JP2016035351A - Method and device for controlling heat source system - Google Patents

Method and device for controlling heat source system Download PDF

Info

Publication number
JP2016035351A
JP2016035351A JP2014157788A JP2014157788A JP2016035351A JP 2016035351 A JP2016035351 A JP 2016035351A JP 2014157788 A JP2014157788 A JP 2014157788A JP 2014157788 A JP2014157788 A JP 2014157788A JP 2016035351 A JP2016035351 A JP 2016035351A
Authority
JP
Japan
Prior art keywords
cooling water
water inlet
heat source
inlet temperature
source system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014157788A
Other languages
Japanese (ja)
Other versions
JP5944957B2 (en
Inventor
和樹 矢島
Kazuki Yajima
和樹 矢島
雅英 福井
Masahide Fukui
雅英 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Corp
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp, Shinryo Air Conditioning Co Ltd filed Critical Shinryo Corp
Priority to JP2014157788A priority Critical patent/JP5944957B2/en
Publication of JP2016035351A publication Critical patent/JP2016035351A/en
Application granted granted Critical
Publication of JP5944957B2 publication Critical patent/JP5944957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simplify control operation, and to achieve large energy reduction effect.SOLUTION: A heat source system control method for optimally controlling a heat source system 10 including an absorption refrigerating machine 11 for cooling a cold heat medium supplied to an air-conditioning facility of a building, and a cooling tower 12 for cooling cooling water supplied to the absorption refrigerating machine 11, includes a cooling water temperature control step of calculating an optimum set value of a cooling water inlet temperature from an outdoor air wet-bulb temperature measured at an installation place of the building with the usage of an approximation equation in which a correlation between the optimum set value of the cooling water inlet temperature of the cooling tower 12 minimizing an energy consumption amount of the building and the outdoor air wet-bulb temperature is simplified, and controlling the cooling water inlet temperature based on the optimum set value.SELECTED DRAWING: Figure 6

Description

本発明は、建築物に設置される熱源システムを最適に制御するための熱源システム制御方法及びその装置に関するものである。   The present invention relates to a heat source system control method and apparatus for optimally controlling a heat source system installed in a building.

事務所ビル等の建築物において、空調設備関連の熱源システムが占めるエネルギー消費量の割合が高くなってきており、省エネルギー対策は重要度を増している。そこで、従来、この種の建築物では、熱源システムを最適に制御するための技術が広く採用されている。   In buildings such as office buildings, the proportion of energy consumption by heat source systems related to air conditioning equipment is increasing, and energy conservation measures are becoming increasingly important. Therefore, conventionally, in this type of building, a technique for optimally controlling the heat source system has been widely adopted.

従来のこの種の技術として、例えば、特許文献1には、多数のすべてのパラメータに対してリアルタイムで目的関数を最小、最大とするような最適化計算を行い、各パラメータの設定値を最適化する空調設備の制御方法等が記載されている。   As a conventional technique of this type, for example, in Patent Document 1, optimization calculation is performed to minimize and maximize the objective function in real time for all the many parameters, and the setting values of each parameter are optimized. The control method of the air-conditioning equipment to perform is described.

また、特許文献2には、多変量解析により高効率運転制御関数を作成し、リアルタイムに計算するパラメータを限定することにより、パラメータの最適値を求め、該最適値に基づき制御を行う熱源システム最適運転制御方法等が記載されている。   In Patent Document 2, a highly efficient operation control function is created by multivariate analysis, the parameters to be calculated in real time are limited, the optimum value of the parameter is obtained, and the heat source system that performs control based on the optimum value is optimized. An operation control method and the like are described.

また、特許文献3には、外気湿球温度と冷房負荷から冷却水温度と冷却水流量を制御するためのテーブルデータを作成し、外気湿球温度と冷房負荷に合わせて対応する冷却水温度と冷却水流量を設定値として制御する冷却水製造装置の制御方法等が記載されている。   Further, in Patent Document 3, table data for controlling the cooling water temperature and the cooling water flow rate from the outside air wet bulb temperature and the cooling load is created, and the corresponding cooling water temperature according to the outside air wet bulb temperature and the cooling load is set. A control method for a cooling water production apparatus that controls the cooling water flow rate as a set value is described.

特開2004−053127号公報JP 2004-053127 A 特開2006−275323号公報JP 2006-275323 A 特開2011−226684号公報JP 2011-226684 A

しかしながら、上記した特許文献1の技術では、計算負荷が大きいため、計算速度が遅くなるという問題がある。また、目的関数を最小、最大とするような最適化計算による最適値の算出では、局所最適解となる場合があるため、制御の信頼性に欠けるという問題がある。   However, the technique disclosed in Patent Document 1 has a problem that the calculation speed is slow because the calculation load is large. In addition, there is a problem that the reliability of the control is lacking in the calculation of the optimum value by the optimization calculation that minimizes and maximizes the objective function because it may be a local optimum solution.

また、上記した特許文献2の技術では、高効率運転制御関数を作成するために多変量解析する際に、パラメータの個数が不足したり、各変数の式が実際の熱源システムと乖離したりした場合には、高効率運転制御関数の精度が下がり、計算された結果が最適でない可能性が高くなるという問題がある。   In the technique of Patent Document 2 described above, when performing multivariate analysis in order to create a high-efficiency operation control function, the number of parameters is insufficient, or the formulas of each variable deviate from the actual heat source system. In such a case, there is a problem that the accuracy of the high-efficiency operation control function is lowered and the possibility that the calculated result is not optimal is increased.

さらに、上記した特許文献1〜3の技術に共通する問題点として、制御に必要なパラメータや計測点が多く、制御システムが複雑化するといった点や、制御方法や制御関数が複雑なため、実際の熱源システムへの導入時に、新規および既存のシステム問わず、制御盤等の改造にコストと時間が掛かるといった点や、設備の改修時や想定した最適制御が行われていない場合、最適化計算や制御関数の修正が必要となるが、その修正についてもコストと時間が掛かるといった点などがある。   Furthermore, problems common to the techniques of Patent Documents 1 to 3 described above are that there are many parameters and measurement points necessary for control, the control system is complicated, and the control method and control function are complicated. When introducing a heat source system, whether it is costly or time-consuming to modify a control panel, regardless of whether it is a new or existing system, or when the equipment is being refurbished or if the optimum control is not performed And the control function needs to be corrected. However, the correction also requires cost and time.

