JP2007151233A - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP2007151233A
JP2007151233A JP2005338786A JP2005338786A JP2007151233A JP 2007151233 A JP2007151233 A JP 2007151233A JP 2005338786 A JP2005338786 A JP 2005338786A JP 2005338786 A JP2005338786 A JP 2005338786A JP 2007151233 A JP2007151233 A JP 2007151233A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator core
stator
rotor
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005338786A
Other languages
Japanese (ja)
Other versions
JP4836555B2 (en
Inventor
Tadahiro Nakayama
忠弘 中山
Mitsuyuki Yokoyama
光之 横山
Takeshi Shinohara
剛 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005338786A priority Critical patent/JP4836555B2/en
Publication of JP2007151233A publication Critical patent/JP2007151233A/en
Application granted granted Critical
Publication of JP4836555B2 publication Critical patent/JP4836555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce a cogging torque, a vibration and a noise in a permanent magnet motor. <P>SOLUTION: The permanent magnet motor (1) comprises: a stator (2) having a stator iron core (10) provided with a plurality of magnetic pole teeth (12) and slots (16) for a stator winding; and a rotor (3) having a plurality of fixed permanent magnets (5) and rotatably supported within the stator. A plurality of the permanent magnets are divided in the direction of the center of a rotating shaft. Each permanent magnet is circumferentially shifted so as to cancel the cogging torque. A stator iron core piece (20a) is disposed in a region of the stator iron core facing a boundary (9) of the divided permanent magnet and having the closed slots. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は永久磁石を回転子に取り付けた永久磁石型モータに関し、特にそのコギングトルクを低減して騒音と振動を少なくする技術に関する。   The present invention relates to a permanent magnet type motor having a permanent magnet attached to a rotor, and more particularly to a technique for reducing noise and vibration by reducing the cogging torque.

図11は、界磁用永久磁石を回転子に取り付けた永久磁石型モータ50の一般的な構成の断面図で示したものである。このモータ50は固定子51と回転子52とを備えて構成される。固定子51は円筒状の固定子鉄心53と固定子巻線54から構成される。固定子鉄心53の周辺ヨーク部55からは内側に向けて複数の磁極歯56が形成され、隣り合う磁極歯56間は固定子巻線54を巻装するためのスロット57を構成している。隣り合う磁極歯56の先端張出部間には隙間58が形成されており、スロット57はその隙間58により回転子52側に開口した開スロットとなっている。このような形状の固定子鉄心53は、例えば磁性鋼板を図の断面のような形状に打ち抜いた固定子鉄心片を複数枚積層して製作される。   FIG. 11 is a cross-sectional view of a general configuration of a permanent magnet motor 50 in which a field permanent magnet is attached to a rotor. The motor 50 includes a stator 51 and a rotor 52. The stator 51 includes a cylindrical stator core 53 and a stator winding 54. A plurality of magnetic pole teeth 56 are formed inward from the peripheral yoke portion 55 of the stator core 53, and a slot 57 for winding the stator winding 54 is formed between the adjacent magnetic pole teeth 56. A gap 58 is formed between the tip protruding portions of adjacent magnetic pole teeth 56, and the slot 57 is an open slot opened to the rotor 52 side by the gap 58. The stator core 53 having such a shape is manufactured by, for example, stacking a plurality of stator core pieces obtained by punching magnetic steel sheets into a shape as shown in the cross section of the figure.

回転子52は円筒状の回転子鉄心60に複数の永久磁石61を取り付けたもので、固定子51の内側に回転可能に支持されている。図の回転子52は、回転子鉄心60の表面に永久磁石61に張り付けた表面磁石構造となっている。複数の永久磁石61はN極とS極とが交互に配置されている。固定子巻線54に通電して回転磁界が形成されると回転子52は回転軸心回りに回転する。   The rotor 52 is obtained by attaching a plurality of permanent magnets 61 to a cylindrical rotor core 60 and is rotatably supported inside the stator 51. The illustrated rotor 52 has a surface magnet structure in which the permanent magnet 61 is attached to the surface of the rotor core 60. The plurality of permanent magnets 61 are alternately arranged with N poles and S poles. When the stator winding 54 is energized to form a rotating magnetic field, the rotor 52 rotates around the rotation axis.

こうした永久磁石型モータ50では、無通電状態で外部から回転トルクを与えて回転子52を定速回転させようとした場合、必要トルクに回転ムラが生ずる。このトルクの回転ムラは回転子52と固定子51間に働く静的な磁気吸引力が回転位置により異なることによるもので、コギングトルクと呼ばれる。このコギングトルクの大きさは、永久磁石61の作る磁束の磁路の全磁気エネルギーを回転角度で微分した値と考えられる。図11に示したモータ50のように回転子鉄心60のスロット57に開口部(隙間)58が存在すると、回転子52の回転に伴って磁路の磁気抵抗が変化して磁路の全磁気エネルギーも変化する。その結果としてコギングトルクが発生する。   In such a permanent magnet type motor 50, when an attempt is made to rotate the rotor 52 at a constant speed by applying a rotational torque from the outside in a non-energized state, uneven rotation occurs in the required torque. This torque unevenness is due to the fact that the static magnetic attractive force acting between the rotor 52 and the stator 51 varies depending on the rotational position, and is called cogging torque. The magnitude of the cogging torque is considered to be a value obtained by differentiating the total magnetic energy of the magnetic path of the magnetic flux created by the permanent magnet 61 with the rotation angle. When the opening (gap) 58 exists in the slot 57 of the rotor core 60 as in the motor 50 shown in FIG. 11, the magnetic resistance of the magnetic path changes with the rotation of the rotor 52, and the total magnetism of the magnetic path. Energy also changes. As a result, cogging torque is generated.

このコギングトルクは、その値が大きいと振動や騒音を発生するばかりでなくモータ効率も低下させることもある。こうしたことから、永久磁石型モータではコギングトルクを低減させることが大きな課題となっている。   If the cogging torque is large, not only vibration and noise are generated, but also the motor efficiency may be lowered. For these reasons, reducing the cogging torque is a major issue for permanent magnet motors.

コギングトルクの低減を図る従来技術としては、例えば図12に示すように回転子52に取り付ける永久磁石61を軸方向に複数段に分割し、分割した永久磁石61を軸心方向に進むにつれ周方向に段単位で徐々に変化させて取り付ける、いわゆる段スキューを形成する提案がある(特許文献1参照)。これは各段で発生するコギングトルクが相互に打ち消し合うようにしようとするものである。しかし、段スキューを形成すると軸方向に互いに極性の異なる永久磁石が近接する部分が生じ、それら近接する部分で図中の矢印62で示すような漏れ磁束が発生する。このような漏れ磁束が発生すると有効な回転トルクが減少することに加え、永久磁石61の作る磁束分布が正弦波から外れてコギングトルクを打ち消す効果も小さくなるという問題が生ずる。   As a conventional technique for reducing the cogging torque, for example, as shown in FIG. 12, the permanent magnet 61 attached to the rotor 52 is divided into a plurality of stages in the axial direction, and the circumferential direction is increased as the divided permanent magnet 61 advances in the axial direction. There is a proposal of forming a so-called step skew, which is attached by changing gradually in steps (see Patent Document 1). This is to try to cancel the cogging torque generated at each stage mutually. However, when the step skew is formed, portions where the permanent magnets having different polarities are close to each other in the axial direction are generated, and a leakage magnetic flux as indicated by an arrow 62 in the drawing is generated at these close portions. When such a leakage magnetic flux is generated, the effective rotational torque is reduced, and the magnetic flux distribution created by the permanent magnet 61 deviates from the sine wave, and the effect of canceling the cogging torque is reduced.

この段スキューを形成した場合における上記漏れ磁束を減少させるために、図13に示すように隣り合う段間に隙間63を設けたり(特許文献2参照)、その隙間63に非磁性材料を介在させたりする提案(特許文献3参照)がある。   In order to reduce the leakage magnetic flux when the step skew is formed, a gap 63 is provided between adjacent steps as shown in FIG. 13 (see Patent Document 2), or a nonmagnetic material is interposed in the gap 63. There is a proposal (see Patent Document 3).

更には、段スキューにおける隣り合う段の境界に対向する固定子鉄心部分に非磁性材料からなる磁気絶縁層を設ける提案(特許文献4参照)もある。しかし、固定子鉄心は一般にプレス加工で「自動かしめ」しながら一つの製造ラインで製造される。磁性材料と非磁性材料の2種類の材料を積層するには別々の製造ラインが必要となり、かしめ工程も別に必要となる。このため非磁性材料を固定子鉄心の一部に使用することは製造工数の増大を招く他、部品調達の増加、材料の混在などの問題を生じさせる。
実開昭61−17876号公報 特開平8−251847号公報 特開2000−308287号公報 特開2003−284276号公報
Furthermore, there is also a proposal (see Patent Document 4) in which a magnetic insulating layer made of a nonmagnetic material is provided on the stator core portion facing the boundary between adjacent steps in the step skew. However, the stator core is generally manufactured in one production line while being “automatically caulked” by pressing. In order to laminate two kinds of materials, a magnetic material and a non-magnetic material, separate production lines are required, and a caulking process is also required separately. For this reason, the use of a non-magnetic material for a part of the stator core leads to an increase in manufacturing man-hours and causes problems such as an increase in parts procurement and mixing of materials.
Japanese Utility Model Publication No. 61-17876 JP-A-8-251847 JP 2000-308287 A JP 2003-284276 A

本発明はこのような従来技術の問題点を解決するためになされたもので、その課題は、製造工数の増大を招くことなくコギングトルクを効果的に低減し、振動、騒音を少なくした永久磁石形モータを提供することにある。   The present invention has been made to solve such problems of the prior art, and the problem is that a permanent magnet that effectively reduces cogging torque and reduces vibration and noise without increasing the number of manufacturing steps. It is to provide a shaped motor.

前記課題を解決するための請求項1に記載の発明は、複数の磁極歯と固定子巻線用スロットを設けた固定子鉄心を有する固定子と、複数の永久磁石が固定され固定子の内側に回転自在に支持された回転子とを備える永久磁石型モータにおいて、複数の永久磁石は回転軸心方向に複数に分割して分割した各永久磁石は周方向位置を相互にずらして配置し、分割した永久磁石の境界に対向する固定子鉄心の部位にはスロットを全て閉スロットとした固定子鉄心片を配置したことを特徴とする永久磁石型モータである。   According to a first aspect of the present invention, there is provided a stator having a stator iron core provided with a plurality of magnetic pole teeth and a stator winding slot, and a plurality of permanent magnets fixed to the inside of the stator. In the permanent magnet type motor provided with a rotor rotatably supported by each other, the plurality of permanent magnets are divided into a plurality in the direction of the rotation axis, and the divided permanent magnets are arranged with their circumferential positions shifted from each other, The permanent magnet motor is characterized in that a stator core piece with all slots closed is disposed at a portion of the stator core facing the boundary between the divided permanent magnets.

このように回転子に取り付ける永久磁石を軸方向に複数に分割して周方向にずらした配置、いわゆる段スキューを形成した配置とすれば、分割した各部で発生するコギングトルクが互いに打ち消し合って合成コギングトルクが減少する効果を奏する。更に、本構成では分割した永久磁石の境界(段スキューの境界)に対向する固定子鉄心位置に閉スロットを形成した固定子鉄心片を配置している。このため段スキュー形成により生じた異極磁石が軸方向に隣り合う部分において新たに発生する漏洩磁束による磁路の磁気エネルギーが、回転子の回転によって変化することが防止される。その結果として段スキュー形成に起因する新たなコギングトルクの発生が防止される効果を奏する。   In this way, if the permanent magnet attached to the rotor is divided into a plurality of parts in the axial direction and shifted in the circumferential direction, so-called step skew is formed, the cogging torque generated in each divided part cancels each other and is synthesized. The cogging torque is reduced. Further, in this configuration, a stator core piece having a closed slot is disposed at a position of the stator core facing the boundary between the divided permanent magnets (step skew boundary). For this reason, it is possible to prevent the magnetic energy of the magnetic path due to the leakage magnetic flux newly generated in the portion adjacent to the axial direction of the heteropolar magnet generated by the step skew formation from being changed by the rotation of the rotor. As a result, there is an effect that generation of new cogging torque due to the formation of the step skew is prevented.

また、請求項2に記載の発明は、請求項1に記載の永久磁石型モータにおいて、閉スロットとする固定子鉄心部分は、隣接する磁極歯の先端張出部の周方向端面を相互に密着させて構成したことを特徴とする永久磁石型モータである。   According to a second aspect of the present invention, in the permanent magnet type motor according to the first aspect, the stator core portion which is a closed slot is in close contact with the circumferential end surfaces of the tip overhang portions of adjacent magnetic pole teeth. It is a permanent magnet type motor characterized by being constituted.

このような構成とすれば磁極歯に固定子巻線を巻いた後にスロットを閉スロットにすることができ、固定子巻線の巻装作業が容易となる効果を奏する。   With such a configuration, the slot can be closed after winding the stator winding around the magnetic pole teeth, and the effect of facilitating the winding operation of the stator winding is achieved.

また、請求項3に記載の発明は、請求項1に記載の永久磁石型モータにおいて、永久磁石の境界に対向する固定子鉄心の部位には、隣接する磁極歯の先端張出部の周方向端面を相互に密着させて閉スロットとした2枚の固定子鉄心片を、その密着位置を周方向にずらして重ねて配置したことを特徴とする永久磁石型モータである。   According to a third aspect of the present invention, in the permanent magnet type motor according to the first aspect of the present invention, the circumferential direction of the tip overhanging portion of the adjacent magnetic pole teeth is located on the portion of the stator core facing the boundary of the permanent magnet. The permanent magnet motor is characterized in that two stator core pieces, which are closed slots with their end faces in close contact with each other, are arranged with their close contact positions shifted in the circumferential direction.

このような構成とすれば、段スキュー形成により生じた異極磁石が軸方向に隣り合う部分において新たに発生する漏洩磁束による磁路の磁気エネルギー変化を一層確実に防止することができる。従って、段スキュー形成に起因する新たなコギングトルクの発生を一層効果的に防止することができる。   With such a configuration, it is possible to more reliably prevent the magnetic energy of the magnetic path from changing due to the leakage magnetic flux newly generated in the axially adjacent portion of the heteropolar magnet generated by the step skew formation. Therefore, the generation of new cogging torque due to the step skew formation can be more effectively prevented.

また、請求項4に記載の発明は、請求項2又は3に記載の永久磁石型モータにおいて、前記閉スロットは、各磁極歯の先端張出部の周方向端の一方にV字状の凸溝(32)を、他方に該凸溝に嵌合する逆V字状の凸突起(33)を形成し、それら凸溝と凸突起とを嵌合させて構成したことを特徴とする永久磁石型モータである。   According to a fourth aspect of the present invention, in the permanent magnet type motor according to the second or third aspect, the closed slot has a V-shaped protrusion on one of the circumferential ends of the tip overhang portions of the magnetic pole teeth. A permanent magnet comprising a groove (32) formed on the other side with an inverted V-shaped protrusion (33) fitted into the protrusion, and the protrusion and the protrusion are fitted together. Type motor.

このような嵌め合い構成とすれば、閉スロットを形成した固定子鉄心片の内周面を正確に円筒面状に揃えることが可能となる効果を奏する。   With such a fitting configuration, there is an effect that the inner peripheral surface of the stator core piece in which the closed slot is formed can be accurately aligned in a cylindrical surface shape.

以下、本発明に係る永久磁石型モータの一実施形態について図面を参照して説明する。本実施形態の永久磁石型モータ1は、固定子を構成する固定子鉄心の構成と回転子に取り付ける永久磁石の配置に特徴がある。図1は、その固定子2及び回転子3の構成とその配置関係を斜視図で示したもので、固定子2はモータ1の回転軸心を含む面で2分割した片側部分を示している。モータとして必要な回転軸、その支持機構、固定子巻線、モータケースは省略してある。   Hereinafter, an embodiment of a permanent magnet type motor according to the present invention will be described with reference to the drawings. The permanent magnet type motor 1 of the present embodiment is characterized by the configuration of a stator core constituting the stator and the arrangement of permanent magnets attached to the rotor. FIG. 1 is a perspective view showing the configuration of the stator 2 and the rotor 3 and the arrangement relationship thereof, and the stator 2 shows a one-side portion divided into two on the surface including the rotation axis of the motor 1. . The rotating shaft necessary for the motor, its support mechanism, the stator winding, and the motor case are omitted.

回転子3は、円筒状を成す回転子鉄心4の外表面に永久磁石5を張り付けた表面磁石構造であり、中心孔6に取り付けた図示しない回転軸によりその軸心回りに回転自在に支持されている。永久磁石5は軸方向に2分割して2段配置してある。永久磁石5は断面略円弧状に形成されており、周方向にN極とS極とが所定の周方向間隙7を隔てて交互に配置してある。そして2分割した各永久磁石5は分割部(段と段の境界)9で周方向位置を相互にずらして配置してあり、いわゆる段スキューが形成してある。   The rotor 3 has a surface magnet structure in which a permanent magnet 5 is attached to the outer surface of a cylindrical rotor core 4, and is supported rotatably around its axis by a rotation shaft (not shown) attached to the center hole 6. ing. The permanent magnet 5 is divided into two in the axial direction and arranged in two stages. The permanent magnet 5 is formed in a substantially arc shape in cross section, and N poles and S poles are alternately arranged in the circumferential direction with a predetermined circumferential gap 7 therebetween. Each of the permanent magnets 5 divided into two is arranged at a divided portion (a step-to-step boundary) 9 with a circumferential position shifted from each other, and a so-called step skew is formed.

図2は、図1に示した回転子3と固定子2の上面図である。固定子2としては固定子鉄心10のみを示している。固定子鉄心10は、外側の円筒状ヨーク11とその内側から中心に向けて放射状に突出した複数の磁極歯12により構成されている。ヨーク11及び磁極歯12は、珪素鋼板などの磁性鋼板をそれぞれ2に示したような形状に打ち抜いたものを必要枚数積層し軸方向にかしめて製作したものである。磁極歯12は、あり溝構造によりヨーク11の内側に固定されている。   FIG. 2 is a top view of the rotor 3 and the stator 2 shown in FIG. As the stator 2, only the stator core 10 is shown. The stator core 10 includes an outer cylindrical yoke 11 and a plurality of magnetic pole teeth 12 projecting radially from the inside toward the center. The yoke 11 and the magnetic pole teeth 12 are manufactured by laminating a required number of magnetic steel plates such as silicon steel plates, each of which is punched into the shape shown in 2, and caulking in the axial direction. The magnetic pole teeth 12 are fixed inside the yoke 11 by a dovetail structure.

磁極歯12の先端部には周方向両側に張り出した張出部14が設けられている。隣り合う磁極歯12の胴部15と張出部14、それらとヨーク11に囲まれて部分は固定子巻線を通すためのスロット16を構成している。隣り合う磁極歯12の先端張出部14間には間隙17が形成されており、スロット16はその間隙17により回転子3側に開口している。即ち、この場合のスロット16は開スロットとなっている。   At the tip of the magnetic pole tooth 12, an overhanging portion 14 that protrudes on both sides in the circumferential direction is provided. The body portion 15 and the overhanging portion 14 of the adjacent magnetic pole teeth 12 and the portion surrounded by the yoke 11 constitute a slot 16 for passing the stator winding. A gap 17 is formed between the tip projecting portions 14 of the adjacent magnetic pole teeth 12, and the slot 16 is opened to the rotor 3 side by the gap 17. That is, the slot 16 in this case is an open slot.

本実施形態の固定子鉄心10は、図1に示すように軸方向中央の1枚を除き開スロットを有する固定子鉄心片(固定子鉄心の1層分)20を必要枚数積層して構成してある。中央の1枚の固定子鉄心片20aだけは、図3に示すように磁極歯12の先端張出部14間の間隙を無くしてスロット16が閉スロットとなるように構成してある。このような閉スロットは磁極歯12の先端張出部14の張り出し長さを長く形成し、周方向端面を相互に密着させることで形成してある。   As shown in FIG. 1, the stator core 10 of the present embodiment is formed by stacking a required number of stator core pieces (one stator core layer) 20 having an open slot except for one in the axial center. It is. Only the single stator core piece 20a in the center is configured such that the slot 16 becomes a closed slot without the gap between the tip overhanging portions 14 of the magnetic pole teeth 12 as shown in FIG. Such a closed slot is formed by extending the protruding length of the tip protruding portion 14 of the magnetic pole tooth 12 and bringing the circumferential end faces into close contact with each other.

回転子3は、2段の段スキューを形成した永久磁石5の境界9が上記閉スロットを形成した固定子鉄心片20aの板厚の中央に位置するように軸方向位置を調整して取り付けてある。また、回転子3と固定子2と間にはエアギャップ22が確保されている。   The rotor 3 is attached by adjusting the axial position so that the boundary 9 of the permanent magnet 5 having a two-stage skew is positioned at the center of the thickness of the stator core piece 20a having the closed slot. is there. An air gap 22 is secured between the rotor 3 and the stator 2.

コギングトルクは、「背景技術」でも述べたように回転子位置による固定子2と回転子3の静的な磁気吸引力の差によるものである。その大きさは、永久磁石5の作る磁束の磁路が有する全磁気エネルギーの回転子回転角に対する変化(回転角度による微分値)と考えられる。そして全磁気エネルギーの変化は、回転子3の回転により磁路の磁気抵抗が変化することにより生ずる。   As described in “Background Art”, the cogging torque is due to a difference in static magnetic attractive force between the stator 2 and the rotor 3 depending on the rotor position. The magnitude is considered to be a change (differential value depending on the rotation angle) of the total magnetic energy of the magnetic path of the magnetic flux created by the permanent magnet 5 with respect to the rotor rotation angle. The change in the total magnetic energy is caused by the change in the magnetic resistance of the magnetic path due to the rotation of the rotor 3.

図2に示したような開スロットを有する固定子鉄心10の内側で回転子3を回転させた場合には、開スロットの間隙17が周方向に点在するため回転子3の回転角度により磁気抵抗が変化して磁路の全磁気エネルギーが変化する。開スロットの間隙17は等間隔で存在し、回転子3の永久磁石5も等間隔で取り付けてある。従って、コギングトルクは回転子3が1回転する間に回転子3の極数と固定子2のスロット数との最小公倍数の回数だけ繰り返し発生する。コギングトルクの1周期は360°をその最小公倍数で割った機械角度を回転子3が回転する時間に等しく、図2に示したような8極12スロット構成の場合には回転子3が機械角で15°回転する時間がコギングトルクの1周期となる。   When the rotor 3 is rotated inside the stator core 10 having the open slots as shown in FIG. 2, the gaps 17 of the open slots are scattered in the circumferential direction, so that the magnetic force depends on the rotation angle of the rotor 3. The resistance changes and the total magnetic energy of the magnetic path changes. The open slot gaps 17 exist at equal intervals, and the permanent magnets 5 of the rotor 3 are also mounted at equal intervals. Therefore, the cogging torque is repeatedly generated by the least common multiple of the number of poles of the rotor 3 and the number of slots of the stator 2 while the rotor 3 makes one rotation. One cycle of the cogging torque is equal to the time for which the rotor 3 rotates by dividing the mechanical angle obtained by dividing 360 ° by the least common multiple. In the case of the 8-pole 12-slot configuration as shown in FIG. The time for 15 ° rotation is one cycle of cogging torque.

このコギングトルクの大きさは、1周期の期間中にほぼ正弦波に近い波形で変化する。図4の曲線(1)は、図1の永久磁石型モータ1において回転子3の上半分部分(上段部分)で発生するコギングトルクの波形例である。コギングトルクがこのような波形で変化することから、その波形を1/2周期分だけずらして足し合わせれば2つのコギングトルクが互いに打ち消しあって合成コギングトルクを小さくできることが予想できる。   The magnitude of the cogging torque changes with a waveform that is almost similar to a sine wave during one period. Curve (1) in FIG. 4 is a waveform example of cogging torque generated in the upper half portion (upper portion) of the rotor 3 in the permanent magnet type motor 1 in FIG. Since the cogging torque changes in such a waveform, it can be expected that if the waveforms are shifted by a half period and added together, the two cogging torques cancel each other and the combined cogging torque can be reduced.

図4の曲線(2)は、図1の永久磁石型モータ1における回転子3の下半分部分(下段部分)の永久磁石5を上段部分に対して7.5°(8極12スロット構成におけるコギングトルクの1周期波形に対応する回転子3の回転角15°の1/2に相当)だけ周方向にずらして取り付けた場合における回転子3の下段部分で発生するコギングトルクの大きさである。上段部分の曲線(1)と下段部分の曲線(2)の2つを合成した合成コギングトルクは、理想的には図4の曲線(3)に示すように波形が互いに打ち消しあって非常に小さな値となる。僅かに残る合成コギングトルクは、波形の歪によるものである。   Curve (2) in FIG. 4 indicates that the permanent magnet 5 in the lower half (lower part) of the rotor 3 in the permanent magnet type motor 1 in FIG. This is the magnitude of the cogging torque generated at the lower part of the rotor 3 when it is mounted shifted in the circumferential direction by an amount corresponding to 1/2 of the rotation angle of 15 ° of the rotor 3 corresponding to one period waveform of the cogging torque. . The combined cogging torque obtained by synthesizing the upper curve (1) and the lower curve (2) is ideally very small because the waveforms cancel each other as shown by the curve (3) in FIG. Value. The slightly remaining synthetic cogging torque is due to waveform distortion.

ところで、上記のように段スキューを形成することよりコギングトルクを互いに打ち消しあわせることができるのは、永久磁石5の作る磁束成分の内、回転軸に垂直な面上の成分による磁気エネルギーの変化分のみである。軸方向成分による磁気エネルギーの変化分は打ち消し合うことがない。   By the way, the cogging torque can be canceled out by forming the step skew as described above, among the magnetic flux components produced by the permanent magnet 5, the change in magnetic energy due to the component on the plane perpendicular to the rotation axis. Only. Magnetic energy changes due to axial components do not cancel each other.

