JP2008131692A - Rotor of permanent magnet motor - Google Patents

Rotor of permanent magnet motor Download PDF

Info

Publication number
JP2008131692A
JP2008131692A JP2006311139A JP2006311139A JP2008131692A JP 2008131692 A JP2008131692 A JP 2008131692A JP 2006311139 A JP2006311139 A JP 2006311139A JP 2006311139 A JP2006311139 A JP 2006311139A JP 2008131692 A JP2008131692 A JP 2008131692A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
pole
extension
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311139A
Other languages
Japanese (ja)
Other versions
JP4888770B2 (en
Inventor
Hideki Oguchi
英樹 大口
Akio Toba
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2006311139A priority Critical patent/JP4888770B2/en
Publication of JP2008131692A publication Critical patent/JP2008131692A/en
Application granted granted Critical
Publication of JP4888770B2 publication Critical patent/JP4888770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a permanent magnet motor, capable of ensuring a distance between different polarity magnets adjacent in an axial direction without requiring chamfering processing for magnets. <P>SOLUTION: The rotor is used for the permanent magnet motor having a plurality of permanent magnets (20, 30) which are disposed in an axial direction and sequentially skewed in a circumferential direction. The rotor has intermediate magnet portions (40, 50) between the permanent magnets (20, 30) of adjacent upper and lower stages. The intermediate magnet portions (40, 50) are configured so that the edge line of the skew direction side are positioned on the extension of the edge lines of the skew direction side of the upper stage permanent magnets (20, 30), and the edge lines different from the skew direction side are positioned on the extension of the edge lines different from the skew direction side of the lower stage permanent magnets (20, 30). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸線方向に配列しかつ周方向に順次スキューした複数の永久磁石を有する永久磁石モータの回転子に関し、特に、上記スキューに伴う軸線方向への磁束の漏洩を低減する技術に関するものである。   The present invention relates to a rotor of a permanent magnet motor having a plurality of permanent magnets arranged in the axial direction and sequentially skewed in the circumferential direction, and more particularly to a technique for reducing leakage of magnetic flux in the axial direction caused by the skew. is there.

永久磁石を回転子に設けた永久磁石モータでは、周知のように、コギングトルクと呼ばれる一種のトルク脈動が発生する。このコギングトルクは、モータの制御性の悪化や、騒音の発生等の問題を発生するので、できるだけ抑制することが望ましい。
図12は、コギングトルクを低減するための構成を有した従来の永久磁石モータの回転子を例示した側面図である。また、図13および図14は、それぞれこの回転子の平面図および斜視図である。
この回転子は、回転子鉄心(積層鉄心からなる)100と、この回転子鉄心100の周面に取り付けた所定個数のN極永久磁石200およびS極永久磁石300とを備えている。なお、この回転子では、軸線方向に対するN極永久磁石200およびS極永久磁石300の配列段数を2としているが、必要に応じて2よりも多い配列段数が採用される。
As is well known, a permanent magnet motor in which a permanent magnet is provided on a rotor generates a kind of torque pulsation called cogging torque. Since this cogging torque causes problems such as deterioration of controllability of the motor and generation of noise, it is desirable to suppress it as much as possible.
FIG. 12 is a side view illustrating a rotor of a conventional permanent magnet motor having a configuration for reducing cogging torque. FIGS. 13 and 14 are a plan view and a perspective view of the rotor, respectively.
This rotor includes a rotor core (made of a laminated core) 100 and a predetermined number of N-pole permanent magnets 200 and S-pole permanent magnets 300 attached to the peripheral surface of the rotor core 100. In this rotor, the number of arrangement stages of the N-pole permanent magnet 200 and the S-pole permanent magnet 300 with respect to the axial direction is set to 2, but an arrangement number greater than 2 is adopted as necessary.

隣接する上段および下段のN極永久磁石200相互および隣接する上段および下段のS極永久磁石300相互は、回転子鉄心100の周方向にずらされている。これは、一般的に段スキューと呼ばれている。この段スキューは、コギングトルクを低減するために有効である。(例えば、特許文献1参照)
しかし、段スキューを施してもコギングトルクを十分に低減させることができない場合がある。その理由は以下のとおりである。
Adjacent upper and lower N pole permanent magnets 200 and adjacent upper and lower S pole permanent magnets 300 are shifted in the circumferential direction of the rotor core 100. This is generally called step skew. This step skew is effective for reducing the cogging torque. (For example, see Patent Document 1)
However, there are cases where the cogging torque cannot be sufficiently reduced even if the step skew is applied. The reason is as follows.

すなわち、段スキューによるコギングトルクの抑制効果を低下させないためには、回転子の軸線方向に隣接する異極性磁石相互間の磁気抵抗(図12では、上段のN極永久磁石200と右下段のS極永久磁石300との間の磁気抵抗、および、左上段のS極永久磁石300と下段のN極永久磁石200との間の磁気抵抗)を高くして、上記軸線方向への磁束の漏洩量を少なくする必要がある。(例えば、非特許文献1の第5章参照)
しかし、上記段スキューにおけるスキュー量の程度によっては、上記軸線方向に隣接する異極性磁石相互間の相対距離が極めて小さくなって、つまり、それらの磁石間の磁気抵抗が低下して、段スキューによるコギングトルク低減効果が十分に発揮されなくなることがある。
That is, in order not to reduce the effect of suppressing the cogging torque due to the stage skew, the magnetoresistance between the different polarity magnets adjacent in the axial direction of the rotor (in FIG. 12, the upper N pole permanent magnet 200 and the lower right S The magnetic resistance between the pole permanent magnet 300 and the magnetic resistance between the upper left S pole permanent magnet 300 and the lower N pole permanent magnet 200) is increased, and the amount of magnetic flux leakage in the axial direction is increased. Need to be reduced. (For example, refer to Chapter 5 of Non-Patent Document 1)
However, depending on the degree of skew amount in the step skew, the relative distance between the magnets having different polarities adjacent to each other in the axial direction becomes extremely small, that is, the magnetic resistance between the magnets decreases, and the step skew causes The cogging torque reduction effect may not be fully exhibited.

そこで、図12に鎖線で例示したように、上記異極性磁石相互の対向する角部を斜めに切断するという手法が提案されている。(例えば、特許文献2参照)
この手法によれば、上記異極性磁石間に空間が形成されてそれらの磁石相互間の磁気抵抗が高くなることから、上記軸線方向への磁束の漏れが低減される。
In view of this, as exemplified by the chain line in FIG. 12, a method has been proposed in which the opposite corners of the different polarity magnets are cut obliquely. (For example, see Patent Document 2)
According to this method, a space is formed between the magnets of different polarity and the magnetic resistance between the magnets is increased, so that leakage of magnetic flux in the axial direction is reduced.

実開昭61−17876号公報Japanese Utility Model Publication No. 61-17876 「電気学会研究会資料」静止器、回転機合同研究会、SA−05−21,RM−05−20、「電磁鋼板の積層を考慮したスキュー付き表面磁石モータのコギングトルク解析」、服部 哲弥、成田 一行、2005年1月28日、社団法人電気学会発行"Materials of the Institute of Electrical Engineers of Japan" Stationary Machine, Rotating Machine Joint Study Group, SA-05-21, RM-05-20, "Cogging Torque Analysis of Skewed Surface Magnet Motor Considering Lamination of Electrical Steel Sheets", Tetsuya Hattori, Issei Narita, January 28, 2005, published by the Institute of Electrical Engineers of Japan 特開2003−339129号公報JP 2003-339129 A

ところで、上記のように磁石の角部を斜めに切断する手法を採用する場合、すべての磁石の切断角度を均一にしないと、斜め切断によって形成される各空間の形状が不揃いになって、つまり、該各空間がもたらす磁気抵抗が不揃いになって、予期せぬ周期のコギングトルクを発生するおそれがある。
しかしながら、円弧状に湾曲した形状を有する上記磁石の角部を精度よく斜めに切断することは容易でなく、このため、上記の手法を採用した場合、上記磁気抵抗の不揃いに起因した製品品質のばらつきを生じる可能性がある。なお、加工精度の高い切断装置を用いれば、上記磁石の角部を精度よく斜めに切断することが可能である。しかし、このような切断装置は高価であるので、設備コストを上昇させる。
そこで、本発明の目的は、磁石の角部を斜めに切断する加工を必要とすることなく、軸線方向に隣接する異極性磁石間の距離を大きく確保することが可能な永久磁石モータの回転子を提供することにある。
By the way, when adopting the method of obliquely cutting the corners of the magnet as described above, unless the cutting angles of all the magnets are uniform, the shape of each space formed by the oblique cutting becomes uneven, that is, The magnetic resistance provided by each space becomes uneven, and there is a risk of generating a cogging torque with an unexpected period.
However, it is not easy to accurately and obliquely cut the corners of the magnet having a curved shape in an arc shape. Therefore, when the above method is adopted, the product quality due to the unevenness of the magnetoresistance is not obtained. Variations can occur. If a cutting device with high processing accuracy is used, the corners of the magnet can be accurately and obliquely cut. However, since such a cutting device is expensive, the equipment cost is increased.
Therefore, an object of the present invention is to provide a rotor for a permanent magnet motor capable of ensuring a large distance between different polarity magnets adjacent to each other in the axial direction without requiring a process of obliquely cutting the corners of the magnet. Is to provide.

本発明は、軸線方向に配列しかつ周方向に順次スキューした複数の永久磁石を有する永久磁石モータの回転子であって、上記目的を達成するために、隣接する上段および下段の前記永久磁石間に中間磁石部をそれぞれ形成している。前記中間磁石部は、前記スキュー方向側の縁線が前記上段の永久磁石の前記スキュー方向側の縁線の延長上に位置し、前記スキュー方向側とは逆の側の縁線が前記下段の永久磁石の前記スキュー方向側とは逆の側の縁線の延長上に位置するように構成されている。   The present invention is a rotor of a permanent magnet motor having a plurality of permanent magnets arranged in the axial direction and sequentially skewed in the circumferential direction, and in order to achieve the above object, between the adjacent upper and lower permanent magnets The intermediate magnet portions are respectively formed on the two. In the intermediate magnet portion, the edge line on the skew direction side is positioned on the extension of the edge line on the skew direction side of the upper permanent magnet, and the edge line on the side opposite to the skew direction side is on the lower stage. It is comprised so that it may be located on the extension of the edge line on the opposite side to the said skew direction side of a permanent magnet.

前記中間磁石部は、例えば、前記上段の永久磁石から前記下段の永久磁石に向かって突出する第1の延長部と、前記下段の永久磁石から前記上段の永久磁石に向かって突出する第2の延長部とで構成される。前記第1および第2の延長部は、隙間なく組み合わされるように形成される。   The intermediate magnet portion includes, for example, a first extension protruding from the upper permanent magnet toward the lower permanent magnet, and a second extension protruding from the lower permanent magnet toward the upper permanent magnet. It consists of an extension. The first and second extensions are formed so as to be combined without a gap.

前記第1および第2の延長部は、それらの境界線が段状あるいは斜線を示すように、または前記軸線に直交する面内に存在するように、もしくはV字状を示すように形成することができる。
そして、前記中間磁石部は、前記上段の永久磁石もしくは前記下段の永久磁石の延長部によって形成してもよく、また、前記上段および下段の永久磁石からは独立した永久磁石によって形成してもよい。
The first and second extensions are formed so that their boundary lines are stepped or oblique, or are present in a plane perpendicular to the axis, or are V-shaped. Can do.
The intermediate magnet portion may be formed by the upper permanent magnet or an extension of the lower permanent magnet, or may be formed by a permanent magnet independent of the upper and lower permanent magnets. .

本発明によれば、軸方向に隣接する異極性磁石間に空間を形成するにあたって、それらの磁石の角部を斜めに切断する加工を必要としないので、上記空間の形状の均一化、つまり、上記軸方向に隣接する異極性磁石間の磁気抵抗の均一化を図る上で有利である。また、上記空間を形成するための磁石の加工が容易になるので、製品コストの低減も可能になる。   According to the present invention, in forming the space between the different polarity magnets adjacent to each other in the axial direction, it is not necessary to cut the corners of the magnets obliquely. This is advantageous in making the magnetic resistance uniform between the different polarity magnets adjacent in the axial direction. Moreover, since the magnet for forming the space can be easily processed, the product cost can be reduced.

図1は、本発明の第1の実施形態に係る永久磁石モータの回転子を示す側面図である。また図2は、この回転子の平面図である。
この回転子R−1は、回転子鉄心(積層鉄心からなる)10と、該回転子鉄心10の周面に取り付けた所定個数のN極永久磁石20およびS極永久磁石30とを備えている。
この回転子R−1では、その軸線方向(図1における上下方向)に対するN極永久磁石20およびS極永久磁石30の配列段数を2に設定しているが、これよりも多い配列段数を設定してもよい。また、この回転子R−1では、N極永久磁石20およびS極永久磁石30を周方向に交互に合計4個配列させているが、この配列個数も所望の個数2×n(n=1,2,3・・・)に設定することができる。
FIG. 1 is a side view showing a rotor of a permanent magnet motor according to a first embodiment of the present invention. FIG. 2 is a plan view of the rotor.
The rotor R-1 includes a rotor core (consisting of a laminated core) 10 and a predetermined number of N-pole permanent magnets 20 and S-pole permanent magnets 30 attached to the peripheral surface of the rotor core 10. .
In this rotor R-1, the number of arrangement stages of the N-pole permanent magnet 20 and the S-pole permanent magnet 30 in the axial direction (vertical direction in FIG. 1) is set to 2, but a larger number of arrangement stages is set. May be. Further, in this rotor R-1, a total of four N-pole permanent magnets 20 and S-pole permanent magnets 30 are arranged in the circumferential direction, but this arrangement number is also a desired number 2 × n (n = 1). , 2, 3...

下段のN極永久磁石20は、上段のN極永久磁石20に対して回転子鉄心1の周方向にずらされ、同様に、下段のS極永久磁石30は、上段のS極永久磁石30に対して回転子鉄心1の周方向にずらされている(一般的に、段スキューと呼ばれ、図1ではスキューの方向が矢印Aで示されている)。
隣接する上段のN極永久磁石20および下段のN極永久磁石20間には、N極中間磁石部40が形成され、また、隣接する上段のS極永久磁石30および下段のS極永久磁石30間には、S極中間磁石部50が形成されている。なお、N極中間磁石部40およびS極中間磁石部50には、それぞれハッチングが付されている。
The lower N-pole permanent magnet 20 is shifted in the circumferential direction of the rotor core 1 with respect to the upper N-pole permanent magnet 20. Similarly, the lower S-pole permanent magnet 30 is changed to the upper S-pole permanent magnet 30. On the other hand, it is shifted in the circumferential direction of the rotor core 1 (generally called step skew, and the direction of the skew is indicated by an arrow A in FIG. 1).
An N-pole intermediate magnet portion 40 is formed between the adjacent upper N-pole permanent magnet 20 and the lower N-pole permanent magnet 20, and the upper S-pole permanent magnet 30 and the lower S-pole permanent magnet 30 adjacent to each other. An S pole intermediate magnet portion 50 is formed between them. Note that the north pole intermediate magnet portion 40 and the south pole intermediate magnet portion 50 are respectively hatched.

N極中間磁石部40は、スキュー方向A側の縁線43が上段のN極永久磁石20のスキュー方向A側の縁線(回転子の軸線に沿っている)21の延長上に位置し、前記スキュー方向A側とは逆の側の縁線44が下段のN極永久磁石20のスキュー方向A側とは逆の側の縁線22の延長上に位置した形状を有している。S極中間磁石部50も、N極中間磁石部40に準じた形状を有している。   The N-pole intermediate magnet portion 40 is located on the extension of the skew line A side edge line (along the axis of the rotor) 21 of the upper N pole permanent magnet 20 with the edge line 43 on the skew direction A side, The edge line 44 opposite to the skew direction A side has a shape located on the extension of the edge line 22 opposite to the skew direction A side of the lower N-pole permanent magnet 20. The south pole intermediate magnet portion 50 also has a shape according to the north pole intermediate magnet portion 40.

この実施形態において、N極中間磁石部40は、上段のN極永久磁石20から下段のN極永久磁石20に向かって突出する延長部41と、下段のN極永久磁石20から上段のN極永久磁石20に向かって突出する延長部42とを組み合わせることによって構成されている。
同様に、S極中間磁石部50は、上段のS極永久磁石30から下段のS極永久磁石30に向かって突出する延長部51と、下段のS極永久磁石30から上段のS極永久磁石30に向かって突出する延長部52とを組み合わせることによって構成されている。
延長部41と延長部42は、それら間に隙間が形成されないように、かつ、それらの境界線が段状を示すように形成され、延長部51と延長部52も同様に形成されている。
In this embodiment, the N-pole intermediate magnet unit 40 includes an extension 41 projecting from the upper N-pole permanent magnet 20 toward the lower N-pole permanent magnet 20, and the upper N-pole permanent magnet 20 from the upper N-pole permanent magnet 20. It is configured by combining an extension 42 that protrudes toward the permanent magnet 20.
Similarly, the S pole intermediate magnet portion 50 includes an extension 51 projecting from the upper S pole permanent magnet 30 toward the lower S pole permanent magnet 30, and an upper S pole permanent magnet from the lower S pole permanent magnet 30. It is configured by combining an extension portion 52 protruding toward 30.
The extension part 41 and the extension part 42 are formed so that no gap is formed between them, and the boundary lines thereof are stepped, and the extension part 51 and the extension part 52 are also formed in the same manner.

上記のように構成されたこの実施形態に係る回転子R−1によれば、上段のN極永久磁石20と、該磁石20に対して回転子R−1の軸線方向に隣接する下段のS極永久磁石30(図1では、右下段のS極永久磁石30)との間に空間60が形成され、これによって、上記両磁石20、30間の磁気抵抗が高められる。
また、上段のS極磁石30(図1では、左上段のS極永久磁石30)と、該磁石30に対して上記軸線方向に隣接する下段のN極永久磁石20との間にも空間60が形成され、これによって、上記両磁石30、20間の磁気抵抗が高められる。
According to the rotor R-1 according to this embodiment configured as described above, the upper N-pole permanent magnet 20 and the lower S adjacent to the magnet 20 in the axial direction of the rotor R-1. A space 60 is formed between the pole permanent magnet 30 (in FIG. 1, the lower right S pole permanent magnet 30), and thereby the magnetic resistance between the magnets 20 and 30 is increased.
A space 60 is also formed between the upper S pole magnet 30 (in FIG. 1, the upper left S pole permanent magnet 30) and the lower N pole permanent magnet 20 adjacent to the magnet 30 in the axial direction. As a result, the magnetic resistance between the magnets 30 and 20 is increased.

前述したように、上記磁気抵抗は、モータのコギングトルクに影響を与える。すなわち、上記磁気抵抗が低い場合には、回転子の軸線方向への磁束の漏洩量が増加するため、段スキューによるコギングトルクの抑制効果が低下することになる。
しかし、上記したように、本実施形態に係る回転子R−1によれば、軸線方向に隣接するN極永久磁石20とS極永久磁石30との間の磁気抵抗が上記空間60によって高められるので、段スキューによるコギングトルクの低減効果が十分に発揮される。
しかも、本実施形態に係る回転子R−1によれば、前記延長部41および42を組み合わせることによってN極中間磁石部40が構成され、また、前記延長部51および52を組み合わせることによってS極中間磁石部50が構成されるので、上段のN極永久磁石20に対する下段のN極永久磁石20の位置決め、および、上段のS極永久磁石30に対する下段のS極永久磁石30の位置決めが容易になる。
上記N極中間磁石部40を構成する延長部41、42および上記S極中間磁石部50を構成する延長部51、52は、図3に示すように、回転子鉄心1の周方向に対して図1とは逆の側に位置するように形成してもよい。
As described above, the magnetic resistance affects the cogging torque of the motor. That is, when the magnetic resistance is low, the amount of magnetic flux leakage in the axial direction of the rotor increases, so that the effect of suppressing the cogging torque due to step skew is reduced.
However, as described above, according to the rotor R-1 according to the present embodiment, the magnetic resistance between the N-pole permanent magnet 20 and the S-pole permanent magnet 30 adjacent in the axial direction is increased by the space 60. Therefore, the effect of reducing the cogging torque due to the step skew is sufficiently exhibited.
Moreover, according to the rotor R-1 according to the present embodiment, the N pole intermediate magnet portion 40 is configured by combining the extension portions 41 and 42, and the S pole is set by combining the extension portions 51 and 52. Since the intermediate magnet unit 50 is configured, positioning of the lower N-pole permanent magnet 20 with respect to the upper N-pole permanent magnet 20 and positioning of the lower S-pole permanent magnet 30 with respect to the upper S-pole permanent magnet 30 are facilitated. Become.
As shown in FIG. 3, the extension portions 41 and 42 constituting the N-pole intermediate magnet portion 40 and the extension portions 51 and 52 constituting the S-pole intermediate magnet portion 50 are arranged with respect to the circumferential direction of the rotor core 1. You may form so that it may be located on the opposite side to FIG.

図4は、本発明の第2の実施形態に係る永久磁石モータの回転子を示している。この回転子R−2は、N極中間磁石部40を構成する延長部41、42の形状およびS極中間磁石部50を構成する延長部51、52の形状において前記第1の実施形態に係る回転子R−1と相違する。
すなわち、この回転子R−2における上記延長部41、42(51、52)は、互いの境界線が右上がりの斜線を示すように形成されている。もちろん、延長部41、42(51、52)は、図5に示すように、境界線が右下がりの斜線を示すように形成してもよい。
FIG. 4 shows a rotor of a permanent magnet motor according to the second embodiment of the present invention. This rotor R-2 relates to the first embodiment in the shapes of the extension portions 41 and 42 constituting the N-pole intermediate magnet portion 40 and the shapes of the extension portions 51 and 52 constituting the S-pole intermediate magnet portion 50. It is different from the rotor R-1.
That is, the extension portions 41 and 42 (51 and 52) in the rotor R-2 are formed so that the boundary lines of each of the rotor R-2 indicate a diagonal line rising to the right. Of course, the extension portions 41 and 42 (51 and 52) may be formed so that the boundary line shows a slanting line with a downward slope as shown in FIG.

図6は、本発明の第3の実施形態に係る永久磁石モータの回転子を示している。この回転子R−3も、N極中間磁石部40を構成する延長部41、42の形状およびS極中間磁石部50を構成する延長部51、52の形状において前記第1の実施形態に係る回転子R−1と相違する。
すなわち、この回転子R−3における上記延長部41、42(51、52)は、互いの境界線が該回転子R−3の軸線に直交する面内に存在するように形成されている。
FIG. 6 shows a rotor of a permanent magnet motor according to the third embodiment of the present invention. This rotor R-3 also relates to the first embodiment in the shape of the extension portions 41 and 42 constituting the N-pole intermediate magnet portion 40 and the shape of the extension portions 51 and 52 constituting the S-pole intermediate magnet portion 50. It is different from the rotor R-1.
That is, the extension portions 41 and 42 (51 and 52) in the rotor R-3 are formed so that their boundary lines exist in a plane perpendicular to the axis of the rotor R-3.

図7は、本発明の第4の実施形態に係る永久磁石モータの回転子を示している。この回転子R−4は、互いの境界線がV字状を示すように形成された延長部41、42によってN極中間磁石部40が構成され、同様に、互いの境界線がV字状を示すように形成された延長部51、52によってS極中間磁石部50が構成されている。
上記延長部41、42(51、52)は、図8に示すように、それらの境界線が逆V字状を示すように形成してもよい。
FIG. 7 shows a rotor of a permanent magnet motor according to the fourth embodiment of the present invention. In the rotor R-4, the N pole intermediate magnet portion 40 is configured by the extension portions 41 and 42 formed such that the boundary lines thereof are V-shaped. Similarly, the boundary lines of the rotor R-4 are V-shaped. The S-pole intermediate magnet portion 50 is configured by the extension portions 51 and 52 formed so as to show.
The extension portions 41 and 42 (51 and 52) may be formed so that their boundary lines have an inverted V shape as shown in FIG.

図9は、本発明の第5の実施形態に係る永久磁石モータの回転子を示している。この回転子R−5は、は、N極中間磁石部40が下段のN極永久磁石20の延長部45で構成され、S極中間磁石部50が下段のS極永久磁石30の延長部55で構成されている。
なお、図10に示すように、N極中間磁石部40を上段のN極永久磁石20の延長部46で構成し、S極中間磁石部50を上段のS極永久磁石30の延長部56で構成してもよい。
もちろん、N極中間磁石部40を図9に示すように下段のN極永久磁石20の延長部45で構成する一方、S極中間磁石部50を図10に示すように上段のS極永久磁石30の延長部56で構成するという形態や、N極中間磁石部40を図10に示すように上段のN極永久磁石20の延長部46で構成する一方、S極中間磁石部50を図9に示すように下段のS極永久磁石30の延長部55で構成するという形態等も採用可能である。
要するに、N極中間磁石部40は、上下段のN極永久磁石20のいずれの延長部で構成してもよく、同様に、S極中間磁石部50は、上下段のS極永久磁石30のいずれの延長部で構成してもよい。
FIG. 9 shows a rotor of a permanent magnet motor according to the fifth embodiment of the present invention. In this rotor R-5, the N pole intermediate magnet portion 40 is constituted by an extension portion 45 of the lower N pole permanent magnet 20, and the S pole intermediate magnet portion 50 is an extension portion 55 of the lower S pole permanent magnet 30. It consists of
As shown in FIG. 10, the N pole intermediate magnet portion 40 is constituted by the extension portion 46 of the upper N pole permanent magnet 20, and the S pole intermediate magnet portion 50 is constituted by the extension portion 56 of the upper S pole permanent magnet 30. It may be configured.
Of course, the N pole intermediate magnet portion 40 is constituted by an extension 45 of the lower N pole permanent magnet 20 as shown in FIG. 9, while the S pole intermediate magnet portion 50 is formed as an upper S pole permanent magnet as shown in FIG. 10 and the N pole intermediate magnet portion 40 is constituted by the extension portion 46 of the upper N pole permanent magnet 20 as shown in FIG. 10, while the S pole intermediate magnet portion 50 is shown in FIG. As shown in FIG. 5, a configuration in which the lower portion of the S pole permanent magnet 30 is configured by the extension 55 can be employed.
In short, the N-pole intermediate magnet portion 40 may be formed by any extension of the upper and lower N-pole permanent magnets 20. Similarly, the S-pole intermediate magnet portion 50 is formed by the upper and lower S-pole permanent magnets 30. Any extension may be used.

図11は、本発明の第6の実施形態に係る永久磁石モータの回転子を示している。この回転子R−6は、N極中間磁石部40およびS極中間磁石部50がそれぞれ単体のN極永久磁石47およびS極永久磁石57によって構成されている。なお、単体のN極永久磁石47およびS極永久磁石57に代えて、それらを複数に分割(分割方向は、回転子の軸線方向および周方向のいずれであってもよい)した極永久磁石を用いることも可能である。   FIG. 11 shows a rotor of a permanent magnet motor according to the sixth embodiment of the present invention. In this rotor R-6, the N-pole intermediate magnet portion 40 and the S-pole intermediate magnet portion 50 are constituted by a single N-pole permanent magnet 47 and an S-pole permanent magnet 57, respectively. Instead of the single N-pole permanent magnet 47 and the S-pole permanent magnet 57, a pole permanent magnet obtained by dividing them into a plurality of pieces (the division direction may be either the axial direction or the circumferential direction of the rotor). It is also possible to use it.

上記した第2〜第6の実施形態に係る回転子R−2〜R−6は、いずれも前記空間60が形成されるので、第1の実施形態に係る回転子R−1と同様に、軸線方向に隣接する異極性磁石20、30間の磁気抵抗を高めること、つまり、軸線方向への磁束の漏洩を低減することができる。
また、上記した第1〜第6の実施形態に係る回転子R−1〜R−6によれば、軸方向に隣接する異極性磁石20、30間に空間60を形成するにあたって、それらの磁石20、30の角部を斜めに切断する加工を必要としないので、上記空間の形状の均一化、つまり、磁石20、30間の磁気抵抗の均一化を図る上で有利である。また、上記空間60を形成するための磁石20、30の加工が容易になるので、製品コストの低減も可能になる。
Since each of the rotors R-2 to R-6 according to the second to sixth embodiments described above is formed with the space 60, similarly to the rotor R-1 according to the first embodiment, The magnetic resistance between the different polarity magnets 20 and 30 adjacent in the axial direction can be increased, that is, the leakage of magnetic flux in the axial direction can be reduced.
Further, according to the rotors R-1 to R-6 according to the first to sixth embodiments described above, when the space 60 is formed between the different polarity magnets 20 and 30 adjacent in the axial direction, those magnets are used. Since the process which cut | disconnects the corner | angular part of 20 and 30 diagonally is not required, it is advantageous when aiming at equalization of the shape of the said space, ie, the uniform magnetic resistance between the magnets 20 and 30. FIG. In addition, since the magnets 20 and 30 for forming the space 60 can be easily processed, the product cost can be reduced.

本発明の第1の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 1st Embodiment of this invention. 図1に示す回転子の平面図である。It is a top view of the rotor shown in FIG. 図1に示す回転子における中間磁石部の変形例を示す側面図である。It is a side view which shows the modification of the intermediate magnet part in the rotor shown in FIG. 本発明の第2の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 2nd Embodiment of this invention. 図4に示す回転子における中間磁石部の変形例を示す側面図である。It is a side view which shows the modification of the intermediate magnet part in the rotor shown in FIG. 本発明の第3の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 4th Embodiment of this invention. 図7に示す回転子における中間磁石部の変形例を示す側面図である。It is a side view which shows the modification of the intermediate magnet part in the rotor shown in FIG. 本発明の第5の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 5th Embodiment of this invention. 図9に示す回転子における中間磁石部の変形例を示す側面図である。It is a side view which shows the modification of the intermediate magnet part in the rotor shown in FIG. 本発明の第6の実施形態に係る回転子を示す側面図である。It is a side view which shows the rotor which concerns on the 6th Embodiment of this invention. 従来の回転子の構成例を示す側面図である。It is a side view which shows the structural example of the conventional rotor. 図12に示す回転子の平面図である。It is a top view of the rotor shown in FIG. 図12に示す回転子の斜視図である。It is a perspective view of the rotor shown in FIG.

符号の説明Explanation of symbols

R−1〜R−6 回転子
10 回転子鉄心
20 N極永久磁石
21,22 縁線
30 S極永久磁石
40 N極中間磁石部
41,42 延長部
43,44 延線
47 N極永久磁石
50 S極中間磁石部
51,52 延長部
57 S極永久磁石
60 空間
R-1 to R-6 Rotor 10 Rotor core 20 N-pole permanent magnet 21, 22 Edge line 30 S-pole permanent magnet 40 N-pole intermediate magnet part 41, 42 Extension part 43, 44 Extension 47 N-pole permanent magnet 50 S pole intermediate magnet part 51, 52 Extension part 57 S pole permanent magnet 60 Space

Claims (8)

軸線方向に配列しかつ周方向に順次スキューした複数の永久磁石を有する永久磁石モータの回転子であって、
隣接する上段および下段の前記永久磁石間に中間磁石部をそれぞれ形成し、
前記中間磁石部は、前記スキュー方向側の縁線が前記上段の永久磁石の前記スキュー方向側の縁線の延長上に位置し、かつ、前記スキュー方向側とは逆の側の縁線が前記下段の永久磁石の前記スキュー方向側とは逆の側の縁線の延長上に位置するように構成されていることを特徴とする永久磁石モータの回転子。
A rotor of a permanent magnet motor having a plurality of permanent magnets arranged in the axial direction and sequentially skewed in the circumferential direction,
An intermediate magnet portion is formed between the adjacent upper and lower permanent magnets,
In the intermediate magnet portion, the edge line on the skew direction side is positioned on the extension of the edge line on the skew direction side of the upper permanent magnet, and the edge line on the side opposite to the skew direction side is A rotor of a permanent magnet motor, characterized in that the rotor is located on an extension of an edge line on the side opposite to the skew direction side of the lower permanent magnet.
前記中間磁石部は、前記上段の永久磁石から前記下段の永久磁石に向かって突出する第1の延長部と、前記下段の永久磁石から前記上段の永久磁石に向かって突出する第2の延長部とで構成され、前記第1および第2の延長部は、隙間なく組み合わされるように形成されていることを特徴とする請求項1に記載の永久磁石モータの回転子。   The intermediate magnet portion includes a first extension projecting from the upper permanent magnet toward the lower permanent magnet, and a second extension projecting from the lower permanent magnet toward the upper permanent magnet. The rotor of a permanent magnet motor according to claim 1, wherein the first and second extensions are formed so as to be combined without a gap. 前記第1および第2の延長部は、それらの境界線が段状を示すように形成されていることを特徴とする請求項2に記載の永久磁石モータの回転子。   The rotor of a permanent magnet motor according to claim 2, wherein the first and second extensions are formed such that their boundary lines are stepped. 前記第1および第2の延長部は、それらの境界線が斜線を示すように形成されていることを特徴とする請求項2に記載の永久磁石モータの回転子。   The rotor of a permanent magnet motor according to claim 2, wherein the first and second extension portions are formed such that their boundary lines indicate diagonal lines. 前記第1および第2の延長部は、それらの境界線が前記軸線に直交する面内に存在するように形成されていることを特徴とする請求項2に記載の永久磁石モータの回転子。   3. The rotor of a permanent magnet motor according to claim 2, wherein the first and second extensions are formed such that their boundary lines exist in a plane perpendicular to the axis. 4. 前記第1および第2の延長部は、それらの境界線がV字状を示すように形成されていることを特徴とする請求項2に記載の永久磁石モータの回転子。   The rotor of a permanent magnet motor according to claim 2, wherein the first and second extensions are formed such that their boundary lines are V-shaped. 前記中間磁石部は、前記上段の永久磁石もしくは前記下段の永久磁石の延長部によって形成されていることを特徴とする請求項1に記載の永久磁石モータの回転子。   The rotor of a permanent magnet motor according to claim 1, wherein the intermediate magnet portion is formed by an extension portion of the upper permanent magnet or the lower permanent magnet. 前記中間磁石部は、前記上段および下段の永久磁石からは独立した永久磁石によって形成されていることを特徴とする請求項1に記載の永久磁石モータの回転子。   2. The rotor of a permanent magnet motor according to claim 1, wherein the intermediate magnet portion is formed by a permanent magnet independent from the upper and lower permanent magnets.
JP2006311139A 2006-11-17 2006-11-17 Permanent magnet motor rotor Expired - Fee Related JP4888770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311139A JP4888770B2 (en) 2006-11-17 2006-11-17 Permanent magnet motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311139A JP4888770B2 (en) 2006-11-17 2006-11-17 Permanent magnet motor rotor

Publications (2)

Publication Number Publication Date
JP2008131692A true JP2008131692A (en) 2008-06-05
JP4888770B2 JP4888770B2 (en) 2012-02-29

Family

ID=39557021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311139A Expired - Fee Related JP4888770B2 (en) 2006-11-17 2006-11-17 Permanent magnet motor rotor

Country Status (1)

Country Link
JP (1) JP4888770B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199918A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Permanent-magnet electric motor
JP2011234545A (en) * 2010-04-28 2011-11-17 Fuji Electric Co Ltd Rotor of rotary electric machine
JP2015070749A (en) * 2013-09-30 2015-04-13 Tdk株式会社 Bow-shaped magnet piece and motor
US9273691B2 (en) 2011-10-31 2016-03-01 Asmo, Co., Ltd. Rotor and motor
JP2016036256A (en) * 2015-12-18 2016-03-17 アスモ株式会社 Rotor and motor
US9490671B2 (en) 2011-10-31 2016-11-08 Asmo Co., Ltd. Rotor and motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251847A (en) * 1995-03-08 1996-09-27 Yaskawa Electric Corp Permanent magnet type rotary machine
JP2006166515A (en) * 2004-12-03 2006-06-22 Toyoda Mach Works Ltd Motor and its manufacturing process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251847A (en) * 1995-03-08 1996-09-27 Yaskawa Electric Corp Permanent magnet type rotary machine
JP2006166515A (en) * 2004-12-03 2006-06-22 Toyoda Mach Works Ltd Motor and its manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199918A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Permanent-magnet electric motor
JP2011234545A (en) * 2010-04-28 2011-11-17 Fuji Electric Co Ltd Rotor of rotary electric machine
US9273691B2 (en) 2011-10-31 2016-03-01 Asmo, Co., Ltd. Rotor and motor
US9490671B2 (en) 2011-10-31 2016-11-08 Asmo Co., Ltd. Rotor and motor
JP2015070749A (en) * 2013-09-30 2015-04-13 Tdk株式会社 Bow-shaped magnet piece and motor
JP2016036256A (en) * 2015-12-18 2016-03-17 アスモ株式会社 Rotor and motor

Also Published As

Publication number Publication date
JP4888770B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4888770B2 (en) Permanent magnet motor rotor
JP5516739B2 (en) Rotor for electric motor
US8421294B2 (en) Rotary electric machine including auxiliary slot with center opposed to specified rotor portion
WO2014038695A1 (en) Rotor of permanent magnet motor
JP2006014457A (en) Synchronous motor
JP2007104819A (en) Rotating electric machine
US9276445B2 (en) Rotor and interior permanent magnet motor
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP5950163B2 (en) Rotating electric machine
EP2779386A2 (en) Interior permanent magnet motor with shifted rotor laminations
JP2012110213A (en) Motor
JP2003284276A (en) Dynamo-electric machine
US20170098971A1 (en) Rotor for permanent magnet motor
JP2007151233A (en) Permanent magnet motor
JP6413788B2 (en) Rotor core for reluctance motor
JP2012254001A (en) Motor
CN101944787B (en) Outer surface structure of magnetic steel embedded rotor
JP2007097290A (en) Permanent magnet type reluctance dynamo-electric machine
JP2012228016A (en) Embedded magnet rotor structure
JP2015033245A (en) Rotor for permanent magnet motor
JP6079132B2 (en) Embedded magnet rotor
JP6330844B2 (en) Power transmission device and drive device
JP2005278268A (en) Permanent magnet type motor
JP2010068548A (en) Motor
JP2007244017A (en) Rotor structure of rotary electric machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4888770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees