決すべく種々検討した結果、結合材の種類、分散剤の種類、及びこれらの使用量と増粘剤の使用量を調整することにより、混練直後から数時間以上、好ましくは10時間以上200mm以上のテーブルフロー値(JIS R 5201のフロー試験に準じ15回の落下運動を行わずに測定したフロー値)を有し、充填可能な高い流動性を保持し、懸濁物質量が50mg/L以下且つ水中気中強度比が80%以上と優れた水中不分離性を有する水中不分離性グラウト組成物が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies to solve the above-mentioned problems, the present inventor has adjusted the type of binder, the type of dispersant, and the amount of use of these and the amount of thickener for several hours immediately after kneading. Above, preferably having a table flow value of 10 mm or more and 200 mm or more (flow value measured without performing 15 drop motions according to the flow test of JIS R 5201), and maintaining high fluidity that can be filled, The present inventors have found that an underwater non-separable grout composition having an in-water inseparability with an amount of suspended solids of 50 mg / L or less and an underwater strength ratio of 80% or more can be obtained.

すなわち、本発明は、下記〔1〕〜〔3〕を提供するものである。
〔1〕セメント及びポゾランを含む結合材と、骨材と、ポリカルボン酸系セメント分散剤と、増粘剤とを含有し、
結合材100質量部に対しセメントを60〜85質量部、フライアッシュを15〜30質量部含有し、
セメント100質量部に対しポリカルボン酸系セメント分散剤を0.5〜3.5質量部、増粘剤を0.6〜3.0質量部含有することを特徴とする高流動保持型水中不分離性グラウト組成物。
〔2〕結合材100質量部に対し64〜78質量部の水で混練する〔1〕記載の高流動保持型水中不分離性グラウト組成物。
〔3〕前記増粘剤の使用量が、混練時の水100質量部に対し0.7〜2.0質量部である〔1〕又は〔2〕記載の高流動保持型水中不分離性グラウト組成物。
That is, the present invention provides the following [1] to [3].
[1] A binder containing cement and pozzolanic, an aggregate, a polycarboxylic acid cement dispersant, and a thickener,
60-85 parts by mass of cement and 15-30 parts by mass of fly ash with respect to 100 parts by mass of the binder,
A high-fluidity retention type water-insoluble solution containing 0.5 to 3.5 parts by mass of a polycarboxylic acid-based cement dispersant and 0.6 to 3.0 parts by mass of a thickener with respect to 100 parts by mass of cement. Separable grout composition.
[2] The high fluidity retention type underwater non-separable grout composition according to [1], which is kneaded with 64 to 78 parts by mass of water with respect to 100 parts by mass of the binder.
[3] The high fluidity retention type underwater non-separable grout according to [1] or [2], wherein the thickener is used in an amount of 0.7 to 2.0 parts by mass with respect to 100 parts by mass of water during kneading. Composition.

本発明の高流動保持型水中不分離性グラウト組成物は、充填可能な高い流動性を10時間以上保持することができ、且つ優れた水中不分離性を有する。充填可能な高い流動性を10時間以上保持することができ、且つ優れた水中不分離性を有するため、充填作業に数時間以上場合によっては10時間以上の長時間を要する地下水等が溜まっている大きな又は長い地下空洞等へ充填しても、グラウトポンプやホース内でグラウト材が詰まることなく、また、水漏れを生じさせることがない。   The highly fluid retention type underwater non-separable grout composition of the present invention can maintain high fluidity that can be filled for 10 hours or more, and has excellent underwater inseparability. High fluidity that can be filled can be maintained for 10 hours or more, and since it has excellent inseparability in water, groundwater or the like that requires several hours or more in some cases for the filling operation is accumulated. Even if a large or long underground cavity is filled, the grout material is not clogged in the grout pump or the hose, and water leakage does not occur.

本発明の高流動保持型水中不分離性グラウト組成物は、(A)セメント及びポゾランを含む結合材と、(B)骨材と、(C)ポリカルボン酸系セメント分散剤と、(D)増粘剤とを含有し、
結合材100質量部に対しセメントを60〜85質量部、フライアッシュを15〜30質量部含有し、
セメント100質量部に対しポリカルボン酸系セメント分散剤を0.5〜3.5質量部、増粘剤を0.6〜3.0質量部含有することを特徴とする。
本発明における結合材とは、水と反応しモルタルやコンクリートの強度発現に寄与する物質を生成するものであり、セメント及びポゾランを含有するものである。結合材には、セメント及びポゾラン以外に、石膏、膨張材、高炉スラグ粉末等の潜在水硬性物質が含まれていてもよい。
The high fluidity retention type underwater non-separable grout composition of the present invention comprises (A) a binder containing cement and pozzolana, (B) an aggregate, (C) a polycarboxylic acid cement dispersant, (D) Containing a thickener,
60-85 parts by mass of cement and 15-30 parts by mass of fly ash with respect to 100 parts by mass of the binder,
The polycarboxylic acid-based cement dispersant is contained in an amount of 0.5 to 3.5 parts by mass and the thickener is contained in an amount of 0.6 to 3.0 parts by mass with respect to 100 parts by mass of cement.
The binder in the present invention is a material that reacts with water and generates a substance that contributes to the development of strength of mortar or concrete, and contains cement and pozzolana. The binder may contain a latent hydraulic substance such as gypsum, expansion material, blast furnace slag powder, in addition to cement and pozzolanic.

本発明で使用するセメントは、特に限定されず、各種ポルトランドセメント、エコセメント、ビーライトセメント、フライアッシュやスラグ等を混和した各種混合セメントが挙げられる。「ジェットセメント」(商品名)で販売されている超速硬性セメント等の急硬性を有するセメントは、ワーカビリティを損ない、長い可使時間を確保することが難しく、長期強度発現性の効果も損なうため好ましくない。本発明で使用されるセメントとしては、水中不分離性を損なわず且つ、高流動性を長時間保持し、長期的な圧縮強度発現性を発揮する観点から、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント及び低熱ポルトランドセメントから選ばれる一種又は二種以上が好ましい。   The cement used in the present invention is not particularly limited, and examples thereof include various portland cements, eco cements, belite cements, various mixed cements mixed with fly ash, slag and the like. Cement with rapid hardening, such as super fast-curing cement sold under “Jet Cement” (trade name), impairs workability, makes it difficult to secure a long pot life, and also impairs the effect of long-term strength development. It is not preferable. As the cement used in the present invention, normal Portland cement, early-strength Portland cement, from the viewpoint of maintaining high fluidity for a long time without damaging inseparability in water and exhibiting long-term compressive strength expression, One or more selected from medium heat Portland cement and low heat Portland cement are preferred.

