JP2003009370A - Manufacturing method for cylindrical member of polymeric material for cable connection - Google Patents

Manufacturing method for cylindrical member of polymeric material for cable connection

Info

Publication number
JP2003009370A
JP2003009370A JP2001186476A JP2001186476A JP2003009370A JP 2003009370 A JP2003009370 A JP 2003009370A JP 2001186476 A JP2001186476 A JP 2001186476A JP 2001186476 A JP2001186476 A JP 2001186476A JP 2003009370 A JP2003009370 A JP 2003009370A
Authority
JP
Japan
Prior art keywords
mandrel
tubular member
polymeric material
cable connection
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001186476A
Other languages
Japanese (ja)
Inventor
Tamami Shimomura
珠三 霜村
Masao Matsumoto
正夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001186476A priority Critical patent/JP2003009370A/en
Publication of JP2003009370A publication Critical patent/JP2003009370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with metal molding and enhance energy efficiency for the reduction of manufacturing cost of a cylindrical member of polymeric material for cable connection. SOLUTION: A mandrel 16 is turned in a reservoir 18 filled with a polymer material 17, which absorbs electromagnetic waves and is thereby cured. At the same time, electromagnetic waves are irradiated to a specified area from an electromagnetic wave irradiating apparatus 19 for curing and sticking a specified portion of the polymer material 17 to the outer circumferential surface of the mandrel 16. Finally, the mandrel 16 is pulled out to obtain a cylindrical member of polymer material for cable connection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば電力ケー
ブルを構成するケーブル導体の端部同士を接続する直線
接続部を、或は電力ケーブルの端部を各種電力機器の端
子に接続する為の終端接続部を構成する為のプレハブモ
ールド絶縁体、或はプレモールド絶縁体等の筒状の絶縁
体の製造方法の改良に関する。特に本発明は、この様な
筒状の絶縁体を、高価な設備を要する事なく能率良く造
れる様にして、コスト低減を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a termination for connecting, for example, a straight connecting portion for connecting ends of cable conductors constituting a power cable or for connecting the ends of a power cable to terminals of various electric power equipment. The present invention relates to an improvement in a manufacturing method of a tubular insulator such as a prefabricated mold insulator or a premolded insulator for forming a connecting portion. In particular, the present invention aims at cost reduction by enabling such a tubular insulator to be efficiently manufactured without requiring expensive equipment.

【0002】[0002]

【従来の技術】電力ケーブルの端部同士、或はこの電力
ケーブルの端部と各種電力機器の端子との接続作業を比
較的容易に行なえる構造として、弾性材であるゴム等の
高分子材料により造ったプレハブモールド絶縁体、或は
プレモールド絶縁体により、1対の電力ケーブルを構成
するケーブル導体同士、或はこの電力ケーブルの端部と
各種電力機器の端子との接続部を覆う構造が知られてい
る。例えば図7〜8は、電力ケーブルの端部と各種電力
機器の端子との接続部である終端接続部を構成する為
の、プレモールド絶縁体の2例を示している。
2. Description of the Related Art A polymer material such as rubber, which is an elastic material, is used as a structure for relatively easily connecting the end portions of a power cable or connecting the end portion of the power cable and a terminal of various power devices. The prefabricated mold insulator made by or the premolded insulator covers the cable conductors forming a pair of power cables, or the structure for covering the connection between the end of this power cable and the terminal of various power equipment. Are known. For example, FIGS. 7 to 8 show two examples of premolded insulators for forming a terminating connection part which is a connection part between an end part of a power cable and a terminal of various power devices.

【0003】このうちの図7に示した第1例のプレモー
ルド絶縁体1は、全体を絶縁ゴムにより一体に造られて
おり、軸方向に貫通する断面円形の中心孔2を有する。
又、外周面中間部の基端寄り(終端接続部への組み付け
状態で電力ケーブル側となる端部寄りで、図3の右端寄
り)部分に、遮蔽電極の電界を緩和する為、基端側に向
かう程外径が小さくなる方向に傾斜した、円すい凸面状
のベルマウス部3を設けている。更に、上記プレモール
ド絶縁体1の両端部外周面は、それぞれ開口端縁に向か
う程外径が小さくなる方向に傾斜した傾斜面としてい
る。
Of these, the pre-molded insulator 1 of the first example shown in FIG. 7 is integrally made of insulating rubber and has a central hole 2 having a circular cross section that penetrates in the axial direction.
Further, in order to relieve the electric field of the shield electrode in the portion near the base end of the middle portion of the outer peripheral surface (close to the end on the power cable side when assembled to the termination connection part, close to the right end in FIG. 3), the base end side The bell mouth portion 3 having a conical convex shape is provided so as to be inclined in a direction in which the outer diameter becomes smaller toward. Further, the outer peripheral surfaces of both ends of the premolded insulator 1 are inclined surfaces that are inclined in a direction in which the outer diameter decreases toward the opening edge.

【0004】又、図8に示した第2例のプレモールド絶
縁体4は、絶縁ゴム製の本体5の一部に、半導電ゴム製
の半導電層6を設けて成り、軸方向に貫通する断面円形
の中心孔7を有する。上記本体5の中間部外周面は円筒
面部8を設け、この円筒面部8に、作業時の手掛かり
(滑り止め)とする為の複数本の突条9、9を形成して
いる。又、上記円筒面部8の両側は、それぞれこの円筒
面部8から離れるに従って外径が小さくなるテーパ面部
10a、10bを形成し、更に一方(図8の右方)のテ
ーパ面部10aの小径側端部から連続して、第二の円筒
面部11を形成している。
The premolded insulator 4 of the second example shown in FIG. 8 is formed by providing a semiconductive layer 6 made of semiconductive rubber on a part of a body 5 made of insulating rubber, and penetrating in the axial direction. It has a central hole 7 having a circular cross section. A cylindrical surface portion 8 is provided on the outer peripheral surface of the intermediate portion of the main body 5, and a plurality of ridges 9 and 9 are formed on the cylindrical surface portion 8 to serve as clues (anti-slip) during work. Further, on both sides of the cylindrical surface portion 8, taper surface portions 10a and 10b are formed, the outer diameters of which become smaller as the distance from the cylindrical surface portion 8 increases, and the smaller diameter side end portions of one (the right side in FIG. 8) tapered surface portion 10a are formed. To form a second cylindrical surface portion 11.

【0005】図7〜8に示した何れのプレモールド絶縁
体1、4も、電力ケーブルの端部と各種電力機器の端子
と接続する際に、この電力ケーブルの端部に外嵌して、
接続部を構成する。又、何れのプレモールド絶縁体1、
4も、ゴム等の高分子材料を射出成形する事により造っ
ている。
Each of the premolded insulators 1 and 4 shown in FIGS. 7 to 8 is fitted onto the end portion of the power cable when the end portion of the power cable is connected to the terminals of various power equipment.
Configure the connection. In addition, which of the premolded insulators 1,
4 is also made by injection molding a polymer material such as rubber.

【0006】更に、電力ケーブルの端部同士の接続作業
を比較的容易に行なう為の常温収縮型のプレモールド絶
縁体12は、例えば図9に示す様に構成している。この
プレモールド絶縁体12は、高分子材料の一種であるゴ
ムにより円筒状に構成されたもので、絶縁性を有するゴ
ム製の絶縁筒部13の軸方向中間位置の内周面部分に、
半導電性を有するゴム製の内部半導電層14を包埋し、
外周面を半導電性を有するゴム製の外部半導電層15に
より覆って成る。
Further, the room-temperature shrinkable premolded insulator 12 for relatively easily connecting the ends of the power cable is constructed as shown in FIG. 9, for example. The pre-molded insulator 12 is made of rubber, which is a kind of polymer material, and has a cylindrical shape. The pre-molded insulator 12 is formed on the inner peripheral surface portion of the insulating cylindrical portion 13 made of rubber having an insulating property at an axially intermediate position.
Embedding an inner semiconductive layer 14 made of rubber having semiconductivity,
The outer peripheral surface is covered with an outer semiconductive layer 15 made of rubber having semiconductivity.

【0007】自由状態でのプレモールド絶縁体12の内
径は、このプレモールド絶縁体12を使用して接続する
電力ケーブルのケーブル絶縁体の外径よりも小さい。こ
の様なプレモールド絶縁体12は、その直径を弾性的に
広げて図示しない円管状の拡径治具に外嵌した状態で、
接続すべき1対の電力ケーブルのケーブル導体の端部同
士を接続するのに先立って、何れか一方の電力ケーブル
の中間部に外嵌しておく。そして、上記1対の電力ケー
ブルのケーブル導体の端部同士を接続した後、上記プレ
モールド絶縁体12を、上記1対の電力ケーブルを構成
するケーブル絶縁体同士の間に掛け渡す位置に移動させ
てから、上記拡径治具を上記プレモールド絶縁体12の
内径側から抜き取る。
The inner diameter of the premolded insulator 12 in the free state is smaller than the outer diameter of the cable insulator of the power cable connected using the premolded insulator 12. Such a pre-molded insulator 12 elastically expands its diameter and is externally fitted to a cylindrical expanding jig not shown,
Prior to connecting the ends of the cable conductors of the pair of power cables to be connected, the power cables are fitted on the intermediate portion of one of the power cables. Then, after connecting the ends of the cable conductors of the pair of power cables, the pre-molded insulator 12 is moved to a position where the pre-molded insulator 12 is hung between the cable insulators forming the pair of power cables. Then, the diameter expanding jig is pulled out from the inner diameter side of the premolded insulator 12.

【0008】この様にして拡径治具をプレモールド絶縁
体12の内径側から抜き取る事に伴い、このプレモール
ド絶縁体12が自身の弾性により縮径し、このプレモー
ルド絶縁体12の両端部内周面を、上記各電力ケーブル
を構成するケーブル絶縁体の端部外周面に弾性的に当接
させる。
In this way, as the diameter-expanding jig is pulled out from the inner diameter side of the pre-mold insulating body 12, the pre-mold insulating body 12 contracts due to its own elasticity, and inside the both end portions of the pre-mold insulating body 12. The peripheral surface is elastically brought into contact with the outer peripheral surface of the end portion of the cable insulator that constitutes each of the power cables.

【0009】上述の様な電力ケーブルの直線接続部を構
成する、上記プレモールド絶縁体12を造るには、図1
0に示す様に、図示しない成形型の内部に、外周面を円
筒面とした円杆状のマンドレル(中子)16を挿通した
状態で、これらマンドレル16の外周面と成形型の内周
面との間に存在するキャビティ内にゴム材料を充填す
る。この場合に、前記絶縁筒部13を構成するゴム材料
と、前記内部半導電層14及び外部半導電層15を構成
するゴム材料とは互いに異なるので、上記プレモールド
絶縁体12の成形作業は、図11に示す様に、3段階に
分けて行なう。
To make the above-mentioned premolded insulator 12 which constitutes the linear connection portion of the power cable as described above, FIG.
As shown in FIG. 0, the outer peripheral surface of the mandrel 16 and the inner peripheral surface of the molding die are inserted into a molding die (not shown) with a circular rod-shaped mandrel (core) 16 inserted into the molding die. The rubber material is filled in the cavity existing between the and. In this case, since the rubber material forming the insulating tubular portion 13 and the rubber material forming the inner semiconductive layer 14 and the outer semiconductive layer 15 are different from each other, the molding operation of the premold insulator 12 is As shown in FIG. 11, the process is divided into three steps.

【0010】即ち、先ず第一工程として、上記マンドレ
ル16の中間部外周面に対向する部分に図示しない第一
の金型により設けた、第一のキャビティ内に、半導電性
ゴム材料を注入してからこのゴム材料を加熱して、図1
1(A)に示す様に、上記内部半導電層14を成形す
る。次いで、この内部半導電層14を冷却してから上記
第一の金型を取り外した後、第二工程に移る。この第二
工程では、この内部半導電層14の外周面及びこの内部
半導電層14の軸方向両端から露出した上記マンドレル
16の外周面に対向する部分に図示しない第二の金型に
より設けた、第二のキャビティ内に、絶縁性ゴム材料を
注入してからこのゴム材料を加熱して、図11(B)に
示す様に、上記絶縁筒部13を成形する。次いで、この
絶縁筒部13を冷却してから上記第二の金型を取り外し
た後、第三工程に移る。この第三工程では、上記絶縁筒
部13の外周面及びこの絶縁筒部13から露出した上記
マンドレル16の外周面に対向する部分に図示しない第
三の金型により設けた、第三のキャビティ内に、半導電
性ゴム材料を注入してからこのゴム材料を加熱して、前
記外部半導電層15を成形する。そして、最後の第四工
程で、この外部半導電層15を冷却してから、上記マン
ドレル16を、上記内部半導電層14と上記絶縁筒部1
3と上記外部半導電層15との内側から抜き取って、図
9に示す様なプレモールド絶縁体12として完成する。
That is, first, as a first step, a semiconductive rubber material is injected into a first cavity provided by a first mold (not shown) in a portion facing the outer peripheral surface of the intermediate portion of the mandrel 16. Then, heat this rubber material and
As shown in FIG. 1 (A), the inner semiconductive layer 14 is formed. Next, after cooling the inner semiconductive layer 14, the first mold is removed, and then the second step is performed. In the second step, a second mold (not shown) is provided on the outer peripheral surface of the inner semiconductive layer 14 and the portion of the inner semiconductive layer 14 exposed from both axial ends of the mandrel 16 facing the outer peripheral surface. Then, an insulating rubber material is injected into the second cavity and then the rubber material is heated to form the insulating cylinder portion 13 as shown in FIG. 11 (B). Next, after cooling the insulating cylinder portion 13, the second mold is removed, and then the third step is performed. In this third step, the inside of the third cavity provided by a third mold (not shown) on the outer peripheral surface of the insulating cylindrical portion 13 and the portion exposed from the insulating cylindrical portion 13 facing the outer peripheral surface of the mandrel 16. Then, a semiconductive rubber material is injected, and this rubber material is heated to form the outer semiconductive layer 15. Then, in the final fourth step, after cooling the outer semiconductive layer 15, the mandrel 16 is attached to the inner semiconductive layer 14 and the insulating tubular portion 1.
3 and the outer semiconductive layer 15 are removed from the inside to complete a premolded insulator 12 as shown in FIG.

【0011】[0011]

【発明が解決しようとする課題】従来の製造方法により
プレモールド絶縁体1、4、12を造る場合、コストが
嵩む事が避けられない。先ず、図7〜8に示したプレモ
ールド絶縁体1、4は、接続すべき電力ケーブルの外径
や絶縁すべき電圧に応じて、直径や長さが異なる複数種
類のものが存在する。従来方法により上記各プレモール
ド絶縁体1、4を造る場合、これら各種寸法毎に異なる
金型を使用する必要がある為、金型の製作費が嵩み、上
記各プレモールド絶縁体1、4の価格が高くなる。
When the premolded insulators 1, 4, 12 are manufactured by the conventional manufacturing method, it is inevitable that the cost will increase. First, there are a plurality of types of premolded insulators 1 and 4 shown in FIGS. 7 to 8 having different diameters and lengths according to the outer diameter of the power cable to be connected and the voltage to be insulated. When the above-mentioned pre-mold insulators 1 and 4 are manufactured by the conventional method, it is necessary to use different molds for each of these dimensions, so the manufacturing cost of the mold increases, and the above-mentioned pre-mold insulators 1 and 4 are made. The price will increase.

【0012】又、図9に示したプレモールド絶縁体12
を、図10〜11に示す様な方法で造る場合、寸法が異
なるプレモールド絶縁体12毎に異なる金型を使用する
必要があるだけでなく、内部半導電層14成形用の第一
の金型と、絶縁筒部13成形用の第二の金型と、外部半
導電層15成形用の第三の金型との、3種類の金型を用
意する必要がある。しかも、第一〜第三工程を移る度毎
に、冷却と加熱とを繰り返さなければならない。3種類
の金型を用意する事は、これら各金型の加工費が嵩む事
によるコスト上昇の原因となる。又、冷却と加熱とを繰
り返す事は、エネルギ効率の低下による消費エネルギの
増大を招くだけでなく、加工作業時間が長くなる事に伴
う生産効率の低下により、やはりコスト上昇の原因とな
る。この様な問題は、図8に示す様に、内部に半導電層
6を有するプレモールド絶縁体4を造る場合にも生じ
る。本発明のケーブル接続用高分子材料製筒状部材の製
造方法は、この様な事情に鑑みて発明したものである。
Also, the premolded insulator 12 shown in FIG.
10 to 11, it is necessary not only to use different molds for each premold insulator 12 having different dimensions, but also to use the first metal mold for molding the inner semiconductive layer 14. It is necessary to prepare three types of molds, a mold, a second mold for molding the insulating tubular portion 13, and a third mold for molding the outer semiconductive layer 15. Moreover, cooling and heating must be repeated each time the first to third steps are performed. Preparing three types of molds causes a cost increase due to an increase in processing cost of each mold. Further, repeating cooling and heating not only causes an increase in energy consumption due to a decrease in energy efficiency, but also causes a cost increase due to a decrease in production efficiency due to a longer working time. Such a problem also occurs when the premolded insulator 4 having the semiconductive layer 6 therein is formed as shown in FIG. The method for manufacturing a tubular member made of a polymer material for cable connection according to the present invention was invented in view of such circumstances.

【0013】[0013]

【課題を解決する為の手段】本発明のケーブル接続用高
分子材料製筒状部材の製造方法は、高分子材料により全
体を略円筒状に構成されたケーブル接続用高分子材料製
筒状部材の製造方法である。特に、本発明のケーブル接
続用高分子材料製筒状部材の製造方法では、上記高分子
材料として、電磁波と熱と冷却のうちから選択される硬
化要因を付与される事により硬化して液体から固体に相
変化する材料を使用する。そして、外周面を円筒面とし
たマンドレルを回転させつつこのマンドレルの周囲に存
在する液状の高分子材料の一部に上記硬化要因を付与す
る事により、この高分子材料を硬化させる。又、この硬
化要因を付与する部分を、上記マンドレルの軸方向に移
動させつつ、このマンドレルの外周面から次第に遠ざけ
る事により、このマンドレルの周囲に上記硬化要因を付
与する部分の軌跡に見合った形状を有する筒状部材を形
成する。その後、この筒状部材の中心部から上記マンド
レルを抜き取る。
The method for producing a tubular member made of a polymeric material for cable connection according to the present invention is a tubular member made of a polymeric material for cable connection, which is made of a polymeric material and is generally cylindrical. Is a manufacturing method. In particular, in the method for producing a tubular member made of a polymeric material for cable connection of the present invention, the polymeric material is cured by applying a curing factor selected from electromagnetic waves, heat, and cooling, and is thus cured from a liquid. Use a solid phase change material. Then, while rotating the mandrel having the outer peripheral surface as a cylindrical surface, the above-mentioned curing factor is applied to a part of the liquid polymer material existing around the mandrel to cure the polymer material. Further, while gradually moving the portion to which the hardening factor is applied in the axial direction of the mandrel and gradually moving away from the outer peripheral surface of the mandrel, a shape corresponding to the trajectory of the portion to which the hardening factor is applied around the mandrel. Forming a tubular member having. Then, the mandrel is pulled out from the central portion of the tubular member.

【0014】[0014]

【作用】上述の様に構成する本発明のケーブル接続用高
分子材料製筒状部材の製造方法によれば、キャビティを
構成する為の複数の型を使用する事なく、ケーブル接続
用高分子材料製筒状部材の成形作業を行なえる。又、異
なる高分子材料を複層に重ね合わせたケーブル接続用高
分子材料製筒状部材を造る場合にも、工程を移る度に冷
却を行なう必要はなく、エネルギ効率の向上を図れる。
これらにより、本発明のケーブル接続用高分子材料製筒
状部材の製造方法によれば、ケーブル接続用高分子材料
製筒状部材の低廉化を図れる。
According to the method of manufacturing the tubular member for polymer material for cable connection of the present invention configured as described above, the polymer material for cable connection is used without using a plurality of molds for forming the cavity. It is possible to perform the forming work of the tubular member. Also, when a tubular member made of a polymeric material for cable connection, in which different polymeric materials are stacked in multiple layers, is manufactured, it is not necessary to perform cooling each time the process is moved, and energy efficiency can be improved.
Thus, according to the method for producing a tubular member made of a polymeric material for cable connection of the present invention, the cost of the tubular member made of a polymeric material for cable connection can be reduced.

【0015】[0015]

【発明の実施の形態】図1〜3は、請求項1〜2に対応
する、本発明の実施の形態の第1例を示している。本例
のケーブル接続用高分子材料製筒状部材の製造方法の基
本は、図1〜3に示す様に、外周面を円筒面とした円杆
状(円管状でも良い)のマンドレル16を、液状の高分
子材料17を貯溜した貯溜槽18内で回転させつつ、こ
の高分子材料17の所定部分に電磁波照射装置19によ
り電磁波を照射し、この高分子材料17を固体に相変化
(硬化)させる点にある。電磁波照射により、液体から
常温で弾性を有する固体に相変化する高分子材料17と
しては、従来から知られている各種材料を使用できる
が、シリコン樹脂を主成分としたゴム材料が、好ましく
利用できる。又、上記電磁波照射装置19が照射する電
磁波としては、赤外線等の熱線、或は紫外線から、使用
する高分子材料17の特性に応じたものを選択使用す
る。
1 to 3 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. As shown in FIGS. 1 to 3, the manufacturing method of the polymer-made tubular member for cable connection of the present example is based on a circular rod-shaped mandrel 16 having an outer peripheral surface as a cylindrical surface. While rotating in a storage tank 18 in which a liquid polymer material 17 is stored, a predetermined portion of the polymer material 17 is irradiated with electromagnetic waves by an electromagnetic wave irradiation device 19, and the polymer material 17 undergoes a phase change (curing) into a solid. There is a point to let. As the polymer material 17 that undergoes a phase change from a liquid to a solid having elasticity at room temperature upon irradiation with electromagnetic waves, various conventionally known materials can be used, but a rubber material containing silicon resin as a main component can be preferably used. . As the electromagnetic wave emitted by the electromagnetic wave irradiating device 19, one selected from heat rays such as infrared rays or ultraviolet rays depending on the characteristics of the polymer material 17 used is selected and used.

【0016】又、上記電磁波照射装置19から照射する
電磁波により、上記貯溜槽18内に貯溜された上記高分
子材料17のうちの所望部分のみを硬化させる為に、上
記電磁波照射装置19は、図2に示す様に、1対の照射
器20、20を備える。これら各照射器20、20から
それぞれ電磁波を、異なる角度から、互いに交差する方
向に照射する。そして、これら各照射器20、20から
照射された電磁波が交差する部分でのみ、上記高分子材
料17が硬化する様にしている。即ち、この交差する部
分でのみ、電磁波のエネルギが、この高分子材料17を
硬化させる為に十分な値となる様にしている。従って、
上記貯溜槽18内に貯溜された上記高分子材料17のう
ち、単に一方の照射器20から照射された電磁波が通過
するだけの部分に存在する高分子材料17は硬化しな
い。又、上記電磁波照射装置19は、前記マンドレル1
6の軸方向に移動自在であり、移動する事により、上記
高分子材料17が硬化する範囲を、上記マンドレル16
の軸方向に関して調節自在である。尚、以下の説明で、
電磁波を照射するとは、上記各照射器20、20から照
射した電磁波同士を交差させた部分で上記高分子材料1
7に、硬化するのに十分なエネルギを与える状態を言
う。又、図示は省略するが、照射器を1台だけ使用する
と共に、レンズ系を用いてこの照射器から照射された電
磁波の焦点部のみが、高分子材料の硬化に必要なエネル
ギー状態となる様にする事もできる。この場合には、焦
点部でのエネルギ付与状態が、電磁波を照射する事を意
味する。
In order to cure only a desired portion of the polymer material 17 stored in the storage tank 18 by the electromagnetic waves emitted from the electromagnetic wave irradiation device 19, the electromagnetic wave irradiation device 19 is designed as follows. As shown in FIG. 2, a pair of illuminators 20 and 20 are provided. Electromagnetic waves are emitted from the respective illuminators 20, 20 from different angles in directions intersecting with each other. Then, the polymer material 17 is cured only at the portions where the electromagnetic waves emitted from the respective irradiators 20, 20 intersect. That is, the energy of the electromagnetic wave is set to a value sufficient to cure the polymer material 17 only at the intersecting portions. Therefore,
Of the polymer material 17 stored in the storage tank 18, the polymer material 17 existing only in the portion through which the electromagnetic wave emitted from the one irradiator 20 passes does not cure. Further, the electromagnetic wave irradiation device 19 is the mandrel 1
6 is movable in the axial direction, and the range in which the polymer material 17 is cured by the movement of the mandrel 16
It is adjustable in the axial direction. In the following explanation,
Irradiating electromagnetic waves means that the polymer material 1 is applied at a portion where the electromagnetic waves emitted from the irradiators 20, 20 intersect each other.
7 refers to the state in which sufficient energy is applied to cure. Although not shown, only one irradiator is used and only the focal portion of the electromagnetic wave emitted from this irradiator using the lens system is in the energy state necessary for curing the polymer material. You can also In this case, the energy applied state at the focal point means that electromagnetic waves are emitted.

【0017】前述の様な、貯溜槽18内で回転するマン
ドレル16と、上述の様な電磁波照射装置19とを使用
して、前述の図7に示す様なプレモールド絶縁体1を造
るには、上記貯溜槽18内で上記マンドレル16を回転
させつつ、この貯溜槽18内の高分子材料17に電磁波
を照射すると共に、上記電磁波照射装置19を上記マン
ドレル16の軸方向に移動させる。この結果、上記高分
子材料17が、このマンドレル16の外周面近傍部分か
ら硬化する。そこで、電磁波を照射する部分を次第に上
記マンドレル16の外周面から離れた部分に移動させれ
ば、このマンドレル16の周囲で硬化してこの周囲に付
着した高分子材料17の厚さが次第に大きくなる。
Using the mandrel 16 rotating in the storage tank 18 as described above and the electromagnetic wave irradiation device 19 as described above, the premolded insulator 1 as shown in FIG. 7 is prepared. While the mandrel 16 is rotated in the storage tank 18, the polymer material 17 in the storage tank 18 is irradiated with electromagnetic waves, and the electromagnetic wave irradiation device 19 is moved in the axial direction of the mandrel 16. As a result, the polymer material 17 is hardened from the vicinity of the outer peripheral surface of the mandrel 16. Therefore, if the portion to be irradiated with the electromagnetic wave is gradually moved to a portion away from the outer peripheral surface of the mandrel 16, the thickness of the polymer material 17 which is hardened around the mandrel 16 and adhered to the periphery is gradually increased. .

【0018】この様に、上記マンドレル16の周囲で硬
化してこのマンドレルに付着した高分子材料17の厚さ
が増すのに伴って、上記電磁波を照射する部分を、次第
に上記マンドレル16の外周面から径方向外方に移動さ
せると共に、このマンドレル16の軸方向に関する上記
電磁波照射装置19の移動量を少なくする。これら一連
の作業を、造るべきプレモールド絶縁体1の形状に合わ
せて行なえば、図3に示す様に、上記マンドレル16の
周囲にこのプレモールド絶縁体1を形成できる。そこ
で、最後に、硬化した高分子材料17の中心から上記マ
ンドレル16を引き抜けば、上記プレモールド絶縁体1
を得られる。この作業は、このマンドレル16を上記貯
溜槽18から取り外した状態で行なう。
As described above, as the thickness of the polymer material 17 adhered to the mandrel 16 hardens around the mandrel 16 and increases, the portion irradiated with the electromagnetic wave gradually becomes the outer peripheral surface of the mandrel 16. From the radial direction to the outside in the radial direction, and the amount of movement of the electromagnetic wave irradiation device 19 in the axial direction of the mandrel 16 is reduced. If these series of operations are performed according to the shape of the premolded insulator 1 to be produced, the premolded insulator 1 can be formed around the mandrel 16 as shown in FIG. Therefore, finally, if the mandrel 16 is pulled out from the center of the cured polymer material 17, the premolded insulator 1
Can be obtained. This work is performed with the mandrel 16 removed from the storage tank 18.

【0019】上述の第1例は、前記電磁波照射装置19
を上記マンドレル16の軸方向に移動させているが、図
4に示す様に、電磁波照射装置19aにより電磁波を照
射する幅を長くすれば、上記プレモールド絶縁体1の形
成作業の能率化を図れる。この場合には、上記電磁波照
射装置19aを構成する各照射器20、20により電磁
波を照射する幅を、可変長スリット21により調節自在
とする。即ち、照射幅を広くする場合には、図4(A)
に示す様に、上記可変長スリット21を長くし、同じく
狭くする場合には、同図(B)に示す様に短くする。こ
の様な電磁波照射装置19aを使用する場合、製造作業
の初期段階では、図4(A)に示す様に上記可変長スリ
ット21を長くして、上記マンドレル16の外周面近傍
部分で軸方向に関して長い部分を照射する。これに対し
て製造作業が進むに従って上記可変長スリット21を短
くして、図4(B)に示す様に、このマンドレル16の
外周面から離れた、軸方向に関して短い部分を照射す
る。
The first example described above is the electromagnetic wave irradiation device 19 described above.
Is moved in the axial direction of the mandrel 16, but as shown in FIG. 4, if the width of irradiating the electromagnetic wave by the electromagnetic wave irradiating device 19a is lengthened, the work of forming the premolded insulator 1 can be made more efficient. . In this case, the width of irradiating the electromagnetic wave by each of the irradiators 20, 20 constituting the electromagnetic wave irradiating device 19a can be adjusted by the variable length slit 21. That is, when the irradiation width is widened, as shown in FIG.
When the variable length slit 21 is made longer and also made narrower as shown in FIG. 11, it is shortened as shown in FIG. When such an electromagnetic wave irradiation device 19a is used, in the initial stage of the manufacturing operation, the variable length slit 21 is elongated as shown in FIG. Irradiate long areas. On the other hand, as the manufacturing work progresses, the variable length slit 21 is shortened, and as shown in FIG. 4 (B), a portion apart from the outer peripheral surface of the mandrel 16 and shorter in the axial direction is irradiated.

【0020】尚、前記貯溜槽18内に貯溜した高分子材
料17のうちの所望の部分のみを硬化させる為に、上述
の図1、2、4に示した様な電磁波照射装置19に代え
て、光ファイバを使用する事もできる。この場合には、
光ファイバの先端部を、上記貯溜槽18のうちで上記高
分子材料17を硬化すべき部分に差し込む。そして、上
記光ファイバの先端部を上記マンドレル16の軸方向に
移動させつつ、上記プレモールド絶縁体1の形成作業の
進行に伴って、上記マンドレル16の径方向外方に変位
させる。又、このマンドレル16の外周面に、高分子材
料17を供給する手段としては、図示の様な貯溜槽18
の他、ノズルからの噴射若しくは吐出等、他の方法を採
用する事もできる。ノズルからの供給状態を噴射による
か吐出によるかは、上記高分子材料の粘度により決定す
る。
In order to cure only a desired portion of the polymer material 17 stored in the storage tank 18, instead of the electromagnetic wave irradiation device 19 shown in FIGS. It is also possible to use an optical fiber. In this case,
The tip of the optical fiber is inserted into a portion of the storage tank 18 where the polymer material 17 is to be cured. Then, the tip end portion of the optical fiber is moved in the axial direction of the mandrel 16, and is displaced outward in the radial direction of the mandrel 16 as the work of forming the premolded insulator 1 progresses. Further, as a means for supplying the polymer material 17 to the outer peripheral surface of the mandrel 16, a storage tank 18 as shown in FIG.
Besides, it is also possible to adopt another method such as jetting or discharging from a nozzle. Whether the supply state from the nozzle is by injection or discharge is determined by the viscosity of the polymer material.

【0021】この場合に、上記ノズルから供給する高分
子材料17の温度を、架橋温度近くにまで高めておけ
ば、この高分子材料17の流動性を高めてこの高分子材
料の取り扱い性を向上させられると共に、この高分子材
料17を硬化させる為に要する電磁波のエネルギを低く
抑える事ができる。そして、硬化までの時間を短縮し
て、上記プレモールド絶縁体1の製造作業の能率化を図
れる。又、上記高分子材料17としては、電磁波を吸収
する事で硬化するものの他、熱を吸収して硬化する熱硬
化性のもの、更には温度低下に伴って硬化する熱溶融性
のものを使用する事もできる。熱硬化性のものを使用す
る場合には、ノズルからマンドレル16の外周面に供給
した高分子材料を加熱しつつこのマンドレル16の周囲
に、例えば図3に示す様に付着させて、プレモールド絶
縁体1を得る。又、熱溶融性の高分子材料をノズルから
マンドレル16の外周面に供給した高分子材料を冷却し
つつこのマンドレル16の周囲に、例えば図3に示す様
に付着させて、プレモールド絶縁体1を得る。或は、熱
硬化性の高分子材料を使用する場合には、前述の図1と
同様に、液状の高分子材料17を貯溜した貯溜槽18内
にヒートパイプの先端部を挿入し、このヒートパイプの
先端部で上記高分子材料17の所望部分を加熱する事
で、この高分子材料17をマンドレル16の周囲に、例
えば図3に示す様に付着させて、プレモールド絶縁体1
を得る事もできる。
In this case, if the temperature of the polymer material 17 supplied from the nozzle is raised to near the crosslinking temperature, the fluidity of the polymer material 17 is increased and the handleability of the polymer material is improved. At the same time, the energy of electromagnetic waves required to cure the polymer material 17 can be kept low. Then, the time until curing can be shortened, and the manufacturing work of the premolded insulator 1 can be made more efficient. As the polymer material 17, in addition to a material that cures by absorbing electromagnetic waves, a thermosetting material that absorbs heat and cures, and a heat-melting material that cures with a decrease in temperature is used. You can also do it. When a thermosetting material is used, the polymer material supplied from the nozzle to the outer peripheral surface of the mandrel 16 is heated and attached around the mandrel 16 as shown in FIG. Get body 1. In addition, while precipitating the polymer material in which the heat-meltable polymer material is supplied from the nozzle to the outer peripheral surface of the mandrel 16 while cooling the polymer material, as shown in FIG. To get Alternatively, when a thermosetting polymer material is used, the tip of the heat pipe is inserted into the storage tank 18 in which the liquid polymer material 17 is stored as in the case of FIG. By heating a desired portion of the polymer material 17 at the tip of the pipe, the polymer material 17 is attached to the periphery of the mandrel 16 as shown in FIG.
You can also get

【0022】次に、図5は、請求項1、2、4に対応す
る、本発明の実施の形態の第2例を示している。本例
は、前述の図8に示した様な、絶縁材製の本体5の内部
に半導電層6を包埋したプレモールド絶縁体4の製造
に、本発明を適用した場合に就いて示している。この様
な本例の場合には、上記半導電層6を構成する為に別途
造った素子22を、上記本体5を絶縁材製の高分子材料
により造る過程でこの本体5内に包埋する。即ち、図5
(A)に示す様に、上記本体5の内径寄り部分23を、
上述した第1例の場合と同様の方法で形成した段階で、
上記素子22をこの内径寄り部分23の一端部に外嵌す
る。次いで、再び上記第1例の場合と同様の方法で、上
記本体5の外径寄り部分を形成して、図5(C)に示す
様に、この本体5内に上記素子22を包埋する。そして
最後に、マンドレル16を引き抜いて、上記プレモール
ド絶縁体4を得る。
Next, FIG. 5 shows a second example of the embodiment of the present invention corresponding to claims 1, 2, and 4. This example shows the case where the present invention is applied to the production of the premolded insulator 4 in which the semiconductive layer 6 is embedded in the body 5 made of an insulating material as shown in FIG. ing. In the case of this example as described above, the element 22 that is separately manufactured to form the semiconductive layer 6 is embedded in the main body 5 in the process of manufacturing the main body 5 from a polymer material made of an insulating material. . That is, FIG.
As shown in (A), the inner diameter portion 23 of the main body 5 is
At the stage of forming by the same method as in the case of the first example described above,
The element 22 is fitted onto one end of the inner diameter portion 23. Then, the outer diameter portion of the main body 5 is formed again in the same manner as in the case of the first example, and the element 22 is embedded in the main body 5 as shown in FIG. 5C. . Finally, the mandrel 16 is pulled out to obtain the premolded insulator 4.

【0023】尚、上記素子22を上記内径寄り部分23
の一端部に外嵌した後、これら素子22の内周面と内径
寄り部分23の外周面とを接合する必要がある。この
為、接着剤により接合する場合を除き、上記本体5を構
成する絶縁性の高分子材料が、電磁波を吸収する事によ
り硬化するものである場合には、上記素子22は、電磁
波を通過させるものである必要がある。この為に、この
素子22として、図6(A)に示す様な透明乃至は半透
明のものを使用したり、或は、図6(B)に示す様に、
炭素繊維を網状に編組したものを使用する。
It should be noted that the element 22 is provided with a portion 23 near the inner diameter.
It is necessary to join the inner peripheral surface of the element 22 and the outer peripheral surface of the inner-diameter-approximated portion 23 after external fitting to one end of the element. Therefore, when the insulating polymer material forming the main body 5 is hardened by absorbing an electromagnetic wave, the element 22 allows the electromagnetic wave to pass therethrough, except when bonded by an adhesive. Must be one. Therefore, as the element 22, a transparent or translucent element as shown in FIG. 6A is used, or as shown in FIG. 6B,
A braided carbon fiber is used.

【0024】又、上述の説明では、上記半導電層6を、
別途造った素子22を外嵌する事により構成している
が、請求項3に記載した様に、上記本体5だけでなく上
記半導電層6も、硬化要因を付与される事に基づき硬化
して液体から固体に相変化する材料により構成し、上記
本体5及び半導電層6を、何れもマンドレル16を回転
させつつ、前後して所定の部分に所定の形状で形成する
事もできる。即ち、図5(A)に示す様に上記本体5の
内径寄り部分23を形成した段階で、上記半導電層6
を、同様の方法によりこの内径寄り部分23の一端部周
囲に形成する。次いで、再び同様の方法で、上記本体5
の外径寄り部分を形成して、図5(C)に示す様に、こ
の本体5内に上記素子22を包埋する。
Further, in the above description, the semiconductive layer 6 is
Although the element 22 made separately is externally fitted, as described in claim 3, not only the main body 5 but also the semiconductive layer 6 is hardened by being given a hardening factor. Alternatively, the main body 5 and the semiconductive layer 6 may be formed in a predetermined shape in a predetermined portion in the front and rear direction while rotating the mandrel 16 for both. That is, as shown in FIG. 5A, at the stage where the inner diameter portion 23 of the main body 5 is formed, the semiconductive layer 6 is formed.
Are formed around one end of the inner diameter portion 23 by a similar method. Then, again in a similar manner, the body 5
5C, the element 22 is embedded in the main body 5 as shown in FIG. 5C.

【0025】上述の様に実施する本発明のケーブル接続
用高分子材料製筒状部材の製造方法によれば、キャビテ
ィを構成する為の複数の型を使用する事なく、ケーブル
接続用高分子材料製筒状部材の成形作業を行なえる。
又、造るべきケーブル接続用高分子材料製筒状部材の形
状や大きさが変わっても、電磁照射装置19、19a
等、硬化要因を付与する部材を変位させるパターンを変
え、必要とすればマンドレル16として外径の異なるも
のを使用する事で対応できる。上記硬化要因を付与する
部材を変位させるパターンを変える事はNC制御装置の
設定を変える事により容易に行なえるし、円杆状のマン
ドレル16を複数種類用意する事も容易である。従っ
て、複数種類のケーブル接続用高分子材料製筒状部材の
製造も、比較的低コストで行なえる。
According to the method for producing a tubular member made of a polymeric material for cable connection of the present invention which is carried out as described above, the polymeric material for cable connection is used without using a plurality of molds for forming the cavity. It is possible to perform the forming work of the tubular member.
Further, even if the shape and size of the polymer-made tubular member for cable connection to be made changes, the electromagnetic irradiation devices 19 and 19a
For example, the pattern for displacing the member that imparts the hardening factor is changed, and if necessary, the mandrel 16 having a different outer diameter can be used. It is possible to easily change the pattern for displacing the member which gives the hardening factor by changing the setting of the NC control device, and it is also easy to prepare a plurality of mandrels 16 in the shape of a circular rod. Therefore, it is possible to manufacture a plurality of types of tubular members made of a polymer material for cable connection at a relatively low cost.

【0026】又、複数の層を有するケーブル接続用高分
子材料製筒状部材を造る場合でも、各層を構成する高分
子材料は、所定部分に付着させつつ電磁波照射装置1
9、19aにより電磁波を照射する等により硬化させる
為、工程を移る度に冷却を行なう必要はなく、エネルギ
効率の向上を図れる。
Further, even when a tubular member made of a polymeric material for cable connection having a plurality of layers is manufactured, the polymeric material constituting each layer is adhered to a predetermined portion while the electromagnetic wave irradiation device 1 is provided.
Since it is cured by irradiating electromagnetic waves with 9 and 19a, it is not necessary to perform cooling each time the process is moved, and energy efficiency can be improved.

【0027】[0027]

【発明の効果】本発明のケーブル接続用高分子材料製筒
状部材の製造方法は、以上に述べた通り構成され作用す
るので、ケーブル接続用高分子材料製筒状部材の製造
を、コストが嵩む金型を使用する事なく、しかも能率良
く行なえる。この為、ケーブル接続用高分子材料製筒状
部材のコスト低減を図る事ができる。
EFFECT OF THE INVENTION Since the method for producing a tubular member made of a polymeric material for cable connection of the present invention is constructed and operates as described above, the production of the tubular member made of a polymeric material for cable connection is cost-effective. It can be done efficiently without using a bulky mold. Therefore, it is possible to reduce the cost of the tubular member made of a polymer material for connecting cables.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の第1例を示す略断面図。FIG. 1 is a schematic cross-sectional view showing a first example of an embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】造られたケーブル接続用高分子材料製筒状部材
からマンドレルを引き抜く以前の状態で示す斜視図。
FIG. 3 is a perspective view showing a state before the mandrel is pulled out from the produced cylindrical member made of a polymer material for cable connection.

【図4】電磁波照射装置の別例を、照射幅を広くした状
態と狭くした状態とで示す略斜視図。
FIG. 4 is a schematic perspective view showing another example of the electromagnetic wave irradiation device in a state where the irradiation width is wide and a state where the irradiation width is narrowed.

【図5】本発明の実施の形態の第2例を工程順に示す要
部略斜視図。
FIG. 5 is a schematic perspective view of a main part showing a second example of the embodiment of the present invention in the order of steps.

【図6】半導電層を形成する為の素子の2例を示す略斜
視図。
FIG. 6 is a schematic perspective view showing two examples of elements for forming a semiconductive layer.

【図7】本発明の対象となるケーブル接続用高分子材料
製筒状部材であるプレモールド絶縁体の第1例を示す略
斜視図。
FIG. 7 is a schematic perspective view showing a first example of a premolded insulator, which is a tubular member made of a polymer material for cable connection, which is a target of the present invention.

【図8】同第2例を示す略斜視図。FIG. 8 is a schematic perspective view showing the second example.

【図9】本発明の対象となるケーブル接続用高分子材料
製筒状部材である常温収縮型チューブの半部切断側面
図。
FIG. 9 is a half cutaway side view of a room temperature shrinkable tube which is a tubular member made of a polymer material for cable connection, which is a target of the present invention.

【図10】従来の製造方法により造った常温収縮型チュ
ーブからマンドレルを抜き取る以前の状態を示す半部切
断側面図。
FIG. 10 is a half cutaway side view showing a state before the mandrel is extracted from the cold-shrinkable tube manufactured by the conventional manufacturing method.

【図11】従来の製造方法を工程順に説明する断面図。FIG. 11 is a cross-sectional view illustrating a conventional manufacturing method in the order of steps.

【符号の説明】[Explanation of symbols]

1 プレモールド絶縁体 2 中心孔 3 ベルマウス部 4 プレモールド絶縁体 5 本体 6 半導電層 7 中心孔 8 円筒面部 9 突条 10a、10b テーパ面部 11 第二の円筒面部 12 プレモールド絶縁体 13 絶縁筒部 14 内部半導電層 15 外部半導電層 16 マンドレル 17 高分子材料 18 貯溜槽 19、19a 電磁波照射装置 20 照射器 21 可変長スリット 22 素子 23 内径寄り部分 1 Pre-molded insulator 2 central hole 3 Bell mouth part 4 Pre-molded insulator 5 body 6 Semi-conductive layer 7 Center hole 8 Cylindrical surface 9 ridges 10a, 10b Tapered surface portion 11 Second cylindrical surface part 12 Pre-molded insulator 13 Insulation cylinder 14 Internal semiconductive layer 15 External semiconductive layer 16 Mandrel 17 Polymer materials 18 Storage tank 19, 19a Electromagnetic wave irradiation device 20 illuminator 21 Variable length slit 22 elements 23 Inner part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 31:34 B29L 31:34 Fターム(参考) 4F205 AA36 AA44 AC05 AD05 AE03 AG09 AH33 AK03 GA08 GB01 GC01 GF03 GF41 GN02 GN07 GN13 4F213 AA33 AA45 AH34 WA25 WA97 WL03 WL12 WL22 5G355 AA03 BA02 BA11 5G375 AA02 BA26 BB43 CA02 CA14 CB07 DB32 EA17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 31:34 B29L 31:34 F term (reference) 4F205 AA36 AA44 AC05 AD05 AE03 AG09 AH33 AK03 GA08 GB01 GC01 GF03 GF41 GN02 GN07 GN13 4F213 AA33 AA45 AH34 WA25 WA97 WL03 WL12 WL22 5G355 AA03 BA02 BA11 5G375 AA02 BA26 BB43 CA02 CA14 CB07 DB32 EA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料により全体を略円筒状に構成
されたケーブル接続用高分子材料製筒状部材の製造方法
であって、上記高分子材料として、硬化要因を付与され
る事に基づき硬化して液体から固体に相変化する材料を
使用し、外周面を円筒面としたマンドレルを回転させつ
つこのマンドレルの周囲に存在する液状の高分子材料に
上記硬化要因を付与する事によりこの高分子材料を硬化
させ、この硬化要因を付与する部分を上記マンドレルの
軸方向に関して調節しつつ、このマンドレルの外周面か
ら次第に遠ざける事により、このマンドレルの周囲に上
記硬化要因を付与する部分の軌跡に見合った形状を有す
る筒状部材を形成した後、この筒状部材の中心部から上
記マンドレルを抜き取るケーブル接続用高分子材料製筒
状部材の製造方法。
1. A method for manufacturing a tubular member made of a polymeric material, which is made of a polymeric material and has a substantially cylindrical shape as a whole, for cable connection, wherein a hardening factor is added to the polymeric material. By using a material that hardens and undergoes a phase change from liquid to solid, by rotating the mandrel with the outer peripheral surface being a cylindrical surface and imparting the hardening factor to the liquid polymer material existing around this mandrel, By curing the molecular material and adjusting the portion that imparts this curing factor with respect to the axial direction of the mandrel, by gradually moving away from the outer peripheral surface of this mandrel, the trajectory of the portion that imparts the above curing factor around the mandrel is obtained. A method for producing a tubular member made of a polymeric material for cable connection, which comprises forming a tubular member having an appropriate shape and then removing the mandrel from a central portion of the tubular member.
【請求項2】 高分子材料が、電磁波と熱と冷却とのう
ちから選択される硬化要因より硬化するものである、請
求項1に記載したケーブル接続用高分子材料製筒状部材
の製造方法。
2. The method for producing a tubular member made of a polymeric material for cable connection according to claim 1, wherein the polymeric material is hardened by a hardening factor selected from electromagnetic waves, heat and cooling. .
【請求項3】 ケーブル接続用高分子材料製筒状部材
が、絶縁材製の本体の一部に半導電層を設けたものであ
り、これら本体及び半導電層を、硬化要因を付与される
事に基づき硬化して液体から固体に相変化する材料によ
り構成し、上記本体及び半導電層を、何れもマンドレル
を回転させつつ、前後して所定の部分に所定の形状で形
成する、請求項1〜2の何れかに記載したケーブル接続
用高分子材料製筒状部材の製造方法。
3. A tubular member made of a polymeric material for cable connection, wherein a semiconductive layer is provided on a part of a main body made of an insulating material, and the main body and the semiconductive layer are given a hardening factor. The material is composed of a material that hardens on the basis of a phase change from a liquid to a solid, and the main body and the semiconductive layer are formed in a predetermined shape in a predetermined portion in a front-back direction while rotating the mandrel. A method for producing a tubular member made of a polymer material for cable connection according to any one of 1 and 2.
【請求項4】 ケーブル接続用高分子材料製筒状部材
が、絶縁材製の本体の一部に半導電層を設けたものであ
り、この半導電層を構成する為に別途造った素子を、上
記本体を絶縁材製の高分子材料により作る過程でこの本
体内に包埋する、請求項1〜2の何れかに記載したケー
ブル接続用高分子材料製筒状部材の製造方法。
4. A polymer-made tubular member for connecting a cable, wherein a semiconductive layer is provided on a part of a body made of an insulating material, and an element manufactured separately to constitute this semiconductive layer is formed. The method for manufacturing a tubular member made of a polymeric material for cable connection according to any one of claims 1 to 2, wherein the main body is embedded in the main body in a process of making the polymeric material made of an insulating material.
JP2001186476A 2001-06-20 2001-06-20 Manufacturing method for cylindrical member of polymeric material for cable connection Pending JP2003009370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186476A JP2003009370A (en) 2001-06-20 2001-06-20 Manufacturing method for cylindrical member of polymeric material for cable connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186476A JP2003009370A (en) 2001-06-20 2001-06-20 Manufacturing method for cylindrical member of polymeric material for cable connection

Publications (1)

Publication Number Publication Date
JP2003009370A true JP2003009370A (en) 2003-01-10

Family

ID=19025914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186476A Pending JP2003009370A (en) 2001-06-20 2001-06-20 Manufacturing method for cylindrical member of polymeric material for cable connection

Country Status (1)

Country Link
JP (1) JP2003009370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235606A1 (en) * 2003-06-20 2005-07-01 Universidad De Alicante Disperse laser based polymerization system, comprises reorientation mirrors with cooling, for polymerization as a function of process requirements
JP2012086418A (en) * 2010-10-18 2012-05-10 Roland Dg Corp Optical shaping apparatus
CN104616834A (en) * 2015-01-19 2015-05-13 远东电缆有限公司 Special radiation device for cable for smart power supply and radiation method
CN104760279A (en) * 2014-01-06 2015-07-08 财团法人工业技术研究院 Three-dimensional molded object, and apparatus and method for producing three-dimensional molded object
JP2015162372A (en) * 2014-02-27 2015-09-07 矢崎総業株式会社 Water cut-off structure for waterproof connector and electric wire with terminal
JP2016032920A (en) * 2014-07-31 2016-03-10 株式会社東芝 Three-dimensional molding apparatus and insulation rod

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235606A1 (en) * 2003-06-20 2005-07-01 Universidad De Alicante Disperse laser based polymerization system, comprises reorientation mirrors with cooling, for polymerization as a function of process requirements
JP2012086418A (en) * 2010-10-18 2012-05-10 Roland Dg Corp Optical shaping apparatus
CN104760279A (en) * 2014-01-06 2015-07-08 财团法人工业技术研究院 Three-dimensional molded object, and apparatus and method for producing three-dimensional molded object
JP2015162372A (en) * 2014-02-27 2015-09-07 矢崎総業株式会社 Water cut-off structure for waterproof connector and electric wire with terminal
JP2016032920A (en) * 2014-07-31 2016-03-10 株式会社東芝 Three-dimensional molding apparatus and insulation rod
CN104616834A (en) * 2015-01-19 2015-05-13 远东电缆有限公司 Special radiation device for cable for smart power supply and radiation method

Similar Documents

Publication Publication Date Title
US5650031A (en) Extruding thermoplastic insulation on stator bars
US3828353A (en) Integrally-wound antenna helix-coilform
US20060170134A1 (en) Process for over-molding onto crosslinked polymers
JPH06511162A (en) Catheters with irregular inner and/or outer surfaces to reduce friction during movement
US11097450B2 (en) Core system, use of the core system in the production of a fiber composite component and method for producing a fiber composite component
WO1990001406A1 (en) Method of making a catheter or tube
JP4925583B2 (en) Method for manufacturing coaxial cable having composite inner conductor
JP2003009370A (en) Manufacturing method for cylindrical member of polymeric material for cable connection
EP0581861A4 (en) Method for producing heat-recoverable articles and apparatus for expanding/shrinking articles
EP1555283A4 (en) Resin molded product for electric parts and manufacturing method thereof
US1193883A (en) Method oe producing articles of a vttlcamtzable plastic
JP2001353737A (en) Method for manufacturing normal temperature shrinkable tube for connecting power cable
WO2004076155A1 (en) Method for producing multi-component plastic moulded parts by treating the pre-injection moulded parts with plasma
US3970823A (en) Electric heater
JP2014157779A (en) Method and apparatus for producing insulation coating wire material, and insulation coating wire material
JPWO2021149832A5 (en)
US11172841B2 (en) Electrode catheter assembly and method for the manufacture thereof
JPH0815022B2 (en) Insulator manufacturing method
JP3439118B2 (en) Molds for silicone coating of silicone porcelain tubes and insulators
JPS5933091B2 (en) Method for manufacturing bent pipes
EP4049834A1 (en) Thermoplastic insulation system
JP2003070147A (en) Method for producing cylindrical member of polymer material
RU2771972C2 (en) Bending method and bending device for bending composite rod
US20160229109A1 (en) Composite rod with contiguous end terminations and methods for making them
JPH1092246A (en) Molding method for composite porcelain tube and its manufacturing device