JP2006176397A - High-fluidity mortar composition and its manufacturing method - Google Patents

High-fluidity mortar composition and its manufacturing method Download PDF

Info

Publication number
JP2006176397A
JP2006176397A JP2005339097A JP2005339097A JP2006176397A JP 2006176397 A JP2006176397 A JP 2006176397A JP 2005339097 A JP2005339097 A JP 2005339097A JP 2005339097 A JP2005339097 A JP 2005339097A JP 2006176397 A JP2006176397 A JP 2006176397A
Authority
JP
Japan
Prior art keywords
water
compound
mortar
mortar composition
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339097A
Other languages
Japanese (ja)
Inventor
Koichi Sato
孝一 佐藤
Seiji Kanamori
誠治 金森
Suguru Nonaka
英 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2005339097A priority Critical patent/JP2006176397A/en
Publication of JP2006176397A publication Critical patent/JP2006176397A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-fluidity mortar composition excellent in fluidity, self-filling property, and material separating resistance, as well as excellent in self-leveling property and underwater non-separability. <P>SOLUTION: When the mortar composition is manufactured by blending a binding material containing at least cement and water and fine aggregate with a thickening admixture and a chemical admixture, a water-binder ratio of 30-70% and a unit quantity of water of 350-450 kg/m<SP>3</SP>are applied. The thickening admixture contains an admixture including a first water-soluble low-molecular compound (A) selected from cationic surfactants and a second water-soluble low-molecular compound (B) selected from anionic aromatic compounds in a ratio of 0.75-1.5 wt% to the unit quantity of water. The chemical admixture contains a polyether-based water reducing agent including a carboxy group in a ratio of 0.5-1.5 wt% to the quantity of cement. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流動性の高いモルタル組成物とその製造方法に関するもので、特に、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性に優れたモルタル組成物に関する。   The present invention relates to a mortar composition having high fluidity and a method for producing the mortar composition. In particular, the mortar composition is excellent in fluidity, self-filling property and material separation resistance, as well as in self-leveling property and inseparability in water. About.

既存のトンネルでは、供用開始から長時間が経過すると、コンクリートにひび割れや剥離等の変状が認められるものが見受けられる。このようなコンクリートを補修する際には、一般に、外周にシートやコンクリート版等を巻付け、シートやコンクリート版と上記コンクリートとの間の空間にモルタルなどを充填して、上記シートやコンクリート版と上記コンクリートとを一体化させる工法が行なわれている。
上記のような補修工法で使用されるモルタルとしては、通常、粉体量を多くしたり、増粘剤を使用したりすることにより、流動性を高めるとともに、材料分離抵抗性、無収縮性に優れた特性に改良したものが使用されている(例えば、特許文献1参照)。
一方、建物の床の水平を自然に確保するために使用されるモルタル組成物としては、自己平坦性を有するセルフレベリングモルタルが知られている。このセルフレベリング性を有するモルタル組成物は、高い流動性を発揮させる混和剤の使用及び自重により、モルタル組成物の打設後に自然に水平を確保する材料である(例えば、特許文献2参照)。
特開2002−285153号公報 特開平8−40782号公報
In existing tunnels, it can be seen that after a long time has passed since the start of service, concrete has been observed to be deformed, such as cracks and peeling. When repairing such concrete, generally, a sheet or concrete plate is wound around the outer periphery, and a space between the sheet or concrete plate and the concrete is filled with mortar, etc. A method of integrating the concrete with the concrete is performed.
As the mortar used in the repair method as described above, by increasing the amount of powder or by using a thickener, the fluidity is improved, and the material separation resistance and non-shrinking property are increased. The thing improved to the outstanding characteristic is used (for example, refer patent document 1).
On the other hand, self-leveling mortar having self-flatness is known as a mortar composition used for naturally ensuring the level of the floor of a building. This mortar composition having self-leveling properties is a material that naturally ensures horizontality after placement of the mortar composition by use of an admixture that exhibits high fluidity and its own weight (see, for example, Patent Document 2).
JP 2002-285153 A JP-A-8-40782

ところで、トンネル覆工コンクリートの補修を目的として使用されるモルタル組成物には、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性にも優れることが要求されている。
しかしながら、上記流動性の高いモルタルでは、流動性、材料分離抵抗性、無収縮性に優れているが、水中不分離性、セルフレベリング性に問題があった。また、セルフレベリングモルタルでは、高流動性、セルフレベリング性を有しているが、狭間な箇所に打設する際には、その性能を発揮できないといった問題点があった。
By the way, a mortar composition used for the purpose of repairing tunnel lining concrete is required to have excellent fluidity, self-filling property, and material separation resistance, as well as excellent self-leveling property and non-separability in water. ing.
However, the mortar having high fluidity is excellent in fluidity, material separation resistance, and non-shrinkage, but has problems in water inseparability and self-leveling. In addition, the self-leveling mortar has high fluidity and self-leveling properties, but there is a problem in that the performance cannot be exhibited when it is placed in a narrow space.

本発明は、従来の問題点に鑑みてなされたもので、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性にも優れた高流動モルタル組成物とその製造方法を提供することを目的とする。   The present invention has been made in view of conventional problems, and has a high fluidity mortar composition excellent in fluidity, self-filling property, material separation resistance, self-leveling property, and in-water non-separability, and its An object is to provide a manufacturing method.

本願の請求項1に記載の発明は、少なくともセメントを含む結合材と水と細骨材とに、増粘性混和剤と化学混和剤とを添加し混練した高流動モルタル組成物であって、水と上記結合材との比である水結合材比を30〜70%とし、かつ、単位水量を350〜450kg/m3とするとともに、上記増粘性混和剤として、第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とを含有する添加剤であり、上記化合物(A)と化合物(B)とが、両性界面活性剤から選ばれる化合物(A)とアニオン性界面活性剤から選ばれる化合物(B)の組み合わせ、または、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)との組み合わせ、カチオン性界面活性剤から選ばれる化合物(A)と臭素化合物から選ばれる化合物(B)との組み合わせ、から選択される添加剤のうちのいずれかの添加剤を用い、上記化学混和剤として、カルボキシル基含有ポリエーテル系減水剤を用いたことを特徴とするものである。 The invention according to claim 1 of the present application is a high fluidity mortar composition obtained by adding a thickening admixture and a chemical admixture to a binder containing at least cement, water, and fine aggregate, The water-binding material ratio, which is the ratio of the binder to the binder, is 30 to 70%, the unit water amount is 350 to 450 kg / m 3, and the first water-soluble low-molecular compound is used as the thickening admixture. (A) and a second water-soluble low molecular weight compound (B), and the compound (A) and the compound (B) are selected from amphoteric surfactants and anions Combination of compound (B) selected from cationic surfactants, or a combination of compound (A) selected from cationic surfactants and compound (B) selected from anionic aromatic compounds, cationic surfactants A compound selected from (A And a combination of a compound selected from a bromine compound (B), and any one of the additives selected from: a carboxyl group-containing polyether-based water reducing agent as the chemical admixture. It is a feature.

請求項2に記載の発明は、請求項1に記載の高流動モルタル組成物において、上記増粘性混和剤として、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)を含有する増粘性混和剤を用いるとともに、上記化合物(A)と上記化合物(B)とを、単位水量に対して、それぞれ0.75〜1.5重量%の割合で配合したものである。
請求項3に記載の発明は、請求項1または請求項2に記載の高流動モルタル組成物において、上記化学混和剤を、セメントに対して、0.5〜1.5重量%の割合で添加したものである。
請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載の高流動モルタル組成物の製造方法であって、結合材、水、細骨材に上記第2の水溶性低分子化合物(B)と上記化学混和剤とを添加して混練した後、上記混練物に上記第1の水溶性低分子化合物(A)を添加して再度混練して上記高流動モルタル組成物を製造するようにしたことを特徴とする。
Invention of Claim 2 is chosen from the compound (A) chosen from a cationic surfactant and an anionic aromatic compound as said thickening admixture in the high fluid mortar composition of Claim 1. While using the thickening admixture containing the compound (B), the compound (A) and the compound (B) were blended at a ratio of 0.75 to 1.5% by weight, respectively, with respect to the unit water amount. Is.
Invention of Claim 3 adds the said chemical admixture in the ratio of 0.5 to 1.5 weight% with respect to cement in the high fluid mortar composition of Claim 1 or Claim 2. It is a thing.
Invention of Claim 4 is a manufacturing method of the high fluid mortar composition in any one of Claims 1-3, Comprising: The said 2nd water-soluble low thing is used for a binder, water, and a fine aggregate. After the molecular compound (B) and the chemical admixture are added and kneaded, the first water-soluble low molecular compound (A) is added to the kneaded product and kneaded again to obtain the high fluid mortar composition. It is characterized by being manufactured.

本発明によれば、モルタル組成物を製造する際に、水結合材比を30〜70%とし、かつ、単位水量を350〜450kg/m3とするとともに、増粘性混和剤として、第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とを含有する添加剤であり、上記化合物(A)と化合物(B)とが、両性界面活性剤から選ばれる化合物(A)とアニオン性界面活性剤から選ばれる化合物(B)の組み合わせ、または、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)との組み合わせ、カチオン性界面活性剤から選ばれる化合物(A)と臭素化合物から選ばれる化合物(B)との組み合わせ、から選択される添加剤のうちのいずれかの添加剤を増粘性混和剤として配合し、化学混和剤として、カルボキシル基含有ポリエーテル系減水剤を配合したので、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性にも優れたモルタル組成物を得ることができる。
このとき、上記増粘性添加剤として、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)とを含有する添加剤を用いるとともに、上記化合物(A)と上記化合物(B)とを、単位水量に対して、それぞれ0.75〜1.5重量%の割合で配合し、上記カルボキシル基含有ポリエーテル系減水剤をセメントに対して、0.5〜1.5重量%の割合で添加すれば、上記モルタル組成物の各特性を確実に向上させることができる。
According to the present invention, when the mortar composition is produced, the water binder ratio is set to 30 to 70% and the unit water amount is set to 350 to 450 kg / m 3 . A compound comprising a water-soluble low-molecular compound (A) and a second water-soluble low-molecular compound (B), wherein the compound (A) and the compound (B) are selected from amphoteric surfactants A combination of (A) and a compound (B) selected from an anionic surfactant, or a combination of a compound (A) selected from a cationic surfactant and a compound (B) selected from an anionic aromatic compound, A combination of a compound (A) selected from a cationic surfactant and a compound (B) selected from a bromine compound, and an additive selected from the additives selected from Mixing Since a carboxyl group-containing polyether-based water reducing agent was added, a mortar composition having excellent fluidity, self-filling property, and material separation resistance, as well as excellent self-leveling and non-separability in water can be obtained. .
At this time, an additive containing a compound (A) selected from cationic surfactants and a compound (B) selected from anionic aromatic compounds is used as the thickening additive, and the compound (A) is used. And the compound (B) are mixed at a ratio of 0.75 to 1.5% by weight with respect to the unit water amount, respectively, and the carboxyl group-containing polyether water reducing agent is added to the cement in an amount of 0.5 to 0.5%. If it is added at a ratio of 1.5% by weight, each characteristic of the mortar composition can be reliably improved.

また、高流動モルタル組成物を製造する際に、結合材、水、細骨材に上記第2の水溶性低分子化合物(B)と上記化学混和剤とを添加して混練した後、上記混練物に上記第1の水溶性低分子化合物(A)を添加して再度混練して高流動モルタル組成物を製造するようにすれば、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性にも優れたモルタル組成物を確実に製造することができる。   Moreover, when manufacturing a high fluidity mortar composition, after adding the said 2nd water-soluble low molecular weight compound (B) and the said chemical admixture to a binder, water, and a fine aggregate, it knead | mixes after that. If the first water-soluble low molecular weight compound (A) is added to the product and kneaded again to produce a high fluidity mortar composition, the fluidity, self-filling property, and material separation resistance are excellent. A mortar composition excellent in self-leveling properties and inseparability in water can be reliably produced.

以下、本発明の最良の形態について説明する。
本発明の最良の形態に係るモルタル組成物は、セメントと混和材である膨張材とを含む結合材と水と細骨材とに、化学混和剤であるカルボキシル基含有ポリエーテル系減水剤を配合するとともに、増粘性混和剤として、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物(A)と、アニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物(B)とを含有する混和剤を用いたもので、はじめに、結合材、水、細骨材に、セメント混和剤と、上記第2の水溶性低分子化合物(B)とを練り混ぜて混練物を作製した後、この混練物に上記第1の水溶性低分子化合物(A)を添加して再度混練して作製される。
上記セメントとしては、特に限定されるものではなく、石灰石・粘土・酸化鉄などを原料とした普通ポルトランドセメント,早強ポルトランドセメント,中庸熱ポルトランドセメント,白色ポルトランドセメントなどのポルトランドセメントや、高炉セメント,フライアッシュセメント,シリカセメントなどの混合セメントを用いることができる。
このとき、水と上記結合材との比である水結合材比(W/B)を30〜70%とすることが好ましい。水結合材比が30%未満であると結合材の量が多すぎるため粘性が増加し、必要な流動性が確保できない。また、70%を超えると結合材の量が過小となって、必要強度が得られないだけでなく、ブリーディングにより耐久性状の品質も低下するので、水結合材比としては30〜70%とすることが好ましく、35〜45%とすることが特に好ましい。
また、単位水量としては、350〜450kg/m3とすることが好ましい。単位水量が350kg/m3を下回る場合には流動性の低下が認められ、450kg/m3を超えるような場合には、材料分離の可能性が高くなるとともに、収縮等の耐久性状が低下するため、単位水量は350〜450kg/m3とすることが好ましい。
なお、上記モルタルに用いられる細骨材としては特に限定はなく、一般に用いられている粗粒率が2.7前後である細骨材を用いることができるが、粗粒率が2.05〜2.50である粗目と細目の中間粒度の細骨材を用いてもよい。
Hereinafter, the best mode of the present invention will be described.
The mortar composition according to the best mode of the present invention contains a carboxyl group-containing polyether-based water reducing agent, which is a chemical admixture, in a binder, water, and fine aggregate, which include cement and an expandable material that is an admixture. In addition, as the thickening admixture, a first water-soluble low molecular compound (A) selected from cationic surfactants, and a second water-soluble low molecular compound (B) selected from anionic aromatic compounds, First, a kneaded product was prepared by kneading a cement admixture and the second water-soluble low-molecular compound (B) into a binder, water, and fine aggregate. Thereafter, the first water-soluble low-molecular compound (A) is added to the kneaded material and kneaded again.
The above-mentioned cement is not particularly limited, and Portland cement such as ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, white Portland cement such as limestone, clay and iron oxide, blast furnace cement, A mixed cement such as fly ash cement or silica cement can be used.
At this time, the water binder ratio (W / B), which is the ratio of water to the binder, is preferably 30 to 70%. If the water binder ratio is less than 30%, the amount of binder is too large, so the viscosity increases and the required fluidity cannot be ensured. Further, if it exceeds 70%, the amount of the binder becomes too small to obtain the required strength, and the quality of the durability is also lowered by bleeding, so the water binder ratio is 30 to 70%. It is preferably 35 to 45%.
Moreover, as unit water quantity, it is preferable to set it as 350-450 kg / m < 3 >. When the unit water amount is less than 350 kg / m 3 , a decrease in fluidity is observed, and when it exceeds 450 kg / m 3 , the possibility of material separation increases and the durability such as shrinkage decreases. For this reason, the unit water amount is preferably 350 to 450 kg / m 3 .
In addition, there is no limitation in particular as a fine aggregate used for the said mortar, Although the coarse aggregate rate generally used is about 2.7, the coarse grain ratio is 2.05-. A fine aggregate having a coarse and fine intermediate particle size of 2.50 may be used.