本発明は、結合材100質量部に対しセメントを60〜85質量部含有することが、水中不分離性の観点から必要であり、60質量部未満では、セメント中のカルシウムイオン量が少なくなり、水中不分離性が劣るため好ましくなく、85質量部を超えると、高流動で且つ長い可使時間を確保することができないので好ましくない。より好ましいセメント量は、結合材100質量部に対し65〜82質量部である。   The present invention needs to contain 60 to 85 parts by mass of cement with respect to 100 parts by mass of the binder from the viewpoint of inseparability in water, and if it is less than 60 parts by mass, the amount of calcium ions in the cement is reduced, Since it is inferior in separability in water, it is not preferable, and when it exceeds 85 parts by mass, it is not preferable because a high flow and a long pot life cannot be secured. A more preferable amount of cement is 65 to 82 parts by mass with respect to 100 parts by mass of the binder.

本発明で使用するポゾランとは、それ自体は水硬性を持たないがポルトランドセメント等の水和反応によって生成する水酸化カルシウムと反応してカルシウムシリケート系水和物を生成する物質を云い、フライアッシュのほか、シリカフュームや「アエロジル」(商品名(登録商標))等のシリカ質の超微粉末、酸性白土や活性白土、パイロフィライト、ゼオライト、カオリン鉱物等のアルミノケイ酸質の粘土鉱物やそれらの焼成物、もみ殻灰や藁焼成灰等のイネ科植物に代表されるケイ酸植物(ケイ素集積植物)の焼成灰、シリカゾル、沈降シリカ、パルプスラッジ焼却灰、下水汚泥焼却灰、廃ガラス粉末、珪藻土、オパール質シリカ、麦飯石、珪化木粉末等が挙げられる。このうち、フライアッシュ以外のポゾランとしては、金属シリコンやシリコン合金を電気炉で製造するときに発生する非晶質SiO2の超微粉末であるシリカフュームが強度増進効果に優れ好ましく、BET法による比表面積8〜15m2/g程度としたシリカフューム(低BETシリカフューム)が耐風化性に優れていることから、より好ましい。
本発明に使用するフライアッシュ以外のポゾラン量は、結合材100質量部に対し2〜10質量部とすることが材料分離抵抗性の向上及び強度増進効果の点から好ましく、より好ましくは3〜7質量部である。混和量が少な過ぎると混和する効果が得られず、多過ぎると流動性が得難い。
The pozzolan used in the present invention refers to a substance that does not have hydraulic properties per se but reacts with calcium hydroxide produced by a hydration reaction such as Portland cement to produce a calcium silicate hydrate. Besides, siliceous ultrafine powder such as silica fume and “Aerosil” (trade name (registered trademark)), acid clay, activated clay, pyrophyllite, zeolite, kaolin mineral and other aluminosilicate clay minerals and their Sintered ash, silica sol, precipitated silica, pulp sludge incineration ash, sewage sludge incineration ash, waste glass powder, Examples include diatomaceous earth, opal silica, barley stone, and silicified wood powder. Among these, as a pozzolan other than fly ash, silica fume, which is an ultrafine powder of amorphous SiO 2 generated when metal silicon or a silicon alloy is produced in an electric furnace, is excellent in strength enhancement effect. Silica fume (low BET silica fume) having a surface area of about 8 to 15 m 2 / g is more preferable because it is excellent in weathering resistance.
The amount of pozzolanes other than fly ash used in the present invention is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the binder from the viewpoint of improving material separation resistance and increasing the strength, and more preferably 3 to 7 parts. Part by mass. If the mixing amount is too small, the mixing effect cannot be obtained, and if it is too large, it is difficult to obtain fluidity.

本発明は、結合材100質量部に対しフライアッシュを15〜30質量部含有することが、高流動で且つ長い可使時間を確保する点から必要であり、15質量部未満では高流動で且つ長い可使時間を確保することが難しく、30質量部を超えると、水中不分離性の低下並びに圧縮強度発現性が大きく遅延又は低下するので好ましくない。より好ましいフライアッシュ量は、結合材100質量部に対し15〜28質量部である。
本発明で使用するフライアッシュは、JIS A6201:2008「コンクリート用フライアッシュの品質規定」に適合するものを使用することが、グラウト材としての品質が安定し易いことから好ましい。高流動性及び高い長期圧縮強度が得られ易い点から、同規格に規定されているフライアッシュI種またはフライアッシュII種に適合するものがより好ましい。フライアッシュの粉末度は、BET比表面積2000〜7000cm2/gが好ましく、3000〜5000cm2/gがより好ましい。
In the present invention, it is necessary to contain 15 to 30 parts by mass of fly ash with respect to 100 parts by mass of the binding material from the viewpoint of securing a high flow and a long pot life. It is difficult to ensure a long pot life, and if it exceeds 30 parts by mass, the decrease in water inseparability and the development of compressive strength are greatly delayed or decreased, which is not preferable. A more preferable amount of fly ash is 15 to 28 parts by mass with respect to 100 parts by mass of the binder.
The fly ash used in the present invention is preferably one that conforms to JIS A6201: 2008 “Quality regulations for fly ash for concrete” because the quality as a grout material is easily stabilized. From the viewpoint that high fluidity and high long-term compressive strength can be easily obtained, a material that conforms to fly ash type I or fly ash type II defined in the same standard is more preferable. Fineness of the fly ash is preferably a BET specific surface area 2000~7000cm 2 / g, 3000~5000cm 2 / g is more preferable.

本発明で使用するセメント分散剤は、水中不分離性を損なわず且つ、高流動性を長時間保持するために、ポリカルボン酸系セメント分散剤(例えばポリカルボン酸高分子,ポリカルボン酸高分子化合物と架橋高分子等を主成分とするもの。)を使用する。セメント分散剤として、ナフタレン系セメント分散剤を含有しないことが高流動で且つ長い可使時間を確保する点から好ましい。また、本発明の効果を損なわない範囲で、その他の減水剤として、メラミン系セメント分散剤(例えばメラミンスルホン酸と変性リグニン,変性メチロースメラミン縮合物と水溶性特殊高分子等を主成分とするもの。)等の一種又は二種以上を併用することが可能である。   The cement dispersant used in the present invention is a polycarboxylic acid-based cement dispersant (for example, polycarboxylic acid polymer, polycarboxylic acid polymer) in order to maintain high fluidity for a long time without impairing inseparability in water. A compound mainly composed of a compound and a crosslinked polymer). As a cement dispersant, it is preferable not to contain a naphthalene cement dispersant from the viewpoint of ensuring a high flow and a long pot life. In addition, as a water-reducing agent, the main component is a melamine cement dispersant (for example, melamine sulfonic acid and modified lignin, modified methylose melamine condensate, water-soluble special polymer, etc.) as long as the effects of the present invention are not impaired. 1 type) or two or more types can be used in combination.

本発明は、セメント100質量部に対しポリカルボン酸系セメント分散剤を0.5〜3.5質量部含有することが水中不分離性の向上と高流動で且つ長い可使時間を確保する点から必要であり、0.5質量部未満では高流動で且つ長い可使時間を確保すことが難しく、3.5質量部を超えると水中不分離性が劣り好ましくない。好ましいポリカルボン酸系セメント分散剤の量は、セメント100質量部に対し0.7〜2.5質量部、更に好ましくは0.7〜2.3質量部である。   In the present invention, 0.5 to 3.5 parts by mass of a polycarboxylic acid-based cement dispersant is added to 100 parts by mass of cement to ensure improvement in water inseparability, high fluidity, and long pot life. If it is less than 0.5 parts by mass, it is difficult to ensure a high flow and a long pot life, and if it exceeds 3.5 parts by mass, the inseparability in water is inferior, which is not preferable. A preferable amount of the polycarboxylic acid-based cement dispersant is 0.7 to 2.5 parts by mass, more preferably 0.7 to 2.3 parts by mass with respect to 100 parts by mass of cement.

本発明で使用する増粘剤は、水溶性のセルロース系、アクリル系、グアーガム系などが使用でき、これらの一種又は二種以上の使用が可能であるが、少量で水中不分離性が高いことから水溶性セルロースが好ましい。水溶性セルロースとしては、セルロース系高分子化合物、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロースエーテルが好ましい例として例示でき、特に限定されない。   As the thickener used in the present invention, water-soluble cellulose-based, acrylic-based, guar gum-based, and the like can be used. One or more of these can be used, but a small amount has high inseparability in water. To water-soluble cellulose. Examples of the water-soluble cellulose include cellulose polymer compounds such as water-soluble cellulose ethers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, and are not particularly limited.

本発明は、セメント100質量部に対し増粘剤を0.6〜3.0質量部含有することが水中不分離性の観点から必要であり、0.6質量部未満では水中不分離性が劣り、3.0質量部を超えると高流動性が得られないので好ましくない。水中不分離性に優れ且つ高い流動性が得易いことから、好ましい増粘剤の量は、セメント100質量部に対し1.0〜2.0質量部、より好ましくは1.0〜1.5質量部である。   In the present invention, it is necessary from the viewpoint of inseparability in water that the thickener is contained in an amount of 0.6 to 3.0 parts by mass with respect to 100 parts by mass of cement. Inferior, exceeding 3.0 parts by mass is not preferable because high fluidity cannot be obtained. A preferable amount of the thickener is 1.0 to 2.0 parts by weight, more preferably 1.0 to 1.5 parts by weight with respect to 100 parts by weight of cement, because it is excellent in water inseparability and easy to obtain high fluidity. Part by mass.

本発明で使用する骨材として、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、人工骨材などを用いることができる。なお、骨材の種類は限定されないが、吸水率の大きい軽量骨材は好ましくない。また、グラウトのポンプ圧送性の観点から骨材の粒度は5mm以下の骨材、即ち使用する骨材としては細骨材が好ましい。   As aggregates used in the present invention, for example, river sand, land sand, sea sand, crushed sand, quartz sand, river gravel, land gravel, crushed stone, artificial aggregate and the like can be used. In addition, although the kind of aggregate is not limited, a lightweight aggregate with a large water absorption rate is not preferable. Further, from the viewpoint of pumpability of grout, the aggregate particle size is preferably 5 mm or less, that is, the aggregate to be used is preferably a fine aggregate.

本発明に使用する骨材は、結合材100質量部に対し70〜170質量部とすることが高流動で且つ長い可使時間を確保する点から好ましく、より好ましくは100〜140質量部である。   The aggregate used in the present invention is preferably 70 to 170 parts by mass with respect to 100 parts by mass of the binder from the viewpoint of ensuring high flow and a long pot life, and more preferably 100 to 140 parts by mass. .

本発明の高流動保持型水中不分離性グラウト組成物は、結合材100質量部に対し62〜82質量部の水で混練することが好ましい。水を62質量部以上使用することにより、高流動性を保持できる。82質量部以下使用することにより、優れた圧縮強度発現性が得られる。より好ましくは、結合材100質量部に対し65〜78質量部の水で混練する。   The high fluidity retention type underwater non-separable grout composition of the present invention is preferably kneaded with 62 to 82 parts by mass of water with respect to 100 parts by mass of the binder. High fluidity can be maintained by using 62 parts by mass or more of water. By using 82 parts by mass or less, excellent compressive strength developability can be obtained. More preferably, it is kneaded with 65 to 78 parts by mass of water with respect to 100 parts by mass of the binder.

本発明の高流動保持型水中不分離性グラウト組成物は、増粘剤の使用量が混練時の水100質量部に対し0.7〜2.0質量部であることが好ましい。0.7質量部以上使用することにより、高温下でブリーディングの発生を抑制し、充填部位に空隙が発生するのを防止できる。2.0質量部以下使用することにより、粘性の上昇が抑制し、一般的な高速ハンドミキサーやグラウトミキサー等での練り混ぜを可能とし、また、グラウトポンプやホース内でグラウト材が詰まり、施工不良となることを防止できる。より好ましくは、1.0〜1.7質量部、更には1.2〜1.65質量部である。   In the high fluidity retention type underwater non-separable grout composition of the present invention, the amount of thickener used is preferably 0.7 to 2.0 parts by mass with respect to 100 parts by mass of water during kneading. By using 0.7 mass part or more, generation | occurrence | production of bleeding can be suppressed under high temperature, and it can prevent that a space | gap generate | occur | produces in a filling site | part. By using less than 2.0 parts by mass, the increase in viscosity is suppressed and mixing with a general high-speed hand mixer or grout mixer is possible, and the grout material is clogged in the grout pump or hose. It can be prevented from becoming defective. More preferably, it is 1.0 to 1.7 parts by mass, and further 1.2 to 1.65 parts by mass.

本発明には、本発明の効果を損なわない範囲で、更に、膨張材、発泡剤、収縮低減剤、消泡剤、防錆剤等の上記以外の混和材料から選ばれる1種又は2種以上を含有することができる。好ましくは、寸法安定性を得る観点で膨張材及び/又は発泡剤を含有する。本発明における膨張材とは、水和生成物の結晶により嵩体積が大きくなるものを云い、例えばエトリンガイトの結晶生成により膨張するエトリンガイト系膨張材、水酸化カルシウムの結晶生成により膨張する石灰系膨張材、エトリンガイトと水酸化カルシウムの結晶生成により膨張するエトリンガイト・石灰複合系膨張材等が挙げられ、本発明に用いる膨張材としては遊離生石灰を有効成分とする生石灰系膨張材、カルシウムサルホアルミネート等のエトリンガイト生成物質を有効成分とするエトリンガイト系膨張材、遊離生石灰とエトリンガイト生成物質のエトリンガイト・石灰複合系膨張材が好ましい例として挙げられる。また、発泡剤としては、金属粉末や過酸化物質等が好ましい例として挙げられる。膨張材を含有するときは、結合材100質量部に対し1.0〜3.0質量部とすることが好ましく、発泡剤を含有するときは結合材100質量部に対し0.0006〜0.01質量部とすることが好ましい。   In the present invention, as long as the effects of the present invention are not impaired, one or more selected from admixtures other than the above, such as an expanding material, a foaming agent, a shrinkage reducing agent, an antifoaming agent, and a rust inhibitor. Can be contained. Preferably, an expansion material and / or a foaming agent are contained from the viewpoint of obtaining dimensional stability. The expansion material in the present invention refers to a material whose bulk volume increases due to hydrated product crystals, for example, an ettringite-based expansion material that expands due to ettringite crystal formation, or a lime-based expansion material that expands due to calcium hydroxide crystal formation. , An ettringite / lime composite expansion material that expands by crystal formation of ettringite and calcium hydroxide, etc., and the expansion material used in the present invention includes a quick lime expansion material containing free quick lime as an active ingredient, calcium sulfoaluminate, etc. Preferred examples include an ettringite-based expansion material containing an ettringite-producing substance as an active ingredient, and an ettringite / lime composite expansion material of free quick lime and an ettringite-generating substance. Moreover, as a foaming agent, a metal powder, a peroxide substance, etc. are mentioned as a preferable example. When it contains an expansion material, it is preferably 1.0 to 3.0 parts by mass with respect to 100 parts by mass of the binder, and when it contains a foaming agent, it is 0.0006 to 0.000 with respect to 100 parts by mass of the binder. It is preferable to be 01 parts by mass.

本発明の高流動保持型水中不分離性グラウト組成物は、水と混練して、地下空洞或いは構築物の構築又は補修部位に、グラウトポンプやホース等を用いて充填することにより使用される。特に、本発明の高流動保持型水中不分離性グラウト組成物は、施工し難く長時間作業を必要とする、水中下又は湧水等が発生している地下空洞或いは水中構築物の構築又は補修部位の充填に、好適に使用される。   The high fluidity retention type underwater non-separable grout composition of the present invention is used by kneading with water and filling the underground cavity or the construction or repair site of the structure with a grout pump or a hose. In particular, the high fluidity retention type underwater non-separable grout composition of the present invention is a construction or repair site of an underground cavity or an underwater structure in which underwater or spring water is generated, which is difficult to construct and requires a long time operation. It is preferably used for filling.

以下、本発明の実施例を比較例と共に示すが、本発明は、実施例に限られたものではない。   Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the examples.

〔実施例1・比較例1〕
使用材料を表1に示す。表1の材料を用いて、結合材100質量部に対し、石灰石砂と硅砂を1:1の割合で混合した骨材を131質量部、ポゾラン微粉末を4.2質量部、膨張材を1.8質量部、発泡剤を0.002質量部、普通セメントを66〜79質量部、フライアッシュを15〜28質量部、セメント100質量部に対し、ポリカルボン酸系分散剤を1.5〜2.3質量部、増粘剤を1.0〜1.5質量部となる配合割合でヘンシェルミキサーを使用し、乾式混合することで本発明品の高流動保持型水中不分離性グラウト組成物を5種類作製した。参考品のグラウト組成物として、結合材100質量部に対し、普通セメントが60質量部未満のもの又は85質量部を超えるもの、フライアッシュが15質量部未満のもの又は30質量部を超えるもの、セメント100質量部に対し、増粘剤が0.5質量部未満のもの又は3.0質量部を超えるもの、ポリカルボン酸系分散剤が0.5質量部未満のもの及び3.5質量部を超えるものを作製した。作製したグラウト組成物を表2に示す。
[Example 1 and Comparative Example 1]
The materials used are shown in Table 1. Using the materials shown in Table 1, 131 parts by mass of aggregate obtained by mixing limestone sand and cinnabar sand at a ratio of 1: 1 with respect to 100 parts by mass of binder, 4.2 parts by mass of pozzolana fine powder, and 1 part of expansion material .8 parts by mass, 0.002 parts by mass of foaming agent, 66 to 79 parts by mass of ordinary cement, 15 to 28 parts by mass of fly ash, and 100 parts by mass of cement, 1.5 to Using a Henschel mixer at a blending ratio of 2.3 parts by mass and 1.0 to 1.5 parts by mass of a thickener, dry mixing is used to achieve a high fluidity retention type underwater non-separable grout composition of the present invention. 5 types were produced. As a grout composition of a reference product, the cement is less than 60 parts by mass or more than 85 parts by mass, the fly ash is less than 15 parts by mass or more than 30 parts by mass with respect to 100 parts by mass of the binder, Thickener less than 0.5 parts by weight or more than 3.0 parts by weight, polycarboxylic acid dispersant less than 0.5 parts by weight and 3.5 parts by weight with respect to 100 parts by weight of cement The thing exceeding this was produced. The prepared grout composition is shown in Table 2.

Figure 2016037406
Figure 2016037406

Figure 2016037406
Figure 2016037406

作製したグラウト組成物を結合材100質量部に対し、66〜76質量部の水で、ハンドミキサー(回転数1000rpm、羽根直径100mm)を用いて20℃環境下で2分間練り混ぜ、混練物(グラウトモルタル、グラウト材)を13種類作製した。作製したグラウトモルタルの流動性、高流動保持時間、水中不分離性及び圧縮強度を測定した。   The produced grout composition is kneaded for 2 minutes in an environment of 20 ° C. using a hand mixer (rotation speed: 1000 rpm, blade diameter: 100 mm) with 66 to 76 parts by mass of water with respect to 100 parts by mass of the binder. 13 types of grout mortar and grout material) were produced. The produced grout mortar was measured for fluidity, high fluid retention time, inseparability in water and compressive strength.

作製したグラウトモルタルの評価試験方法を以下に示す。
〔流動性及び高流動保持試験〕
JIS R 5201「セメントの物理試験方法」11.「フロー試験」(ただし、15打の落下運動は行わず、引き抜きフローとする)に準じて、テーブルフロー値を測定した。高流動性の指標は、練り上り直後(混練直後)のテーブルフロー値が250mm以上とし、高流動保持の指標は、練り上り直後から10時間経過後のテーブルフロー値が200mm以上のものを○(良好)、200mm未満のものを×(不良)とした。また、テーブルフロー値の測定は、20℃環境下で実施し、フローコーンを引き抜き後、5分経過後のテーブルフロー値とした。尚、経時変化後の測定は、ハンドミキサーにて5秒間再撹拌後に行った。
The evaluation test method of the produced grout mortar is shown below.
[Flowability and high fluidity retention test]
10. JIS R 5201 “Physical test method for cement” The table flow value was measured according to the “flow test” (however, the drop movement of 15 strokes was not performed and the drawing flow was used). The index of high fluidity is that the table flow value immediately after kneading (immediately after kneading) is 250 mm or more, and the index of high fluidity retention is that the table flow value after 10 hours from kneading is 200 mm or more. (Good) and less than 200 mm were evaluated as x (defect). Moreover, the measurement of the table flow value was implemented in a 20 degreeC environment, and it was set as the table flow value 5 minutes after drawing out a flow cone. In addition, the measurement after a time-dependent change was performed after re-stirring for 5 seconds with the hand mixer.

〔水中不分離性〕
土木学会「水中不分離性コンクリート設計施工指針(案)」附属書2「水中不分離性コンクリートの水中不分離度試験方法(案)」に準じて、懸濁物質量を測定した。水中不分離度の指標は、土木学会規準コンクリート用水中不分離性混和剤品質規格(案)に示されている懸濁物質量50mg/L以下とした。
[Unseparable in water]
The amount of suspended solids was measured according to the Japan Society of Civil Engineers "Guidelines for Design and Construction of Underwater Inseparable Concrete (Draft)" Annex 2 "Test Method for Underwater Inseparability of Underwater Inseparable Concrete (Draft)". The index of the degree of inseparability in water was set to 50 mg / L or less of the suspended solids indicated in the Japan Society of Civil Engineers standard concrete quality standard for water inseparable admixture (draft).

〔圧縮強度試験〕
JSCE−G 541に準じ、水中作製供試体の作り方は、JSCE−F 504に準じ、材齢91日における圧縮強度を測定した。尚、供試体の寸法は、直径50mm、高さ100mmとした。圧縮強度発現性の指標は圧縮強度については、一般のコンクリート並みの18N/mm2以上、且つ土木学会規準コンクリート用水中不分離性混和剤品質規格(案)に示されている水中気中圧縮強度比80%以上とした。
[Compressive strength test]
According to JSCE-G 541, the underwater preparation specimen was measured according to JSCE-F 504 by measuring the compressive strength at age 91 days. The dimensions of the specimen were 50 mm in diameter and 100 mm in height. The compressive strength index is about 18 N / mm 2 or more, which is equivalent to that of ordinary concrete, and underwater in-air compressive strength shown in the Standards for Underwater Non-Separable Admixture for Concrete (draft) The ratio was 80% or more.

グラウトモルタルの流動性及び高流動保持時間測定結果を表3に示す。本発明の実施例は、何れも練り上り直後のテーブルフロー値が261〜278mmと高フロー値で、高流動性を備えており、且つ練り上りから10時間経過後のテーブルフロー値も235mm以上であり、優れた高流動保持時間を確保することが確認された。
一方で、結合材100質量部中にセメントが89質量部である比較例1−2、結合材100質量部中にフライアッシュが9質量部である比較例1−3は、練り上り直後のテーブルフロー値が200mm以上有するものの、時間の経過とともにテーブルフロー値が小さくなり、10時間経過後では150mm以下と低いフロー値を示し流動性が無かった。また、セメント100質量部に対し増粘剤が3.5質量部である比較例1−6、セメント100質量部に対しポリカルボン酸系分散剤が0.3質量部である比較例1−7は、練り上り直後のテーブルフロー値がそれぞれ121mm、210mmと小さく、5時間経過後のテーブルフロー値は、120mm以下を示し流動性が無かった。
Table 3 shows the measurement results of the fluidity and high fluid retention time of grout mortar. In all the embodiments of the present invention, the table flow value immediately after kneading is 261 to 278 mm, which is a high flow value, has high fluidity, and the table flow value after 10 hours from kneading is also 235 mm or more. It was confirmed that an excellent high fluid retention time was secured.
On the other hand, Comparative Example 1-2 in which cement is 89 parts by mass in 100 parts by mass of binder, and Comparative Example 1-3 in which fly ash is 9 parts by mass in 100 parts by mass of binder is a table immediately after kneading. Although the flow value was 200 mm or more, the table flow value decreased with the passage of time, showed a low flow value of 150 mm or less after 10 hours, and had no fluidity. Further, Comparative Example 1-6 in which the thickener is 3.5 parts by mass with respect to 100 parts by mass of cement, and Comparative Example 1-7 in which the polycarboxylic acid dispersant is 0.3 parts by mass with respect to 100 parts by mass of cement. The table flow values immediately after kneading were as small as 121 mm and 210 mm, respectively, and the table flow values after 5 hours were 120 mm or less, indicating no fluidity.

Figure 2016037406
Figure 2016037406

水中不分離性及び圧縮強度測定結果を表4に示す。本発明の実施例に当たるグラウト組成物の混練物は、何れも懸濁物質量が8〜12mg/Lであり、気中水中圧縮強度比も88%以上と水中不分離抵抗性が高いことが確認された。また、圧縮強度も25N/mm2以上を示した。
結合材100質量部中にセメントが44質量部である比較例1−1、結合材100質量部中にフライアッシュが34質量部である比較例1−4、セメント100質量部に対し増粘剤が0.4質量部である比較例1−5は、セメント100質量部に対しポリカルボン酸系分散剤が3.9質量部である比較例1−8は、何れも懸濁物質量が50mg/Lを超え水中不分離性に劣り、気中水中圧縮強度比も78%以下を示した。
Table 4 shows the measurement results of inseparability in water and compressive strength. It is confirmed that the grout composition kneaded materials corresponding to the examples of the present invention each have a suspended solid content of 8 to 12 mg / L and a high compressive strength ratio in the air of 88% or more and high non-separation resistance in water. It was done. Further, the compressive strength was 25 N / mm 2 or more.
Comparative Example 1-1 in which cement is 44 parts by mass in 100 parts by mass of binder, Comparative Example 1-4 in which fly ash is 34 parts by mass in 100 parts by mass of binder, and thickener for 100 parts by mass of cement. Comparative Example 1-5 in which 0.4 parts by mass of Comparative Example 1-8 in which the polycarboxylic acid-based dispersant is 3.9 parts by mass with respect to 100 parts by mass of cement has a suspended solid content of 50 mg. / L was inferior in water inseparability, and the compressive strength ratio in air was 78% or less.

Figure 2016037406
Figure 2016037406

〔実施例2・比較例2〕
早強セメント又は低熱セメントを用いて、結合材100質量部に対し、石灰石砂と硅砂を1:1の割合で混合した骨材を118質量部、ポゾラン微粉末を3.0質量部、膨張材を1.5質量部、発泡剤を0.002質量部、早強セメント又は低熱セメントを69.5〜81.5質量部、フライアッシュ15〜27質量部、セメント100質量部に対し、ポリカルボン酸系分散剤0.7〜1.8質量部、増粘剤1.2〜1,4質量部となる配合割合でヘンシェルミキサーを使用し、乾式混合することで本発明品の高流動保持型水中不分離性グラウト組成物を5種類作製した(本発明品6〜10)。参考品のグラウト組成物として、結合材100質量部に対し、各種セメントが60質量部未満のもの又は85質量部を超えるもの、フライアッシュが15質量部未満のもの又は30質量部を超えるもの、セメント100質量部に対し、増粘剤が0.5質量部未満のもの又は3.0質量部を超えるもの、ポリカルボン酸系分散剤が0.5質量部未満のもの又は3.5質量部を超えるものを作製した。作製したグラウト組成物を表5に示す。
[Example 2 and Comparative Example 2]
Using high-strength cement or low-heat cement, 118 parts by mass of aggregate obtained by mixing limestone sand and cinnabar sand at a ratio of 1: 1 with 100 parts by mass of binder, 3.0 parts by mass of pozzolana fine powder, and expansion material 1.5 parts by mass, 0.002 parts by mass of foaming agent, 69.5 to 81.5 parts by mass of early strong cement or low heat cement, 15 to 27 parts by mass of fly ash, and 100 parts by mass of cement. Using the Henschel mixer at a blending ratio of 0.7 to 1.8 parts by weight of an acid dispersant and 1.2 to 1 and 4 parts by weight of a thickener, and dry mixing, the high fluidity retaining type of the product of the present invention Five types of underwater inseparable grout compositions were prepared (invention products 6 to 10). As a reference grout composition, with respect to 100 parts by weight of the binder, various cements are less than 60 parts by weight or more than 85 parts by weight, fly ash is less than 15 parts by weight, or more than 30 parts by weight, Thickener less than 0.5 parts by weight or more than 3.0 parts by weight, polycarboxylic acid dispersant less than 0.5 parts by weight or 3.5 parts by weight with respect to 100 parts by weight of cement The thing exceeding this was produced. The prepared grout composition is shown in Table 5.

Figure 2016037406
Figure 2016037406

作製したグラウト組成物を結合材100質量部に対し、65〜78質量部の水で、ハンドミキサ(回転数1000rpm、羽根直径100mm)を用いて20℃環境下で2分間練り混ぜ、混練物(グラウトモルタル、グラウト材)を13種類作製した。実施例1と同様に作製したグラウトモルタルの流動性及び高流動保持時間、水中不分離性、圧縮強度を測定した。   The prepared grout composition is kneaded for 2 minutes under a 20 ° C. environment with a hand mixer (rotation speed: 1000 rpm, blade diameter: 100 mm) with 65 to 78 parts by mass of water with respect to 100 parts by mass of the binder. 13 types of grout mortar and grout material) were produced. The grout mortar produced in the same manner as in Example 1 was measured for fluidity and high fluidity retention time, underwater inseparability, and compressive strength.

グラウトモルタルの流動性及び高流動保持時間測定結果を表6に示す。本発明の実施例に当たるグラウト組成物の混練物は、何れも練り上り直後のテーブルフロー値が251〜284mmと高いフロー値で、高流動性を備えており、且つ練り上りから10時間経過後のテーブルフロー値も221mm以上であり、優れた高流動保持時間を確保することが確認された。
一方で、結合材100質量部中にセメントが86質量部且つフライアッシュ8.5質量部である参考品10、結合材100質量部中にフライアッシュが12質量部である参考品11及びセメント100質量部に対しポリカルボン酸系減水剤が0.3質量部である参考品15は、練り上り直後のテーブルフロー値が200mm以上有するものの、時間の経過とともにテーブルフロー値が小さくなり、10時間経過後では140mm以下の低いフロー値を示した。また、セメント100質量部に対し増粘剤が3.6質量部である参考品14は、練り上り直後のテーブルフロー値が134mmと小さく、5時間経過後のテーブルフロー値は200mm未満、10時間経過後のテーブルフロー値は110mm以下を示した。
Table 6 shows the measurement results of the fluidity and high fluid retention time of grout mortar. The kneaded mixture of the grout compositions according to the examples of the present invention has a high flow value of 251 to 284 mm as a table flow value immediately after kneading, has high fluidity, and has passed 10 hours after kneading. The table flow value was also 221 mm or more, and it was confirmed that an excellent high flow retention time was secured.
On the other hand, the reference product 10 having 86 parts by mass of cement and 8.5 parts by mass of fly ash in 100 parts by mass of the binder, the reference product 11 having 12 parts by mass of fly ash in 100 parts by mass of the binder, and the cement 100 The reference product 15 in which the polycarboxylic acid-based water reducing agent is 0.3 parts by mass with respect to part by mass has a table flow value of 200 mm or more immediately after kneading, but the table flow value decreases with time and 10 hours have elapsed. Later, a low flow value of 140 mm or less was shown. In addition, the reference product 14 in which the thickener is 3.6 parts by mass with respect to 100 parts by mass of cement has a small table flow value just after kneading as 134 mm, and the table flow value after 5 hours is less than 200 mm for 10 hours. The table flow value after the lapse of 110 mm or less.

Figure 2016037406
Figure 2016037406

水中不分離性及び圧縮強度測定結果を表7に示す。本発明の実施例に当たるグラウト組成物の混練物は、何れも懸濁物質量が8〜13mg/Lであり、気中水中圧縮強度比も85%以上と水中不分離抵抗性が高いことが確認された。また、圧縮強度も23N/mm2以上を示した。
結合材100質量部中にセメントが49質量部である比較例2−9(参考品9)、結合材100質量部中にフライアッシュが33質量部である比較例2−12(参考品12)、セメント100質量部に対し増粘剤が0.3質量部である比較例2−13(参考品13)、セメント100質量部に対しポリカルボン酸系分散剤が3.8質量部である比較例2−16(参考品16)は、何れも懸濁物質量が50mg/Lを超え水中不分離性に劣り、気中水中圧縮強度比も78%以下を示した。
Table 7 shows the results of measurement of inseparability in water and compressive strength. It is confirmed that the grout composition kneaded materials corresponding to the examples of the present invention each have a suspended solid content of 8 to 13 mg / L and a high compression resistance ratio in the air of 85% or more and high non-separation resistance in water. It was done. Also, the compressive strength was 23 N / mm 2 or more.
Comparative Example 2-9 (reference product 9) with 49 parts by mass of cement in 100 parts by mass of binder, Comparative Example 2-12 (reference product 12) with 33 parts by mass of fly ash in 100 parts by mass of binder Comparative Example 2-13 (reference product 13) in which the thickener is 0.3 parts by mass with respect to 100 parts by mass of cement, and Comparison in which the polycarboxylic acid dispersant is 3.8 parts by mass with respect to 100 parts by mass of cement In Example 2-16 (Reference product 16), the amount of suspended solids exceeded 50 mg / L, the inseparability in water was poor, and the compressive strength ratio in air was 78% or less.

Figure 2016037406
Figure 2016037406

〔実施例3・比較例3〕
上記試験において最も好ましいと思われる本発明品3及び4、10と参考として市販の水中不分離性グラウトを用いて、低温(5℃環境下)、高温(30℃環境下)におけるグラウトモルタルの流動性及び高流動保持時間、水中不分離性を測定した。
[Example 3 and Comparative Example 3]
Flow of grout mortar at low temperature (5 ° C environment) and high temperature (30 ° C environment) using products 3 and 4, 10 of the present invention considered to be most preferable in the above test and a commercially available non-separable grout in water for reference. Properties, high fluid retention time, and inseparability in water were measured.

グラウトモルタルの流動性及び高流動保持時間、水中不分離性測定結果を表8に示す。本発明の実施例は、何れも低温及び高温環境下において、練り上りから10時間経過後のテーブルフロー値が211mm以上と高流動性であり、懸濁物質量も7〜17mg/Lと優れた水中不分離性を示した。
一方、市販の水中不分離性グラウトは、練り上りから5時間経過後のテーブルフロー値は180mm以下であり、懸濁物質量も低温下で69mg/L、高温下で88mg/Lと水中不分離性が劣った。
Table 8 shows the measurement results of the fluidity and high fluidity retention time of the grout mortar and the inseparability in water. In the examples of the present invention, in both low temperature and high temperature environments, the table flow value after elapse of 10 hours from the kneading is as high as 211 mm or more, and the amount of suspended solids is also excellent at 7 to 17 mg / L. It showed inseparability in water.
On the other hand, the commercially available non-separable grout in water has a table flow value of 180 mm or less after 5 hours from kneading, and the amount of suspended solids is 69 mg / L at low temperature and 88 mg / L at high temperature. Inferior.

Figure 2016037406
Figure 2016037406

Figure 2016037406
Figure 2016037406

本発明の高流動保持型水中不分離性グラウト組成物は、地下水等が溜まっている大きな又は長い地下空洞等へ、且つ長時間作業(10時間以上)を伴う個所に用いることができる。また、長距離圧送後に空洞等の端部まで充填できない個所やグラウト材を打ち継ぐことにより打ち継ぎが生じてしまう個所に未充填部を生じさせず、水道(みずみち)を作らず、地下水等を止める目的として使用できる。   The high fluidity retention type underwater non-separable grout composition of the present invention can be used for large or long underground cavities in which groundwater or the like is accumulated, and in places where work is required for a long time (10 hours or more). In addition, after long-distance pumping, it is not possible to fill up to the end of the cavity, etc., or where the grout material is handed over, so that unfilled parts do not occur, water is not created, groundwater, etc. Can be used to stop

Claims (3)

セメント及びポゾランを含む結合材と、骨材と、ポリカルボン酸系セメント分散剤と、増粘剤とを含有し、
結合材100質量部に対しセメントを60〜85質量部、フライアッシュを15〜30質量部含有し、
セメント100質量部に対しポリカルボン酸系セメント分散剤を0.5〜3.5質量部、増粘剤を0.6〜3.0質量部含有することを特徴とする高流動保持型水中不分離性グラウト組成物。
Containing a binder containing cement and pozzolana, an aggregate, a polycarboxylic acid cement dispersant, and a thickener;
60-85 parts by mass of cement and 15-30 parts by mass of fly ash with respect to 100 parts by mass of the binder,
A high-fluidity retention type water-insoluble solution containing 0.5 to 3.5 parts by mass of a polycarboxylic acid-based cement dispersant and 0.6 to 3.0 parts by mass of a thickener with respect to 100 parts by mass of cement. Separable grout composition.
結合材100質量部に対し64〜78質量部の水で混練する請求項1記載の高流動保持型水中不分離性グラウト組成物。   The high fluidity retention type underwater non-separable grout composition according to claim 1, wherein the composition is kneaded with 64 to 78 parts by mass of water with respect to 100 parts by mass of the binder. 前記増粘剤の使用量が、混練時の水100質量部に対し0.7〜2.0質量部である請求項1又は2記載の高流動保持型水中不分離性グラウト組成物。   The high flow retention type underwater non-separable grout composition according to claim 1 or 2, wherein the amount of the thickener used is 0.7 to 2.0 parts by mass with respect to 100 parts by mass of water during kneading.
JP2014160064A 2014-08-06 2014-08-06 High fluidity retention type underwater non-separable grout composition Active JP6404629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160064A JP6404629B2 (en) 2014-08-06 2014-08-06 High fluidity retention type underwater non-separable grout composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160064A JP6404629B2 (en) 2014-08-06 2014-08-06 High fluidity retention type underwater non-separable grout composition

Publications (2)

Publication Number Publication Date
JP2016037406A true JP2016037406A (en) 2016-03-22
JP6404629B2 JP6404629B2 (en) 2018-10-10

Family

ID=55528817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160064A Active JP6404629B2 (en) 2014-08-06 2014-08-06 High fluidity retention type underwater non-separable grout composition

Country Status (1)

Country Link
JP (1) JP6404629B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156701A (en) * 2018-03-16 2019-09-19 太平洋マテリアル株式会社 Grout composition and grout
JP2020094421A (en) * 2018-12-13 2020-06-18 Jfeシビル株式会社 Joint structure for pile and superstructure, construction method for joint structure, and structural body
CN114213081A (en) * 2021-12-27 2022-03-22 中国水利水电第七工程局成都水电建设工程有限公司 Grouting material for reinforcing water-rich stratum of subway tunnel with water dispersion resistance and preparation method thereof
WO2023029617A1 (en) * 2021-08-30 2023-03-09 中国矿业大学 Isolated overburden grouting filling method for coal gangue underground emission reduction
CN116789406A (en) * 2023-03-11 2023-09-22 南通大学 Grouting material based on modified cement of fly ash coated by carbon nano tube and preparation method thereof
JP7386107B2 (en) 2020-03-09 2023-11-24 太平洋マテリアル株式会社 Underwater non-separable grout composition and underwater non-separable grout

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574170B (en) * 2020-06-23 2022-02-25 华电电力科学研究院有限公司 Underground goaf filling material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692709A (en) * 1992-09-14 1994-04-05 Toyo Kensetsu Kk Grout material for fixing underwater structure and installation method therefor
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method
JP2009161387A (en) * 2007-12-29 2009-07-23 Taiheiyo Materials Corp Antiwashout underwater mortar composition for high temperature environment, and antiwashout underwater grout mortar composition for high temperature environment
JP2009184891A (en) * 2008-02-08 2009-08-20 Denki Kagaku Kogyo Kk Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar
JP2014037329A (en) * 2012-08-15 2014-02-27 Denki Kagaku Kogyo Kk Underwater non-separable concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692709A (en) * 1992-09-14 1994-04-05 Toyo Kensetsu Kk Grout material for fixing underwater structure and installation method therefor
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method
JP2009161387A (en) * 2007-12-29 2009-07-23 Taiheiyo Materials Corp Antiwashout underwater mortar composition for high temperature environment, and antiwashout underwater grout mortar composition for high temperature environment
JP2009184891A (en) * 2008-02-08 2009-08-20 Denki Kagaku Kogyo Kk Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar
JP2014037329A (en) * 2012-08-15 2014-02-27 Denki Kagaku Kogyo Kk Underwater non-separable concrete

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156701A (en) * 2018-03-16 2019-09-19 太平洋マテリアル株式会社 Grout composition and grout
JP7118527B2 (en) 2018-03-16 2022-08-16 太平洋マテリアル株式会社 grout
JP2020094421A (en) * 2018-12-13 2020-06-18 Jfeシビル株式会社 Joint structure for pile and superstructure, construction method for joint structure, and structural body
JP7146607B2 (en) 2018-12-13 2022-10-04 Jfeシビル株式会社 Joint structure between pile and superstructure, construction method for joint structure, and structure
JP7386107B2 (en) 2020-03-09 2023-11-24 太平洋マテリアル株式会社 Underwater non-separable grout composition and underwater non-separable grout
WO2023029617A1 (en) * 2021-08-30 2023-03-09 中国矿业大学 Isolated overburden grouting filling method for coal gangue underground emission reduction
CN114213081A (en) * 2021-12-27 2022-03-22 中国水利水电第七工程局成都水电建设工程有限公司 Grouting material for reinforcing water-rich stratum of subway tunnel with water dispersion resistance and preparation method thereof
CN116789406A (en) * 2023-03-11 2023-09-22 南通大学 Grouting material based on modified cement of fly ash coated by carbon nano tube and preparation method thereof

Also Published As

Publication number Publication date
JP6404629B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP6404629B2 (en) High fluidity retention type underwater non-separable grout composition
JP2009155184A (en) High fluidity ultrahigh early-strength admixture and high fluidity ultrahigh early-strength concrete
JP2008094674A (en) Filler for reinforcement and method of filling reinforcement using the same
JP2006131488A (en) Acid resistant grout composition
JP5064206B2 (en) Underwater inseparable mortar composition for high temperature environment and underwater inseparable grout mortar composition for high temperature environment
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP2011136863A (en) Superhigh strength grout composition
JP4976803B2 (en) Grout composition and grout material using the same
JP6509671B2 (en) Submersible concrete composition in water and its cured product
JP5145918B2 (en) Underwater inseparable cement-based filling composition and underwater inseparable cement mortar
JP6306973B2 (en) High fluidity retention type low exothermic grout composition
JP5110774B2 (en) High fluidity admixture
JP7103893B2 (en) Insoluble mortar composition in water and its mortar
JP6482861B2 (en) Inseparable mortar composition in water
JP6258033B2 (en) Method for producing fast-curing expanded cement kneaded material
JP6955938B2 (en) High fluid concrete
JP2017114692A (en) Underwater non-separable mortar composition
JP2010155757A (en) Admixture for grout and grout composition
JP6956468B2 (en) Fast-curing grout composition
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof
JP6967819B2 (en) Fast-curing grout composition
JP4791892B2 (en) Spray material
JP6626341B2 (en) Inseparable mortar composition in water
JP2022116529A (en) High-strength underwater inseparable mortar composition for high-temperature environments and mortar using the same
JP6180273B2 (en) High fluidity concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250