JP2016032920A - Three-dimensional molding apparatus and insulation rod - Google Patents

Three-dimensional molding apparatus and insulation rod Download PDF

Info

Publication number
JP2016032920A
JP2016032920A JP2014156871A JP2014156871A JP2016032920A JP 2016032920 A JP2016032920 A JP 2016032920A JP 2014156871 A JP2014156871 A JP 2014156871A JP 2014156871 A JP2014156871 A JP 2014156871A JP 2016032920 A JP2016032920 A JP 2016032920A
Authority
JP
Japan
Prior art keywords
resin material
light
dimensional modeling
cylindrical body
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156871A
Other languages
Japanese (ja)
Other versions
JP6338962B2 (en
Inventor
花井 正広
Masahiro Hanai
正広 花井
雅文 武井
Masafumi Takei
雅文 武井
元晴 椎木
Motoharu Shiiki
元晴 椎木
大悟 竹中
Daigo Takenaka
大悟 竹中
保科 好一
Koichi Hoshina
好一 保科
孝倫 安岡
Takamichi Yasuoka
孝倫 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014156871A priority Critical patent/JP6338962B2/en
Publication of JP2016032920A publication Critical patent/JP2016032920A/en
Application granted granted Critical
Publication of JP6338962B2 publication Critical patent/JP6338962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional molding apparatus for manufacturing a three-dimensional molded article by using a photo-curable resin material that is cured by irradiation with light, and an insulation rod molded by the above apparatus.SOLUTION: A three-dimensional molding apparatus 1 has the following characteristics: a light source A emits light; scanning means 2 allows laser light 6 exiting from the light source to scan an object in a predetermined direction; a pair of electrodes 7A, 7B is disposed at positions for receiving the laser light 6 operated to scan by the scanning means 2; a drive unit rotates the electrodes 7A, 7B around a rotation axis 31 in a direction where the laser light 6 propagates; and the position of the rotation axis 31 is coincident with a liquid surface of a photo-curable resin material 8.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、光を照射すると硬化する光硬化樹脂材料を用いて形成する三次元造形物を作製する三次元造形装置、及びその装置で造形した絶縁ロッドに関する。   Embodiments of the present invention relate to a three-dimensional modeling apparatus that produces a three-dimensional modeled object that is formed using a photocurable resin material that is cured when irradiated with light, and an insulating rod that is modeled by the apparatus.

現在、可視光または紫外光などの光の照射により硬化する性質を有する光硬化樹脂材料を用いた三次元造形装置が知られている。こうした三次元造形装置は、例えば、自由液面方式あるいは規制液面方式の2種類の手法を用いて三次元造形物を作製している。   Currently, a three-dimensional modeling apparatus using a photo-curing resin material having a property of being cured by irradiation with light such as visible light or ultraviolet light is known. Such a three-dimensional modeling apparatus produces a three-dimensional modeled object using, for example, two types of methods, a free liquid level method and a regulated liquid level method.

自由液面方式による三次元造形装置は、光硬化樹脂材料を貯留する貯留槽内に、造形物の土台となる三次元造形物支持板を沈めておき、貯留槽の液面上方より光を照射し、貯留槽内の造形物支持板を下げながら、三次元造形物の層を積層する作業を繰り返し、三次元造形物を作製するというものである。   The three-dimensional modeling apparatus using the free liquid surface method sinks a three-dimensional model support plate that becomes the foundation of a model in a storage tank that stores a photocurable resin material, and irradiates light from above the liquid level of the storage tank. And the operation | work which laminates | stacks the layer of a three-dimensional modeling thing is repeated, lowering the modeling object support plate in a storage tank, and producing a three-dimensional modeling thing.

そして、上記貯留槽内に配置された造形物支持板表面に、造形物が所定の液層厚さ分だけ硬化するようにして造形物を造形する。さらに所定の液層厚さ分だけ造形物支持板を下方に移動させ、既に硬化した三次元造形物の上に新たな造形物の層を硬化させる。こうした硬化した三次元造形物の上に新たな造形物の層を順次硬化させて、造形物の層を積層して、三次元造形物の作製がおこなわれる。   Then, the modeled object is modeled so that the modeled object is cured by a predetermined liquid layer thickness on the surface of the modeled object support plate arranged in the storage tank. Further, the modeling object support plate is moved downward by a predetermined liquid layer thickness, and a new modeling object layer is cured on the already cured three-dimensional modeling object. A layer of a new model is sequentially cured on such a cured three-dimensional model, and the layer of the model is stacked to produce a three-dimensional model.

一方、規制液面方式による三次元造形装置は、貯留槽として光を透過する底面を有する貯留槽を用いる。そして、貯留槽の下方側より光を照射し、貯留槽内の造形物支持板と底面との間に三次元造形物の層を造形し、造形物支持板を底部から引きはがして上昇させて、三次元造形物の層を積層する作業を繰り返し、三次元造形物を作製するものである。   On the other hand, a three-dimensional modeling apparatus using a regulated liquid surface method uses a storage tank having a bottom surface that transmits light as a storage tank. Then, light is irradiated from the lower side of the storage tank, a layer of the three-dimensional structure is formed between the modeling object support plate and the bottom surface in the storage tank, and the modeling object support plate is peeled off from the bottom and raised. The operation of laminating the layers of the three-dimensional structure is repeated to produce a three-dimensional structure.

上記した自由液面方式および規制液面方式を用いた三次元造形装置は、いずれも、平面状に硬化させた光硬化樹脂材料を積層し、三次元造形物を作製していくという手法を取っている。そのため、自由液面方式の場合には、1層の造形が終了すると、三次元造形物支持板を下方側に移動させ、その後に小手のような治具を用いて液面を掃引して短時間で表面を安定させる方法が取られている。   All the 3D modeling apparatuses using the above-mentioned free liquid level method and the regulated liquid level method take a method of laminating a photo-curing resin material cured in a planar shape to produce a three-dimensional modeled object. ing. Therefore, in the case of the free liquid level method, when one layer of modeling is completed, the three-dimensional modeled object support plate is moved downward, and then the liquid level is swept using a jig like a hand to shorten it. A method of stabilizing the surface over time is taken.

また、規制液面方式の場合には、1層の造形が終了すると、規制面である貯留槽の底面から造形物を剥がし、次の層の造形位置に造形物支持板を移動させ、光硬化樹脂材料を強制的に対流させて液面が隙間に短時間で入るように工夫している場合が多い。   In the case of the regulated liquid surface method, when one layer of modeling is completed, the modeled object is peeled off from the bottom surface of the storage tank that is the regulated surface, the modeled object support plate is moved to the modeling position of the next layer, and photocuring is performed. In many cases, the resin material is forcibly convected so that the liquid level enters the gap in a short time.

上記のような三次元造形装置には以下の問題があった。すなわち、従来の三次元造形装置においては、1層の造形が終了すると、新たな未硬化の光硬化樹脂材料を所定の厚さにした後、光を当てて硬化させる2段階の作業を生じ、特に2段階目の新たな未硬化の光硬化樹脂材料を所定の厚さにする作業に時間がかかり短時間での積層が困難であるという問題があった。   The three-dimensional modeling apparatus as described above has the following problems. That is, in the conventional three-dimensional modeling apparatus, after one layer of modeling is completed, a new uncured photocuring resin material is made to have a predetermined thickness, and then a two-stage operation is performed in which light is applied and cured. In particular, there is a problem that it takes a long time to make a new uncured photocured resin material in the second stage to have a predetermined thickness, and it is difficult to laminate in a short time.

特に、所定の厚さを薄くすれば精密な造形ができるため、積層数が多くなり時間がかかるという問題点があった。そこで、円筒形状の造形物において、造形時間を短縮するための種々の方法が提案されている。   In particular, if the predetermined thickness is reduced, precise modeling can be performed, which increases the number of stacked layers and takes time. Therefore, various methods have been proposed for shortening the modeling time in a cylindrical shaped object.

特開2010-94893号公報JP 2010-94893 A

例えば、円筒形状の造形物では、図12に示すように予め三次元造形用の基板円柱10を造形物支持として使用し、当該円柱10の表面に光硬化樹脂材料8を塗布した円柱を回転させながら、制御板11で厚さをコントロールして当該円柱10に塗布した光硬化樹脂材料8に光を照射するようにして円筒状に硬化した光硬化樹脂体12を作製する方法が知られている。   For example, in a cylindrical shaped object, as shown in FIG. 12, a substrate cylinder 10 for three-dimensional modeling is used in advance as a shaped object support, and a cylinder in which the photocurable resin material 8 is applied to the surface of the cylinder 10 is rotated. However, a method for producing a photocured resin body 12 cured in a cylindrical shape by irradiating the photocurable resin material 8 applied to the column 10 with light being controlled by the control plate 11 is known. .

このような方法では円筒形状の積層体を早く造形が可能な手法であるが下記のような問題があった。すなわち、電力機器などの操作用に機械的に大きな力が加わる操作用ロッドを作製する場合に、大きな力を伝達できるように円筒ではなく円柱形状が必要である。さらに、端部部分に他の操作部と締結するための金属製金具を取り付ける必要がある。しかし、従来の三次元造形装置を使用した場合、予め金具が存在する場合には未硬化樹脂を塗布する装置が平面にのみ対応し、丸みを帯びた突起がある場合には精密に塗布ができないため所望の形状の造形できない。   Such a method is a technique that enables a cylindrical laminate to be formed quickly, but has the following problems. That is, when manufacturing an operation rod to which a large mechanical force is applied for operation of a power device or the like, a cylindrical shape is necessary instead of a cylinder so that a large force can be transmitted. Furthermore, it is necessary to attach the metal metal fitting for fastening with another operation part to an edge part. However, when a conventional 3D modeling device is used, the device for applying uncured resin only corresponds to a flat surface when a metal fitting is present in advance, and it cannot be accurately applied when there is a rounded protrusion. Therefore, the desired shape cannot be formed.

本発明は、従来の技術の有する上記したような種々の問題点に鑑みてなされたものであり、その目的とするところは、端部部分に金属製の金具を取り付けた同軸の三次元造形物が造形可能であり、かつ造形時間を短縮することを可能にした三次元造形装置及び、その装置で造形された絶縁ロッドを提供するものである。   The present invention has been made in view of the above-described various problems of the prior art, and the object of the present invention is a coaxial three-dimensional structure with a metal fitting attached to the end portion. Provides a three-dimensional modeling apparatus that can be modeled and that can shorten the modeling time, and an insulating rod that is modeled by the apparatus.

本発明の実施形態における三次元造形装置は、光により硬化する光硬化樹脂材料を用いて同軸の三次元造形物を作製する三次元造形装置であって、光を射出する光源と、前記光源から射出された光を、所定の方向に沿って走査する走査手段と、前記走査手段により走査された光を受光する位置に配置される一対の電極と、前記電極を前記所定の方向に沿う軸を回転軸として回転させる駆動部と、を備え、前記光硬化樹脂材料の液面と、前記回転軸の位置とが一致することを特徴とする。   A three-dimensional modeling apparatus according to an embodiment of the present invention is a three-dimensional modeling apparatus that produces a coaxial three-dimensional modeled object using a light curable resin material that is cured by light, and includes a light source that emits light and the light source. A scanning unit that scans the emitted light along a predetermined direction, a pair of electrodes that are arranged at positions where the light scanned by the scanning unit is received, and an axis that extends the electrode along the predetermined direction. A drive unit that rotates as a rotation axis, and the liquid level of the photo-curing resin material coincides with the position of the rotation axis.

また、光を射出する光源と、前記光源から射出された光を、所定の方向に沿って走査する走査手段と、前記走査手段により走査された光を受光する位置に配置される一対の電極と、前記電極を前記所定の方向に沿う軸を回転軸として回転させる駆動部と、を備え、前記光硬化樹脂材料の液面と、前記回転軸の位置とが一致する三次元造形装置で形成した絶縁ロッドも本実施形態の一態様である。   A light source that emits light; a scanning unit that scans the light emitted from the light source along a predetermined direction; and a pair of electrodes that are arranged at positions to receive the light scanned by the scanning unit; A drive unit that rotates the electrode along an axis along the predetermined direction as a rotation axis, and is formed by a three-dimensional modeling apparatus in which the liquid surface of the photocurable resin material and the position of the rotation axis coincide with each other An insulating rod is also an aspect of this embodiment.

本発明の第1の実施形態における三次元造形装置の電極設置段階での側面断面図である。It is side surface sectional drawing in the electrode installation stage of the three-dimensional modeling apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における三次元造形装置の造形初期段階の造形段階での上面断面図(a)、A-A’断面図(b)およびB-B’断面図(c)である。FIG. 3 is a top cross-sectional view (a), an AA ′ cross-sectional view (b), and a BB ′ cross-sectional view (c) at the modeling stage of the modeling initial stage of the three-dimensional modeling apparatus according to the first embodiment of the present invention. . 本発明の第1の実施形態における三次元造形物の形成の際の工程を示すフローチャートである。It is a flowchart which shows the process in the case of formation of the three-dimensional structure in the 1st Embodiment of this invention. 本発明の第1の実施形態における三次元造形装置の造形初期段階での側面断面図である。It is side surface sectional drawing in the modeling initial stage of the three-dimensional modeling apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における三次元造形装置の造形中盤段階での上面断面図(a)、A-A’断面図(b)およびB-B’断面図(c)である。FIG. 3 is a top cross-sectional view (a), an A-A ′ cross-sectional view (b), and a B-B ′ cross-sectional view (c) of the three-dimensional modeling apparatus according to the first embodiment of the present invention at a middle stage of modeling. 本発明の第1の実施形態における三次元造形装置の造形中盤段階での側面断面図である。It is side surface sectional drawing in the modeling middle stage of the three-dimensional modeling apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における三次元造形装置の造形中盤段階での上面断面図(a)、A-A’断面(b)図およびB-B’断面図(c)である。FIG. 3A is a top cross-sectional view (a), an A-A ′ cross-sectional view (b), and a B-B ′ cross-sectional view (c) of the three-dimensional modeling apparatus according to the first embodiment of the present invention in the middle stage of modeling. 本発明の第1の実施形態の金具付き絶縁ロッドである。It is an insulated rod with a metal fitting of a 1st embodiment of the present invention. 本発明の他の実施形態の金具付き絶縁ロッドである。It is an insulation rod with a metal fitting of other embodiments of the present invention. 本発明の他の実施形態の金具付き絶縁ロッドである。It is an insulation rod with a metal fitting of other embodiments of the present invention. 本発明の他の実施形態の金具付き絶縁ロッドである。It is an insulation rod with a metal fitting of other embodiments of the present invention. 従来の三次元造形装置の側面断面図である。It is side surface sectional drawing of the conventional three-dimensional modeling apparatus.

[1.第1の実施形態]
以下には、本発明の第1の実施形態である三次元造形装置を図1〜図7を用いて説明する。本実施形態の三次元造形装置は、レーザー光により硬化する光硬化樹脂材料を用いて同軸の三次元造形物を作製する。三次元造形物の作製では、光源よりレーザー光を射出し、そのレーザー光を光硬化樹脂材料に向けて走査させる。レーザー光の走査先には駆動装置があり、この駆動装置にはレーザー光の走査方向と沿うように回転軸が設けられる。この駆動装置の回転軸上には、一対の電極が固定され、且つ、回転軸の位置と光硬化樹脂材料の液面とが一致する。三次元造形装置は、電極間にレーザー光を照射することにより、光硬化樹脂材料を硬化させ芯となる円柱体を形成する。その後、この円柱体の表面に未硬化の光硬化樹脂材料を付着させ、これを硬化されることで三次元造形物を作製する。
[1. First Embodiment]
Below, the three-dimensional modeling apparatus which is the 1st Embodiment of this invention is demonstrated using FIGS. The three-dimensional modeling apparatus of this embodiment produces a coaxial three-dimensional modeled object using a photo-curing resin material that is cured by laser light. In the production of the three-dimensional structure, laser light is emitted from a light source, and the laser light is scanned toward the photocurable resin material. There is a driving device at the scanning destination of the laser beam, and the driving device is provided with a rotating shaft along the scanning direction of the laser beam. A pair of electrodes are fixed on the rotating shaft of the driving device, and the position of the rotating shaft coincides with the liquid level of the photocurable resin material. The three-dimensional modeling apparatus forms a cylindrical body that becomes a core by curing the photocurable resin material by irradiating laser light between the electrodes. Thereafter, an uncured photo-curing resin material is attached to the surface of the cylindrical body, and this is cured to produce a three-dimensional structure.

[1−1.基本構成]
図1,2は、本実施形態の三次元造形装置1の概略を示す構成図であり、図1は造形準備段階での側面断面図であり、図2は造形初期段階での側面断面図である。本実施形態の三次元造形装置1は、造形物を形成するために、光源、走査手段2、駆動部、貯蓄槽4、及び樹脂厚制御体5を備える。
[1-1. Basic configuration]
1 and 2 are configuration diagrams showing an outline of the three-dimensional modeling apparatus 1 of the present embodiment, FIG. 1 is a side sectional view at a modeling preparation stage, and FIG. 2 is a side sectional view at an initial modeling stage. is there. The three-dimensional modeling apparatus 1 of the present embodiment includes a light source, a scanning unit 2, a drive unit, a storage tank 4, and a resin thickness control body 5 in order to form a modeled object.

光源は、レーザー光6を射出する光射出手段である(図示せず)。光射出手段としては、光硬化樹脂材料を硬化させることができるレーザー光6を射出できれば、UVレーザーや半導体レーザー射出手段を利用することができる。   The light source is light emitting means for emitting laser light 6 (not shown). As the light emitting means, a UV laser or a semiconductor laser emitting means can be used as long as the laser light 6 that can cure the photo-curing resin material can be emitted.

走査手段2は、光源から射出されたレーザー光6を所定の方向に沿って走査させる。この走査手段2は、回転走査型のポリゴンミラーや、往復瑶動の走査型のガルバノミラーなどであり、鏡の反射を利用してレーザー光6の経路を駆動部側に変更する。また、鏡の角度を変更することで、反射したレーザー光が照射する場所を変位させる。走査手段2が、レーザー光6を走査させる方向は、後述の駆動部の回転軸31に沿った方向である。   The scanning unit 2 scans the laser light 6 emitted from the light source along a predetermined direction. The scanning means 2 is a rotational scanning type polygon mirror, a reciprocating peristaltic scanning type galvanometer mirror, or the like, and changes the path of the laser light 6 to the drive unit side by using the reflection of the mirror. Moreover, the place which the reflected laser beam irradiates is displaced by changing the angle of the mirror. The direction in which the scanning unit 2 scans the laser beam 6 is a direction along the rotation axis 31 of the driving unit described later.

駆動部は、貯蓄槽4内に配置された一対の金属金具7A,7Bを、回転軸31を中心として回転させる。駆動部は、光硬化樹脂材料8を入れた貯留槽4において硬化樹脂材料の液面が、金属金具3A、3Bの中心線になるように配置する。2つの対向する金属金具7A,7Bが同期して回転すると共に、光硬化樹脂材料8を上記金属金具間で硬化した光硬化樹脂体7上に塗布する。走査手段2により上記光源から射出されたレーザー光6を上記金属金具7A,7Bの回転の中心軸と同方向にレーザー光6を走査して照射して光硬化樹脂材料8を硬化させることにより所望の太さの円柱材料を造形する。駆動部は、金属金具7A,Bを保持する保持部32と、保持部に駆動力を伝達する駆動力伝達部33とを備える。   The drive unit rotates the pair of metal fittings 7 </ b> A and 7 </ b> B arranged in the storage tank 4 around the rotation shaft 31. The drive unit is arranged so that the liquid level of the cured resin material becomes the center line of the metal fittings 3A and 3B in the storage tank 4 in which the photocurable resin material 8 is placed. The two opposing metal fittings 7A and 7B rotate synchronously, and the photocurable resin material 8 is applied onto the photocurable resin body 7 cured between the metal fittings. The laser light 6 emitted from the light source by the scanning means 2 is irradiated by scanning the laser light 6 in the same direction as the central axis of rotation of the metal fittings 7A and 7B to cure the photo-curing resin material 8 as desired. A cylindrical material of the thickness of is shaped. The driving unit includes a holding unit 32 that holds the metal fittings 7A and 7B, and a driving force transmission unit 33 that transmits a driving force to the holding unit.

金属金具7A,Bは、2つ1組として貯蓄槽4内に配置される。金属金具7A,Bは、側面に凹凸を設けた略円柱形状の部材であり、図1に示すように半径の異なる円柱や球を組み合わせたような内部に空間を有しない回転体であっても良い。また、金属金具7A,7Bは一部に、保持部32と嵌合する嵌合部を設けている。   The metal fittings 7A and B are arranged in the storage tank 4 as a pair. The metal fittings 7A and B are substantially columnar members having irregularities on the side surfaces, and even a rotating body having no space inside such as a combination of columns and spheres having different radii as shown in FIG. good. In addition, the metal fittings 7A and 7B are provided with fitting portions that are fitted to the holding portions 32 in part.

保持部32は、金属金具7A,7Bをレーザー光6の受光部分に位置させる。保持部32は、端部の一方が貯蓄槽4内に位置するロッドの先端部に設けられた金属金具7A,7Bの固定具である。貯蓄槽4内には2本のロッドの先端が位置し、それぞれのロッドの先端は、対向するように位置している。すなわち、貯蓄槽4内には2つの保持部32が位置し、それぞれの保持部32は、対向するように配置される。保持部32及ロッドの中心軸は、駆動部の回転軸31と共通である。   The holding part 32 positions the metal fittings 7 </ b> A and 7 </ b> B at the light receiving part of the laser beam 6. The holding portion 32 is a fixture for the metal fittings 7A and 7B provided at the tip portion of the rod whose one of the end portions is located in the storage tank 4. The tips of the two rods are located in the storage tank 4, and the tips of the rods are located so as to face each other. That is, the two holding | maintenance parts 32 are located in the storage tank 4, and each holding | maintenance part 32 is arrange | positioned so that it may oppose. The central axis of the holding part 32 and the rod is the same as the rotation axis 31 of the drive part.

ロッドの他端は、ロッドに回転力を与える駆動源(図示しない)に接続される。すなわち、このロッドは駆動源からの駆動力を保持部32及び保持部32に保持した金属電極7A,Bに対して伝達する駆動力伝達部33となる。駆動力伝達部33は、それぞれの保持部32の動きを同期させて回転させるような駆動力を伝達する。すなわち、保持部32に保持された一対の金属金具7A,7Bは回転軸31を中心として、同じ方向、且つ同じ速度で回転する。   The other end of the rod is connected to a drive source (not shown) that applies a rotational force to the rod. That is, this rod serves as a driving force transmission unit 33 that transmits a driving force from a driving source to the holding unit 32 and the metal electrodes 7A and 7B held by the holding unit 32. The driving force transmission unit 33 transmits a driving force that rotates the holding units 32 in synchronization with each other. That is, the pair of metal fittings 7 </ b> A and 7 </ b> B held by the holding unit 32 rotate around the rotation shaft 31 in the same direction and at the same speed.

貯留槽4は、内部に光硬化樹脂材料8を溜めておくものであり、貯留槽4内部には、光硬化樹脂材料8が駆動部の回転軸31の位置と同じ高さまで満たされている。この貯留槽4には、図示していない光硬化樹脂材料8の液高さを制御する装置、並びに他の貯留槽が接続されている。光硬化樹脂材料8は、レーザー光6を受光することで硬化する所定の粘度を有する流動体である。また、光硬化樹脂材料8にはガラス等の無機物繊維、PPSなどのエンジニアリングポリマー繊維を混合しても良い。   The storage tank 4 stores the photocurable resin material 8 therein, and the photocurable resin material 8 is filled in the storage tank 4 up to the same height as the position of the rotary shaft 31 of the drive unit. The storage tank 4 is connected to an apparatus (not shown) for controlling the liquid height of the photocurable resin material 8 and other storage tanks. The photocurable resin material 8 is a fluid having a predetermined viscosity that is cured by receiving the laser beam 6. Further, the photocurable resin material 8 may be mixed with inorganic fibers such as glass and engineering polymer fibers such as PPS.

樹脂厚制御体5は、硬化した光硬化樹脂9の表面に付着する未硬化の光硬化樹脂材料8の付着厚さを制御する。図2に示すように、樹脂厚制御体5は、金属金具間に隣接する位置に所定の間隙をおいて配置され、かつ、硬化済の円柱状の光硬化樹脂9の表面に付着する未硬化の光硬化樹脂材料8の付着厚さを制御する。   The resin thickness control body 5 controls the thickness of the uncured photocured resin material 8 that adheres to the surface of the cured photocured resin 9. As shown in FIG. 2, the resin thickness control body 5 is disposed with a predetermined gap at a position adjacent to between the metal fittings, and is uncured that adheres to the surface of the cured columnar photocurable resin 9. The adhesion thickness of the photo-curing resin material 8 is controlled.

樹脂厚制御体5は、金属金具7A,7B及び、最終成形物の形状に合わせた凹部を設けた略円柱形状の部材である。樹脂厚制御体5は、駆動部の回転軸31と平行な軸51を中心として回転する。この樹脂厚制御体7の軸51に沿った断面は、略矩形型であり、2つの長辺と2つの短辺とからなる。樹脂厚制御体7の断面における矩形の長辺部分の1つには、金属金具7A,7Bの外形と、芯となる円形状に硬化した造形物とに合わせた切り欠き部が設けられている。また、長辺部分の他の1つには、三次元造形物の外形に合わせた切り欠き部が設けられている。   The resin thickness control body 5 is a substantially cylindrical member provided with metal fittings 7A and 7B and a concave portion matching the shape of the final molded product. The resin thickness control body 5 rotates about an axis 51 parallel to the rotation axis 31 of the drive unit. The cross section of the resin thickness control body 7 along the axis 51 is substantially rectangular, and includes two long sides and two short sides. One of the long sides of the rectangle in the cross section of the resin thickness control body 7 is provided with a notch that matches the outer shape of the metal fittings 7A and 7B and the molded object that has been hardened into a circular shape as a core. . Moreover, the other one of the long side portions is provided with a notch that matches the outer shape of the three-dimensional structure.

樹脂厚制御体5は、三次元造形物の外形の寸法に合わせて軸51の位置を変更可能に構成される。軸51の位置を変更することにより、回転する樹脂厚制御体5と、円柱状に硬化した光硬化樹脂体9や、金属金具7A,7Bに付着する光硬化樹脂体材料8との距離を調整可能となる。また、駆動部の回転軸31と軸51との距離も変更可能とする。   The resin thickness control body 5 is configured to be able to change the position of the shaft 51 in accordance with the outer dimensions of the three-dimensional structure. By changing the position of the shaft 51, the distance between the rotating resin thickness control body 5 and the photocuring resin body 9 cured in a columnar shape and the photocuring resin body material 8 attached to the metal fittings 7A and 7B is adjusted. It becomes possible. In addition, the distance between the rotation shaft 31 and the shaft 51 of the drive unit can be changed.

[1−2.作用]
以上のような構成を有する図3の三次元造形装置1における三次元造形の形成工程の概略は次の通りである。図3は、三次元造形装置1における三次元造形物の作製の際の工程を示すフローチャートであり、以下の工程を備える
[1-2. Action]
The outline of the three-dimensional modeling forming process in the three-dimensional modeling apparatus 1 of FIG. 3 having the above-described configuration is as follows. FIG. 3 is a flowchart showing the steps for producing a three-dimensional structure in the three-dimensional modeling apparatus 1, and includes the following steps.

(a)金属金具の保持工程
(b)芯となる円柱体形成工程
(c)駆動装置の駆動開始工程
(d)光硬化樹脂形成工程
(e)取り外し工程
(a) Metal fitting holding process
(b) Cylinder body forming step as a core
(c) Driving start process of the driving device
(d) Photo-curing resin formation process
(e) Removal process

初めに、駆動部の保持部32に金属電極7A,7Bを保持させる(STEP01)。三次元造形装置1を用いて三次元造形物を作製する際、図1で示すレーザー光6A、6Bは金属金具7A,7Bが邪魔をして陰になり樹脂の硬化を妨げないように、金属金具7A,7Bの削りだし角度β°は、光照射角度α°に対して、β°<α°の条件を満たすようにしている。   First, the metal electrodes 7A and 7B are held by the holding unit 32 of the driving unit (STEP01). When producing a three-dimensional structure using the three-dimensional structure forming apparatus 1, the laser beams 6A and 6B shown in FIG. 1 are made of metal so that the metal fittings 7A and 7B do not obstruct the shadow and prevent the resin from hardening. The cutting angle β ° of the metal fittings 7A and 7B satisfies the condition of β ° <α ° with respect to the light irradiation angle α °.

次に、金属電極の間に芯となる中心部の円柱体を形成する(STEP02)。図4に示すように、レーザー光6を金属電極7Aと7Bとの間に走査させ、金属金具7A,7B間を接続する円柱状の硬化した光硬化樹脂9を形成する。この際、図2aに示すように、樹脂厚制御体5を芯となる円柱体が形成される金属電極7Aと7Bの回転軸31や、金属金具7A,7Bの近傍に一定の間隔で位置させる。   Next, a central cylindrical body serving as a core is formed between the metal electrodes (STEP 02). As shown in FIG. 4, a laser beam 6 is scanned between the metal electrodes 7A and 7B to form a column-shaped cured photo-curing resin 9 that connects between the metal fittings 7A and 7B. At this time, as shown in FIG. 2a, the resin thickness control body 5 is positioned at a fixed interval in the vicinity of the rotation shaft 31 of the metal electrodes 7A and 7B on which the cylindrical body serving as a core is formed and the metal fittings 7A and 7B. .

その後、金属金具7A,7Bを同期して回転させる(STEP03)。そのため、図2b,cに示すように回転方向Bは、中心部の円柱体と、金属金具7Bの部分で同一方向である。この結果、光硬化樹脂材料8の液面を通過した円柱状に硬化した光硬化樹脂体9の表面は、薄い未硬化の光硬化樹脂材料8で被覆される。そして、金属金具7A,7Bの回転をさらに進めることで、光硬化樹脂材料8を通過していない部分の光硬化樹脂体9の表面も、薄い未硬化の光硬化樹脂材料8で被覆される。このとき、液上面に配置された液塗布厚さ制御円柱5と円柱状に硬化した光硬化樹脂体9の間の厚さだけの未硬化の光硬化樹脂材料8が円柱状に硬化した光硬化樹脂体9に付着する。   Thereafter, the metal fittings 7A and 7B are rotated synchronously (STEP03). Therefore, as shown in FIGS. 2b and 2c, the rotation direction B is the same in the central cylindrical body and the metal fitting 7B. As a result, the surface of the photocured resin body 9 cured in a cylindrical shape that has passed through the liquid surface of the photocured resin material 8 is covered with the thin uncured photocured resin material 8. Then, by further rotating the metal fittings 7A and 7B, the surface of the portion of the photocurable resin body 9 that does not pass through the photocurable resin material 8 is also covered with the thin uncured photocurable resin material 8. At this time, the photocuring in which the uncured photocured resin material 8 having a thickness between the liquid coating thickness control column 5 disposed on the liquid upper surface and the photocured resin body 9 cured in the columnar shape is cured in a columnar shape. It adheres to the resin body 9.

次に、光源よりで放出され走査手段2を経由したレーザー光6が、円柱状に硬化した光硬化樹脂体9の表面をある間隔を置いて回転軸31の軸方向に照射する(STEP04)。照射されたレーザー光6は、円柱状に硬化した光硬化樹脂体9の表面に付着した未硬化の光硬化樹脂材料8を硬化させる。   Next, the laser beam 6 emitted from the light source and passed through the scanning means 2 irradiates the surface of the photocured resin body 9 cured in a columnar shape in the axial direction of the rotary shaft 31 at a certain interval (STEP 04). The irradiated laser beam 6 cures the uncured photocured resin material 8 attached to the surface of the photocured resin body 9 cured in a columnar shape.

金属金具7A,7Bの回転、レーザー光6の照射を繰り返す(STEP03〜04)ことで、図5、図6に示すように円柱状に硬化した光硬化樹脂体9の直径を大きくすると共に、金属金具7A,7B部分の凹部分にも光硬化樹脂体9が形成される。この際、図5aに示すように、樹脂厚制御体5の回転軸51を移動させることで、円柱状に硬化した光硬化樹脂体9や、金属金具7A,7Bに付着する光硬化樹脂体材料8の厚さを制御する。これにより、金属金具7A,7Bの表面全体で光硬化樹脂材料8が硬化可能になり、十分な密着力を得ることができる。   By repeating the rotation of the metal fittings 7A and 7B and the irradiation of the laser beam 6 (STEP 03 to 04), the diameter of the photo-curing resin body 9 cured in a cylindrical shape is increased as shown in FIGS. The photo-curing resin body 9 is also formed in the concave portions of the metal parts 7A and 7B. At this time, as shown in FIG. 5a, by moving the rotation shaft 51 of the resin thickness control body 5, the photocured resin body 9 cured in a columnar shape and the photocured resin body material attached to the metal fittings 7A and 7B. Control the thickness of 8. Thereby, the photocurable resin material 8 can be cured on the entire surface of the metal fittings 7A and 7B, and sufficient adhesion can be obtained.

さらに、この手順を繰り返すことで、図7に示すように、光硬化樹脂体9の円柱が所望の直径になったところで、装置を止めて両端の金属金具7A、7Bを駆動装置から取り外すことで、図8に示す絶縁円柱が完成する(STEP05)。   Furthermore, by repeating this procedure, as shown in FIG. 7, when the column of the photocurable resin body 9 has a desired diameter, the device is stopped and the metal fittings 7A and 7B at both ends are removed from the drive device. The insulating cylinder shown in FIG. 8 is completed (STEP 05).

以上のように、金属金具7A,7Bを両端に持つ絶縁柱を、光硬化樹脂材料8の塗布と硬化を連続して行うことができる。本実施形態により形成した三次元造形物は、低コストで造形可能となる上に、絶縁物部分を機械加工することなく金属の電極と接合できるため、信頼性の高い操作ロッドとなる。   As described above, it is possible to continuously apply and cure the photocurable resin material 8 to the insulating columns having the metal fittings 7A and 7B at both ends. The three-dimensional structure formed according to the present embodiment can be formed at low cost, and can be joined to a metal electrode without machining the insulator portion, so that it becomes a highly reliable operation rod.

[3.効果]
以上のような構成及び作用を有する本実施形態によれば、以下のような効果を奏する。
[3. effect]
According to the present embodiment having the configuration and operation as described above, the following effects can be obtained.

(1)本実施形態では、金属金具7A,7Bを両端に取付けた同軸の三次元造形物1を作成する際に造形時間を短縮することができるという優れた効果を有する。さらに、造形に必要な光硬化樹脂材料8の量が最低限に抑えられ、従来に比べて装置全体を小型化することができるという優れた効果も有する。と共に、機械特性の信頼性の高い操作ロッドを得ることができる。 (1) In this embodiment, it has the outstanding effect that modeling time can be shortened when producing the coaxial three-dimensional structure 1 which attached the metal fittings 7A and 7B to both ends. Further, the amount of the photo-curable resin material 8 necessary for modeling is minimized, and there is an excellent effect that the entire apparatus can be reduced in size as compared with the related art. At the same time, an operation rod with high mechanical characteristics can be obtained.

(2)従来では、絶縁物にねじ加工して金属金具のねじ部と接合して固定していたが、本実施形態では、絶縁物への加工無しに絶縁物と金属金具を接合できるようになる。この結果、大きな機械力が加わる場合に問題となる絶縁物加工の際に発生する剥離、傷などの影響が無くなるばかりか、加工費用、加工時間も不要になりコストメリットは非常に大きい。 (2) Conventionally, the insulator is screwed and joined to the screw portion of the metal fitting and fixed. However, in this embodiment, the insulator and the metal fitting can be joined without processing the insulator. Become. As a result, not only is there no influence of peeling, scratches, etc. that occur when processing an insulator, which is a problem when a large mechanical force is applied, but the processing cost and processing time are not required, and the cost merit is very large.

(3)さらに、絶縁物部分を機械加工することなく金属の電極と接合できるため、信頼性の高い操作ロッドが製造できる。絶縁物に内蔵する金属は、内部に空洞を有しない略円柱状の部材であれば図8の様な形状に限られない。例えば、図9に示す略半円を回転させた回転体や、図10に示す略半円を2つ回転させた回転体や、図11に示す屈曲点が複数ある略矩形を回転させた回転体のような形状や凹凸のある金属金具形状であれば、本実施形態と同様の作用、効果を奏することが可能である。 (3) Furthermore, since the insulator portion can be joined to the metal electrode without machining, a highly reliable operation rod can be manufactured. The metal incorporated in the insulator is not limited to the shape shown in FIG. 8 as long as it is a substantially cylindrical member having no cavity inside. For example, a rotating body obtained by rotating a substantially semicircle shown in FIG. 9, a rotating body obtained by rotating two substantially semicircles shown in FIG. 10, and a rotating figure obtained by rotating a substantially rectangular shape having a plurality of bending points shown in FIG. If it is a shape like a body or a metal fitting with irregularities, the same actions and effects as in this embodiment can be achieved.

(4)また、本実施形態の三次元造形装置1においては、貯留槽4内に三次元造形物支持板などのサポートを付加する必要がなく、また、貯留槽4内の光硬化樹脂材料8の高さも所望する絶縁円柱の半径程度で済むため、大きな貯留槽を準備する必要が無くなる。さらに、貯留槽4の断面を所望する絶縁円柱に沿った形にすることで、絶縁円柱専用の造形装置になるが、造形に必要な光硬化樹脂材料8の量が最低限に抑えることができる。 (4) Moreover, in the three-dimensional modeling apparatus 1 of this embodiment, it is not necessary to add a support such as a three-dimensional modeled object support plate in the storage tank 4, and the photocurable resin material 8 in the storage tank 4. Therefore, it is not necessary to prepare a large storage tank. Furthermore, by forming the cross section of the storage tank 4 along the desired insulating cylinder, a modeling apparatus dedicated to the insulating cylinder is obtained, but the amount of the photocurable resin material 8 necessary for modeling can be minimized. .

(4)本実施形態は、光硬化樹脂材料8を硬化させて形成した円柱体に隣接する位置に、円柱体の各部分が所定の太さになるまで、光硬化樹脂材料8の塗布厚さを調整する樹脂厚制御体5を有している。これにより、硬化済の円柱状の光硬化樹脂体9の表面に付着する未硬化の光硬化樹脂材料8の付着厚さを制御することができる。 (4) In the present embodiment, the coating thickness of the photocurable resin material 8 is set at a position adjacent to the cylindrical body formed by curing the photocurable resin material 8 until each portion of the cylindrical body has a predetermined thickness. The resin thickness control body 5 is adjusted. Thereby, the adhesion thickness of the uncured photocured resin material 8 adhering to the surface of the cured cylindrical photocured resin body 9 can be controlled.

(5)本実施形態の樹脂厚制御体5は、駆動部の回転軸31と平行な軸51を中心として回転する回転体である。樹脂厚制御体5が回転することにより、硬化済の円柱状の光硬化樹脂体9の表面に付着した余分な未硬化の光硬化樹脂材料8を効率良く除去することができる。そのため、未硬化の光硬化樹脂材料8の付着厚さの制御を効率良く行うことができる。 (5) The resin thickness control body 5 of the present embodiment is a rotating body that rotates around an axis 51 that is parallel to the rotating shaft 31 of the drive unit. By rotating the resin thickness control body 5, it is possible to efficiently remove excess uncured photocured resin material 8 attached to the surface of the cured columnar photocured resin body 9. Therefore, it is possible to efficiently control the adhesion thickness of the uncured photocurable resin material 8.

(6)本実施形態の樹脂厚制御体5は、回転の中心となる軸51の位置を硬化した円柱体の寸法に応じて変化させる。これにより、円柱体の寸法が完成時の寸法になるまで、余分な未硬化の光硬化樹脂材料8を効率良く除去することができる。 (6) The resin thickness control body 5 of the present embodiment changes the position of the shaft 51 serving as the center of rotation according to the dimensions of the hardened cylinder. Thereby, the excess uncured photo-curing resin material 8 can be efficiently removed until the dimension of the cylindrical body becomes the dimension at the time of completion.

(7)本実施形態は、光源から射出されたレーザー光6により硬化する光硬化樹脂材料8に、結晶、無定形、または繊維状のガラス等の無機物、PPSなどのエンジニアリングポリマーを混合する。これにより、形成する三次元造形物の強度や絶縁性能を向上させることができる。特に、三次元造形物を絶縁ロッドとして利用する場合には絶縁性能の点で有利となる。 (7) In this embodiment, an inorganic polymer such as crystal, amorphous or fibrous glass, and an engineering polymer such as PPS are mixed in the photo-curing resin material 8 that is cured by the laser beam 6 emitted from the light source. Thereby, the intensity | strength and insulation performance of the three-dimensional structure to form can be improved. In particular, when a three-dimensional structure is used as an insulating rod, it is advantageous in terms of insulating performance.

[他の実施形態]
本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other Embodiments]
In the present specification, an embodiment according to the present invention has been described. However, this embodiment is presented as an example, and is not intended to limit the scope of the invention. Specifically, various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

例えば、本実施形態では、光硬化樹脂材料8にレーザー光6を照射することで光硬化樹脂体9を形成したが、光硬化樹脂材料8を硬化させる光はレーザー光に限らず、光硬化樹脂材料8を硬化させることができるのであれば、その種類を適宜選択することができる。   For example, in the present embodiment, the light curable resin material 9 is formed by irradiating the light curable resin material 8 with the laser light 6, but the light for curing the light curable resin material 8 is not limited to the laser light, and the light curable resin is used. If the material 8 can be cured, the type can be appropriately selected.

さらに、硬化した光硬化樹脂体9の表面に付着する未硬化の光硬化樹脂材料8の付着厚さを制御する樹脂厚制御体5としては、円柱状の回転体を例にとり説明したが、樹脂厚制御体5は円柱状の回転体に限られない。例えば、芯となる円柱体や、金属金具7A,7Bに合わせた凹凸を有する矩形型の平板でも良い。それだけでなく、樹脂厚制御体5は、硬化した光硬化樹脂体9の表面に付着する未硬化の光硬化樹脂材料8の付着厚さを制御できれは、回転体でなくともよい。すなわち、芯となる円柱体や金属金具7A,7Bの近傍に、平板状の制御板を配置することで、未硬化の光硬化樹脂材料8の付着厚さを制御することも可能である。   Further, the resin thickness control body 5 for controlling the thickness of the uncured photocured resin material 8 that adheres to the surface of the cured photocured resin body 9 has been described by taking a cylindrical rotating body as an example. The thickness control body 5 is not limited to a cylindrical rotating body. For example, the cylindrical body used as a core, and the rectangular flat plate which has the unevenness | corrugation matched with the metal metal fittings 7A and 7B may be sufficient. In addition, the resin thickness control body 5 may not be a rotating body as long as it can control the thickness of the uncured photocured resin material 8 that adheres to the surface of the cured photocured resin body 9. That is, the adhesion thickness of the uncured photo-curing resin material 8 can be controlled by arranging a flat control plate in the vicinity of the cylindrical body or the metal fittings 7A and 7B serving as the core.

1…三次元造形装置
2…走査手段
31…回転軸
32…保持部
33…駆動力伝達部
4…貯蓄槽
5…樹脂厚制御体
51…軸
6…レーザー光
7A,7B…金属金具
8…光硬化樹脂材料
9…光硬化樹脂体
10…基板円柱
11…制御板
12…円筒状に硬化した光硬化樹脂体
B…駆動部による回転方向
DESCRIPTION OF SYMBOLS 1 ... Three-dimensional modeling apparatus 2 ... Scanning means 31 ... Rotating shaft 32 ... Holding part 33 ... Driving force transmission part 4 ... Storage tank 5 ... Resin thickness control body 51 ... Shaft 6 ... Laser beam 7A, 7B ... Metal fitting 8 ... Light Cured resin material 9 ... Photocured resin body 10 ... Substrate column 11 ... Control plate 12 ... Curable photocured resin body B ... Rotation direction by drive unit

Claims (7)

光により硬化する光硬化樹脂材料を用いて同軸の三次元造形物を作製する三次元造形装置において、
光を射出する光源と、
前記光源から射出された光を、所定の方向に沿って走査する走査手段と、
前記走査手段により走査された光を受光する位置に配置される一対の電極と、
前記電極を前記所定の方向に沿う軸を回転軸として回転させる駆動部と、
を備え、
前記光硬化樹脂材料の液面と、前記回転軸の位置とが一致することを特徴とする三次元造形装置。
In a three-dimensional modeling apparatus that produces a coaxial three-dimensional structure using a light curable resin material that is cured by light,
A light source that emits light;
Scanning means for scanning the light emitted from the light source along a predetermined direction;
A pair of electrodes disposed at positions to receive the light scanned by the scanning means;
A drive unit that rotates the electrode about the axis along the predetermined direction as a rotation axis;
With
The three-dimensional modeling apparatus, wherein a liquid surface of the photo-curing resin material and a position of the rotation axis coincide with each other.
前記一対の電極間に光を照射して、前記光硬化樹脂材料を硬化させ円柱体を形成し、
前記円柱体を中心に所定の厚さの前記光硬化樹脂材料を前記円柱体に塗布し、
前記走査手段により前記光源から射出された光を所定の方向に走査することで、前記円柱体に塗布された前記光硬化樹脂材料を硬化することを特徴とする請求項1に記載の三次元造形装置。
Irradiating light between the pair of electrodes to cure the photocurable resin material to form a cylindrical body,
Applying the photocurable resin material of a predetermined thickness around the cylindrical body to the cylindrical body,
The three-dimensional modeling according to claim 1, wherein the photocurable resin material applied to the cylindrical body is cured by scanning light emitted from the light source in a predetermined direction by the scanning unit. apparatus.
前記円柱体に隣接する位置に、前記円柱体の各部分が所定の寸法になるまで、前記円柱体に塗布される前記光硬化樹脂材料の厚さを調整する樹脂厚制御部を有することを特徴とする請求項2に記載の三次元造形装置。   A resin thickness control unit that adjusts the thickness of the photo-curing resin material applied to the cylindrical body until each portion of the cylindrical body has a predetermined size is provided at a position adjacent to the cylindrical body. The three-dimensional modeling apparatus according to claim 2. 前記樹脂厚制御部は、前記駆動部の回転軸と平行な軸を中心として回転する回転体であることを特徴とする請求項3に記載の三次元造形装置。   The three-dimensional modeling apparatus according to claim 3, wherein the resin thickness control unit is a rotating body that rotates about an axis parallel to a rotation axis of the driving unit. 前記樹脂厚制御部の回転の中心となる軸は、前記円柱体の寸法に応じて位置を変化させることを特徴とする請求項4に記載の三次元造形装置。   The three-dimensional modeling apparatus according to claim 4, wherein an axis serving as a center of rotation of the resin thickness control unit changes a position according to a dimension of the cylindrical body. 前記光源から射出された光により硬化する前記光硬化樹脂材料に、結晶、無定形、または繊維状のガラス、及び/または、PPSのエンジニアリングポリマーを混合したことを特徴とする請求項1乃至5の何れかに記載の三次元造形装置。   6. The photo-curing resin material that is cured by light emitted from the light source is mixed with crystal, amorphous, or fibrous glass, and / or a PPS engineering polymer. The three-dimensional modeling apparatus according to any one of the above. 両端に金属電極を配置し、請求項1から6に記載された三次元製造装置で造形した絶縁ロッド。   The insulating rod which arrange | positioned the metal electrode in both ends and was modeled with the three-dimensional manufacturing apparatus described in Claims 1-6.
JP2014156871A 2014-07-31 2014-07-31 Three-dimensional modeling apparatus and insulating rod Active JP6338962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156871A JP6338962B2 (en) 2014-07-31 2014-07-31 Three-dimensional modeling apparatus and insulating rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156871A JP6338962B2 (en) 2014-07-31 2014-07-31 Three-dimensional modeling apparatus and insulating rod

Publications (2)

Publication Number Publication Date
JP2016032920A true JP2016032920A (en) 2016-03-10
JP6338962B2 JP6338962B2 (en) 2018-06-06

Family

ID=55452060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156871A Active JP6338962B2 (en) 2014-07-31 2014-07-31 Three-dimensional modeling apparatus and insulating rod

Country Status (1)

Country Link
JP (1) JP6338962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024642A (en) * 2017-08-28 2019-03-08 해리스 코포레이션 Method for making a metal isolator body and associated device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123202A (en) * 1981-01-23 1982-07-31 Mitsui Petrochem Ind Ltd Industrial molding material
JPH06203677A (en) * 1993-01-06 1994-07-22 Toshiba Corp Insulating rod
JP2000043150A (en) * 1998-07-31 2000-02-15 Kimiyuki Mitsui Photo fabrication method, apparatus therefor and composite machine component
JP2001322177A (en) * 2000-05-17 2001-11-20 Minolta Co Ltd Method and apparatus for three-dimensional modeling
JP2003009370A (en) * 2001-06-20 2003-01-10 Mitsubishi Cable Ind Ltd Manufacturing method for cylindrical member of polymeric material for cable connection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123202A (en) * 1981-01-23 1982-07-31 Mitsui Petrochem Ind Ltd Industrial molding material
JPH06203677A (en) * 1993-01-06 1994-07-22 Toshiba Corp Insulating rod
JP2000043150A (en) * 1998-07-31 2000-02-15 Kimiyuki Mitsui Photo fabrication method, apparatus therefor and composite machine component
JP2001322177A (en) * 2000-05-17 2001-11-20 Minolta Co Ltd Method and apparatus for three-dimensional modeling
JP2003009370A (en) * 2001-06-20 2003-01-10 Mitsubishi Cable Ind Ltd Manufacturing method for cylindrical member of polymeric material for cable connection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024642A (en) * 2017-08-28 2019-03-08 해리스 코포레이션 Method for making a metal isolator body and associated device including the same
KR102469989B1 (en) 2017-08-28 2022-11-22 엘3해리스 테크놀러지스, 인크. Method for making a metal isolator body and associated device including the same

Also Published As

Publication number Publication date
JP6338962B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
US9862138B2 (en) Structure and production method therefor
US20220332043A1 (en) Method for the manufacture of a spatially varying dielectric material, articles made by the method, and uses thereof
US10562231B2 (en) Method and system for additive-ablative fabrication
WO2006109425A1 (en) Seterolithography method
JP5803316B2 (en) Manufacturing method of structure
JP2012240216A (en) Three-dimensional modeling apparatus, modeled object, and method for manufacturing modeled object
CN104035255A (en) Array substrate, display panel and manufacturing method
JP2020163738A (en) Addition manufacturing apparatus and addition manufacturing method
JP6338962B2 (en) Three-dimensional modeling apparatus and insulating rod
EP3395550B1 (en) Three-dimensional object shaping device and manufacturing method
JP6020672B2 (en) Three-dimensional modeling apparatus and manufacturing method of modeled object
CN115625829A (en) Method of forming waveguide portion having predetermined shape
CN108068310A (en) Three-dimensional printing method
KR20150112270A (en) Stereolithograpgy equipment using surface emitting led light source
JP2007212243A (en) Standard sample for microscope and its manufacturing method
JP5760251B2 (en) Laser processing equipment for glass substrates
US8585390B2 (en) Mold making system and mold making method
JP7051256B2 (en) A method for manufacturing a filler-filled film, a sheet-fed film, a laminated film, a laminated film, and a filler-filled film.
JP6385045B2 (en) Manufacturing method of molded body
JP2006272917A (en) Optical shaping method
KR102487231B1 (en) Micro and/or nanostructured embossing methods
KR101607634B1 (en) Stereolithograpgy equipment using rotating LED bar light source
KR102006451B1 (en) Manufacturing apparatus and method for 3d structure using in-situ light-guiding mechanism
JP6995530B2 (en) A molding device for molding a composition on a substrate using a mold and a method for manufacturing an article.
JP2011112977A (en) Method for manufacturing optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171204

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6338962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150