永久磁石5を2分割して周方向にずらした段スキューを形成した場合には、図1に示すように軸方向に異極磁石が軸方向に隣り合う部分24が極数個だけ形成される。その部分では図中の矢印に示すようなトルク発生に寄与しない漏洩磁束が生ずる。図5は、異極磁石が軸方向に隣り合う部分24を拡大し、漏洩磁束の通る磁路を模式的に示したものである(異極磁石が軸方向に隣り合う部分24に向き合う部分の固定子鉄心10は縦断面図で示す。)。漏洩磁束の磁路としては、図に示すように異極磁石間を直接繋ぐ磁路26の他、回転子3と固定子2との間のエアギャップ22通る磁路27と、エアギャップ22を通って固定子鉄心10に入り再度エアギャップ22を通って異極磁石に入る磁路28とがある。   When the step skew is formed by dividing the permanent magnet 5 into two parts and shifting it in the circumferential direction, as shown in FIG. 1, the number of poles 24 in which the different polarity magnets are adjacent in the axial direction is formed in the axial direction. . In that portion, a leakage magnetic flux that does not contribute to torque generation as shown by an arrow in the figure is generated. FIG. 5 schematically shows a magnetic path through which leakage magnetic flux passes by enlarging a portion 24 where the different pole magnets are adjacent in the axial direction (a portion of the portion where the different pole magnet faces the portion 24 adjacent in the axial direction). The stator core 10 is shown in a longitudinal sectional view). As shown in the drawing, the magnetic path of the leakage magnetic flux includes a magnetic path 26 that directly connects the different pole magnets, a magnetic path 27 that passes through the air gap 22 between the rotor 3 and the stator 2, and an air gap 22. There is a magnetic path 28 that passes through the stator core 10 and again passes through the air gap 22 and enters the different pole magnet.

このうち固定子鉄心10をも通る漏洩磁束の磁路28は、異極磁石が軸方向に隣り合う部分24に対向する部分に固定子鉄心10の磁極歯12の先端部30が存在する場合に形成される磁路である。固定子鉄心10が開スロットに形成されている場合、異極磁石の隣り合う部分24がその開スロットに対向する位置にきたときは開スロットに相当する部分だけ磁極歯12の先端部(先端張出部14を含む。)30が存在しないことになる。そのため、その位置では固定子鉄心10をも通る漏洩磁束の磁路(図5の磁路28)は形成されず、図6に示すようにエアギャップ22を通る磁路27と異極磁石間を直接繋ぐ磁路26のみが形成される。   Among these, the magnetic path 28 of the leakage magnetic flux that also passes through the stator core 10 is obtained when the tip 30 of the magnetic pole teeth 12 of the stator core 10 is present in a portion where the heteropolar magnet faces the portion 24 adjacent in the axial direction. It is a magnetic path to be formed. When the stator core 10 is formed in the open slot, when the adjacent portion 24 of the different-polarity magnet comes to a position facing the open slot, only the portion corresponding to the open slot has the tip end portion (tip extension) 30 is not present). Therefore, the magnetic path of the leakage magnetic flux (magnetic path 28 in FIG. 5) that also passes through the stator core 10 is not formed at that position, and the magnetic path 27 that passes through the air gap 22 and the heteropolar magnet as shown in FIG. Only the magnetic path 26 that directly connects is formed.

このように段スキューの境界9に対向する位置に開スロットの形成された固定子鉄心片20が配置されていると、回転子3の回転により磁路が変化して異極磁石の隣り合う部分24に隣接するエアギャップ22が有する軸方向磁束成分による磁気エネルギーが変化する。この変化はコギングトルクを生じさせる。即ち、段スキューを形成するとコギングトルクを発生させる新たな要因がその境界9付近に生ずる。   When the stator core piece 20 having the open slot is disposed at a position facing the step skew boundary 9 as described above, the magnetic path is changed by the rotation of the rotor 3 so that adjacent portions of the heteropolar magnets are adjacent to each other. The magnetic energy due to the axial magnetic flux component of the air gap 22 adjacent to 24 changes. This change causes cogging torque. That is, when the step skew is formed, a new factor for generating the cogging torque is generated near the boundary 9.

この新たな要因によるコギングトルクの発生を防止するには、異極磁石が軸方向に隣り合う部分24に対向する位置にあるエアギャップ22及び固定子鉄心10の状態が回転位置に関わらず常に同じになるようにすればよい。そうすれば回転子3が回転しても磁気エネルギーは変化しないためコギングトルクは発生しなくなる。   In order to prevent the occurrence of cogging torque due to this new factor, the state of the air gap 22 and the stator core 10 at which the different-polar magnets face the axially adjacent portions 24 is always the same regardless of the rotational position. It should just become. Then, even if the rotor 3 rotates, the magnetic energy does not change, so that cogging torque is not generated.

こうしたことから本実施形態の永久磁石型モータ1では、図1の全体図及び図7の境界部拡大図に示すように段スキューの境界9に対向する位置の固定子鉄心10部分に閉スロットを形成した固定子鉄心片20aを配置している。異極磁石の隣り合う部分24に生ずる漏洩磁束は隣り合う部分24の近傍のみを通るので、閉スロットを形成した固定子鉄心片20aは1枚のみでよい。回転子3の軸方向位置は、段スキューの境界9が閉スロットを形成した固定子鉄心片20aの厚みの中心に位置するように調整しておく。   Therefore, in the permanent magnet type motor 1 of the present embodiment, as shown in the overall view of FIG. 1 and the enlarged enlarged view of the boundary portion in FIG. 7, a closed slot is formed in the stator core 10 portion at a position facing the step skew boundary 9. The formed stator core pieces 20a are arranged. Since the leakage magnetic flux generated in the adjacent portions 24 of the different-polar magnet passes only in the vicinity of the adjacent portions 24, only one stator core piece 20a having a closed slot is required. The axial direction position of the rotor 3 is adjusted so that the step skew boundary 9 is positioned at the center of the thickness of the stator core piece 20a in which the closed slot is formed.

固定子鉄心10の中に入る漏洩磁束は固定子鉄心10の表層部分を通るので、このようにすることで漏洩磁束の磁路は図7に示すようになる。この磁路の形状は図5に示した磁路と殆ど同一であり、しかも回転子3が回転しても変化しない。従って、異極磁石の隣り合う部分24で新たに生じた漏洩磁束による新たなコギングトルクの発生を防止することができる。   Since the leakage magnetic flux entering the stator core 10 passes through the surface layer portion of the stator core 10, the magnetic path of the leakage magnetic flux becomes as shown in FIG. The shape of the magnetic path is almost the same as the magnetic path shown in FIG. 5 and does not change even when the rotor 3 rotates. Accordingly, it is possible to prevent the generation of new cogging torque due to the leakage magnetic flux newly generated in the adjacent portion 24 of the heteropolar magnet.

図8は、コギングトルクを減少させる対策を施した場合と施さない場合とのコギングトルクの大きさを測定値で比較したものである。(1)の曲線は対策を施してない場合の測定値、(2)の曲線は前述したように段スキューを形成する対策と段スキューの境界9に対向する位置に閉スロットを形成した固定子鉄心片20aを配置する対策の双方を施した本実施形態の永久磁石型モータ1のコギングトルクである。対策を施した本実施形態の永久磁石型モータ1は、コギングトルクが大幅に減少することを示している。   FIG. 8 compares the magnitude of the cogging torque with and without the measure for reducing the cogging torque by the measured value. The curve of (1) is the measured value when no countermeasure is taken, and the curve of (2) is the stator in which a closed slot is formed at a position opposite to the countermeasure for forming the step skew and the step skew boundary 9 as described above. This is the cogging torque of the permanent magnet type motor 1 of the present embodiment in which both measures for arranging the core pieces 20a are taken. The permanent magnet type motor 1 of this embodiment in which measures are taken shows that the cogging torque is greatly reduced.

このような本実施形態の永久磁石型モータ1は固定子鉄心10を全て磁性材料のみで製作しており、特許文献4に記載があるような非磁性材料は使用していない。従って、固定子鉄心10は同一の製造ラインで製作することが可能であり、材料が一種類であることから部品調達の増加がなく材料の混在も生じないという効果も奏する。   In the permanent magnet type motor 1 of this embodiment, the stator core 10 is entirely made of only a magnetic material, and no nonmagnetic material as described in Patent Document 4 is used. Therefore, the stator core 10 can be manufactured on the same production line, and since there is only one kind of material, there is an effect that there is no increase in parts procurement and no mixing of materials occurs.

なお、上記実施形態では8極12スロットで回転子鉄心の表面に永久磁石を取り付けた永久磁石型モータを例に挙げて説明したが、極数、スロット数が異なるモータについても上記考えは同様に適用でき、同様の効果を奏する。更には、永久磁石を固定子鉄心の内部に埋め込んだ磁石埋め込み型モータ、固定子の外側で永久磁石を取り付けた円筒状回転子が回転する外転型(アウターロータ型)モータ、固定子側に永久磁石を配置し巻線を施した回転子鉄心が回転する整流子モータについても同様に適用でき同様の効果を奏する。   In the above embodiment, a permanent magnet type motor having 8 poles and 12 slots and permanent magnets attached to the surface of the rotor core is described as an example. However, the same idea applies to motors having different numbers of poles and slots. It can be applied and has the same effect. Furthermore, a magnet-embedded motor in which a permanent magnet is embedded in the stator core, an abduction type (outer rotor type) motor in which a cylindrical rotor with a permanent magnet is rotated outside the stator, and on the stator side The present invention can be similarly applied to a commutator motor in which a rotor core having a permanent magnet and a winding is rotated.

(変形実施形態)
前記の永久磁石型モータ1は、次のように変形して実施してもよい。
(1)上記実施形態では回転子に取り付けた永久磁石を回転軸心方向に2分割して2段の段スキューを設けた構成について説明したが段数は更に増やしてもよい。この場合における各段間の永久磁石の周方向ずらし角度は、各段で発生するコギングトルクの1周期に相当する回転角(機械角)を段数で割った角度とする。このようにすることで各段で発生するコギングトルクを合成した合成コギングトルクをより効果的に打ち消し合わせることができる。
(Modified embodiment)
The permanent magnet motor 1 may be modified as follows.
(1) In the above-described embodiment, the configuration has been described in which the permanent magnet attached to the rotor is divided into two in the direction of the rotation axis and the two-stage skew is provided, but the number of stages may be further increased. In this case, the circumferential shift angle of the permanent magnet between the stages is an angle obtained by dividing the rotation angle (mechanical angle) corresponding to one cycle of the cogging torque generated at each stage by the number of stages. In this way, the combined cogging torque obtained by synthesizing the cogging torque generated at each stage can be canceled more effectively.

(2)前記実施形態における閉スロットを形成した固定子鉄心片20aの平面形状は図3に示したものであり、閉スロットを形成している各磁極歯12の先端張出部14の周方向端面は平面に形成されて隣の端面と密着させていた。この密着端面の形状は、図9の平面図に示すように一方には軸方向にV字状の凸溝32、他方にはそれに嵌合する軸方向に逆V字状の凸突起33を設け、嵌合により互いの面を密着させるように構成してもよい。このような嵌め合い構成とすれば、閉スロットを形成した固定子鉄心片20aの内周面を正確に円筒面状に揃えることが可能となる利点がある。 (2) The planar shape of the stator core piece 20a in which the closed slot is formed in the embodiment is as shown in FIG. 3, and the circumferential direction of the tip overhanging portion 14 of each magnetic pole tooth 12 forming the closed slot The end face was formed into a flat surface and was in close contact with the adjacent end face. As shown in the plan view of FIG. 9, the contact end face is provided with a V-shaped convex groove 32 in the axial direction on one side and an inverted V-shaped convex projection 33 in the axial direction to be fitted on the other side. Alternatively, the surfaces may be brought into close contact with each other by fitting. With such a fitting configuration, there is an advantage that the inner peripheral surface of the stator core piece 20a in which the closed slot is formed can be accurately aligned in a cylindrical surface shape.

(3)前記の永久磁石型モータ1では段スキューの境界9に対向する位置の固定子鉄心10に閉スロットを形成した1枚の固定子鉄心片20aを配置した。これに代えて閉スロットを形成した固定子鉄心片20aを2枚使用し、隣り合う磁極歯12の先端張出部14の周方向端面が相互に密着する位置35が一致しないようにずらして重ねたものを配置するようにしてもよい。そのような構成として固定子鉄心10の構成例を図12に2分割した断面部分の斜視図で示す。図中の閉スロットを形成した2枚の固定子鉄心片20aは、図3に示した固定子鉄心片20aにおける磁極歯12の先端張出部14の張り出し長さを長短2種類としてそれらを一つ置きに配置したものを、磁極歯の一極分だけ周方向にずらして重ねたものである。
このような構成とすれば、異極磁石の隣り合う部分24での漏洩磁束によるコギングトルクの発生を一層確実に防止することができる。
(3) In the permanent magnet type motor 1 described above, one stator core piece 20a having a closed slot is disposed in the stator core 10 at a position facing the boundary 9 of the step skew. Instead, two stator core pieces 20a each having a closed slot are used, and they are shifted and overlapped so that the positions 35 where the end faces 14 of the adjacent magnetic pole teeth 12 are in close contact with each other do not coincide with each other. You may make it arrange a thing. As such a configuration, a configuration example of the stator core 10 is shown in FIG. The two stator core pieces 20a formed with closed slots in the figure have two types of extension lengths of the tip extension portions 14 of the magnetic pole teeth 12 in the stator core pieces 20a shown in FIG. The ones arranged alternately are shifted and overlapped in the circumferential direction by one pole of the magnetic pole teeth.
With such a configuration, it is possible to more reliably prevent the generation of cogging torque due to the leakage magnetic flux in the adjacent portion 24 of the heteropolar magnet.