本発明は、上記した各種課題を解決すべくなされたものであり、制御の簡素化を図ると共に大きなエネルギー削減効果を得ることのできる熱源システム制御方法及びその装置を提供することを目的とするものである。   The present invention has been made to solve the various problems described above, and aims to provide a heat source system control method and apparatus capable of simplifying control and obtaining a large energy reduction effect. It is.

上記した目的を達成するため、本発明は、建築物の空調設備に供給される冷熱媒体を冷却する吸収式冷凍機と、該吸収式冷凍機に供給される冷却水を冷却する冷却塔と、を備える熱源システムを最適に制御するための熱源システム制御方法において、前記建築物のエネルギー消費量を最小にする前記冷却塔の冷却水入口温度の最適設定値と外気湿球温度との相関関係を単純化した近似式を用いて、前記建築物の設置場所において計測された外気湿球温度から該冷却水入口温度の最適設定値を算出し、該最適設定値に基づき該冷却水入口温度を制御する冷却水温度制御工程を含むことを特徴とする。   In order to achieve the above-described object, the present invention provides an absorption refrigerator that cools a cooling medium supplied to an air conditioning facility of a building, a cooling tower that cools cooling water supplied to the absorption refrigerator, In the heat source system control method for optimally controlling the heat source system comprising: a correlation between the optimum set value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature that minimizes the energy consumption of the building Using the simplified approximate expression, the optimum setting value of the cooling water inlet temperature is calculated from the outside wet bulb temperature measured at the installation location of the building, and the cooling water inlet temperature is controlled based on the optimum setting value. And a cooling water temperature control step.

この構成によれば、対象となる建築物のエネルギー消費量を最小にする冷却塔の冷却水入口温度の最適設定値と外気湿球温度との近似式を使用して該冷却水入口温度を制御しているため、大きなエネルギー削減効果を確実に得ることができる。   According to this configuration, the cooling water inlet temperature is controlled using an approximate expression of the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature that minimizes the energy consumption of the target building. Therefore, a large energy reduction effect can be obtained with certainty.

また、本発明に係る熱源システム制御方法は、前記吸収式冷凍機の負荷に応じて冷却塔の冷却水流量を制御する冷却水流量制御工程をさらに含んでいてもよい。   The heat source system control method according to the present invention may further include a cooling water flow rate control step of controlling a cooling water flow rate of the cooling tower according to the load of the absorption chiller.

この構成によれば、さらに大きなエネルギー削減効果を得ることができる。   According to this configuration, an even greater energy reduction effect can be obtained.

また、本発明に係る熱源システム制御方法において、前記近似式は、冷却水入口温度をTCT、外気湿球温度をTOWB、a及びbを定数とした場合に、TCT=a×TOWB+bで示される一次式であることが好ましい。 Further, in the heat source system control method according to the present invention, the approximate expression is as follows: T CT = a × T OWB when the cooling water inlet temperature is T CT , the outdoor wet bulb temperature is T OWB , and a and b are constants. A linear expression represented by + b is preferable.

この構成によれば、計算負荷が小さく、計算速度を高めることができると共に、計測が必要となるパラメータ(外気湿球温度)を一つに削減することができるため、制御システムの簡素化を図ることができる。   According to this configuration, the calculation load is small, the calculation speed can be increased, and the parameter (outside air wet bulb temperature) that needs to be measured can be reduced to one, thereby simplifying the control system. be able to.

また、本発明は、建築物の空調設備に供給される冷熱媒体を冷却する吸収式冷凍機と、該吸収式冷凍機に供給される冷却水を冷却する冷却塔と、を備える熱源システムを最適に制御するための熱源システム制御装置において、前記建築物のエネルギー消費量を最小にする前記冷却塔の冷却水入口温度の最適設定値と外気湿球温度との相関関係を単純化した近似式を用いて、前記建築物の設置場所において計測された外気湿球温度から該冷却水入口温度の最適設定値を算出し、該最適設定値に基づき該冷却水入口温度を制御する制御部を備えていることを特徴とする。   Further, the present invention provides an optimal heat source system comprising an absorption chiller that cools a cooling medium supplied to a building air conditioner, and a cooling tower that cools cooling water supplied to the absorption chiller. In the heat source system control device for controlling the temperature, an approximate expression that simplifies the correlation between the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature that minimizes the energy consumption of the building A control unit that calculates an optimum set value of the cooling water inlet temperature from the outside wet bulb temperature measured at the installation location of the building and controls the cooling water inlet temperature based on the optimum set value; It is characterized by being.

この構成によれば、対象となる建築物のエネルギー消費量を最小にする冷却塔の冷却水入口温度の最適設定値と外気湿球温度との近似式を使用して、該冷却水入口温度を制御しているため、大きなエネルギー削減効果を確実に得ることができる。   According to this configuration, the cooling water inlet temperature is calculated using an approximate expression of the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature that minimizes the energy consumption of the target building. Since it is controlled, a large energy reduction effect can be obtained with certainty.

また、本発明に係る熱源システム制御装置は、前記吸収式冷凍機の負荷に応じて冷却塔の冷却水流量を制御するように構成されていてもよい。   The heat source system control device according to the present invention may be configured to control the cooling water flow rate of the cooling tower in accordance with the load of the absorption chiller.

この構成によれば、さらに大きなエネルギー削減効果を得ることができる。   According to this configuration, an even greater energy reduction effect can be obtained.

また、本発明に係る熱源システム制御装置において、前記近似式は、冷却水入口温度をTCT、外気湿球温度をTOWB、a及びbを定数とした場合に、TCT=a×TOWB+bで示される一次式であることが好ましい。 Moreover, in the heat source system control apparatus according to the present invention, the approximate expression is as follows: T CT = a × T OWB when the cooling water inlet temperature is T CT , the outdoor wet bulb temperature is T OWB , and a and b are constants. A linear expression represented by + b is preferable.

この構成によれば、計算負荷が小さく、計算速度を高めることができると共に、計測が必要となるパラメータ(外気湿球温度)を一つに削減することができるため、制御システムの簡素化を図ることができる。   According to this configuration, the calculation load is small, the calculation speed can be increased, and the parameter (outside air wet bulb temperature) that needs to be measured can be reduced to one, thereby simplifying the control system. be able to.

本発明によれば、対象となる建築物のエネルギー消費量を最小にする冷却塔の冷却水入口温度の最適設定値と外気湿球温度との近似式を使用して該冷却水入口温度を制御しているため、大きなエネルギー削減効果を確実に得ることができる等、種々の優れた効果を得ることができる。   According to the present invention, the cooling water inlet temperature is controlled using an approximate expression of the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature that minimizes the energy consumption of the target building. Therefore, various excellent effects can be obtained, for example, a large energy reduction effect can be obtained with certainty.

本発明の実施の形態における熱源システムを示す概略図である。It is the schematic which shows the heat source system in embodiment of this invention. 本発明の実施の形態における熱源システムにおいて、直焚吸収式冷温水機(二重効用)の冷却水入口温度毎の性能曲線を示す図である。In a heat source system in an embodiment of the invention, it is a figure showing a performance curve for every cooling water inlet temperature of a direct absorption absorption type cold / hot water machine (double effect). 本発明の実施の形態における熱源システムにおいて、(a)は直焚吸収式冷温水機(二重効用)の負荷率が60%以上の場合のエネルギー消費量と冷却水入口温度との関係を示す図であり、(b)は直焚吸収式冷温水機(二重効用)の負荷率が50%以下の場合のエネルギー消費量と冷却水入口温度との関係を示す図である。In the heat source system according to the embodiment of the present invention, (a) shows the relationship between the energy consumption and the cooling water inlet temperature when the load factor of the direct water absorption type chiller / heater (double effect) is 60% or more. It is a figure, (b) is a figure which shows the relationship between the energy consumption and cooling water inlet temperature in case the load factor of a direct absorption type | mold absorption / cooling water heater (double effect) is 50% or less. 本発明の実施の形態における熱源システムにおいて、冷却水温度制御のみを行った場合の冷却水入口温度の最適設定値と外気湿球温度との相関関係を示す図である。It is a figure which shows the correlation with the optimal setting value of a cooling water inlet temperature, and external air wet bulb temperature at the time of performing only cooling water temperature control in the heat source system in embodiment of this invention. 本発明の実施の形態における熱源システムにおいて、冷却水温度制御と冷却水流量制御を同時に行った場合の冷却水入口温度の最適設定値と外気湿球温度との相関関係を示す図である。It is a figure which shows the correlation with the optimal setting value of a cooling water inlet temperature, and external air wet bulb temperature at the time of performing cooling water temperature control and cooling water flow control simultaneously in the heat source system in embodiment of this invention. 本発明の実施の形態における熱源システムにおいて、冷却水入口温度の最適設定値に基づき冷却塔の冷却水入口温度を制御する方法を示すフローチャートである。It is a flowchart which shows the method of controlling the cooling water inlet temperature of a cooling tower based on the optimal setting value of a cooling water inlet temperature in the heat source system in embodiment of this invention. 本発明の実施の形態における熱源システムにおいて、(a)は蒸気吸収式冷凍機の冷却水入口温度毎の性能曲線を示す図、(b)は直焚吸収式冷温水発生機1の冷却水入口温度毎の性能曲線を示す図、(c)は直焚吸収式冷温水発生機2の冷却水入口温度毎の性能曲線を示す図である。In the heat source system in the embodiment of the present invention, (a) is a diagram showing a performance curve for each cooling water inlet temperature of the vapor absorption refrigeration machine, (b) is a cooling water inlet of the direct water absorption type cold / hot water generator 1. The figure which shows the performance curve for every temperature, (c) is a figure which shows the performance curve for every cooling water inlet_port | entrance temperature of the direct water absorption type cold / hot water generator 2. FIG.

以下、図面を参照しつつ、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図1を参照して、本発明の実施の形態における熱源システム10について説明する。   First, a heat source system 10 according to an embodiment of the present invention will be described with reference to FIG.

この熱源システム10は、建築物の空調設備(図示省略)に供給される冷水を冷却する吸収式冷凍機11と、吸収式冷凍機11に供給される冷却水を冷却する冷却塔12と、を備えている。   The heat source system 10 includes an absorption chiller 11 that cools cold water supplied to a building air conditioner (not shown), and a cooling tower 12 that cools cooling water supplied to the absorption chiller 11. I have.

吸収式冷凍機11と前記空調設備との間には冷水配管13が配設されている。冷水配管13には吸収式冷凍機11の冷水循環方向(図1中の矢印参照)上流側近傍位置に冷水ポンプ14が設けられている。   A cold water pipe 13 is disposed between the absorption refrigerator 11 and the air conditioning equipment. The chilled water pipe 13 is provided with a chilled water pump 14 in the vicinity of the upstream side of the absorption chiller 11 in the direction of circulating chilled water (see the arrow in FIG. 1).

吸収式冷凍機11と冷却塔12との間には冷却水配管15が配設されている。冷却水配管15には吸収式冷凍機11の冷却水循環方向(図1中の矢印参照)上流側近傍位置に冷却水ポンプ16が設けられている。また、冷却水配管15には冷却塔12を迂回するようにバイパス配管17が分岐して設けられ、バイパス配管17の冷却水配管15との合流箇所に三方電磁弁18が設けられている。   A cooling water pipe 15 is disposed between the absorption refrigerator 11 and the cooling tower 12. The cooling water pipe 15 is provided with a cooling water pump 16 in the vicinity of the upstream side in the cooling water circulation direction (see the arrow in FIG. 1) of the absorption refrigerator 11. Further, a bypass pipe 17 is branched and provided in the cooling water pipe 15 so as to bypass the cooling tower 12, and a three-way electromagnetic valve 18 is provided at a junction of the bypass pipe 17 and the cooling water pipe 15.

冷却水配管15の途中には、冷却水流量センサF1、第1冷却水温度センサT1、および第2冷却水温度センサT2がそれぞれ配置されている。冷却水流量センサF1は、冷却水ポンプ16の冷却水循環方向上流側に配置され、冷却水配管15を流れる冷却水の流量を計測する。第1冷却水温度センサT1は、冷却塔12の冷却水循環方向下流側に配置され、冷却水配管15を流れる冷却水の温度を計測する。この第1冷却水温度センサT1の計測結果に基づき、冷却塔12のファンが制御される。第2冷却水温度センサT2は、三方電磁弁18の冷却水循環方向下流側に配置され、冷却水配管15を流れる冷却水の温度を計測する。この第2冷却水温度センサT2の計測結果に基づき、三方電磁弁18が切換え制御される。   A cooling water flow rate sensor F1, a first cooling water temperature sensor T1, and a second cooling water temperature sensor T2 are arranged in the middle of the cooling water pipe 15. The cooling water flow rate sensor F <b> 1 is disposed upstream of the cooling water pump 16 in the cooling water circulation direction, and measures the flow rate of the cooling water flowing through the cooling water pipe 15. The first cooling water temperature sensor T <b> 1 is disposed downstream of the cooling tower 12 in the cooling water circulation direction, and measures the temperature of the cooling water flowing through the cooling water pipe 15. Based on the measurement result of the first cooling water temperature sensor T1, the fan of the cooling tower 12 is controlled. The second coolant temperature sensor T <b> 2 is disposed downstream of the three-way solenoid valve 18 in the coolant circulation direction, and measures the temperature of coolant flowing through the coolant pipe 15. Based on the measurement result of the second coolant temperature sensor T2, the three-way solenoid valve 18 is controlled to be switched.

前記建築物の屋外には、外気温度や相対湿度等の外気条件を計測する外気センサPが配置され、外気センサPによる計測結果は制御部19に送信される。制御部19は、外気センサPの計測結果に基づき、冷却塔12の冷却水入口温度の設定値TSPを制御する。 Outside the building, an outside air sensor P for measuring outside air conditions such as outside air temperature and relative humidity is arranged, and a measurement result by the outside air sensor P is transmitted to the control unit 19. Control unit 19, based on the measurement result of the outside air sensor P, and controls the set value T SP of the cooling water inlet temperature of the cooling tower 12.

次に、図1に加えて図2〜図6を参照して、本発明の実施の形態に係る熱源システム10の制御方法について説明する。   Next, referring to FIGS. 2 to 6 in addition to FIG. 1, a method for controlling the heat source system 10 according to the embodiment of the present invention will be described.

まず、前記建築物の設置場所における複数の外気条件と吸収式冷凍機11の複数の負荷条件とをそれぞれ組合せて入力された前提条件毎に熱源システム10のエネルギー消費量について冷房運転のみを対象としてシミュレーションを行う。   First, only the cooling operation is performed for the energy consumption of the heat source system 10 for each precondition input by combining a plurality of outdoor air conditions at the installation location of the building and a plurality of load conditions of the absorption refrigerator 11 respectively. Perform a simulation.

本実施例では、表1に示すように、前記外気条件として、10℃、15℃、20℃、25℃、30℃、35℃の6通りの外気温度、および、30%、45%、60%、75%、90%の5通りの相対湿度をそれぞれ使用すると共に、前記負荷条件として、10〜100%の間で10%毎10通りの負荷率をそれぞれ使用する。そして、これらの条件をそれぞれ組合せて入力された300通りの前記前提条件のそれぞれについて、冷却水温度制御や冷却水流量制御を行いながら、国土交通省の提供するLCEM(ライフサイクルエネルギーマネジメント)ツールを使用して、エネルギー消費量のシミュレーションを行う。   In this example, as shown in Table 1, as the outside air conditions, six outside air temperatures of 10 ° C., 15 ° C., 20 ° C., 25 ° C., 30 ° C., 35 ° C., and 30%, 45%, 60 %, 75%, and 90% relative humidity are used, respectively, and the load conditions are 10% to 10% and 10% load factor, respectively. For each of the 300 preconditions that are input in combination with these conditions, the LCEM (Life Cycle Energy Management) tool provided by the Ministry of Land, Infrastructure, Transport and Tourism is performed while controlling the cooling water temperature control and cooling water flow rate control. Use to simulate energy consumption.

Figure 2016035351
Figure 2016035351

この時、LCEM内のオブジェクトにおいて、吸収式冷凍機11として直焚吸収式冷温水機(二重効用)が選択され、該吸収式冷凍機11の仕様に合わせて、冷却塔12や冷水ポンプ14及び冷却水ポンプ16の各仕様が選定され、LCEM内のオブジェクトにそれらのデータがそれぞれ入力される。なお、本実施例において入力される、吸収式冷凍機11、冷却塔12、冷水ポンプ14、及び冷却水ポンプ16の詳細な仕様を表2に示すと共に前記選択した直焚吸収式冷温水機(二重効用)の冷却水入口温度(12℃、16℃、20℃、24℃、28℃、32℃)毎の性能曲線を図2に示す。ここで、一次エネルギー換算係数は、9.76MJ/kWh(電力)、45MJ/m(ガス)とする。なお、本明細書中、エネルギー消費量には一次エネルギー換算値を用いる。 At this time, in the object in the LCEM, the direct absorption absorption chiller / heater (double effect) is selected as the absorption refrigeration unit 11, and the cooling tower 12 and the chilled water pump 14 are matched to the specification of the absorption refrigeration unit 11. And each specification of the cooling water pump 16 is selected, and those data are respectively input to the object in LCEM. The detailed specifications of the absorption chiller 11, the cooling tower 12, the chilled water pump 14, and the cooling water pump 16 input in this embodiment are shown in Table 2, and the selected direct absorption chiller / heater ( FIG. 2 shows performance curves for each cooling water inlet temperature (12 ° C., 16 ° C., 20 ° C., 24 ° C., 28 ° C., 32 ° C.). Here, the primary energy conversion coefficient is 9.76 MJ / kWh (electric power) and 45 MJ / m 3 (gas). In addition, in this specification, primary energy conversion value is used for energy consumption.

Figure 2016035351
Figure 2016035351

次いで、LCEM内のオブジェクトに、冷却水入口温度の設定値を12〜32℃の間で2℃毎に変更した11通りの値(表3の最上段参照)をそれぞれ入力し、冷却塔12の冷却水入口温度が該設定値となるように、第1冷却水温度センサT1の計測結果により冷却塔12のファンを制御すると共に第2冷却水温度センサT1の計測結果により三方電磁弁17を切換え制御する(冷却水温度制御)。そして、このように冷却水温度制御を行いながら、熱源システム10全体のエネルギー消費量のシミュレーションを行い、比較、評価する。なお、この時、表3に示されているように、冷却水ポンプ16および冷水ポンプ14はそれぞれ定流量制御に設定され、冷却水流量の下限設定値は定格(100%)に設定され、吸収式冷凍機11の冷水出口温度は7℃に設定される。   Next, eleven values (see the top row in Table 3) obtained by changing the set value of the cooling water inlet temperature every 12 ° C. between 12 ° C. and 32 ° C. are input to the objects in the LCEM, respectively. The fan of the cooling tower 12 is controlled by the measurement result of the first cooling water temperature sensor T1 and the three-way solenoid valve 17 is switched by the measurement result of the second cooling water temperature sensor T1 so that the cooling water inlet temperature becomes the set value. Control (cooling water temperature control). And while performing cooling water temperature control in this way, the energy consumption of the whole heat source system 10 is simulated, compared, and evaluated. At this time, as shown in Table 3, each of the cooling water pump 16 and the cooling water pump 14 is set to constant flow control, and the lower limit setting value of the cooling water flow rate is set to the rating (100%) and absorbed. The cold water outlet temperature of the type refrigerator 11 is set to 7 ° C.

Figure 2016035351
Figure 2016035351

このシミュレーションの結果、吸収式冷凍機11の負荷率が60%以上の場合には、図3(a)に示すように、冷却水入口温度が最も低い値で合計のエネルギー消費量が最小となり、また、吸収式冷凍機11の負荷率が50%以下の場合には、図3(b)に示すように、冷却水入口温度が最も低い値ではないある値のときに合計のエネルギー消費量が最小となる。これにより、熱源システム10のエネルギー消費量を最小化する冷却塔12の冷却水入口温度の最適設定値TCTと最も強い相関関係を有するパラメータとして外気湿球温度TOWBが抽出される。そして、この外気湿球温度TOWBと冷却水入口温度の最適設定値TCTとの間には、図4に示すような相関関係が存在し、冷却水入口温度の最適設定値TCTは、次式で表わされる近似式により求められる。 As a result of this simulation, when the load factor of the absorption chiller 11 is 60% or more, as shown in FIG. 3A, the total energy consumption is minimized at the lowest cooling water inlet temperature, In addition, when the load factor of the absorption chiller 11 is 50% or less, as shown in FIG. 3B, the total energy consumption amount when the cooling water inlet temperature is not a lowest value but a certain value. Minimal. As a result, the outdoor wet bulb temperature T OWB is extracted as a parameter having the strongest correlation with the optimum set value T CT of the cooling water inlet temperature of the cooling tower 12 that minimizes the energy consumption of the heat source system 10. And, there is a correlation as shown in FIG. 4 between the outside wet bulb temperature T OWB and the optimum set value T CT of the cooling water inlet temperature, and the optimum set value T CT of the cooling water inlet temperature is It is obtained by an approximate expression expressed by the following expression.

CT=0.747×TOWB+10.874 T CT = 0.747 × T OWB +10.874

さらに、前記冷却水温度制御に加えて、表4に示すように、冷却水ポンプ16を変流量制御(INV制御)、冷却水流量の下限設定値を定格の50%、60%、70%、80%、100%に変更して冷却水流量制御をしながら、熱源システム10全体のエネルギー消費量のシミュレーションを行い、比較、評価する。   Further, in addition to the cooling water temperature control, as shown in Table 4, the cooling water pump 16 is subjected to variable flow control (INV control), and the lower limit setting value of the cooling water flow is set to 50%, 60%, 70% of the rating, While changing the flow rate to 80% and 100% and controlling the cooling water flow rate, the energy consumption of the entire heat source system 10 is simulated, compared, and evaluated.

Figure 2016035351
Figure 2016035351

このシミュレーションの結果、前記冷却水温度制御のみを行った場合と同様に、冷却水入口温度の最適設定値TCTと外気湿球温度TOWBとの間には、図5に示すような相関関係が存在し、冷却水入口温度の最適設定値TCTは、次の一次式で表される近似式により求められる。 As a result of this simulation, as in the case where only the cooling water temperature control is performed, there is a correlation as shown in FIG. 5 between the optimum set value T CT of the cooling water inlet temperature and the outside wet bulb temperature T OWB . The optimum set value T CT of the cooling water inlet temperature is obtained by an approximate expression expressed by the following linear expression.

CT=0.742×TOWB+10.766 T CT = 0.742 × T OWB +1.766

このように、前記冷却水温度制御のみを行った場合と、前記冷却水温度制御と前記冷却水流量制御を同時に行った場合のいずれの場合も、冷却水入口温度の最適設定値TCTと外気湿球温度TOWBとの間には、次式のような一次式の近似式によって単純化される相関関係が成立する。 As described above, the optimum set value T CT of the cooling water inlet temperature and the outside air are controlled both in the case where only the cooling water temperature control is performed and in the case where both the cooling water temperature control and the cooling water flow rate control are performed simultaneously. A correlation that is simplified by an approximate expression of a linear expression such as the following expression is established between the wet bulb temperature T OWB .

CT=a×TOWB+b
ここで、aおよびbは定数である。
T CT = a × T OWB + b
Here, a and b are constants.

そこで、前記近似式によって、冷却塔12の冷却水入口温度の最適設定値TCTを決定し、該最適設定値TCTに基づき冷却水入口温度を制御する。 Therefore, the optimum set value TCT of the cooling water inlet temperature of the cooling tower 12 is determined by the approximate expression, and the cooling water inlet temperature is controlled based on the optimum set value TCT .

具体的には、図1及び図6に示すように、まず、制御部19は、外気センサPによる外気湿球温度の計測結果を受信する(図6のS1参照)と、前記近似式を使用して、冷却水入口温度の最適設定値TCTを演算する(図6のS2参照)。 Specifically, as shown in FIGS. 1 and 6, first, the control unit 19 receives the measurement result of the outside air wet bulb temperature by the outside air sensor P (see S1 in FIG. 6), and uses the approximate expression. Then, the optimum set value TCT of the cooling water inlet temperature is calculated (see S2 in FIG. 6).

その後、制御部19は、次のステップS3において、前記演算された冷却水入口温度の最適設定値TCTが吸収式冷凍機11の運転可能な冷却水入口温度の下限値T以下であるかどうかを判断する。 Thereafter, in the next step S3, the control unit 19 determines whether the calculated optimum setting value T CT of the cooling water inlet temperature is equal to or lower than the lower limit value TL of the cooling water inlet temperature at which the absorption chiller 11 can be operated. Judge whether.

その結果、冷却水入口温度の最適設定値TCTが吸収式冷凍機11の運転可能な冷却水入口温度の下限値T以下であると判断された場合には、ステップS4へ進み、制御部19は冷却水入口温度の下限値Tを冷却水入口温度TSPに設定する。 As a result, when it is determined that the optimum set value T CT of the cooling water inlet temperature is equal to or lower than the lower limit value TL of the cooling water inlet temperature at which the absorption chiller 11 can be operated, the process proceeds to step S4 and the control unit 19 to set the lower limit T L of the cooling water inlet temperature to the cooling water inlet temperature T SP.

一方、前記ステップS3において、冷却水入口温度の最適設定値TCTが吸収式冷凍機11の運転可能な冷却水入口温度の下限値T以下ではないと判断された場合には、ステップS5へ進み、制御部19は前記近似式により算出した冷却水入口温度の最適設定値TCTを冷却水入口温度TSPに設定する。 On the other hand, if it is determined in step S3 that the optimum set value T CT of the cooling water inlet temperature is not less than or equal to the lower limit value TL of the cooling water inlet temperature at which the absorption chiller 11 can be operated, go to step S5. Then, the control unit 19 sets the optimum set value T CT of the cooling water inlet temperature calculated by the approximate expression as the cooling water inlet temperature T SP .

そして、前記ステップS4又は前記ステップS5において設定された冷却水入口温度の設定値TSPに基づき、冷却塔12の冷却水入口温度を制御する。 Then, based on the setting value T SP of the cooling water inlet temperature set in step S4 or step S5, it controls the cooling water inlet temperature of the cooling tower 12.

上記した本発明の実施の形態によれば、エネルギー消費量を最小にする冷却水入口温度の最適設定値と外気湿球温度との近似式により冷却水入口温度を制御しているため、大きなエネルギー削減効果を確実に得ることができる。   According to the embodiment of the present invention described above, since the cooling water inlet temperature is controlled by the approximate expression of the optimum setting value of the cooling water inlet temperature and the outside air wet bulb temperature that minimizes the energy consumption amount, A reduction effect can be obtained with certainty.

また、前記近似式が単純な一次式であるため、計算負荷が小さく、計算速度を高めることができる。さらに、一つのパラメータ(外気湿球温度)により冷却水入口温度を制御しており、計測が必要となるパラメータを最小限にすることができるため、制御システムの簡素化を図ることができる。また、既存のシステムにこの制御システムを導入する際に、制御盤等の改造が容易であり、システム導入作業の簡略化を図ることができる。さらに、一つのパラメータに対する一次式であるため、急激な冷却水入口温度の下限設定値の変更がなく、制御の安定性を図ることができる。   Further, since the approximate expression is a simple linear expression, the calculation load is small and the calculation speed can be increased. Furthermore, since the cooling water inlet temperature is controlled by one parameter (outside air wet bulb temperature) and the parameter that needs to be measured can be minimized, the control system can be simplified. Further, when this control system is introduced into an existing system, the control panel and the like can be easily modified, and the system introduction work can be simplified. Furthermore, since it is a linear expression for one parameter, there is no sudden change in the lower limit set value of the cooling water inlet temperature, and control stability can be achieved.

また、前記近似式を求める際、想定され得る外気条件や負荷条件を網羅し、冷却水入口温度の設定値をいろいろと変化させてエネルギーシミュレーションを行っているため、該近似式の信頼性が高く、大域最適解付近での運転を実現することができる。   In addition, when calculating the approximate expression, since the energy simulation is performed by covering various possible outside air conditions and load conditions and changing the set value of the cooling water inlet temperature in various ways, the reliability of the approximate expression is high. In addition, operation near the global optimum solution can be realized.

また、前記近似式の定数であるa,bを任意に設定変更することにより、事前のシミュレーション結果と実際のシステムとの最適値との乖離を解消し、実際のシステムの最適値に近い運転を実現することができる。さらに、類似システムへの導入や、機器の更新、設備の劣化による機器の特性の変化にも簡単に対応することが可能である。   In addition, by arbitrarily changing the constants a and b of the approximate expression, the deviation between the previous simulation result and the optimum value of the actual system is eliminated, and the operation close to the optimum value of the actual system is performed. Can be realized. Furthermore, it is possible to easily cope with changes in the characteristics of equipment due to introduction into similar systems, equipment updates, and equipment deterioration.

なお、上記した本発明の実施の形態では、一実施例における特定の条件下でのシミュレーション結果に基づき、前記近似式を求めているが、表5に示すような(1)〜(10)の他の条件下におけるシミュレーション結果に基づいて、冷却水入口温度の最適設定値TCTと外気湿球温度TOWBとの間の近似式を求めても、以下のように一次式の近似式で表わすことができる。ここで、表5の冷却塔容量の欄において、「余裕なし」とは、吸収式冷凍機の定格仕様に等しい冷却塔を選定したことを示し、「余裕あり」とは、吸収式冷凍機の定格仕様より20〜40%程度大きい容量の冷却塔を選定したことを示す。また、図7(a)は蒸気吸収式冷凍機(表5中の条件(1)参照)の冷却水入口温度(12℃、16℃、20℃、24℃、28℃、32℃)毎の性能曲線を示し、図7(b)は直焚吸収式冷温水発生機1(表5中の条件(2)参照)の冷却水入口温度(12℃、16℃、20℃、24℃、28℃、32℃)毎の性能曲線を示し、図7(c)は直焚吸収式冷温水発生機2(表5中の条件(3)〜(10)参照)の冷却水入口温度(12℃、16℃、20℃、24℃、28℃、32℃)毎の性能曲線を示す。 In the above-described embodiment of the present invention, the approximate expression is obtained based on the simulation result under a specific condition in one example. However, as shown in Table 5, (1) to (10) Even if an approximate expression between the optimum setting value T CT of the cooling water inlet temperature and the outside air wet bulb temperature T OWB is obtained based on the simulation result under other conditions, it is expressed by an approximate expression of a linear expression as follows: be able to. Here, in the column of the cooling tower capacity in Table 5, “without margin” means that a cooling tower equal to the rated specification of the absorption chiller is selected, and “with margin” means that the absorption chiller This indicates that a cooling tower with a capacity of about 20 to 40% larger than the rated specification was selected. Moreover, Fig.7 (a) is every cooling water inlet temperature (12 degreeC, 16 degreeC, 20 degreeC, 24 degreeC, 28 degreeC, 32 degreeC) of a vapor | steam absorption refrigerator (refer condition (1) in Table 5). FIG. 7 (b) shows the performance curve, and FIG. 7 (b) shows the cooling water inlet temperature (12 ° C., 16 ° C., 20 ° C., 24 ° C., 28) of the direct absorption type cold / hot water generator 1 (see condition (2) in Table 5). FIG. 7 (c) shows the cooling water inlet temperature (12 ° C.) of the direct absorption type cold / hot water generator 2 (see conditions (3) to (10) in Table 5). , 16 ° C, 20 ° C, 24 ° C, 28 ° C, 32 ° C).

Figure 2016035351
Figure 2016035351

・条件(1)の場合の近似式:TCT=0.7459×TOWB+10.516
・条件(2)の場合の近似式:TCT=0.7522×TOWB+10.783
・条件(3)の場合の近似式:TCT=0.7463×TOWB+10.608
・条件(4)の場合の近似式:TCT=0.7455×TOWB+10.666
・条件(5)の場合の近似式:TCT=0.734×TOWB+11.084
・条件(6)の場合の近似式:TCT=0.7315×TOWB+11.249
・条件(7)の場合の近似式:TCT=0.7392×TOWB+10.825
・条件(8)の場合の近似式:TCT=0.7428×TOWB+10.645
・条件(9)の場合の近似式:TCT=0.7367×TOWB+10.915
・条件(10)の場合の近似式:TCT=0.7402×TOWB+10.632
Approximation formula in the case of condition (1): T CT = 0.7459 × T OWB +10.516
Approximation formula in the case of condition (2): T CT = 0.7522 × T OWB +10.783
Approximation formula in the case of condition (3): T CT = 0.7463 × T OWB +10.608
Approximation formula in the case of condition (4): T CT = 0.7455 × T OWB +10.666
Approximation formula in the case of condition (5): T CT = 0.734 × T OWB +11.084
Approximation formula for condition (6): T CT = 0.7315 × T OWB +11.249
Approximation formula in the case of condition (7): T CT = 0.7392 × T OWB +10.825
Approximation formula in the case of condition (8): T CT = 0.7428 × T OWB +10.645
Approximation formula in the case of condition (9): T CT = 0.7367 × T OWB +10.915
Approximation formula in the case of condition (10): T CT = 0.7402 × T OWB +10.632

なお、上記した各実施例では、前記近似式がすべて一次式で表わされているが、これは本発明における冷却水入口温度の最適設定値TCTと外気湿球温度TOWBとの間の近似式を一次式に限定する趣旨ではない。すなわち、冷却水入口温度の最適設定値TCTと外気湿球温度TOWBとの間の近似式は、一つの式で表現されれば、二次式、三次式、多項式等、一次式以外の式であってもよい。 In each of the above-described embodiments, all of the approximate expressions are expressed by linear expressions. This is between the optimum set value T CT of the cooling water inlet temperature and the outdoor wet bulb temperature T OWB in the present invention. It is not intended to limit the approximate expression to a linear expression. That is, the approximate expression between the optimum set value T CT of the cooling water inlet temperature and the outside air wet bulb temperature T OWB can be expressed by a single expression such as a quadratic expression, a cubic expression, a polynomial, etc. It may be a formula.

また、上記した本発明の実施の形態の説明は、本発明に係る熱源システム制御方法及びその装置における好適な実施の形態を説明しているため、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。すなわち、上記した本発明の実施の形態における構成要素は適宜、既存の構成要素等との置き換えが可能であり、かつ、他の既存の構成要素との組合せを含む様々なバリエーションが可能であり、上記した本発明の実施の形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。   Moreover, since the above-mentioned description of embodiment of this invention has demonstrated the preferred embodiment in the heat-source system control method which concerns on this invention, and its apparatus, various technically preferable restrictions are attached | subjected. In some cases, the technical scope of the present invention is not limited to these embodiments unless specifically described to limit the present invention. That is, the above-described components in the embodiment of the present invention can be appropriately replaced with existing components and the like, and various variations including combinations with other existing components are possible. The description of the embodiment of the present invention described above does not limit the contents of the invention described in the claims.

10 熱源システム
11 吸収式冷凍機
12 冷却塔
19 制御部
DESCRIPTION OF SYMBOLS 10 Heat source system 11 Absorption-type refrigerator 12 Cooling tower 19 Control part

Claims (6)

建築物の空調設備に供給される冷熱媒体を冷却する吸収式冷凍機と、該吸収式冷凍機に供給される冷却水を冷却する冷却塔と、を備える熱源システムを最適に制御するための熱源システム制御方法において、
前記建築物のエネルギー消費量を最小にする前記冷却塔の冷却水入口温度の最適設定値と外気湿球温度との相関関係を単純化した近似式を用いて、前記建築物の設置場所において計測された外気湿球温度から該冷却水入口温度の最適設定値を算出し、該最適設定値に基づき該冷却水入口温度を制御する冷却水温度制御工程を含むことを特徴とする熱源システム制御方法。
A heat source for optimally controlling a heat source system comprising: an absorption refrigerator that cools a cooling medium supplied to an air conditioning facility of a building; and a cooling tower that cools cooling water supplied to the absorption refrigerator In the system control method,
Measured at the installation location of the building using an approximate expression that simplifies the correlation between the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature to minimize the energy consumption of the building. A heat source system control method comprising: a cooling water temperature control step of calculating an optimum set value of the cooling water inlet temperature from the outside air wet bulb temperature, and controlling the cooling water inlet temperature based on the optimum set value .
前記吸収式冷凍機の負荷に応じて冷却塔の冷却水流量を制御する冷却水流量制御工程をさらに含むことを特徴とする請求項1に記載の熱源システム制御方法。   The heat source system control method according to claim 1, further comprising a cooling water flow rate control step of controlling a cooling water flow rate of the cooling tower in accordance with a load of the absorption refrigerator. 前記近似式は、冷却水入口温度をTCT、外気湿球温度をTOWB、a及びbを定数とした場合に、TCT=a×TOWB+bで示される一次式であることを特徴とする請求項1又は2に記載の熱源システム制御方法。 The approximate expression is a linear expression represented by T CT = a × T OWB + b, where T CT is the cooling water inlet temperature, T OWB is the outdoor wet bulb temperature, and a and b are constants. The heat source system control method according to claim 1 or 2. 建築物の空調設備に供給される冷熱媒体を冷却する吸収式冷凍機と、該吸収式冷凍機に供給される冷却水を冷却する冷却塔と、を備える熱源システムを最適に制御するための熱源システム制御装置において、
前記建築物のエネルギー消費量を最小にする前記冷却塔の冷却水入口温度の最適設定値と外気湿球温度との相関関係を単純化した近似式を用いて、前記建築物の設置場所において計測された外気湿球温度から該冷却水入口温度の最適設定値を算出し、該最適設定値に基づき該冷却水入口温度を制御する制御部を備えていることを特徴とする熱源システム制御装置。
A heat source for optimally controlling a heat source system comprising: an absorption refrigerator that cools a cooling medium supplied to an air conditioning facility of a building; and a cooling tower that cools cooling water supplied to the absorption refrigerator In the system controller,
Measured at the installation location of the building using an approximate expression that simplifies the correlation between the optimum setting value of the cooling water inlet temperature of the cooling tower and the outside air wet bulb temperature to minimize the energy consumption of the building. A heat source system control device comprising: a control unit that calculates an optimum set value of the cooling water inlet temperature from the outside air wet bulb temperature that has been set, and controls the cooling water inlet temperature based on the optimum set value.
前記吸収式冷凍機の負荷に応じて冷却塔の冷却水流量を制御するように構成されていることを特徴とする請求項4に記載の熱源システム制御装置。   The heat source system control device according to claim 4, wherein the heat source system control device is configured to control a cooling water flow rate of the cooling tower in accordance with a load of the absorption refrigerator. 前記近似式は、冷却水入口温度をTCT、外気湿球温度をTOWB、a及びbを定数とした場合に、TCT=a×TOWB+bで示される一次式であることを特徴とする請求項4又は5に記載の熱源システム制御装置。 The approximate expression is a linear expression represented by T CT = a × T OWB + b, where T CT is the cooling water inlet temperature, T OWB is the outdoor wet bulb temperature, and a and b are constants. The heat source system control apparatus according to claim 4 or 5.
JP2014157788A 2014-08-01 2014-08-01 Heat source system control method and apparatus Active JP5944957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014157788A JP5944957B2 (en) 2014-08-01 2014-08-01 Heat source system control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014157788A JP5944957B2 (en) 2014-08-01 2014-08-01 Heat source system control method and apparatus

Publications (2)

Publication Number Publication Date
JP2016035351A true JP2016035351A (en) 2016-03-17
JP5944957B2 JP5944957B2 (en) 2016-07-05

Family

ID=55523298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014157788A Active JP5944957B2 (en) 2014-08-01 2014-08-01 Heat source system control method and apparatus

Country Status (1)

Country Link
JP (1) JP5944957B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032101A (en) * 2017-08-07 2019-02-28 新菱冷熱工業株式会社 Heat source system control method and device of the same
CN112818527A (en) * 2021-01-21 2021-05-18 中国科学院合肥物质科学研究院 Method for predicting cooling water outlet temperature of closed cooling tower facing user side
CN115682357A (en) * 2022-10-31 2023-02-03 广州施杰节能科技有限公司 Approximation degree-centered cooling water optimization method and independent control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337729A (en) * 1999-05-28 2000-12-08 Tokyo Gas Co Ltd Operation method for water-cooled air conditioner
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device
JP2011226684A (en) * 2010-04-16 2011-11-10 Hitachi Plant Technologies Ltd Cooling water producing device, and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337729A (en) * 1999-05-28 2000-12-08 Tokyo Gas Co Ltd Operation method for water-cooled air conditioner
JP2004053127A (en) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd Air conditioner and its control method
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device
JP2011226684A (en) * 2010-04-16 2011-11-10 Hitachi Plant Technologies Ltd Cooling water producing device, and method of controlling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032101A (en) * 2017-08-07 2019-02-28 新菱冷熱工業株式会社 Heat source system control method and device of the same
CN112818527A (en) * 2021-01-21 2021-05-18 中国科学院合肥物质科学研究院 Method for predicting cooling water outlet temperature of closed cooling tower facing user side
CN112818527B (en) * 2021-01-21 2022-07-29 中国科学院合肥物质科学研究院 Method for predicting cooling water outlet temperature of closed cooling tower facing user side
CN115682357A (en) * 2022-10-31 2023-02-03 广州施杰节能科技有限公司 Approximation degree-centered cooling water optimization method and independent control system

Also Published As

Publication number Publication date
JP5944957B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP6505589B2 (en) Heat source control system and control method
Liu et al. Optimal chiller sequencing control in an office building considering the variation of chiller maximum cooling capacity
Wang et al. Air handling unit supply air temperature optimal control during economizer cycles
JP6334230B2 (en) Refrigerator system
JP5299680B2 (en) Cooling system and cooling method
CN104089328B (en) Air-conditioning system and the method that air-conditioning system is controlled
JP5615559B2 (en) Cooling system
Vakiloroaya et al. Energy-efficient HVAC systems: Simulation–empirical modelling and gradient optimization
Gao et al. An optimization strategy for the control of small capacity heat pump integrated air-conditioning system
JP2012127573A (en) Heat source system
JP2011247564A (en) Air conditioning system and its control method
JP5944957B2 (en) Heat source system control method and apparatus
JP2007127321A (en) Cold water load factor controller for refrigerator
Wallin et al. Improving heat recovery using retrofitted heat pump in air handling unit with energy wheel
JP2008298405A (en) Method and device for estimating cooling water temperature
JP2008292043A (en) Air conditioning system
JP2012193903A (en) Air conditioning system using outside air, and outside air heat exchange system of the same
JP2011226680A (en) Cooling water producing facility
Sager et al. Detailed performance assessment of variable capacity inverter-driven cold climate air source heat pumps
CN111723533A (en) Energy-saving calculation method for variable-frequency water pump of ground source heat pump system
KR101955812B1 (en) Capacity performance curves creation method of water-cooled vrf heat pump
CN202305244U (en) System for testing cooling and heating capacity of water source heat pump unit
JP6503029B2 (en) Heat source system control method and apparatus therefor
Lei Wang PhD et al. Optimization of Condenser Water Loop Control in Hot and Humid Climates
JP2016065661A (en) Calibration method for estimated energy consumption amount calculation characteristic formula and air conditioning heat source system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160526

R150 Certificate of patent or registration of utility model

Ref document number: 5944957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250