本発明に用いられる第1の水溶性低分子化合物(A)としては、4級アンモニウム塩型カチオン性界面活性剤が好ましく、特に、アルキルアンモニウム塩を主成分とする添加剤が好ましい。また、第2の水溶性低分子化合物(B)としては、芳香環を有するスルフォン酸塩が好ましく、特に、アルキルアリルスルホン酸塩を主成分とする添加剤が好ましいが、上記第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)としては、ドデカン酸アミドプロピルベタインなどの両性界面活性剤から選ばれる化合物(A)とPOE(3)ドデシルエーテル硫酸エステル塩などのアニオン性界面活性剤から選ばれる化合物(B)の組み合わせ、または、上記カチオン性界面活性剤から選ばれる化合物(A)と臭化ナトリウムなどの臭素化合物から選ばれる化合物(B)との組み合わせであってもよい。   As the first water-soluble low molecular weight compound (A) used in the present invention, a quaternary ammonium salt type cationic surfactant is preferable, and an additive mainly composed of an alkyl ammonium salt is particularly preferable. The second water-soluble low molecular weight compound (B) is preferably a sulfonate having an aromatic ring, and particularly preferably an additive having an alkylallyl sulfonate as a main component. Examples of the low-molecular compound (A) and the second water-soluble low-molecular compound (B) include a compound (A) selected from amphoteric surfactants such as amidopropyl betaine dodecanoate and POE (3) dodecyl ether sulfate. Or a combination of a compound (B) selected from the above anionic surfactants or a compound (A) selected from the above cationic surfactants and a compound (B) selected from bromine compounds such as sodium bromide There may be.

ところで、上記第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とがある一定の割合でセメント中に混入されると、上記第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とが電気的に配列して擬似ポリマーを形成することにより、上記混和剤は増粘剤として機能するが、このためには、上記のように、第2の水溶性低分子化合物(B)を先に添加して混練した後、上記第1の水溶性低分子化合物(A)を添加するようにすることが肝要である。
これは、上記第1の水溶性低分子化合物(A)と上記第2の水溶性低分子化合物(B)とを同時に添加すると、上記第1の水溶性低分子化合物(A)と上記第2の水溶性低分子化合物(B)とが不均質な状態で擬似ポリマーを形成してしまうので、擬似ポリマーを均質な状態で形成させて所望の特性を得るためには長時間の混練が必要となるためである。
また、上記第1の水溶性低分子化合物(A)を先に加えると、混練の際に泡が発生してモルタルの空気量が多くなり、強度の低下や比重の減少等が起こる場合がある。
また、モルタルミキサー等で、結合材、水、細骨材に、化学混和剤と上記第2の水溶性低分子化合物(B)とを添加して混練する際には、結合材と細骨材とを混合し、この混合物に、水に上記第2の水溶性低分子化合物(B)と上記化学混和剤とを溶解させた溶液を投入して混練するようにすれば、材料を均一に混練することができる。
また、ハンドミキサーを用いて混練する場合には、粉体中に溶液を投入して混練すると攪拌性能が低下するので、水に上記第2の水溶性低分子化合物(B)と上記化学混和剤とを溶解させた溶液に、結合材と細骨材とを混合した混合物を投入して混練することが好ましい。これにより、攪拌性能を落とすことなく混練できるので、ハンドミキサーを用いた場合でも、材料を均一に混練することができる。
By the way, when the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) are mixed in the cement at a certain ratio, the first water-soluble low molecular compound is mixed. The admixture functions as a thickener by electrically arranging (A) and the second water-soluble low molecular weight compound (B) to form a pseudo polymer. Thus, it is important to add the first water-soluble low molecular weight compound (A) after adding the second water-soluble low molecular weight compound (B) first and kneading.
This is because when the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) are added simultaneously, the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) are added. Since a pseudo polymer is formed in an inhomogeneous state with the water-soluble low molecular weight compound (B), a long time of kneading is required to obtain the desired characteristics by forming the pseudo polymer in a homogeneous state. It is to become.
Further, when the first water-soluble low molecular weight compound (A) is added first, bubbles are generated during kneading and the amount of air in the mortar increases, which may cause a decrease in strength, a decrease in specific gravity, or the like. .
When a chemical admixture and the second water-soluble low molecular weight compound (B) are added and kneaded with a mortar mixer or the like to a binder, water, and fine aggregate, the binder and fine aggregate are mixed. And the mixture is mixed with a solution in which the second water-soluble low-molecular compound (B) and the chemical admixture are dissolved in water, and the materials are uniformly kneaded. can do.
In addition, when kneading using a hand mixer, the stirring performance is lowered when a solution is put into the powder and kneaded. Therefore, the second water-soluble low molecular weight compound (B) and the chemical admixture are added to water. It is preferable to add and knead the mixture in which the binder and the fine aggregate are mixed into a solution in which is dissolved. Thereby, since it can knead | mix without reducing stirring performance, even when a hand mixer is used, a material can be knead | mixed uniformly.

上記第1の水溶性低分子化合物(A)と上記第2の水溶性低分子化合物(B)との添加量は、単位水量に対して、それぞれ0.75〜1.5重量%の割合で配合することが好ましい。上記第1の水溶性低分子化合物(A)と上記第2の水溶性低分子化合物(B)との添加量が0.75重量%未満である場合には、粘性が得られず、ブリーディングが増大するため、自己充填性、材料分離抵抗性、水中不分離性が低下する。一方、1.5重量%を超えた場合には粘性が大きくなり、高流動、セルフレベリング性が低下するので、0.75〜1.5重量%配合することが好ましい。これにより、水中不分離性、流動性、自己充填性、材料分離抵抗性、に優れているだけでなく、水中不分離性、セルフレベリング性に優れたモルタル組成物を得ることができる。
また、上記第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)との配合比としては、2:5〜5:2の範囲が好ましい。なお、実験の結果では、上記第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)との配合の割合が1:1の場合が最適であった。
The addition amount of the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) is 0.75 to 1.5% by weight with respect to the unit water amount. It is preferable to mix. When the addition amount of the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) is less than 0.75% by weight, viscosity cannot be obtained and bleeding is caused. Since it increases, the self-filling property, the material separation resistance, and the underwater non-separability are reduced. On the other hand, when the amount exceeds 1.5% by weight, the viscosity increases, and the high flow and self-leveling properties decrease. Therefore, it is preferable to add 0.75 to 1.5% by weight. This makes it possible to obtain a mortar composition that is not only excellent in water inseparability, fluidity, self-filling property, and material separation resistance, but also excellent in water inseparability and self-leveling properties.
Moreover, as a compounding ratio of the said 1st water-soluble low molecular compound (A) and a 2nd water-soluble low molecular compound (B), the range of 2: 5-5: 2 is preferable. As a result of the experiment, it was optimum that the mixing ratio of the first water-soluble low molecular compound (A) and the second water-soluble low molecular compound (B) was 1: 1.

また、上記カルボキシル基含有ポリエーテル系減水剤の配合量としては、上記結合材に対して、0.5〜1.5重量%とすることが好ましい。
なお、上記コンクリート用化学混和剤としては、リグニン系、ポリカルボン酸系、メラミン系、ナフタリン系、あるいは、アミノスルホン酸系などのポリエーテル系減水剤、AE減水剤、高性能AE減水剤などがあるが、上記増粘性混和剤との相溶性を考慮すると、本例のように、上記増粘性混和剤との相溶性に優れたカルボキシル基含有ポリエーテル系減水剤を用いることが好ましく、これにより、セルフレベリング性、高流動性を確実に発揮させることができる。
Moreover, as a compounding quantity of the said carboxyl group-containing polyether type water reducing agent, it is preferable to set it as 0.5 to 1.5 weight% with respect to the said binder.
Examples of the concrete chemical admixture for concrete include lignin-based, polycarboxylic acid-based, melamine-based, naphthalene-based, and aminosulfonic acid-based polyether water reducing agents, AE water reducing agents, and high-performance AE water reducing agents. However, in consideration of the compatibility with the thickening admixture, it is preferable to use a carboxyl group-containing polyether water reducing agent having excellent compatibility with the thickening admixture, as in this example. In addition, self-leveling property and high fluidity can be surely exhibited.

このように、本実施の形態によれば、セメントと混和材とから成る結合材と水と細骨材とに、化学混和剤及び増粘性混和剤を配合して成るモルタル組成物を作製する際に、水結合材比を30〜70%とし、かつ、単位水量を350〜450kg/m3とするとともに、上記増粘性混和剤として、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物(A)と、アニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物(B)とを含有する混和剤とを、単位水量に対して、それぞれ0.75〜1.5重量%の割合で配合し、化学混和剤として、上記増粘性混和剤との相溶性に優れたカルボキシル基含有ポリエーテル系減水剤を、上記セメントに対して、0.5〜1.5重量%の割合で配合するようにしたので、流動性、自己充填性、材料分離抵抗性に優れるとともに、セルフレベリング性、水中不分離性にも優れたモルタル組成物を得ることができる。 Thus, according to the present embodiment, when a mortar composition comprising a chemical admixture and a thickening admixture in a binder composed of cement and an admixture, water and fine aggregate is prepared. And a water-binding material ratio of 30 to 70% and a unit water amount of 350 to 450 kg / m 3, and a first water-soluble low molecule selected from cationic surfactants as the thickening admixture. The admixture containing the compound (A) and the second water-soluble low-molecular compound (B) selected from anionic aromatic compounds is 0.75 to 1.5% by weight based on the unit water amount, respectively. As a chemical admixture, a carboxyl group-containing polyether-based water reducing agent having excellent compatibility with the thickening admixture is a proportion of 0.5 to 1.5% by weight based on the cement. So that it is fluid, self-filling Is excellent in segregation resistance, it is possible to obtain a self-leveling mortar composition excellent in water non separability.

なお、上記実施の形態では、混和材として膨張材を用いたが、上記セメントに混合される混和材としては、上記膨張材に限るものではなく、フライアッシュ、シリカフューム、高炉スラグ微粉末などの他の混和材、あるいは、これらの混合物を用いてもよい。
また、結合材をセメントのみとしてもよい。この場合、上記水結合材比(W/B)は、そのまま水セメント比(W/C)となる。
In the above embodiment, an expandable material is used as the admixture. However, the admixture mixed with the cement is not limited to the expandable material, and other materials such as fly ash, silica fume, and blast furnace slag fine powder are used. These admixtures or mixtures thereof may be used.
Moreover, it is good also considering only a cement as a binder. In this case, the water binder ratio (W / B) becomes the water cement ratio (W / C) as it is.

以下、実施例により本発明を具体的に説明するが、本発明は何ら実施例に限定されるものではない。
[実施例1]
結合材である普通ポルトランドセメントと膨張材とに水を加え、水結合材比を所定の値になるように調整した後、これに、高性能特殊分散剤(花王株式会社製、カルボキシル基含有ポリエーテル系減水剤、商品名「マイテイ4000FA」)とアルキルアリルスルホン酸塩を主成分とする高性能特殊増粘剤B(花王株式会社製、商品名「ビスコトップ100FA」)とを配合し、更に、珪砂を加えて練り混ぜた後、この混練物にアルキルアンモニウム塩を主成分とする高性能特殊増粘剤A(花王株式会社製、商品名「ビスコトップ100FB」)を添加して再度混練し、モルタル組成物を作製した。また、比較例として、従来の高流動モルタルと普通モルタルとを作製し、上記各モルタルについて、材料分離抵抗性、高流動性、セルフレベリング性、及び、水中不分離性を、使用温度による影響も含めて比較した。
図1は、本発明によるモルタル組成物(本発明1,2,3)と、比較例として用いた従来の高流動モルタル及び普通モルタルの調合表である。なお、実際の使用状況を考慮し、本発明のモルタルについては、上記高性能特殊増粘剤A,Bの配合比と高性能特殊分散剤の添加率を、高流動モルタルについては高性能特殊分散剤の添加量をそれぞれ変化させて各温度での粘度等の調整を行っている。
材料分離抵抗性については、ブリーディング試験により評価した。
ブリーディング試験は、容量500mlのビーカーに400ccのモルタルを打込み、打込み直後からブリーディングが認められなくなるまで30分毎に水を吸い取り、その時までたまった水の累計を1ml単位で記録する(JIS A 1123-2003 「コンクリートのブリーディング試験方法」)もので、水の累計が小さいほど水の浮き(ブリーディング量)が小さく、材料分離が小さい。図2は、各モルタルの温度が5℃、20℃、30℃のときのブリーディング量を表にまとめたもので、普通モルタルでは各温度でブリーディングが生じているが、本発明1,2,3のモルタルと従来の高流動モルタルではどの温度でもブリーディング量が0であり、材料分離抵抗性に優れていることが確認された。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to an Example at all.
[Example 1]
After adding water to the ordinary Portland cement, which is a binder, and the expanded material, and adjusting the water binder ratio to a predetermined value, a high-performance special dispersant (manufactured by Kao Corporation, carboxyl group-containing polymer) is added. Ether type water reducing agent, trade name "Mighty 4000FA") and high performance special thickener B (trade name "Visco Top 100FA" manufactured by Kao Corporation) mainly composed of alkylallyl sulfonate, After adding silica sand and kneading, a high-performance special thickener A (trade name “Visco Top 100FB” manufactured by Kao Corporation) mainly composed of alkylammonium salt is added to this kneaded product and kneaded again. A mortar composition was prepared. In addition, as a comparative example, conventional high-flow mortar and ordinary mortar are prepared, and for each of the above mortars, material separation resistance, high fluidity, self-leveling property, and inseparability in water are also affected by the operating temperature. Including and comparing.
FIG. 1 is a blending table of a mortar composition according to the present invention (the present invention 1, 2, 3) and conventional high-flow mortar and ordinary mortar used as comparative examples. In consideration of the actual use situation, for the mortar of the present invention, the mixing ratio of the above-mentioned high-performance special thickeners A and B and the addition ratio of the high-performance special dispersant are used. For the high-flow mortar, the high-performance special dispersion is used. Viscosity at each temperature is adjusted by changing the amount of the agent added.
The material separation resistance was evaluated by a bleeding test.
In the bleeding test, a 400 cc mortar is put into a beaker having a capacity of 500 ml, water is sucked up every 30 minutes until bleeding is not recognized immediately after the placing, and the total amount of water accumulated until that time is recorded in units of 1 ml (JIS A 1123- 2003 “Concrete Bleeding Test Method”), the smaller the accumulated water, the smaller the water float (bleeding amount) and the smaller the material separation. FIG. 2 is a table summarizing the amount of bleeding when the temperature of each mortar is 5 ° C., 20 ° C., and 30 ° C. In ordinary mortar, bleeding occurs at each temperature. The mortar and conventional high-flowing mortar showed zero bleeding at any temperature and were confirmed to have excellent material separation resistance.

高流動性については、流動性により評価した。
本実験では、流動性については、鉄板の上に内径50mm、高さ100mmのビニール製パイプを置き、モルタルを充填した後パイプを引き上げ、引き上げ後、5分で、直角2方向の直径を測定して値をフロー値とする5分フロー試験(JAS 15 M103 「セルフレベリング材の品質規格」に準拠)により評価した。5分フロー値が大きいほど流動性が高い。図3は、各モルタルの温度が5℃、20℃、30℃のときの5分フロー値(mm)を比較したグラフで、本発明1,2,3のモルタルは、従来の普通モルタルはもとより、従来の高流動モルタルと比較しても高いフロー値を示しており、本発明のモルタルは優れた流動性を示すことが確認された。
セルフレベリング性は、流動性と粘性とから評価した。
粘性はフロー試験における5分フロー値と1分フロー値との差から評価し、上記の差が大きいほど粘性が高く、流動性が高くても材料分離が生じない。すなわち、流動性が高い(5分フロー値が大きい)が粘性の低いモルタルは、一度流動性を失うと再度流れが生じることがなく、十分なセルフレベリング性を有していないが、流動性が高くかつ粘性の高いモルタルは、流れは遅いが、流動している時間が長いため、流れが停止することがなく、優れたセルフレベリング性を有する。
図4(a)は5分フロー値を比較したグラフで、図4(b)は5分フロー値と1分フロー値との差を比較したグラフである。本発明のモルタルは、5℃、20℃、30℃の各温度において5分フロー値が大きく流動性が高いだけでなく、フロー値差が大きいことから、優れたセルフレベリング性を有することが確認された。これに対して、従来の高流動モルタルは、5分フロー値は大きいものの、5分フロー値と1分フロー値との差が小さく、セルフレベリング性は本発明のモルタルよりも劣っていることがわかる。
また、以下に示すような充填性確認試験を行って、各モルタルの自己充填性・セルフレベリング性について比較した。
幅20mm、高さ400mm、長さ1700mmの、型枠中の片面に長さ17mmの突起を有するシートを貼った型枠の右端よりモルタルを打設し、その流動勾配及び充填状況を測定した。本発明のモルタルでは、打設中は流動勾配が生じているが、最終的には、図5(a)に示すように、打設8分後に天端の勾配が1.5%とほぼ水平になり、良好な充填性とセルフレベリング性とを有することが確認された。一方、従来の高流動モルタルは、流動速度が速いものの、最終的には、図5(b)に示すように、打設2分後に、8.8%の流動勾配を持ったまま流動が停止した。また、従来の普通モルタルを当該型枠に打設したところ、打設部付近で閉塞を起こしてしまい、打設そのものができなかった。
この実験においても、本発明のモルタルは、従来の高流動モルタルに比較して、セルフレベリング性及び自己充填性に優れていることが確認された。
High fluidity was evaluated based on fluidity.
In this experiment, regarding the fluidity, a vinyl pipe with an inner diameter of 50 mm and a height of 100 mm is placed on an iron plate, the mortar is filled, the pipe is pulled up, and the diameter in two directions at right angles is measured 5 minutes after being pulled up. The value was evaluated by a 5-minute flow test (conforming to JAS 15 M103 “Quality Standards for Self-Leveling Materials”). The larger the 5-minute flow value, the higher the fluidity. FIG. 3 is a graph comparing the flow values (mm) for 5 minutes when the temperature of each mortar is 5 ° C., 20 ° C. and 30 ° C. The mortars of the present invention 1, 2 and 3 are not only conventional mortars but also conventional mortars. Even when compared with the conventional high flow mortar, it showed a high flow value, and it was confirmed that the mortar of the present invention exhibits excellent fluidity.
Self-leveling property was evaluated from fluidity and viscosity.
The viscosity is evaluated from the difference between the 5-minute flow value and the 1-minute flow value in the flow test. The larger the difference is, the higher the viscosity is, and even when the fluidity is high, no material separation occurs. That is, mortar with high fluidity (5 minutes flow value is large) but low viscosity will not flow again once it loses fluidity, and does not have sufficient self-leveling properties, A high and viscous mortar has a slow flow but has a long flow time, so that the flow does not stop and has an excellent self-leveling property.
FIG. 4A is a graph comparing the 5-minute flow value, and FIG. 4B is a graph comparing the difference between the 5-minute flow value and the 1-minute flow value. It is confirmed that the mortar of the present invention has excellent self-leveling properties because it has not only a large flow value for 5 minutes at 5 ° C, 20 ° C, and 30 ° C but also a high flowability, and a large difference in flow values. It was done. In contrast, the conventional high flow mortar has a large 5-minute flow value, but the difference between the 5-minute flow value and the 1-minute flow value is small, and the self-leveling property is inferior to the mortar of the present invention. Recognize.
Moreover, the filling property confirmation test as shown below was conducted, and the mortars were compared for self-filling property and self-leveling property.
Mortar was placed from the right end of a mold having a sheet having a width of 20 mm, a height of 400 mm, and a length of 1700 mm and having a projection having a length of 17 mm on one side of the mold, and the flow gradient and filling condition were measured. In the mortar of the present invention, a flow gradient is generated during the placement, but finally, as shown in FIG. 5 (a), the slope at the top end is approximately horizontal at 1.5% after 8 minutes of placement. It was confirmed that it had good filling properties and self-leveling properties. On the other hand, although the conventional high-flow mortar has a high flow rate, as shown in Fig. 5 (b), the flow finally stopped with a flow gradient of 8.8% after 2 minutes of placement. did. In addition, when a conventional ordinary mortar was placed on the mold, a blockage occurred in the vicinity of the placement portion, and the placement itself was not possible.
Also in this experiment, it was confirmed that the mortar of the present invention is superior in self-leveling property and self-filling property as compared with the conventional high flow mortar.

一方、水中不分離性については、水中不分離度と水中気中強度比とにより評価した。
水中不分離度は、モルタルを水中で打設した際のモルタルのアルカリ性分の溶出を示す指標である、モルタルが投入されている水のpH値により評価するもので、具体的には、ガラス製の1000mlのビーカーに20℃の水を800ml入れ、500g計量した試料を20〜30秒の間に水面から静かに落下させ、落下終了後3分間放置した後、スポイトを用いて、沈下した試料を乱さないようにしながら、上記ビーカー中の水を600ml分取し、そのpHを測定する(水中不分離性コンクリート設計施工指針(案)付属書2 水中不分離性コンクリートの水中不分離度試験方法(案)に準拠)。土木学会「水中不分離性コンクリート設計施工指針(案)」によれば、pH12以下であれば、十分な水中不分離性を有するとしている。
また、水中気中強度比は、水中で作製した試験体の圧縮強度試験結果と気中で作製した試験体の圧縮強度試験結果との比で、この比が100%に近いほど水中で打設した際の水の巻き込みが小さく、水中不分離性に優れている。また、一般に、水中気中強度比が70%以上のものが水中気中強度比が高い材料であるとされている。
図6(a)は、各モルタルの水中不分離度を測定した結果を示すグラフで、本発明1,2,3のモルタルは、いずれも、土木学会で示される基準値であるpH12を下回り、良好な結果となっている。一方、従来の高流動モルタルではpH12を上回り、水中不分離性を有していないことがわかる。
また、図6(b)は、水中気中強度比を比較したグラフで、本発明1,2,3のモルタルは、5℃、20℃、30℃の各温度において水中気中強度比が全て70%を超えているが、従来の高流動モルタルでは、5℃において70%に達していない。
これにより、本発明1,2,3のモルタルは、優れた水中不分離性を有することが確認された。
On the other hand, the underwater inseparability was evaluated by the underwater inseparability and the underwater strength ratio.
The degree of inseparability in water is an index indicating the elution of the alkaline content of the mortar when the mortar is placed in water, and is evaluated by the pH value of the water in which the mortar is introduced. Place 800 ml of water at 20 ° C. into a 1000 ml beaker and gently drop the sample weighed 500 g from the water surface for 20 to 30 seconds. After leaving the drop for 3 minutes, drop the sample using a dropper. While not disturbing, sample 600 ml of water in the beaker and measure its pH (Underwater inseparable concrete design and construction guideline (draft) Appendix 2 Underwater inseparability test method for underwater inseparable concrete ( According to the draft)). According to the Japan Society of Civil Engineers “Underwater inseparable concrete design and construction guideline (draft)”, the pH is 12 or less, and it has sufficient underwater inseparability.
The underwater strength ratio is the ratio between the compressive strength test result of the test specimen prepared in water and the compressive strength test result of the test specimen prepared in the air. Water entrainment is small and excellent in water inseparability. In general, materials having an underwater strength ratio of 70% or more are considered to be materials with a high strength ratio underwater.
FIG. 6 (a) is a graph showing the results of measuring the inseparability of each mortar in water, and the mortars of the present invention 1, 2 and 3 are both below the pH 12, which is the reference value shown by the Japan Society of Civil Engineers. Good results. On the other hand, it can be seen that the conventional high flow mortar has a pH of more than 12 and does not have inseparability in water.
FIG. 6 (b) is a graph comparing the strength ratios in water, and the mortars of the present invention 1, 2, and 3 have all the strength ratios in water at each temperature of 5 ° C., 20 ° C., and 30 ° C. Although it exceeds 70%, the conventional high flow mortar does not reach 70% at 5 ° C.
Thereby, it was confirmed that the mortar of this invention 1,2,3 has the outstanding non-separability in water.

[実施例2]
図7の表に示すような、本願発明の変動要因である高性能特殊増粘剤A,Bの添加率、水セメント比、単位水量、高性能特殊分散剤の添加率を変化させたモルタルをそれぞれ作製して、フロー試験等の各種材料試験を行ない、各変動要因による粘性、流動性、材料分離抵抗性、水中不分離性に対する影響を調べた。なお、本実験では結合材をセメントのみとした。
粘性については20cmフロータイム、1分フロー値、5分フロー値、1分フロー値と5分フロー値との差、ロート試験等から評価した。
流動性については5分フロー値、1分フロー値と5分フロー値との差により評価した。
材料分離抵抗性についてはフロー試験時の目視、ブリーディング試験、打設試験、打設試験体の割裂試験により評価した。
水中不分離性については、水中にモルタルを落下させたときのpH試験及び水中気中強度比により評価した。
[Example 2]
As shown in the table of FIG. 7, a mortar in which the addition ratio of the high-performance special thickeners A and B, the water cement ratio, the unit water amount, and the addition ratio of the high-performance special dispersant, which are the fluctuation factors of the present invention, are changed Each material was prepared and subjected to various material tests such as a flow test, and the influences on the viscosity, fluidity, material separation resistance, and underwater non-separability due to each variation factor were investigated. In this experiment, only the cement was used as the binder.
Viscosity was evaluated from 20 cm flow time, 1 minute flow value, 5 minute flow value, difference between 1 minute flow value and 5 minute flow value, funnel test, and the like.
The fluidity was evaluated by the difference between the 5-minute flow value, the 1-minute flow value, and the 5-minute flow value.
The material separation resistance was evaluated by visual observation during a flow test, a bleeding test, a placement test, and a split test of the placement test specimen.
About inseparability in water, it evaluated by the pH test when a mortar was dropped in water, and the strength ratio in the air.

(1)高性能特殊増粘剤の添加率による影響
高性能特殊増粘剤A,Bの添加率の違いによる粘性、流動性、材料分離抵抗性、水中不分離性の各評価結果を以下の表1に示す。
使用したモルタルの配合は、水セメント比が40%、単位水量が400kg/m3、単位セメント量が1000kg/m3、高性能特殊分散剤の添加率がC×1.0%で、高性能特殊増粘剤A,Bの添加率については、W×0.00%,0.50%,0.75%,1.00%,1.50%,2.00%とした。

Figure 2006176397
表1に示すように、高性能特殊増粘剤の添加率の違いは、粘性、材料分離抵抗性、水中不分離性に対して大きな影響を及ぼしていることがわかる。また、高性能特殊増粘剤の添加率の違いによる各種性能への影響としては、添加率がW×0.50%以下では粘性の低下により材料分離抵抗性、水中不分離性が発揮されず、W×2.00%以上になると粘性が高くなり、ポンプ圧送負荷が大きくなることや、流動時間が長くなるなど施工性に問題がある。したがって、上記高性能特殊増粘剤の添加率としては、W×0.75%〜W×1.50%の範囲とすることが好ましい。
(2)水セメント比の違いによる影響
水セメント比の違いによる各種性能の評価結果を以下の表2に示す。
使用したモルタルの配合は、単位水量を400kg/m3と一定にして、単位セメント量を1334kg/m3,1000kg/m3,800kg/m3,667kg/m3,572kg/m3と変化させることにより、水セメント比を30%,40%,50%,60%,70%と変化させたもので、高性能特殊分散剤の添加率はC×1.0%、高性能特殊増粘剤A,Bの添加率はW×1.00%とそれぞれ一定とした。
Figure 2006176397
表2に示すように、水セメント比を30%とすると若干粘性が高くなり、流動性が低下するが、他の特性については影響は少ない。しかし、水セメント比が30%を下まわる配合では、粘性の増加と流動性の低下により、セルフレベリング性、高流動性、自己充填性が発揮されない。また、水セメント比が70%を超える配合では強度上の問題が発生するので、水セメント比としては、30〜70%の範囲とすることが好ましい。 (1) Influence of the addition rate of high-performance special thickeners The results of evaluation of viscosity, fluidity, material separation resistance, and underwater non-separability due to differences in the addition rates of high-performance special thickeners A and B are as follows. Table 1 shows.
Formulation of mortar used was water-cement ratio of 40%, the unit water amount is 400 kg / m 3, the unit cement weight is 1000 kg / m 3, the addition rate of the high-performance special dispersing agent at C × 1.0% high performance The addition ratios of the special thickeners A and B were W × 0.00%, 0.50%, 0.75%, 1.00%, 1.50%, and 2.00%.
Figure 2006176397
As shown in Table 1, it can be seen that the difference in the addition rate of the high-performance special thickener has a great influence on the viscosity, material separation resistance, and in-water non-separability. In addition, as the effect on the various performances due to the difference in the addition rate of the high-performance special thickener, when the addition rate is less than W x 0.50%, the material separation resistance and water inseparability will not be exhibited due to the decrease in viscosity. When W x 2.00% or more, there is a problem in workability such as an increase in viscosity, an increase in pumping load, and a longer flow time. Therefore, the addition rate of the high-performance special thickener is preferably in the range of W × 0.75% to W × 1.50%.
(2) Influence due to difference in water-cement ratio Table 2 below shows the evaluation results of various performances due to the difference in water-cement ratio.
Formulation of mortar used is the unit water content constant at 400 kg / m 3, to change the unit cement amount and 1334kg / m 3, 1000kg / m 3, 800kg / m 3, 667kg / m 3, 572kg / m 3 By changing the water cement ratio to 30%, 40%, 50%, 60%, 70%, the addition rate of high-performance special dispersant is C x 1.0%, high-performance special thickener The addition rates of A and B were constant at W × 1.00%.
Figure 2006176397
As shown in Table 2, when the water-cement ratio is set to 30%, the viscosity becomes slightly higher and the fluidity is lowered, but the other properties are less affected. However, when the water-cement ratio is less than 30%, the self-leveling property, the high fluidity, and the self-filling property are not exhibited due to an increase in viscosity and a decrease in fluidity. Moreover, since the problem on an intensity | strength will generate | occur | produce when the water cement ratio exceeds 70%, it is preferable to set it as the range of 30 to 70% as a water cement ratio.

(3)単位水量の違いによる影響
単位水量の違いによる各種性能の評価結果を、以下の表3に示す。使用したモルタルの配合は、水セメント比が40%になるように、単位水量を350kg/m3,400kg/m3,450kg/m3と変化させ、それに応じて、単位セメント量を875kg/m3,1000kg/m3,1125kg/m3と変化させたもので、高性能特殊分散剤の添加率はC×1.0%、高性能特殊増粘剤A,Bの添加率は、W×1.00%とした。

Figure 2006176397
表3に示すように、単位水量350kg/m3では流動性が若干低下し、単位水量450kg/m3では材料分離抵抗性が若干低くなるが、他の特性については影響は少ない。
しかし、単位水量が350kg/m3を下まわる配合では、流動性の低下により、セルフレベリング性、高流動性、自己充填性が発揮されない。また、単位水量が450kg/m3を超える配合のものは、材料分離抵抗性の低下による骨材の沈降や、水量が多いことによる収縮量の増大など、耐久性状の問題が発生するので、単位水量としては、350kg/m3〜450kg/m3の範囲とすることが好ましい。
(4)高性能特殊分散剤の添加率による影響
高性能特殊分散剤の添加率の違いによる各種性能の評価結果を以下の表4に示す。使用したモルタルの配合は、水セメント比が40%、単位水量が400kg/m3、単位セメント量が1000kg/m3で、高性能特殊分散剤の添加率をC×0.5%,1.0%,1.5%とした。また、高性能特殊増粘剤A,Bの添加率はW×1.00%とした。
Figure 2006176397
表4に示すように、高性能特殊分散剤の添加率による違いは、添加率がC×0.5%で流動性が若干小さくなり、C×1.5%で材料分離抵抗性が若干低くなるが、他の特性については影響は少ない。しかし、高性能特殊分散剤の添加率がC×0.5%を下まわる配合では、流動性の低下により、セルフレベリング性、高流動性、自己充填性が発揮されない。また、添加率がC×1.5%を超える配合のものは、材料分離抵抗性の低下による骨材の沈降や、ブリーディングの問題が発生するので、高性能特殊分散剤の添加率としては、C×0.5%〜C×1.5%の範囲とすることが好ましい。 (3) Influence by the difference in unit water amount The evaluation results of various performances by the difference in unit water amount are shown in Table 3 below. Formulation of mortar used was such that the water-cement ratio is 40%, the unit water content is changed from 350kg / m 3, 400kg / m 3, 450kg / m 3, accordingly, the unit amount of cement 875kg / m 3, 1000kg / m 3, which was varied between 1125kg / m 3, the addition rate of the high-performance special dispersants C × 1.0%, high-performance special thickener a, the addition of B is, W × It was 1.00%.
Figure 2006176397
As shown in Table 3, decrease in fluidity unit water 350 kg / m 3 slightly, but segregation resistance in the unit water amount 450 kg / m 3 is slightly lower, the less impact on other properties.
However, when the unit water content is less than 350 kg / m 3 , self-leveling property, high fluidity, and self-filling property are not exhibited due to the decrease in fluidity. Also, if the unit water content exceeds 450 kg / m 3 , durability problems such as sedimentation of aggregate due to a decrease in material separation resistance and an increase in shrinkage due to a large amount of water occur. the amount of water is preferably in the range of 350kg / m 3 ~450kg / m 3 .
(4) Influence of the addition rate of the high-performance special dispersant The evaluation results of various performances due to the difference in the addition rate of the high-performance special dispersant are shown in Table 4 below. The composition of the mortar used is 40% water cement, 400 kg / m 3 unit water amount, 1000 kg / m 3 unit cement amount, C × 0.5%, and 1. It was set to 0% and 1.5%. Moreover, the addition rate of the high-performance special thickeners A and B was W × 1.00%.
Figure 2006176397
As shown in Table 4, the difference depending on the addition rate of the high-performance special dispersant is that the addition rate is C × 0.5%, the fluidity is slightly smaller, and the material separation resistance is slightly lower at C × 1.5%. However, there is little influence on other characteristics. However, when the addition ratio of the high-performance special dispersant is less than C × 0.5%, the self-leveling property, the high fluidity, and the self-filling property are not exhibited due to the decrease in fluidity. In addition, when the addition rate exceeds C × 1.5%, aggregate sedimentation due to a decrease in material separation resistance and bleeding problems occur, so the addition rate of the high-performance special dispersant is as follows: A range of C × 0.5% to C × 1.5% is preferable.

以上説明したように、本発明によれば、流動性、自己充填性、材料分離抵抗性に優れているだけでなく、水中不分離性、セルフレベリング性に優れたモルタル組成物を得ることができるので、トンネル覆工コンクリートの補修用の裏込め材や、狭間な箇所であっても好適に打設することができるグラウト材を容易に提供することができる。   As described above, according to the present invention, it is possible to obtain a mortar composition that is excellent not only in fluidity, self-filling property, and material separation resistance but also in water inseparability and self-leveling property. Therefore, it is possible to easily provide a backfill material for repairing tunnel lining concrete and a grout material that can be suitably placed even in a narrow space.

実施例1で用いた本発明によるモルタルと、比較例として用いた従来の高流動モルタル及び普通モルタルの配合を示す図である。It is a figure which shows the mixing | blending of the mortar by this invention used in Example 1, the conventional high fluid mortar used as a comparative example, and a normal mortar. 実施例1で用いた各モルタルのブリーディング量の測定結果を示す図である。It is a figure which shows the measurement result of the bleeding amount of each mortar used in Example 1. FIG. 実施例1で用いた各モルタルの5分フロー値を比較した図である。It is the figure which compared the 5-minute flow value of each mortar used in Example 1. FIG. 実施例1で用いた各モルタルの5分フロー値と、5分フロー値と1分フロー値との差とを比較した図である。It is the figure which compared the 5-minute flow value of each mortar used in Example 1, and the difference of a 5-minute flow value and a 1-minute flow value. 本発明によるモルタルと従来の高流動モルタルとの充填性確認試験の結果を示す模式図である。It is a schematic diagram which shows the result of the filling property confirmation test with the mortar by this invention, and the conventional high fluid mortar. 実施例1で用いた各モルタルの水中不分離度と水中気中強度比とを比較した図である。It is the figure which compared the underwater non-separation degree of each mortar used in Example 1, and the underwater strength ratio. 実施例2で用いた本発明によるモルタルの配合と各種材料試験結果を示す図である。It is a figure which shows the mixing | blending of the mortar by this invention used in Example 2, and various material test results.

Claims (4)

少なくともセメントを含む結合材と水と細骨材とに、増粘性混和剤と化学混和剤とを添加し混練した高流動モルタル組成物であって、水と上記結合材との比を30〜70%とし、かつ、単位水量を350〜450kg/m3とするとともに、上記増粘性混和剤として、第1の水溶性低分子化合物(A)と第2の水溶性低分子化合物(B)とを含有する添加剤であり、上記化合物(A)と化合物(B)とが、両性界面活性剤から選ばれる化合物(A)とアニオン性界面活性剤から選ばれる化合物(B)の組み合わせ、または、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)との組み合わせ、カチオン性界面活性剤から選ばれる化合物(A)と臭素化合物から選ばれる化合物(B)との組み合わせ、から選択される添加剤のうちのいずれかの添加剤を用い、上記化学混和剤として、カルボキシル基含有ポリエーテル系減水剤を用いたことを特徴とする高流動モルタル組成物。 A high-flowing mortar composition obtained by adding a kneading agent and a chemical admixture to a binder containing at least cement, water, and fine aggregate, and kneading the water to the binder in a ratio of 30 to 70 % And the unit water amount is 350 to 450 kg / m 3, and the first water-soluble low-molecular compound (A) and the second water-soluble low-molecular compound (B) are used as the thickening admixture. A combination of a compound (B) selected from an amphoteric surfactant and a compound (B) selected from an amphoteric surfactant, or a cation A combination of a compound (A) selected from a cationic surfactant and a compound (B) selected from an anionic aromatic compound, a compound (A) selected from a cationic surfactant and a compound (B) selected from a bromine compound With Align, using any of the additives of the additives selected from, as the chemical admixture, high-flow mortar composition characterized by using a carboxyl group-containing polyether-based water reducing agent. 上記増粘性混和剤として、カチオン性界面活性剤から選ばれる化合物(A)とアニオン性芳香族化合物から選ばれる化合物(B)を含有する増粘性混和剤を用いるとともに、上記化合物(A)と上記化合物(B)とを、単位水量に対して、それぞれ0.75〜1.5重量%の割合で配合したことを特徴とする請求項1に記載の高流動モルタル組成物。   As the thickening admixture, a thickening admixture containing a compound (A) selected from cationic surfactants and a compound (B) selected from anionic aromatic compounds is used, and the compound (A) and the above are used. The high flow mortar composition according to claim 1, wherein the compound (B) is blended at a ratio of 0.75 to 1.5% by weight with respect to the unit water amount. 上記化学混和剤を、セメントに対して、0.5〜1.5重量%の割合で添加したことを特徴とする請求項1または請求項2に記載の高流動モルタル組成物。   The high flow mortar composition according to claim 1 or 2, wherein the chemical admixture is added at a ratio of 0.5 to 1.5 wt% with respect to the cement. 請求項1〜請求項3のいずれかに記載の高流動モルタル組成物の製造方法であって、結合材、水、細骨材に上記第2の水溶性低分子化合物(B)と上記化学混和剤とを添加して混練した後、上記混練物に上記第1の水溶性低分子化合物(A)を添加して再度混練して高流動モルタル組成物を製造するようにしたことを特徴とする高流動モルタル組成物の製造方法。
It is a manufacturing method of the high fluid mortar composition in any one of Claims 1-3, Comprising: Said 2nd water-soluble low molecular weight compound (B) and the said chemical mixing to a binder, water, and a fine aggregate. After adding and kneading the agent, the first water-soluble low-molecular compound (A) is added to the kneaded product and kneaded again to produce a high-fluid mortar composition. A method for producing a high fluidity mortar composition.
JP2005339097A 2004-11-24 2005-11-24 High-fluidity mortar composition and its manufacturing method Pending JP2006176397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339097A JP2006176397A (en) 2004-11-24 2005-11-24 High-fluidity mortar composition and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004338794 2004-11-24
JP2005339097A JP2006176397A (en) 2004-11-24 2005-11-24 High-fluidity mortar composition and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006176397A true JP2006176397A (en) 2006-07-06

Family

ID=36730856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339097A Pending JP2006176397A (en) 2004-11-24 2005-11-24 High-fluidity mortar composition and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006176397A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037727A (en) * 2006-08-10 2008-02-21 Sankyo Material Kk Water-resistant setting cement material
JP2008230914A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition
JP2008230903A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition and cement-based mixture powder
JP2008246824A (en) * 2007-03-30 2008-10-16 Kumagai Gumi Co Ltd Kneading method for cement-based mixture
KR100878552B1 (en) 2007-09-14 2009-01-14 한일시멘트 (주) The composition of high flowing dry pre-mixed mortar for the foor of an apartment house base on calcium sulfo aluminate
JP2009173470A (en) * 2008-01-22 2009-08-06 Kumagai Gumi Co Ltd Cement based composition
JP2009173468A (en) * 2008-01-22 2009-08-06 Kumagai Gumi Co Ltd Cement based composition
JP2009184891A (en) * 2008-02-08 2009-08-20 Denki Kagaku Kogyo Kk Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar
JP2010013830A (en) * 2008-07-02 2010-01-21 Kumagai Gumi Co Ltd Method for manufacturing lower section of base-isolated foundation
JP2010013828A (en) * 2008-07-02 2010-01-21 Kumagai Gumi Co Ltd Method of manufacturing lower part of base isolating foundation
JP2010090664A (en) * 2008-10-10 2010-04-22 West Japan Railway Co Filling method for tunnel cavity and filler composition
JP2011214399A (en) * 2011-08-04 2011-10-27 Fujita Corp Filler
JP2011241679A (en) * 2011-08-04 2011-12-01 Fujita Corp Filler
JP2016037406A (en) * 2014-08-06 2016-03-22 太平洋マテリアル株式会社 High fluidity retention type underwater non-separable grout composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253751A (en) * 2000-03-09 2001-09-18 Kuraray Co Ltd Grout material
JP2003238222A (en) * 2002-02-19 2003-08-27 Kao Corp Additive for hydraulic composition
JP2003313536A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry rheology modifier
JP2003313537A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253751A (en) * 2000-03-09 2001-09-18 Kuraray Co Ltd Grout material
JP2003313536A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry rheology modifier
JP2003313537A (en) * 2001-06-15 2003-11-06 Kao Corp Slurry
JP2003238222A (en) * 2002-02-19 2003-08-27 Kao Corp Additive for hydraulic composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037727A (en) * 2006-08-10 2008-02-21 Sankyo Material Kk Water-resistant setting cement material
JP2008230914A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition
JP2008230903A (en) * 2007-03-20 2008-10-02 Kumagai Gumi Co Ltd Cement-based composition and cement-based mixture powder
JP2008246824A (en) * 2007-03-30 2008-10-16 Kumagai Gumi Co Ltd Kneading method for cement-based mixture
KR100878552B1 (en) 2007-09-14 2009-01-14 한일시멘트 (주) The composition of high flowing dry pre-mixed mortar for the foor of an apartment house base on calcium sulfo aluminate
JP2009173470A (en) * 2008-01-22 2009-08-06 Kumagai Gumi Co Ltd Cement based composition
JP2009173468A (en) * 2008-01-22 2009-08-06 Kumagai Gumi Co Ltd Cement based composition
JP2009184891A (en) * 2008-02-08 2009-08-20 Denki Kagaku Kogyo Kk Underwater non-separable cement composition, premix type underwater non-separable mortar composition, and underwater non-separable grout mortar
JP2010013830A (en) * 2008-07-02 2010-01-21 Kumagai Gumi Co Ltd Method for manufacturing lower section of base-isolated foundation
JP2010013828A (en) * 2008-07-02 2010-01-21 Kumagai Gumi Co Ltd Method of manufacturing lower part of base isolating foundation
JP2010090664A (en) * 2008-10-10 2010-04-22 West Japan Railway Co Filling method for tunnel cavity and filler composition
JP2011214399A (en) * 2011-08-04 2011-10-27 Fujita Corp Filler
JP2011241679A (en) * 2011-08-04 2011-12-01 Fujita Corp Filler
JP2016037406A (en) * 2014-08-06 2016-03-22 太平洋マテリアル株式会社 High fluidity retention type underwater non-separable grout composition

Similar Documents

Publication Publication Date Title
JP2006176397A (en) High-fluidity mortar composition and its manufacturing method
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
JP4740785B2 (en) Polymer cement grout material composition and grout material
JP2008189526A (en) Admixture for grout and cement composition for grout
JP5333430B2 (en) Polymer cement grout material composition and grout material
CN111662053A (en) Polypropylene fiber concrete and preparation method thereof
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP2007238745A (en) Grout composition and grout mortar using the same
JP5189274B2 (en) Ground injection material and ground injection method using the same
JP5432431B2 (en) High strength grout material
JP4744813B2 (en) Method for producing concrete composition
JP2007269609A (en) Polymer cement grouting material composition and grouting material
JP2003286064A (en) Cement composition
JP5588612B2 (en) Reinforcing bar joint filler composition, reinforcing bar joint filler using the same, and reinforcing bar joint filling method
JP5014850B2 (en) Cementitious composition
JP4928066B2 (en) PC grout admixture
KR100814148B1 (en) Concrete composition
JP5035721B2 (en) High fluidity lightweight mortar
JP2006143559A (en) Low-strength mortar composition and pore-filling material
JP2010100457A (en) Grout composition for use at elevated temperature
JP2010155757A (en) Admixture for grout and grout composition
JP2006182645A (en) Binding material
JP6626363B2 (en) Non-shrink grout composition
JP2006182625A (en) Cement-based grout composition
JP2019065638A (en) Concrete, tunnel lining body and concrete mixing design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419