本発明の一実施形態に係る永久磁石型モータ1の構成図である。It is a lineblock diagram of permanent magnet type motor 1 concerning one embodiment of the present invention. 図1に示す永久磁石型モータ1の回転子3と固定子2の上面図である。FIG. 2 is a top view of a rotor 3 and a stator 2 of the permanent magnet type motor 1 shown in FIG. 1. 閉スロットを形成した固定子鉄心片20aの平面図である。It is a top view of the stator core piece 20a which formed the closed slot. 段スキューの形成によるコギングトルクの減少を説明する図である。It is a figure explaining the reduction of cogging torque by formation of a stage skew. 異極磁石の隣り合う部分24に対向する位置に固定子鉄心10がある場合における漏洩磁束の磁路を説明する図である。It is a figure explaining the magnetic path of the leakage magnetic flux in case the stator core 10 exists in the position facing the adjacent part 24 of a different pole magnet. 異極磁石の隣り合う部分24に対向する位置に開スロットがある場合における漏洩磁束の磁路を説明する図である。It is a figure explaining the magnetic path of the leakage magnetic flux in case there exists an open slot in the position facing the adjacent part 24 of a different pole magnet. 異極磁石の隣り合う部分24に対向する位置に閉スロットを形成した固定子鉄心片20aを配置した場合の漏洩磁束の磁路を説明する図である。It is a figure explaining the magnetic path of the leakage magnetic flux at the time of arrange | positioning the stator core piece 20a which formed the closed slot in the position facing the adjacent part 24 of a different pole magnet. コギングトルクを減少させる対策を採った永久磁石型モータ1のコギングトルク減少効果を説明する図である。It is a figure explaining the cogging torque reduction effect of the permanent magnet type motor 1 which took the countermeasure which reduces cogging torque. 閉スロットを形成した固定子鉄心片20aの他の実施形態である。It is other embodiment of the stator core piece 20a which formed the closed slot. 固定子鉄心片20aを2枚使用した固定子鉄心10の構成例である。It is a structural example of the stator core 10 using two stator core pieces 20a. 従来技術に係る永久磁石型モータの一構成の断面図である。It is sectional drawing of one structure of the permanent magnet type motor which concerns on a prior art. 段スキューを形成した従来技術に係る回転子の構成例である。It is a structural example of the rotor which concerns on the prior art which formed the step skew. 段スキューを形成した従来技術に係る回転子の他の構成例である。It is another structural example of the rotor which concerns on the prior art which formed the step skew.

符号の説明Explanation of symbols

図面中、1は永久磁石型モータ、2は固定子、3は回転子、4は回転子鉄心、5は永久磁石、9は永久磁石の境界(段スキューの境界)、10は固定子鉄心、12は磁極歯、14は張出部、16はスロット、20は開スロットを形成した固定子鉄心片、20aは閉スロットを形成した固定子鉄心片、32はV字状の凸溝、33は逆V字状の凸突起を示す。   In the drawings, 1 is a permanent magnet type motor, 2 is a stator, 3 is a rotor, 4 is a rotor core, 5 is a permanent magnet, 9 is a permanent magnet boundary (step skew boundary), 10 is a stator core, 12 is a magnetic pole tooth, 14 is an overhang, 16 is a slot, 20 is a stator core piece having an open slot, 20a is a stator core piece having a closed slot, 32 is a V-shaped convex groove, 33 is An inverted V-shaped convex protrusion is shown.

Claims (4)

複数の磁極歯(12)と固定子巻線用スロット(16)を設けた固定子鉄心(10)を有する固定子(2)と、複数の永久磁石(5)が固定され前記固定子の内側に回転自在に支持された回転子(3)とを備える永久磁石型モータにおいて、
前記複数の永久磁石は回転軸心方向に複数に分割して分割した各永久磁石は周方向位置を相互にずらして配置し、
前記分割した永久磁石の境界(9)に対向する前記固定子鉄心の部位には前記スロットを全て閉スロットとした固定子鉄心片(20a)を配置したことを特徴とする永久磁石型モータ。
A stator (2) having a stator core (10) provided with a plurality of magnetic pole teeth (12) and a stator winding slot (16), and a plurality of permanent magnets (5) are fixed to the inside of the stator A permanent magnet motor comprising a rotor (3) rotatably supported by
The plurality of permanent magnets are divided into a plurality of parts in the direction of the rotation axis, and the divided permanent magnets are arranged with their circumferential positions shifted from each other,
A permanent magnet type motor, wherein a stator core piece (20a) having all the slots as closed slots is disposed at a portion of the stator core facing the boundary (9) of the divided permanent magnet.
請求項1に記載の永久磁石型モータにおいて、前記閉スロットは隣接する磁極歯の先端張出部(14)の周方向端面を相互に密着させて構成したことを特徴とする永久磁石型モータ。   2. The permanent magnet motor according to claim 1, wherein the closed slot is formed by closely contacting the circumferential end surfaces of the tip overhanging portions (14) of adjacent magnetic pole teeth. 請求項1に記載の永久磁石型モータにおいて、前記永久磁石の境界に対向する前記固定子鉄心の部位には、隣接する磁極歯の先端張出部の周方向端面を相互に密着させて閉スロットとした2枚の固定子鉄心片を、その密着位置を周方向にずらして重ねて配置したことを特徴とする永久磁石型モータ。   2. The permanent magnet type motor according to claim 1, wherein a circumferential slot end surface of the adjacent magnetic pole teeth is closely attached to a portion of the stator core facing the boundary of the permanent magnet to close the slot. A permanent magnet type motor characterized in that the two stator core pieces are arranged with their close contact positions shifted in the circumferential direction. 請求項2又は3に記載の永久磁石型モータにおいて、前記閉スロットは、前記各磁極歯の先端張出部の周方向端の一方にV字状の凸溝(32)を、他方に該凸溝に嵌合する逆V字状の凸突起(33)を形成し、それら凸溝と凸突起とを嵌合させて構成したことを特徴とする永久磁石型モータ。

The permanent magnet type motor according to claim 2 or 3, wherein the closed slot has a V-shaped convex groove (32) at one of circumferential ends of a tip projecting portion of each magnetic pole tooth and the convex at the other. A permanent magnet type motor characterized in that an inverted V-shaped convex protrusion (33) that fits into a groove is formed and the convex groove and the convex protrusion are fitted together.

JP2005338786A 2005-11-24 2005-11-24 Permanent magnet type motor Expired - Fee Related JP4836555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338786A JP4836555B2 (en) 2005-11-24 2005-11-24 Permanent magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338786A JP4836555B2 (en) 2005-11-24 2005-11-24 Permanent magnet type motor

Publications (2)

Publication Number Publication Date
JP2007151233A true JP2007151233A (en) 2007-06-14
JP4836555B2 JP4836555B2 (en) 2011-12-14

Family

ID=38211977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338786A Expired - Fee Related JP4836555B2 (en) 2005-11-24 2005-11-24 Permanent magnet type motor

Country Status (1)

Country Link
JP (1) JP4836555B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234250A1 (en) * 2007-12-28 2010-09-29 Mitsubishi Electric Corporation Rotating electric machine
JP2011223676A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Permanent magnet type motor
US20130134824A1 (en) * 2011-11-29 2013-05-30 Lg Innotek Co., Ltd. Stator core
CN103516082A (en) * 2012-06-22 2014-01-15 Lg伊诺特有限公司 Rotor with surface mounted magnets
CN104600878A (en) * 2014-12-24 2015-05-06 张家政 Repellency-suction type motor
CN108028563A (en) * 2015-09-30 2018-05-11 三菱电机株式会社 Motor with permanent magnet
CN108390534A (en) * 2018-04-13 2018-08-10 山东大学 A kind of spoke type for electric vehicle interlocks rotor permanent magnet synchronous motor and its method
CN113300514A (en) * 2021-05-28 2021-08-24 浙江大学先进电气装备创新中心 Permanent magnet synchronous motor with non-uniform segmentation of rotor magnetic poles and optimal setting method thereof
WO2022091198A1 (en) * 2020-10-27 2022-05-05 三菱電機株式会社 Rotary electric machine and electric power steering device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144121A (en) * 1984-01-05 1985-07-30 Matsushita Electric Ind Co Ltd Induction motor
JPS6117876A (en) * 1984-07-04 1986-01-25 日産自動車株式会社 Alarm device for over-encapsulation of refrigerant
JP2000152528A (en) * 1998-11-12 2000-05-30 Sankyo Seiki Mfg Co Ltd Multipolar core, inner armature using it and its manufacture
JP2003070189A (en) * 2001-08-24 2003-03-07 Mitsubishi Electric Corp Synchronous motor
JP2003284276A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Dynamo-electric machine
WO2004093298A1 (en) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type motor
JP2005080365A (en) * 2003-08-29 2005-03-24 Kokusan Denki Co Ltd Stator for rotating electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144121A (en) * 1984-01-05 1985-07-30 Matsushita Electric Ind Co Ltd Induction motor
JPS6117876A (en) * 1984-07-04 1986-01-25 日産自動車株式会社 Alarm device for over-encapsulation of refrigerant
JP2000152528A (en) * 1998-11-12 2000-05-30 Sankyo Seiki Mfg Co Ltd Multipolar core, inner armature using it and its manufacture
JP2003070189A (en) * 2001-08-24 2003-03-07 Mitsubishi Electric Corp Synchronous motor
JP2003284276A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Dynamo-electric machine
WO2004093298A1 (en) * 2003-04-11 2004-10-28 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type motor
JP2005080365A (en) * 2003-08-29 2005-03-24 Kokusan Denki Co Ltd Stator for rotating electric machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234250A1 (en) * 2007-12-28 2010-09-29 Mitsubishi Electric Corporation Rotating electric machine
EP2234250A4 (en) * 2007-12-28 2014-03-19 Mitsubishi Electric Corp Rotating electric machine
JP2011223676A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Permanent magnet type motor
EP2600494A3 (en) * 2011-11-29 2015-09-30 LG Innotek Co., Ltd. Stator core
US20130134824A1 (en) * 2011-11-29 2013-05-30 Lg Innotek Co., Ltd. Stator core
CN103516082A (en) * 2012-06-22 2014-01-15 Lg伊诺特有限公司 Rotor with surface mounted magnets
CN104600878A (en) * 2014-12-24 2015-05-06 张家政 Repellency-suction type motor
CN108028563A (en) * 2015-09-30 2018-05-11 三菱电机株式会社 Motor with permanent magnet
CN108390534A (en) * 2018-04-13 2018-08-10 山东大学 A kind of spoke type for electric vehicle interlocks rotor permanent magnet synchronous motor and its method
CN108390534B (en) * 2018-04-13 2023-12-08 山东大学 Spoke type staggered rotor permanent magnet synchronous motor for electric automobile and method thereof
WO2022091198A1 (en) * 2020-10-27 2022-05-05 三菱電機株式会社 Rotary electric machine and electric power steering device
EP4239858A4 (en) * 2020-10-27 2024-01-03 Mitsubishi Electric Corp Rotary electric machine and electric power steering device
CN113300514A (en) * 2021-05-28 2021-08-24 浙江大学先进电气装备创新中心 Permanent magnet synchronous motor with non-uniform segmentation of rotor magnetic poles and optimal setting method thereof

Also Published As

Publication number Publication date
JP4836555B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836555B2 (en) Permanent magnet type motor
JP5796613B2 (en) Multi-gap rotating electric machine
JP4834386B2 (en) Permanent magnet type motor and electric power steering device using the same
JP4432616B2 (en) Axial gap type rotating electrical machine
CN104937815B (en) Permanent magnet type rotating electric machine
JP2017077044A (en) Rotating electric machine and manufacturing method of rotor core
US20140062254A1 (en) Permanent Magnet Rotating Electrical Machine
JP5313752B2 (en) Brushless motor
JP2008206308A (en) Permanent-magnet rotating electric machine
WO2007026802A1 (en) Rotary electric machine
JP2008535471A (en) Reluctance motor
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP2008048481A (en) Permanent magnet motor
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2008148447A (en) Motor for electric power steering device
JP2003284276A (en) Dynamo-electric machine
JP4644875B2 (en) End plates used for motors and rotors of motors
JP2008278590A (en) Rotary electric machine
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
JP5811566B2 (en) Rotor and permanent magnet motor
JP2008306796A (en) Rotary electric machine
JP2007202363A (en) Rotary-electric machine
JP5122124B2 (en) Axial gap type rotating machine, air-conditioning compressor, fan, and automobile equipped with the same
JP2007159308A (en) Rotor
JP2005304245A (en) Axial-gap type rotating-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4836555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees