JP2016036256A - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
JP2016036256A
JP2016036256A JP2015247798A JP2015247798A JP2016036256A JP 2016036256 A JP2016036256 A JP 2016036256A JP 2015247798 A JP2015247798 A JP 2015247798A JP 2015247798 A JP2015247798 A JP 2015247798A JP 2016036256 A JP2016036256 A JP 2016036256A
Authority
JP
Japan
Prior art keywords
rotor cores
pair
rotor
claw
shaped magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015247798A
Other languages
Japanese (ja)
Other versions
JP6259805B2 (en
Inventor
洋次 山田
Hirotsugu Yamada
洋次 山田
智恵 森田
Chie Morita
智恵 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2015247798A priority Critical patent/JP6259805B2/en
Publication of JP2016036256A publication Critical patent/JP2016036256A/en
Application granted granted Critical
Publication of JP6259805B2 publication Critical patent/JP6259805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rotor that can reduce cogging torque.SOLUTION: First and second rotor cores 21 and 22 and third and fourth rotor cores 31 and 32, which are plural pairs of rotor cores, are disposed in such a way that the rotor cores 22 and 31 of the same polarity are disposed adjacent to each other, and are shifted in a circumferential direction between the individual pairs of rotors 21, 22, 31 and 32.SELECTED DRAWING: Figure 2

Description

本発明は、ロータ及びモータに関するものである。   The present invention relates to a rotor and a motor.

モータに使用されるロータとしては、周方向に複数の爪状磁極をそれぞれ有して組み合わされる対のロータコアを備え、それらの間に界磁磁石を配置して各爪状磁極を交互に異なる磁極に機能させる所謂永久磁石界磁のランデル型構造のロータがある(例えば、特許文献1参照)。   As a rotor used in a motor, a pair of rotor cores each having a plurality of claw-shaped magnetic poles in the circumferential direction are combined, and field magnets are arranged between them to alternately change the claw-shaped magnetic poles to different magnetic poles. There is a so-called permanent magnet field Landell-type rotor that functions in the same manner (for example, see Patent Document 1).

実開平5−43749号公報Japanese Utility Model Publication No. 5-43749

ところで、上記のようなロータでは、図8に示すように対の同一形状のロータコア101,102を組み付けた組付体SA10と、対の同一形状のロータコア103,104を組み付けた組付体SA20とを軸方向に複数段(図8では2段)積層配置した所謂タンデム構造とすることができる。このようにロータ100を構成することで、モータ出力向上を図ることが可能となる。しかしながら、所謂永久磁石界磁のランデル型構造のロータでは、ロータの表面磁束に高調波を含みやすく、コギングトルクが大きくなる虞がある。   By the way, in the rotor as described above, as shown in FIG. 8, an assembly SA10 in which a pair of rotor cores 101, 102 having the same shape is assembled, and an assembly SA20 in which a pair of rotor cores 103, 104 having the same shape are assembled. Can be a so-called tandem structure in which a plurality of layers are stacked in the axial direction (two steps in FIG. 8). By configuring the rotor 100 in this way, it is possible to improve the motor output. However, in a so-called permanent magnet field rundel-type rotor, the surface magnetic flux of the rotor is likely to contain harmonics, which may increase the cogging torque.

本発明は、上記課題を解決するためになされたものであって、その目的は、コギングトルクを低減させることができるロータ及びモータを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotor and a motor that can reduce cogging torque.

上記課題を解決するロータは、回転軸に沿って配列された複数対のロータコアと、各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、を備え、各対のロータコアは、円盤状のコアベースの外周部から突出するとともに周方向幅一定で軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、前記爪状磁極の周方向端面間の隙間が軸方向に沿って直線状をなすように形成され、前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれている。   A rotor that solves the above problems includes a plurality of pairs of rotor cores arranged along a rotation axis, and a field magnet that is arranged between each pair of rotor cores and is magnetized along the axial direction. The rotor core has a plurality of claw-shaped magnetic poles protruding from the outer peripheral portion of the disk-shaped core base and extending in opposite directions along the axial direction with a constant circumferential width, and arranged alternately along the circumferential direction. Each of the claw-shaped magnetic poles is formed so that a gap between circumferential end faces of the claw-shaped magnetic poles is linear along the axial direction, and the plurality of pairs of rotor cores are arranged adjacent to each other, It arrange | positions in the aspect shifted | deviated to the circumferential direction between each pair of rotor cores, and it has shifted | deviated to the circumferential direction between each said pair of rotor cores so that a different pole may not contact | abut axially between each said pair of rotor cores.

上記課題を解決するロータは、回転軸に沿って配列された複数対のロータコアと、各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、を備え、各対のロータコアは、円盤状のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれ、前記各対のロータコア間において同極の前記爪状磁極の先端同士がずれて当接し、前記各対のロータコア間において同極の前記爪状磁極の基端同士がずれて当接している。   A rotor that solves the above problems includes a plurality of pairs of rotor cores arranged along a rotation axis, and a field magnet that is arranged between each pair of rotor cores and is magnetized along the axial direction. The rotor core has a plurality of claw-shaped magnetic poles that protrude from the outer periphery of the disk-shaped core base and extend in opposite directions along the axial direction, and are alternately arranged along the circumferential direction, The plurality of pairs of rotor cores are arranged in such a manner that rotor cores having the same magnetic pole are adjacent to each other and are displaced in the circumferential direction between each pair of rotor cores, and different poles do not contact in the axial direction between each pair of rotor cores. As described above, the claw-shaped magnetic poles having the same polarity between the pair of rotor cores are displaced in the circumferential direction, the tips of the claw-shaped magnetic poles having the same polarity are in contact with each other, and the claw having the same polarity between the pair of rotor cores. Base of magnetic pole Judges are in contact with displaced.

上記課題を解決するロータは、回転軸に沿って配列された複数対のロータコアと、各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、を備え、各対のロータコアは、円盤状のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれ、周方向に隣り合う前記爪状磁極の間において前記周方向に隣り合う爪状磁極と同極性が対向するように磁化された極間磁石が配置され、前記各対のロータコア間において同方向に磁化されて軸方向に隣接する前記極間磁石が周方向にずれた位置態様であり、前記爪状磁極の径方向内側面に前記爪状磁極と同極性が対向するように磁化された背面補助磁石が配置されている。   A rotor that solves the above problems includes a plurality of pairs of rotor cores arranged along a rotation axis, and a field magnet that is arranged between each pair of rotor cores and is magnetized along the axial direction. The rotor core has a plurality of claw-shaped magnetic poles that protrude from the outer periphery of the disk-shaped core base and extend in opposite directions along the axial direction, and are alternately arranged along the circumferential direction, The plurality of pairs of rotor cores are arranged in such a manner that rotor cores having the same magnetic pole are adjacent to each other and are displaced in the circumferential direction between each pair of rotor cores, and different poles do not contact in the axial direction between each pair of rotor cores. Between the pair of rotor cores, and between the claw-shaped magnetic poles adjacent in the circumferential direction, the interpolar magnet magnetized so that the same polarity as the claw-shaped magnetic poles adjacent in the circumferential direction is opposed to each other Are arranged and each said The magnets are magnetized in the same direction between the rotor cores, and the interpole magnets adjacent in the axial direction are displaced in the circumferential direction, and the same polarity as the claw-shaped magnetic poles opposes the radially inner side surface of the claw-shaped magnetic poles. A back auxiliary magnet magnetized in this manner is arranged.

上記各構成によれば、複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、各対のロータコア間で周方向にずれる態様で配置されるため、対のロータコアで発生するコギングトルクの位相がずれることとなるため、位相のずれたコギングトルク同士で打ち消し合うことができ、合成コギングトルクを低減させて振動の発生を抑えることができる。   According to each of the above configurations, the plurality of pairs of rotor cores are arranged in such a manner that the rotor cores having the same magnetic pole are adjacent to each other and shifted in the circumferential direction between each pair of rotor cores. Therefore, the cogging torques out of phase can cancel each other out, and the combined cogging torque can be reduced to suppress the occurrence of vibration.

上記課題を解決するモータは、上記記載のロータを備えている。
この構成によれば、コギングトルクを低減することができるモータを提供することができる。
A motor that solves the above problem includes the rotor described above.
According to this configuration, a motor capable of reducing cogging torque can be provided.

従って、上記記載の発明によれば、コギングトルクを低減させることができるロータ及びモータを提供することができる。   Therefore, according to the above described invention, it is possible to provide a rotor and a motor that can reduce cogging torque.

実施形態におけるモータの断面図。Sectional drawing of the motor in embodiment. 同上におけるロータの斜視図。The perspective view of the rotor in the same as the above. 同上におけるロータの断面図。Sectional drawing of the rotor in the same as the above. 同上におけるロータコア間のずれ角度θと鎖交磁束量との関係を示すグラフ。The graph which shows the relationship between the shift | offset | difference angle (theta) between rotor cores in the same as above, and the amount of flux linkages. 同上におけるロータコア間のずれ角度θとコギングトルクとの関係を示すグラフ。The graph which shows the relationship between deviation angle (theta) between rotor cores in the same as above, and cogging torque. 別例におけるロータの斜視図。The perspective view of the rotor in another example. 別例におけるロータコア間のずれ角度θと鎖交磁束量との関係を示すグラフ。The graph which shows the relationship between the shift | offset | difference angle (theta) between rotor cores in another example, and the amount of flux linkages. 従来のロータ構造を説明するための斜視図。The perspective view for demonstrating the conventional rotor structure.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示すように、モータ1のモータケース2は、有底筒状に形成された筒状ハウジング3と、該筒状ハウジング3のフロント側(図1中、左側)の開口部を閉塞するフロントエンドプレート4とを有している。また、筒状ハウジング3のリア側(図1中、右側)の端部には、回路基板等の電源回路を収容した回路収容ボックス5が取着されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
As shown in FIG. 1, a motor case 2 of a motor 1 closes a cylindrical housing 3 formed in a bottomed cylindrical shape and an opening on the front side (left side in FIG. 1) of the cylindrical housing 3. And a front end plate 4. A circuit housing box 5 that houses a power circuit such as a circuit board is attached to an end of the cylindrical housing 3 on the rear side (right side in FIG. 1).

筒状ハウジング3の内周面にはステータ6が固定されている。ステータ6は、径方向内側に延びる複数のティースを有する電機子コア7と、電機子コア7のティースに巻装されたセグメントコンダクタ(SC)巻線8とを有する。モータ1のロータ11は回転軸12を有し、ステータ6の内側に配置されている。回転軸12は非磁性体の金属シャフトであって、筒状ハウジング3の底部3a及びフロントエンドプレート4に支持された軸受13,14により回転可能に支持されている。   A stator 6 is fixed to the inner peripheral surface of the cylindrical housing 3. The stator 6 includes an armature core 7 having a plurality of teeth extending radially inward, and a segment conductor (SC) winding 8 wound around the teeth of the armature core 7. The rotor 11 of the motor 1 has a rotating shaft 12 and is disposed inside the stator 6. The rotating shaft 12 is a non-magnetic metal shaft, and is rotatably supported by bearings 13 and 14 supported by the bottom 3 a of the cylindrical housing 3 and the front end plate 4.

ロータ11は、図2及び図3に示すように、第1及び第2組付体SA1,SA2を備える。
第1組付体SA1は、図2及び図3に示すように、対の第1及び第2ロータコア21,22と、界磁磁石としての環状磁石23と、背面補助磁石24、極間磁石25とを備える。尚、図2及び図3中の実線で示す矢印は各磁石23,24,25の磁化方向(S極からN極向き)を示している。
As shown in FIGS. 2 and 3, the rotor 11 includes first and second assemblies SA1 and SA2.
2 and 3, the first assembly SA1 includes a pair of first and second rotor cores 21 and 22, a ring magnet 23 as a field magnet, a back auxiliary magnet 24, and an interpole magnet 25. With. 2 and 3 indicate the magnetization directions (from the S pole to the N pole) of the magnets 23, 24, and 25.

図2に示すように、第1組付体SA1の第1ロータコア21は、略円盤状の第1コアベース21aの外周部に、等間隔に複数(本実施形態では5個)の第1爪状磁極21bが形成されている。第1爪状磁極21bは、第1コアベース21aに対して径方向外側に突出された突出部21cと、この突出部21cから軸方向に延出形成された爪部21dとを有する。   As shown in FIG. 2, the first rotor core 21 of the first assembly SA1 has a plurality of (five in this embodiment) first claws at an equal interval on the outer periphery of a substantially disk-shaped first core base 21a. A magnetic pole 21b is formed. The first claw-shaped magnetic pole 21b has a protrusion 21c that protrudes radially outward with respect to the first core base 21a, and a claw 21d that extends from the protrusion 21c in the axial direction.

第1爪状磁極21bの周方向端面21e,21fは径方向に延びる(軸方向から見て径方向に対して傾斜していない)平坦面とされ、突出部21cは軸直交方向断面が扇形状とされている。突出部21cの径方向外側の端部部分には、爪部21dが周方向の幅を一定として軸方向に沿って延出形成されている。各第1爪状磁極21bの周方向の角度、即ち前記周方向端面21e,21f間の角度は、周方向に隣り合う第1爪状磁極21b同士の隙間の角度より小さく設定されている。   The circumferential end surfaces 21e, 21f of the first claw-shaped magnetic pole 21b are flat surfaces extending in the radial direction (not inclined with respect to the radial direction when viewed from the axial direction), and the projecting portion 21c has a fan-shaped cross section in the direction perpendicular to the axis. It is said that. A claw portion 21d is formed at the end portion on the radially outer side of the protruding portion 21c so as to extend along the axial direction with a constant circumferential width. The circumferential angle of each first claw-shaped magnetic pole 21b, that is, the angle between the circumferential end surfaces 21e and 21f is set to be smaller than the angle of the gap between the first claw-shaped magnetic poles 21b adjacent in the circumferential direction.

図2及び図3に示すように、第2ロータコア22は、略円盤状の第2コアベース22aの外周部に、等間隔に複数の第2爪状磁極22bの突出部22cが形成されている。突出部22cは、軸直交方向断面が扇形状とされ、径方向外側の端部部分には爪部22dが軸方向に沿って延出形成されている。   As shown in FIGS. 2 and 3, the second rotor core 22 has protrusions 22 c of a plurality of second claw-shaped magnetic poles 22 b formed at equal intervals on the outer periphery of a substantially disk-shaped second core base 22 a. . The projecting portion 22c has a fan-shaped cross section in the direction perpendicular to the axis, and a claw portion 22d is formed to extend along the axial direction at the radially outer end portion.

第2爪状磁極22bの周方向端面22e,22fは径方向に延びる平坦面とされ、第2爪状磁極22bは軸直交方向断面が扇形状とされている。各第2爪状磁極22bの周方向の角度、即ち前記周方向端面22e,22f間の角度は、周方向に隣り合う第2爪状磁極22b同士の隙間の角度より小さく設定されている。   The circumferential end surfaces 22e and 22f of the second claw-shaped magnetic pole 22b are flat surfaces extending in the radial direction, and the second claw-shaped magnetic pole 22b has a fan-shaped cross section in the direction perpendicular to the axis. The circumferential angle of each second claw-shaped magnetic pole 22b, that is, the angle between the circumferential end faces 22e and 22f is set smaller than the angle of the gap between the second claw-shaped magnetic poles 22b adjacent in the circumferential direction.

そして、第2ロータコア22は、各第2爪状磁極22bの爪部22dがそれぞれ対応する各第1爪状磁極21bの爪部21d間に配置されるようにして、第1コアベース21aと第2コアベース22aとの軸方向の間に環状磁石23(図3参照)が配置(挟持)されるようにして第1ロータコア21に対して組み付けられる。このとき、第1爪状磁極21bの一方の周方向端面21eと第2爪状磁極22bの他方の周方向端面22fとが軸方向に沿って平行をなすように形成されるため、各端面21e,22f間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。また、第1爪状磁極21bの他方の周方向端面21fと第2爪状磁極22bの一方の周方向端面22eとが軸方向に沿って平行をなすように形成されるため、各端面21f,22e間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。   The second rotor core 22 is disposed between the first core base 21a and the first core base 21a so that the claw portions 22d of the second claw-shaped magnetic poles 22b are disposed between the claw portions 21d of the corresponding first claw-shaped magnetic poles 21b. The annular magnet 23 (see FIG. 3) is disposed (sandwiched) between the two core bases 22a in the axial direction and assembled to the first rotor core 21. At this time, one end surface 21e of the first claw-shaped magnetic pole 21b and the other circumferential end surface 22f of the second claw-shaped magnetic pole 22b are formed so as to be parallel to each other in the axial direction. , 22f is formed so as to be substantially linear along the axial direction. Since the other circumferential end face 21f of the first claw-shaped magnetic pole 21b and one circumferential end face 22e of the second claw-shaped magnetic pole 22b are formed so as to be parallel along the axial direction, the end faces 21f, The gap between 22e is formed so as to be substantially linear along the axial direction.

ここで、環状磁石23は、その外径が第1及び第2コアベース21a,22aの外径と同じに設定され、第1爪状磁極21bを第1の磁極(本実施形態ではN極)として機能させ、第2爪状磁極22bを第2の磁極(本実施形態ではS極)として機能させるように、軸方向に磁化されている。   Here, the outer diameter of the annular magnet 23 is set to be the same as the outer diameters of the first and second core bases 21a and 22a, and the first claw-shaped magnetic pole 21b is the first magnetic pole (N pole in this embodiment). And the second claw-shaped magnetic pole 22b is magnetized in the axial direction so as to function as a second magnetic pole (S pole in this embodiment).

各第1爪状磁極21bの背面21g(径方向内側の面)と第2コアベース22aの外周面22hとの間には、背面補助磁石24が配置されている。また、各第2爪状磁極22bの背面22gには、第1爪状磁極21bと同様に、背面補助磁石24が配置されている。各背面補助磁石24は、その軸直交方向断面が扇形状とされ、第1爪状磁極21bの背面21gに当接する側と第1コアベース21aの外周面21hに当接する側とがN極となるように磁化されている。そして、各背面補助磁石24は、第2コアベース22aの外周面22hに当接する側と第2爪状磁極22bの背面22gと当接する側とが同第2コアベース22aと同極のS極となるように磁化されている。   A back auxiliary magnet 24 is disposed between the back surface 21g (radially inner surface) of each first claw-shaped magnetic pole 21b and the outer peripheral surface 22h of the second core base 22a. Similarly to the first claw-shaped magnetic pole 21b, a back auxiliary magnet 24 is disposed on the back surface 22g of each second claw-shaped magnetic pole 22b. Each of the back auxiliary magnets 24 has a fan-shaped cross section in the direction perpendicular to the axis, and the side contacting the back surface 21g of the first claw-shaped magnetic pole 21b and the side contacting the outer peripheral surface 21h of the first core base 21a are N poles. It is magnetized to become. Each of the back auxiliary magnets 24 has the same polarity as the second core base 22a on the side contacting the outer peripheral surface 22h of the second core base 22a and the side contacting the back surface 22g of the second claw-shaped magnetic pole 22b. It is magnetized so that

各背面補助磁石24は、環状磁石23が配置されるロータ11の軸方向位置で互いに軸方向に重なるように、言い換えると、ロータ11の両面から環状磁石23が配置される軸方向位置に達するまで配置されるように軸方向の長さが設定されている。   The back auxiliary magnets 24 overlap each other in the axial direction at the axial position of the rotor 11 where the annular magnet 23 is arranged, in other words, from both sides of the rotor 11 until reaching the axial position where the annular magnet 23 is arranged. The axial length is set so as to be arranged.

また、図2に示すように、第1爪状磁極21bと第2爪状磁極22bとの周方向の間には、極間磁石25が配置されている。より詳しくは、本実施形態の極間磁石25は、第1爪状磁極21bの一方の周方向端面21eと、第2爪状磁極22bの他方の周方向端面22fとの間に配置されている。そして、もう一方の極間磁石25は、第1爪状磁極21bの他方の周方向端面21fと、第2爪状磁極22bの一方の周方向端面22eとの間に配置されている。各極間磁石25は、第1及び第2爪状磁極21b,22bとそれぞれ同極性が対向するように(第1爪状磁極21b側がN極で、第2爪状磁極22b側がS極となるように)周方向に磁化されている。各極間磁石25の回転軸12側(ロータ11の径方向内側)には、漏れ磁束防止の空隙Kが設けられている。   Further, as shown in FIG. 2, an interpole magnet 25 is arranged between the first claw-shaped magnetic pole 21b and the second claw-shaped magnetic pole 22b in the circumferential direction. More specifically, the interpole magnet 25 of the present embodiment is disposed between one circumferential end surface 21e of the first claw-shaped magnetic pole 21b and the other circumferential end surface 22f of the second claw-shaped magnetic pole 22b. . The other interpolar magnet 25 is disposed between the other circumferential end face 21f of the first claw-shaped magnetic pole 21b and one circumferential end face 22e of the second claw-shaped magnetic pole 22b. Each inter-pole magnet 25 has the same polarity as the first and second claw-shaped magnetic poles 21b and 22b (the first claw-shaped magnetic pole 21b side is the N pole, and the second claw-shaped magnetic pole 22b side is the S pole. Like) is magnetized in the circumferential direction. A gap K for preventing leakage magnetic flux is provided on the rotating shaft 12 side of each interpolar magnet 25 (inside in the radial direction of the rotor 11).

第2組付体SA2は、第1組付体SA1と略同形状とされ、対の第3及び第4ロータコア31,32と、界磁磁石としての環状磁石33と、背面補助磁石34と、極間磁石35とを備える。尚、図2及び図3中の実線で示す矢印は各磁石33,34,35の磁化方向(S極からN極向き)を示している。   The second assembly SA2 has substantially the same shape as the first assembly SA1, a pair of third and fourth rotor cores 31, 32, an annular magnet 33 as a field magnet, a back auxiliary magnet 34, And an inter-pole magnet 35. 2 and 3 indicate the magnetization directions (from the S pole to the N pole) of the magnets 33, 34, and 35.

第2組付体SA2を構成する第3ロータコア31は、図2及び3に示すように、前記第2ロータコア22を軸直交方向を基準に反転したものであり、略円盤状の第3コアベース31aの外周部に、等間隔に複数(本実施形態では5個)の第3爪状磁極31bが形成されている。第3爪状磁極31bは、第3コアベース31aに対して径方向外側に突出された突出部31cと、この突出部31cから軸方向に延出形成された爪部31dとを有する。   As shown in FIGS. 2 and 3, the third rotor core 31 constituting the second assembly SA <b> 2 is obtained by inverting the second rotor core 22 with respect to the direction perpendicular to the axis, and has a substantially disc-shaped third core base. A plurality (five in the present embodiment) of third claw-shaped magnetic poles 31b are formed at equal intervals on the outer periphery of 31a. The third claw-shaped magnetic pole 31b has a protrusion 31c that protrudes radially outward with respect to the third core base 31a, and a claw 31d that extends from the protrusion 31c in the axial direction.

前記第3ロータコア31は、図3に示すように、その軸方向一端側の端面が第2ロータコア22の軸方向他端側の端面と当接するように回転軸12に組み付けられる。このため、前記爪部31dは、第2ロータコア22の爪部22dと軸方向反対側に延出するように構成される。   As shown in FIG. 3, the third rotor core 31 is assembled to the rotary shaft 12 such that the end surface on one end side in the axial direction is in contact with the end surface on the other end side in the axial direction of the second rotor core 22. For this reason, the said claw part 31d is comprised so that the claw part 22d of the 2nd rotor core 22 may be extended to an axial direction opposite side.

第3爪状磁極31bの周方向端面31e,31fは径方向に延びる(軸方向から見て径方向に対して傾斜していない)平坦面とされ、突出部31cは軸直交方向断面が扇形状とされている。突出部31cの径方向外側の端部部分には、爪部31dが周方向の幅を一定として軸方向に沿って延出形成されている。各第3爪状磁極31bの周方向の角度、即ち前記周方向端面31e,31f間の角度は、周方向に隣り合う第3爪状磁極31b同士の隙間の角度より小さく設定されている。   The circumferential end surfaces 31e and 31f of the third claw-shaped magnetic pole 31b are flat surfaces extending in the radial direction (not inclined with respect to the radial direction when viewed from the axial direction), and the projecting portion 31c has a fan-shaped cross section in the direction perpendicular to the axis. It is said that. A claw portion 31d is formed at the end portion on the radially outer side of the protruding portion 31c so as to extend along the axial direction with a constant circumferential width. The circumferential angle of each third claw-shaped magnetic pole 31b, that is, the angle between the circumferential end surfaces 31e and 31f is set to be smaller than the angle of the gap between the third claw-shaped magnetic poles 31b adjacent in the circumferential direction.

一方、第2組付体SA2を構成する第4ロータコア32は、前記第1ロータコア21を軸直交方向を基準に反転したものであり、第3ロータコア31と略同形状であって、略円盤状の第4コアベース32aの外周部に、等間隔に複数の第4爪状磁極32bの突出部32cが形成されている。突出部32cは、軸直交方向断面が扇形状とされ、径方向外側の端部部分には爪部32dが軸方向に沿って延出形成されている。   On the other hand, the fourth rotor core 32 constituting the second assembly SA2 is obtained by inverting the first rotor core 21 with respect to the direction perpendicular to the axis, and has substantially the same shape as the third rotor core 31 and is substantially disc-shaped. Projections 32c of a plurality of fourth claw-shaped magnetic poles 32b are formed at equal intervals on the outer periphery of the fourth core base 32a. The projecting portion 32c has a fan-shaped cross section in the direction perpendicular to the axis, and a claw portion 32d extends along the axial direction at an end portion on the radially outer side.

第4爪状磁極32bの周方向端面32e,32fは径方向に延びる平坦面とされ、第4爪状磁極32bは軸直交方向断面が扇形状とされている。各第4爪状磁極32bの周方向の角度、即ち前記周方向端面21e,32f間の角度は、周方向に隣り合う第4爪状磁極32b同士の隙間の角度より小さく設定されている。   The circumferential end surfaces 32e and 32f of the fourth claw-shaped magnetic pole 32b are flat surfaces extending in the radial direction, and the fourth claw-shaped magnetic pole 32b has a fan-shaped cross section in the direction perpendicular to the axis. The circumferential angle of each fourth claw-shaped magnetic pole 32b, that is, the angle between the circumferential end faces 21e and 32f is set smaller than the angle of the gap between the fourth claw-shaped magnetic poles 32b adjacent in the circumferential direction.

そして、第4ロータコア32は、各第4爪状磁極32bの爪部32dがそれぞれ対応する各第3爪状磁極31bの爪部31d間に配置されるようにして、第3コアベース31aと第4コアベース32aとの軸方向の間に環状磁石33(図3参照)が配置(挟持)されるようにして第3ロータコア31に対して組み付けられる。このとき、第3爪状磁極31bの一方の周方向端面31eと第4爪状磁極32bの他方の周方向端面32fとが軸方向に沿って平行をなすように形成されるため、各端面31e,32f間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。また、第3爪状磁極31bの他方の周方向端面31fと第4爪状磁極32bの一方の周方向端面32eとが軸方向に沿って平行をなすように形成されるため、各端面31f,32e間の間隙が軸方向に沿って略直線状をなすように形成されることとなる。また、第4爪状磁極32bは、その爪部32dの軸方向先端面32iが第1爪状磁極21bの爪部21dの軸方向先端面21iと軸方向において当接するように第3ロータコア31及び回転軸12と組み付けられる。   The fourth rotor core 32 is arranged so that the claw portions 32d of the fourth claw-shaped magnetic poles 32b are disposed between the claw portions 31d of the corresponding third claw-shaped magnetic poles 31b. The annular magnet 33 (see FIG. 3) is disposed (sandwiched) between the four core bases 32a in the axial direction and assembled to the third rotor core 31. At this time, one end surface 31e of the third claw-shaped magnetic pole 31b and the other circumferential end surface 32f of the fourth claw-shaped magnetic pole 32b are formed so as to be parallel to each other along the axial direction. , 32f is formed so as to be substantially linear along the axial direction. Further, since the other circumferential end face 31f of the third claw-shaped magnetic pole 31b and one circumferential end face 32e of the fourth claw-shaped magnetic pole 32b are formed so as to be parallel along the axial direction, each end face 31f, The gap between 32e is formed to be substantially linear along the axial direction. In addition, the fourth claw-shaped magnetic pole 32b has the third rotor core 31 and the claw portion 32d so that the axial front end surface 32i abuts the axial front end surface 21i of the claw portion 21d of the first claw-shaped magnetic pole 21b in the axial direction. The rotary shaft 12 is assembled.

このとき、第1組付体SA1を構成する対の第1及び第2ロータコア21,22と、第2組付体SA2を構成する対の第3及び第4ロータコア31,32とが周方向に所定角度であるずれ角度θだけずれるように回転軸12に組み付けられる。ここで、ずれ角度θは、極対数をP(本実施形態では5)としたときに、0<θ≦50°/Pの範囲である、0<θ≦10°(図4中X1として示す)に設定されることが望ましく、ずれ角度θを0<θ≦35°/Pの範囲である、0<θ≦7°(図4中X2として示す)に設定することがより望ましい。また更に好ましくは、ずれ角度θを0<θ≦20°/Pの範囲である、0<θ≦4°(図4中X3として示す)に設定することが望ましい。   At this time, the pair of first and second rotor cores 21 and 22 constituting the first assembly SA1 and the pair of third and fourth rotor cores 31 and 32 constituting the second assembly SA2 are arranged in the circumferential direction. The rotary shaft 12 is assembled so as to be shifted by a shift angle θ which is a predetermined angle. Here, the deviation angle θ is 0 <θ ≦ 10 ° (indicated as X1 in FIG. 4), where 0 <θ ≦ 50 ° / P when the number of pole pairs is P (5 in this embodiment). It is desirable to set the deviation angle θ to 0 <θ ≦ 7 ° (indicated as X2 in FIG. 4), which is in the range of 0 <θ ≦ 35 ° / P. More preferably, it is desirable to set the deviation angle θ to 0 <θ ≦ 4 ° (indicated as X3 in FIG. 4) in the range of 0 <θ ≦ 20 ° / P.

環状磁石33は、前記環状磁石23とその磁化方向が逆方向となるように設けられる。環状磁石33は、その外径が第3及び第4コアベース31a,32aの外径と同じに設定され、第3爪状磁極31bを第2の磁極(本実施形態ではS極)として機能させ、第4爪状磁極32bを第1の磁極(本実施形態ではN極)として機能させるように、軸方向に磁化されている。   The annular magnet 33 is provided so that the annular magnet 23 and the magnetization direction thereof are opposite to each other. The outer diameter of the annular magnet 33 is set to be the same as the outer diameter of the third and fourth core bases 31a and 32a, and the third claw-shaped magnetic pole 31b functions as a second magnetic pole (S pole in this embodiment). The fourth claw-shaped magnetic pole 32b is magnetized in the axial direction so as to function as a first magnetic pole (N pole in this embodiment).

各第3爪状磁極31bの背面31g(径方向内側の面)と第4コアベース32aの外周面32hとの間には、背面補助磁石34が配置されている。また、各第4爪状磁極32bの背面32gには、第3爪状磁極31bと同様に、背面補助磁石34が配置されている。各背面補助磁石34は、その軸直交方向断面が扇形状とされ、第3爪状磁極31bの背面31gに当接する側と第3コアベース31aの外周面31hに当接する側とがS極となるように磁化されている。そして、各背面補助磁石34は、第4コアベース32aの外周面32hに当接する側と第4爪状磁極32bの背面32gと当接する側とが同第4コアベース32aと同極のN極となるように磁化されている。   A back auxiliary magnet 34 is disposed between the back surface 31g (radially inner surface) of each third claw-shaped magnetic pole 31b and the outer peripheral surface 32h of the fourth core base 32a. Similarly to the third claw-shaped magnetic pole 31b, a back auxiliary magnet 34 is disposed on the back surface 32g of each fourth claw-shaped magnetic pole 32b. Each of the back auxiliary magnets 34 has a fan-shaped cross section in the direction perpendicular to the axis, and the side that contacts the back surface 31g of the third claw-shaped magnetic pole 31b and the side that contacts the outer peripheral surface 31h of the third core base 31a are S poles. It is magnetized to become. Each of the back auxiliary magnets 34 has the same polarity as the fourth core base 32a on the side contacting the outer peripheral surface 32h of the fourth core base 32a and the side contacting the back surface 32g of the fourth claw-shaped magnetic pole 32b. It is magnetized so that

各背面補助磁石34は、環状磁石33が配置されるロータ11の軸方向位置で互いに軸方向に重なるように、言い換えると、ロータ11の両面から環状磁石23が配置される軸方向位置に達するまで配置されるように軸方向の長さが設定されている。   The back auxiliary magnets 34 overlap each other in the axial direction at the axial position of the rotor 11 where the annular magnet 33 is arranged, in other words, from both sides of the rotor 11 until reaching the axial position where the annular magnet 23 is arranged. The axial length is set so as to be arranged.

また、第3爪状磁極31bと第4爪状磁極32bとの周方向の間には、極間磁石35が配置されている。より詳しくは、本実施形態の極間磁石35は、第3爪状磁極31bの他方の周方向端面31fと、第4爪状磁極32bの一方の周方向端面32eとの間に配置されている。そして、もう一方の極間磁石35は、第3爪状磁極31bの一方の周方向端面31eと、第4爪状磁極32bの他方の周方向端面32fとの間に配置されている。そして、各極間磁石35は、第3及び第4爪状磁極31b,32bとそれぞれ同極性が対向するように(第4爪状磁極24b側がN極で、第3爪状磁極23b側がS極となるように)周方向に磁化されている。各極間磁石35の回転軸12側(ロータ11の径方向内側)には、漏れ磁束防止の空隙(図示略)が設けられている。   An inter-pole magnet 35 is disposed between the circumferential direction of the third claw-shaped magnetic pole 31b and the fourth claw-shaped magnetic pole 32b. More specifically, the interpole magnet 35 of the present embodiment is disposed between the other circumferential end surface 31f of the third claw-shaped magnetic pole 31b and one circumferential end surface 32e of the fourth claw-shaped magnetic pole 32b. . The other interpole magnet 35 is disposed between one circumferential end face 31e of the third claw-shaped magnetic pole 31b and the other circumferential end face 32f of the fourth claw-shaped magnetic pole 32b. The interpolar magnets 35 are opposite in polarity to the third and fourth claw-shaped magnetic poles 31b and 32b (the fourth claw-shaped magnetic pole 24b side is the N pole, and the third claw-shaped magnetic pole 23b side is the S pole. Is magnetized in the circumferential direction. A gap (not shown) for preventing leakage magnetic flux is provided on the rotating shaft 12 side of each interpolar magnet 35 (in the radial direction of the rotor 11).

上記のように構成された第1組付体SA1と第2組付体SA2とは、図3に示すようにそれぞれの軸方向長さL1,L2が同一長さとなるように構成される。
上記のように構成されたモータ1は、回路収容ボックス5内の電源回路を介してセグメントコンダクタ(SC)巻線8に駆動電流が供給されると、ステータ6でロータ11を回転させるための磁界が発生され、ロータ11が回転駆動される。
The first assembly SA1 and the second assembly SA2 configured as described above are configured such that the axial lengths L1 and L2 are the same as shown in FIG.
When the drive current is supplied to the segment conductor (SC) winding 8 via the power supply circuit in the circuit housing box 5, the motor 1 configured as described above has a magnetic field for rotating the rotor 11 by the stator 6. Is generated, and the rotor 11 is rotationally driven.

次に、上記のように構成されたモータ1の作用について説明する。
本実施形態のモータ1のロータ11は、対の第1及び第2ロータコア21,22を備えた第1組付体SA1と、対の第3及び第4ロータコア31,32を備えた第2組付体SA2とが積層された所謂タンデム構造とされる。そして、対の第1及び第2ロータコア21,22と、対の第3及び第4ロータコア31,32とが周方向にずれる態様で配置される。ここで、所謂永久磁石界磁のランデル型構造のロータでは、ロータの表面磁束に高調波を含みやすく、コギングトルクが大きくなる虞がある。そのため、対のロータコア21,22及び対のロータコア31,32のそれぞれで発生するコギングトルクの位相がずれることとなるため、位相のずれたコギングトルク同士で打ち消し合うことができ、合成コギングトルクを低減させて振動の発生を抑えられる。
Next, the operation of the motor 1 configured as described above will be described.
The rotor 11 of the motor 1 according to the present embodiment includes a first assembly SA1 including a pair of first and second rotor cores 21 and 22, and a second group including a pair of third and fourth rotor cores 31 and 32. A so-called tandem structure in which the appendage SA2 is laminated. The pair of first and second rotor cores 21 and 22 and the pair of third and fourth rotor cores 31 and 32 are arranged in a manner that they are shifted in the circumferential direction. Here, in the so-called permanent magnet field Landell-type rotor, the surface magnetic flux of the rotor is likely to contain harmonics, which may increase the cogging torque. For this reason, the cogging torque generated in each of the pair of rotor cores 21 and 22 and the pair of rotor cores 31 and 32 is out of phase, so that the cogging torques out of phase can cancel each other, and the combined cogging torque is reduced. To suppress the occurrence of vibration.

また、対のロータコア21,22及び対のロータコア31,32のずれ角度θは、極対数をP(本実施形態では5)としたときに、0<θ≦50°/P(P=5)の範囲に設定することで、図4中のX1の範囲として鎖交磁束量の低下を10%以内に抑えつつ、コギングトルクが低減される。また、ずれ角度θを、0<θ≦35°/Pの範囲に設定することで図4中のX2の範囲として鎖交磁束量の低下を5%以内に抑えられる。更に、ずれ角度θを、0<θ≦20°/Pの範囲に設定することで図4中のX3の範囲として鎖交磁束量の低下を1%以内に抑えられる。   The deviation angle θ between the pair of rotor cores 21 and 22 and the pair of rotor cores 31 and 32 is 0 <θ ≦ 50 ° / P (P = 5), where P is the number of pole pairs (5 in the present embodiment). By setting to the range, the cogging torque is reduced while suppressing the decrease in the amount of flux linkage within 10% as the range of X1 in FIG. Further, by setting the deviation angle θ in the range of 0 <θ ≦ 35 ° / P, the decrease of the flux linkage can be suppressed to within 5% within the range of X2 in FIG. Furthermore, by setting the deviation angle θ in the range of 0 <θ ≦ 20 ° / P, the decrease of the flux linkage can be suppressed to within 1% within the range of X3 in FIG.

次に、本実施形態の特徴的な効果を記載する。
(1)複数対のロータコアである第1及び第2ロータコア21,22と第3及び第4ロータコア31,32は、同磁極のロータコア22,31同士が隣接して配置され、各対のロータコア21,22、31,32間で周方向にずれる態様で配置されるため、対のロータコア21,22及び対のロータコア31,32で発生するコギングトルクの位相がずれることとなるため、位相のずれたコギングトルク同士で打ち消し合うことができ、合成コギングトルクを低減させて振動の発生を抑えることができる。
Next, characteristic effects of the present embodiment will be described.
(1) The first and second rotor cores 21 and 22 and the third and fourth rotor cores 31 and 32, which are a plurality of pairs of rotor cores, are arranged so that the rotor cores 22 and 31 having the same magnetic pole are adjacent to each other. , 22, 31 and 32 are arranged in a manner shifted in the circumferential direction, so that the phases of the cogging torque generated in the pair of rotor cores 21 and 22 and the pair of rotor cores 31 and 32 are out of phase. Cogging torques can be canceled out, and the combined cogging torque can be reduced to suppress the occurrence of vibration.

(2)各対のロータコア21,22、31,32間での周方向へのずれ角度θは、極対数をPとしたときに、0<θ≦50°/Pの範囲である、0<θ≦10°の範囲に設定されるため、図4に示すように鎖交磁束量の低下、つまりトルクの低下を抑えつつ、コギングトルクを低減させることができる。また、ずれ角度θを例えば0<θ≦35°/Pの範囲である、0<θ≦7°に設定することで、図4に示すように鎖交磁束量の低下、つまりトルクの低下をより抑えつつ、コギングトルクを低減させることができる。更に、ずれ角度θを0<θ≦20°/Pの範囲である、0<θ≦4°の範囲に設定することで、図4に示すように鎖交磁束量の低下、つまりトルクの低下を更に抑えつつ、コギングトルクを低減させることができる。   (2) The circumferential shift angle θ between each pair of rotor cores 21, 22, 31, 32 is 0 <θ ≦ 50 ° / P, where P is the number of pole pairs, 0 < Since it is set in the range of θ ≦ 10 °, the cogging torque can be reduced while suppressing a decrease in the amount of flux linkage, that is, a decrease in torque as shown in FIG. Further, by setting the deviation angle θ in the range of 0 <θ ≦ 35 ° / P, for example, 0 <θ ≦ 7 °, the amount of interlinkage magnetic flux, that is, the torque is reduced as shown in FIG. The cogging torque can be reduced while further suppressing. Furthermore, by setting the deviation angle θ in the range of 0 <θ ≦ 4 °, where 0 <θ ≦ 20 ° / P, as shown in FIG. 4, the amount of interlinkage magnetic flux decreases, that is, the torque decreases. The cogging torque can be reduced while further suppressing the above.

(3)第1組付体SA1と第2組付体SA2の軸方向長さL1,L2が同一であるため、対のロータコア21,22、31,32毎で磁気回路(経路)が完結して互いに均衡することとなり、対のロータコア21,22、31,32の磁極間での短絡磁束は小さくなる。   (3) Since the first assembly SA1 and the second assembly SA2 have the same axial length L1, L2, the magnetic circuit (path) is completed for each pair of rotor cores 21, 22, 31, 32. Therefore, the short-circuit magnetic flux between the magnetic poles of the pair of rotor cores 21, 22, 31, 32 becomes small.

尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、特に言及していないが、例えばロータ11の磁極数とステータ6のスロット数との最小公倍数をMSとし、n=1又は2とした場合に、180°×n/MS−5°≦θ≦180°×n/MS+5°の範囲に設定することが望ましい。たとえば、最小公倍数MS=12とした場合でn=1の場合、ずれ角度θは、10°≦θ≦20°(図5中Y1)の範囲に設定される。また、最小公倍数MS=12とした場合でn=2の場合、ずれ角度θは、40°≦θ≦50°(図5中Y1)の範囲に設定される。このような構成とすることで、図5に示すようにコギングトルクを50%まで低減させることができる。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, although not particularly mentioned, for example, when the least common multiple of the number of magnetic poles of the rotor 11 and the number of slots of the stator 6 is MS and n = 1 or 2, 180 ° × n / MS− It is desirable to set in the range of 5 ° ≦ θ ≦ 180 ° × n / MS + 5 °. For example, when the least common multiple MS = 12, and n = 1, the shift angle θ is set in a range of 10 ° ≦ θ ≦ 20 ° (Y1 in FIG. 5). When the least common multiple MS = 12, and n = 2, the deviation angle θ is set in a range of 40 ° ≦ θ ≦ 50 ° (Y1 in FIG. 5). With such a configuration, the cogging torque can be reduced to 50% as shown in FIG.

・上記実施形態では、対のロータコア21,22を備えた組付体SA1と、対のロータコア31,32を備えた組付体SA2とを積層して2段の所謂タンデム構造としたが、その積層数は例えば図6に示すように3段やそれ以上に適宜変更してもよい。   In the above embodiment, the assembly SA1 including the pair of rotor cores 21 and 22 and the assembly SA2 including the pair of rotor cores 31 and 32 are stacked to form a so-called tandem structure of two stages. For example, as shown in FIG. 6, the number of stacked layers may be appropriately changed to three levels or more.

・上記実施形態では、対のロータコア21,22を備える第1組付体SA1の軸方向長さ(ロータコア21,22の軸方向端面の長さ)と、対のロータコア31,32を備える第2組付体SA2の軸方向長さ(ロータコア31,32の軸方向端面の長さ)とが同一となるような構成としたが、これに限らない。例えば、第1組付体SA1の軸方向長さと、第2組付体SA2の軸方向長さが異なるような構成を採用してもよい。また、例えば、対のロータコア41,42、43,44、45,46を備えた組付体SA3,SA4,SA5を3段以上積層した構成においても同様に軸方向長さが異なるように構成してもよい。ここで、図6に示すロータ11について説明する。ロータ11の各ロータコア41,42、43,44、45,46のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極41b,42b、43b,44b、45b,46bを備える。爪状磁極41b,42b、43b,44b、45b,46bの周方向の間には極間磁石50,51,52を備える。そして、各対のロータコア41,42、43,44、45,46間での周方向へのずれ角度θ(組付体SA3,SA4,SA5間のずれ角度θ)は、極間磁石50,51,52の周方向幅θmとしたときに、0<θ≦θmの範囲に設定される。ここで、対のロータコア41,42、43,44、45,46毎で軸方向長さが同一の場合、対のロータコア毎で磁気回路(経路)が完結して互いに均衡することとなり、対のロータコアの磁極間での短絡磁束は小さい。しかしながら、本構成のように軸方向長さL3,L4,L5が対のロータコア41,42、43,44、45,46毎で異なる場合、短絡磁束が増加する傾向となる。そこで、極間磁石50,51,52の周方向幅θm以内のずれ角度θとすることで、極間磁石50,51,52による磁束の整流効果により図7にZ1として示すように磁極から他の磁極への短絡磁束を抑えることができる。また、ずれ角度θを0<θ≦θm/2の範囲に設定することで、極間磁石50,51,52による磁束の整流効果により図7にZ2として示すように磁極から他の磁極への短絡磁束をより抑えることができる。   In the above embodiment, the axial length of the first assembly SA1 including the pair of rotor cores 21 and 22 (the length of the axial end surfaces of the rotor cores 21 and 22) and the second including the pair of rotor cores 31 and 32 Although the configuration is such that the axial length of the assembly SA2 (the length of the axial end surfaces of the rotor cores 31 and 32) is the same, this is not restrictive. For example, a configuration in which the axial length of the first assembly SA1 and the axial length of the second assembly SA2 are different may be employed. Further, for example, even in a configuration in which three or more assemblies SA3, SA4, and SA5 including the pair of rotor cores 41, 42, 43, 44, 45, and 46 are stacked, the axial length is similarly different. May be. Here, the rotor 11 shown in FIG. 6 will be described. The rotor cores 41, 42, 43, 44, 45, and 46 of the rotor 11 protrude from the outer peripheral portion of the core base and extend in opposite directions along the axial direction, and are alternately arranged along the circumferential direction. A plurality of claw-shaped magnetic poles 41b, 42b, 43b, 44b, 45b, 46b are provided. Between the circumferential directions of the claw-shaped magnetic poles 41b, 42b, 43b, 44b, 45b, 46b, inter-pole magnets 50, 51, 52 are provided. The circumferential shift angle θ between the pair of rotor cores 41, 42, 43, 44, 45, 46 (the shift angle θ between the assembled bodies SA 3, SA 4, SA 5) is the interpolar magnets 50, 51. , 52 is set in the range of 0 <θ ≦ θm. Here, when the axial length is the same for each pair of rotor cores 41, 42, 43, 44, 45, 46, the magnetic circuit (path) is completed for each pair of rotor cores and balanced with each other. The short-circuit magnetic flux between the magnetic poles of the rotor core is small. However, when the axial lengths L3, L4, and L5 are different for each pair of rotor cores 41, 42, 43, 44, 45, and 46 as in this configuration, the short-circuit magnetic flux tends to increase. Therefore, by setting the deviation angle θ within the circumferential width θm of the interpole magnets 50, 51, and 52, the magnetic flux rectification effect by the interpole magnets 50, 51, and 52 causes other magnetic poles as shown by Z1 in FIG. The short-circuit magnetic flux to the magnetic pole can be suppressed. Further, by setting the deviation angle θ in the range of 0 <θ ≦ θm / 2, the magnetic flux is rectified by the interpole magnets 50, 51, and 52, so that from the magnetic pole to another magnetic pole as indicated by Z2 in FIG. Short-circuit magnetic flux can be further suppressed.

・上記実施形態では、対の第1及び第2ロータコア21,22と、対の第3及び第4ロータコア31,32とのそれぞれに界磁磁石として1つの環状磁石23,33を設けたが、これに限らない。例えば、複数に分割した永久磁石を回転軸12の周囲で対のロータコア21,22のコアベース21a,22aと、対のロータコア31,32のコアベース31a,32aとのそれぞれの軸方向間に配置する構成を採用してもよい。   In the above embodiment, one annular magnet 23, 33 is provided as a field magnet in each of the pair of first and second rotor cores 21, 22 and the pair of third and fourth rotor cores 31, 32. Not limited to this. For example, a plurality of permanent magnets are arranged between the core bases 21 a and 22 a of the pair of rotor cores 21 and 22 and the core bases 31 a and 32 a of the pair of rotor cores 31 and 32 around the rotation shaft 12. You may employ | adopt the structure to do.

・上記実施形態では、特に言及していないが、第1〜第4ロータコア21,22,31,32と電機子コア7は、例えば磁性金属板材の積層や、磁性粉体の成形にて構成してもよい。   In the above embodiment, although not particularly mentioned, the first to fourth rotor cores 21, 22, 31, 32 and the armature core 7 are configured by, for example, lamination of magnetic metal plate materials or molding of magnetic powder. May be.

以下、技術思想を記載する。
(付記1)回転軸に沿って配列された複数対のロータコアと、各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、を備え、各対のロータコアは、円盤状のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、前記各対のロータコア間において軸方向に異極が隣接しないように、前記各対のロータコア間で周方向にずれていることを特徴とするロータ。
The technical idea is described below.
(Supplementary Note 1) A plurality of pairs of rotor cores arranged along the rotation axis, and a field magnet that is arranged between each pair of rotor cores and is magnetized along the axial direction. The plurality of pairs of rotor cores, each having a plurality of claw-shaped magnetic poles protruding from the outer peripheral portion of the core-shaped core base and extending in opposite directions along the axial direction, and alternately arranged along the circumferential direction Are arranged in such a manner that the rotor cores of the same magnetic pole are adjacent to each other and are shifted in the circumferential direction between the respective pairs of rotor cores, and the respective different polarities are not adjacent to each other in the axial direction between the respective pairs of rotor cores. A rotor characterized by being displaced in a circumferential direction between a pair of rotor cores.

この構成では、複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、各対のロータコア間で周方向にずれる態様で配置されるため、対のロータコアで発生するコギングトルクの位相がずれることとなるため、位相のずれたコギングトルク同士で打ち消し合うことができ、合成コギングトルクを低減させて振動の発生を抑えることができる。   In this configuration, the plurality of pairs of rotor cores are arranged so that the rotor cores having the same magnetic pole are adjacent to each other and are shifted in the circumferential direction between the pair of rotor cores. Therefore, the cogging torques that are out of phase can cancel each other, and the combined cogging torque can be reduced to suppress the occurrence of vibration.

(付記2)前記各対のロータコア間での周方向へのずれ角度θは、極対数をPとしたときに、0<θ≦50°/Pの範囲に設定されることを特徴とするロータ。
この構成では、各対のロータコア間での周方向へのずれ角度θは、極対数をPとしたときに、0<θ≦50°/Pの範囲に設定されるため、図4に示すように鎖交磁束量の低下、つまりトルクの低下を抑えつつ、コギングトルクを低減させることができる。
(Supplementary Note 2) A rotor displacement angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 50 ° / P where P is the number of pole pairs. .
In this configuration, the circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 50 ° / P where P is the number of pole pairs, and as shown in FIG. In addition, the cogging torque can be reduced while suppressing the decrease in the amount of flux linkage, that is, the decrease in torque.

(付記3)前記各対のロータコア間での周方向へのずれ角度θは、0<θ≦35°/Pの範囲に設定されることを特徴とするロータ。
この構成では、各対のロータコア間での周方向へのずれ角度θは、0<θ≦35°/Pの範囲に設定されるため、図4に示すように鎖交磁束量の低下、つまりトルクの低下をより抑えつつ、コギングトルクを低減させることができる。
(Supplementary Note 3) A rotor having a circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 35 ° / P.
In this configuration, the circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 35 ° / P. Therefore, as shown in FIG. The cogging torque can be reduced while further suppressing the decrease in torque.

(付記4)前記各対のロータコア間での周方向へのずれ角度θは、0<θ≦20°/Pの範囲に設定されることを特徴とするロータ。
この構成では、各対のロータコア間での周方向へのずれ角度θは、0<θ≦20°/Pの範囲に設定されるため、図4に示すように鎖交磁束量の低下、つまりトルクの低下を更に抑えつつ、コギングトルクを低減させることができる。
(Supplementary Note 4) A rotor having a circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 20 ° / P.
In this configuration, the circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ 20 ° / P. Therefore, as shown in FIG. The cogging torque can be reduced while further suppressing the decrease in torque.

(付記5)前記各対のロータコア間での周方向へのずれ角度θは、磁極数とロータと対向するステータのスロット数との最小公倍数をMSとし、n=1又は2とした場合に、180°×n/MS−5°≦θ≦180°×n/MS+5°の範囲に設定されることを特徴とするロータ。   (Supplementary Note 5) The circumferential shift angle θ between each pair of rotor cores is expressed as follows: MS is the least common multiple of the number of magnetic poles and the number of stator slots facing the rotor, and n = 1 or 2. A rotor that is set in a range of 180 ° × n / MS−5 ° ≦ θ ≦ 180 ° × n / MS + 5 °.

この構成では、各対のロータコア間での周方向へのずれ角度θは、磁極数とロータと対向するステータのスロット数との最小公倍数をMSとし、n=1又は2とした場合に、180°×n/MS−5°≦θ≦180°×n/MS+5°の範囲に設定される。このため、図5に示すようにコギングトルクをより低減させることができる。   In this configuration, the circumferential shift angle θ between each pair of rotor cores is 180 when the least common multiple of the number of magnetic poles and the number of stator slots facing the rotor is MS, and n = 1 or 2. It is set in the range of ° × n / MS-5 ° ≦ θ ≦ 180 ° × n / MS + 5 °. Therefore, the cogging torque can be further reduced as shown in FIG.

(付記6)前記複数対のロータコアは、対のロータコア毎に軸方向長さが異なるように構成され、周方向に隣り合う前記爪状磁極の間に配置されるとともに前記周方向に隣り合う爪状磁極と同極性が対向するように磁化された極間磁石を備え、前記各対のロータコア間での周方向へのずれ角度θは、前記極間磁石の周方向幅θmとしたときに、0<θ≦θmの範囲に設定されることを特徴とするロータ。   (Supplementary Note 6) The plurality of pairs of rotor cores are configured so that the lengths in the axial direction are different for each pair of rotor cores, and are disposed between the claw-shaped magnetic poles adjacent in the circumferential direction and are adjacent in the circumferential direction. A magnetic pole magnetized so that the same polarity as that of the magnetic poles is opposed to each other, and the deviation angle θ in the circumferential direction between the pair of rotor cores is a circumferential width θm of the interpolar magnet, A rotor set in a range of 0 <θ ≦ θm.

この構成では、複数対のロータコアは、対のロータコア毎に軸方向長さが異なるように構成され、周方向に隣り合う爪状磁極の間に配置されるとともに前記周方向に隣り合う爪状磁極と同極性が対向するように磁化された極間磁石を備え、各対のロータコア間での周方向へのずれ角度θは、極間磁石の周方向幅θmとしたときに、0<θ≦θmの範囲に設定される。ここで、対のロータコア毎で軸方向長さが同一の場合、対のロータコア毎で磁気回路(経路)が完結して互いに均衡することとなり、対のロータコアの磁極間での短絡磁束は小さいが、軸方向長さが対のロータコア毎で異なる場合、前記短絡磁束が増加する傾向となる。そこで、極間磁石の周方向幅θm以内のずれ角度θとすることで、極間磁石による磁束の整流効果が作用し、図7に示すように磁極から他の磁極への短絡磁束を抑えることができる。   In this configuration, the plurality of pairs of rotor cores are configured to have different axial lengths for each pair of rotor cores, and are arranged between the claw-shaped magnetic poles adjacent to each other in the circumferential direction and are adjacent to each other in the circumferential direction. Between the pair of rotor cores, the circumferential shift angle θ between each pair of rotor cores is 0 <θ ≦ It is set in the range of θm. Here, when the axial length is the same for each pair of rotor cores, the magnetic circuit (path) for each pair of rotor cores is completed and balanced with each other, and the short-circuit magnetic flux between the magnetic poles of the pair of rotor cores is small. When the axial length differs for each pair of rotor cores, the short-circuit magnetic flux tends to increase. Therefore, by setting the deviation angle θ within the circumferential width θm of the interpole magnet, the magnetic flux rectification effect acts by the interpole magnet, and the short-circuit magnetic flux from the magnetic pole to another magnetic pole is suppressed as shown in FIG. Can do.

(付記7)前記各対のロータコア間での周方向へのずれ角度θは、0<θ≦θm/2の範囲に設定されることを特徴とするロータ。
この構成では、各対のロータコア間での周方向へのずれ角度θは、0<θ≦θm/2の範囲に設定されるため、極間磁石による磁束の整流効果が作用し、図7に示すように磁極から他の磁極への短絡磁束をより抑えることができる。
(Appendix 7) A rotor, wherein a circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ θm / 2.
In this configuration, since the circumferential shift angle θ between each pair of rotor cores is set in a range of 0 <θ ≦ θm / 2, a magnetic flux rectification effect is exerted by the interpole magnet, and FIG. As shown, the short-circuit magnetic flux from the magnetic pole to the other magnetic pole can be further suppressed.

1…モータ、6…ステータ、11…ロータ、12…回転軸、21,22,31,32,41,42,43,44,45,46…ロータコア、21a,22a,31a,32a…コアベース、25,35,50,51,52…極間磁石、41b,42b,43b,44b,45b,46b…爪状磁極、L1,L2,L3,L4,L5…軸方向長さ。   DESCRIPTION OF SYMBOLS 1 ... Motor, 6 ... Stator, 11 ... Rotor, 12 ... Rotary shaft, 21, 22, 31, 32, 41, 42, 43, 44, 45, 46 ... Rotor core, 21a, 22a, 31a, 32a ... Core base, 25, 35, 50, 51, 52 ... interpolar magnets, 41b, 42b, 43b, 44b, 45b, 46b ... claw-shaped magnetic poles, L1, L2, L3, L4, L5 ... axial lengths.

Claims (4)

回転軸に沿って配列された複数対のロータコアと、
各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、
を備え、
各対のロータコアは、円盤状のコアベースの外周部から突出するとともに周方向幅一定で軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、前記爪状磁極の周方向端面間の隙間が軸方向に沿って直線状をなすように形成され、
前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、
前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれていることを特徴とするロータ。
A plurality of pairs of rotor cores arranged along a rotation axis;
A field magnet disposed between each pair of rotor cores and magnetized along an axial direction;
With
Each pair of rotor cores protrudes from the outer peripheral portion of the disk-shaped core base, and has a constant circumferential width and is formed to extend in opposite directions along the axial direction. The plurality of claws are alternately arranged along the circumferential direction. Each of the claw-shaped magnetic poles, the gap between the circumferential end faces of the claw-shaped magnetic pole is formed in a straight line along the axial direction,
The plurality of pairs of rotor cores are arranged such that the rotor cores of the same magnetic pole are adjacent to each other, and are arranged in a manner shifted in the circumferential direction between the pair of rotor cores,
The rotor is characterized in that each pair of rotor cores is displaced in the circumferential direction so that a different pole does not contact in the axial direction between each pair of rotor cores.
回転軸に沿って配列された複数対のロータコアと、
各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、
を備え、
各対のロータコアは、円盤状のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、
前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、
前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれ、
前記各対のロータコア間において同極の前記爪状磁極の先端同士がずれて当接し、前記各対のロータコア間において同極の前記爪状磁極の基端同士がずれて当接していることを特徴とするロータ。
A plurality of pairs of rotor cores arranged along a rotation axis;
A field magnet disposed between each pair of rotor cores and magnetized along an axial direction;
With
Each pair of rotor cores has a plurality of claw-shaped magnetic poles that protrude from the outer periphery of the disk-shaped core base, extend in opposite directions along the axial direction, and are alternately arranged along the circumferential direction. And
The plurality of pairs of rotor cores are arranged such that the rotor cores of the same magnetic pole are adjacent to each other, and are arranged in a manner shifted in the circumferential direction between the pair of rotor cores,
In order not to contact different poles in the axial direction between each pair of rotor cores, the circumferential displacement between each pair of rotor cores,
The tips of the claw-shaped magnetic poles with the same polarity are in contact with each other between the pair of rotor cores, and the base ends of the claw-shaped magnetic poles with the same polarity are in contact with each other between the pairs of rotor cores. The feature rotor.
回転軸に沿って配列された複数対のロータコアと、
各対のロータコア間に配置され、軸方向に沿って磁化された界磁磁石と、
を備え、
各対のロータコアは、円盤状のコアベースの外周部から突出するとともに軸方向に沿って互いに逆方向に延出形成され、周方向に沿って交互に配置された複数の爪状磁極をそれぞれ有し、
前記複数対のロータコアは、同磁極のロータコア同士が隣接して配置され、前記各対のロータコア間で周方向にずれる態様で配置され、
前記各対のロータコア間において軸方向に異極が当接しないように、前記各対のロータコア間で周方向にずれ、
周方向に隣り合う前記爪状磁極の間において前記周方向に隣り合う爪状磁極と同極性が対向するように磁化された極間磁石が配置され、前記各対のロータコア間において同方向に磁化されて軸方向に隣接する前記極間磁石が周方向にずれた位置態様であり、
前記爪状磁極の径方向内側面に前記爪状磁極と同極性が対向するように磁化された背面補助磁石が配置されていることを特徴とするロータ。
A plurality of pairs of rotor cores arranged along a rotation axis;
A field magnet disposed between each pair of rotor cores and magnetized along an axial direction;
With
Each pair of rotor cores has a plurality of claw-shaped magnetic poles that protrude from the outer periphery of the disk-shaped core base, extend in opposite directions along the axial direction, and are alternately arranged along the circumferential direction. And
The plurality of pairs of rotor cores are arranged such that the rotor cores of the same magnetic pole are adjacent to each other, and are arranged in a manner shifted in the circumferential direction between the pair of rotor cores,
In order not to contact different poles in the axial direction between each pair of rotor cores, the circumferential displacement between each pair of rotor cores,
Between the claw-shaped magnetic poles adjacent to each other in the circumferential direction, an interpole magnet magnetized so as to face the same polarity as that of the claw-shaped magnetic poles adjacent in the circumferential direction is arranged, and magnetized in the same direction between the pair of rotor cores. And the position of the interpole magnet adjacent in the axial direction is shifted in the circumferential direction,
A rotor having a back auxiliary magnet magnetized so that the same polarity as the claw-shaped magnetic pole faces the inner surface in the radial direction of the claw-shaped magnetic pole.
請求項1〜3のいずれか一項に記載のロータを備えたことを特徴とするモータ。   The motor provided with the rotor as described in any one of Claims 1-3.
JP2015247798A 2015-12-18 2015-12-18 Rotor and motor Active JP6259805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015247798A JP6259805B2 (en) 2015-12-18 2015-12-18 Rotor and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247798A JP6259805B2 (en) 2015-12-18 2015-12-18 Rotor and motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011241284A Division JP2013099163A (en) 2011-10-31 2011-11-02 Rotor and motor

Publications (2)

Publication Number Publication Date
JP2016036256A true JP2016036256A (en) 2016-03-17
JP6259805B2 JP6259805B2 (en) 2018-01-10

Family

ID=55523810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247798A Active JP6259805B2 (en) 2015-12-18 2015-12-18 Rotor and motor

Country Status (1)

Country Link
JP (1) JP6259805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362396A (en) * 2021-12-29 2022-04-15 大连船用推进器有限公司 High-efficiency low-vibration low-noise copper rotor motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JP2003032930A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Motor
JP2003339129A (en) * 2002-05-17 2003-11-28 Mitsubishi Electric Corp Permanent magnet dynamo-electric machine
JP2007228677A (en) * 2006-02-22 2007-09-06 Hitachi Ltd Generating set and rotary electric machine
JP2008131692A (en) * 2006-11-17 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Rotor of permanent magnet motor
JP2011067057A (en) * 2009-09-18 2011-03-31 Mitsuba Corp Brushless motor
JP2011083188A (en) * 2010-11-24 2011-04-21 Hitachi Automotive Systems Ltd Rotary electric machine and electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543749U (en) * 1991-11-14 1993-06-11 アスモ株式会社 Rotor of rotating magnetic field type motor
JP2003032930A (en) * 2001-07-11 2003-01-31 Matsushita Electric Ind Co Ltd Motor
JP2003339129A (en) * 2002-05-17 2003-11-28 Mitsubishi Electric Corp Permanent magnet dynamo-electric machine
JP2007228677A (en) * 2006-02-22 2007-09-06 Hitachi Ltd Generating set and rotary electric machine
JP2008131692A (en) * 2006-11-17 2008-06-05 Fuji Electric Fa Components & Systems Co Ltd Rotor of permanent magnet motor
JP2011067057A (en) * 2009-09-18 2011-03-31 Mitsuba Corp Brushless motor
JP2011083188A (en) * 2010-11-24 2011-04-21 Hitachi Automotive Systems Ltd Rotary electric machine and electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362396A (en) * 2021-12-29 2022-04-15 大连船用推进器有限公司 High-efficiency low-vibration low-noise copper rotor motor

Also Published As

Publication number Publication date
JP6259805B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5739651B2 (en) Rotor and motor
WO2013047076A1 (en) Rotating electric machine
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP5865174B2 (en) Brushless motor
JP2017229136A (en) Rotor for axial gap motor, and axial gap motor
JP5869306B2 (en) Rotor and motor
JP2013118799A (en) Rotor and motor
JP6481252B2 (en) Rotor and motor
JP5801693B2 (en) motor
JP5944683B2 (en) Rotor and motor
JP2013099163A (en) Rotor and motor
JP6259805B2 (en) Rotor and motor
JP5855903B2 (en) Rotor and motor
JP2013169073A (en) Rotor and motor
JP2013021774A (en) Motor
JP7263971B2 (en) rotor and motor
JP6108621B2 (en) motor
JP5848097B2 (en) Rotor and motor
JP2018023273A (en) Single phase motor
JP6175350B2 (en) motor
JP6100538B2 (en) motor
JP2014103777A (en) Rotor and motor
JP6662008B2 (en) Stator, motor, and stator manufacturing method
JP6244414B2 (en) Rundel type rotor and Rundel type motor
JP5840919B2 (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250