JP2016027191A - Soft magnetic steel plate and manufacturing method thereof, and method for manufacturing soft magnetic member - Google Patents

Soft magnetic steel plate and manufacturing method thereof, and method for manufacturing soft magnetic member Download PDF

Info

Publication number
JP2016027191A
JP2016027191A JP2015076878A JP2015076878A JP2016027191A JP 2016027191 A JP2016027191 A JP 2016027191A JP 2015076878 A JP2015076878 A JP 2015076878A JP 2015076878 A JP2015076878 A JP 2015076878A JP 2016027191 A JP2016027191 A JP 2016027191A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic steel
steel sheet
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015076878A
Other languages
Japanese (ja)
Other versions
JP6518491B2 (en
Inventor
土田 武広
Takehiro Tsuchida
武広 土田
三谷 宏幸
Hiroyuki Mitani
宏幸 三谷
梶原 桂
Katsura Kajiwara
桂 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015076878A priority Critical patent/JP6518491B2/en
Publication of JP2016027191A publication Critical patent/JP2016027191A/en
Application granted granted Critical
Publication of JP6518491B2 publication Critical patent/JP6518491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic steel plate having excellent magnetic properties and a manufacturing method thereof, and a soft magnetic member and a manufacturing method thereof.SOLUTION: A soft magnetic steel plate has a component composition containing, by mass%, C: 0.001-0.02%, Si: 0-0.05%, Mn: 0.05-0.5%, P: 0-0.02%, S: 0-0.1%, Al: 0-0.01%, Cr: 0-0.1%, N: 0-0.005%, and the balance Fe with inevitable impurities. The soft magnetic steel plate has a plate thickness of 0.8-4.0 mm and an average crystal grain size of 5-50 μm, and has a ratio of the KAM value Ka of the soft magnetic steel plate to the KAM value Kb of the soft magnetic steel plate after annealing at 850°C for 3 h, Ka/Kb, is 1.2-4.5.SELECTED DRAWING: None

Description

本発明は、自動車、電車、船舶などの電装部品に使用されるソレノイドやリレーなどのケースやカバー、鉄心等として有用な軟磁性部材およびその材料となる軟磁性鋼板に関し、例えば、プレス成形により製造され、磁気特性を必要とする軟磁性部材において、優れたプレス成形性や良好な直流磁気特性を発揮することのできる軟磁性鋼板およびその製造方法、ならびに、軟磁性部材の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a soft magnetic member useful as a case or cover such as a solenoid or a relay used for electrical parts such as automobiles, trains, ships, and iron cores, and a soft magnetic steel sheet as a material thereof. The present invention relates to a soft magnetic steel sheet that can exhibit excellent press formability and good DC magnetic characteristics in a soft magnetic member that requires magnetic properties, a method for manufacturing the same, and a method for manufacturing a soft magnetic member. .

近年、自動車の燃費向上に対するニーズがますます強くなり、エンジンやトランスミッションその他に使用される電装部品には、よりいっそうの性能向上、たとえば応答性、省電力化、小型化が望まれている。そのためには、磁気特性として、磁化されやすく、保磁力が小さいことが有効である。   In recent years, the need for improving the fuel efficiency of automobiles has become stronger, and electrical components used in engines, transmissions, and the like are desired to have further improved performance, such as responsiveness, power saving, and downsizing. For this purpose, it is effective that the magnetic properties are easily magnetized and the coercive force is small.

さらに製造コストの低減に対するニーズも大きい。すなわち、磁気回路を形成する部材、たとえばソレノイドの外郭を形成するケースやカバー、さらには鉄心にも、従来のように線材や棒鋼を冷間鍛造して切削する方法に代えて、鋼板をプレス成形して部材形状を作製する方法が注目されている。   Furthermore, there is a great need for a reduction in manufacturing costs. In other words, members that form magnetic circuits, such as cases and covers that form the outer shell of solenoids, and iron cores, instead of conventional methods of cold forging and cutting wires and steel bars, are pressed into steel plates. Thus, a method for producing a member shape has attracted attention.

たとえば、特許文献1には、本発明に係る軟磁性鋼板と近似した純鉄系の成分組成を有し、冷間鍛造性と電気伝導性に優れた電気部品用鋼材が開示されている。しかしながら、この電気部品用鋼材は、伸線して製造される線材に関するもので、鋼板に関する記載はない。   For example, Patent Document 1 discloses a steel material for electrical parts that has a pure iron-based component composition similar to that of the soft magnetic steel sheet according to the present invention and is excellent in cold forgeability and electrical conductivity. However, this steel material for electrical parts relates to a wire manufactured by drawing, and there is no description about a steel plate.

また、特許文献2には、成形性と磁気特性に優れた熱延鋼板が開示されている。しかしながら、熱延鋼板は表面状態が悪いため、そのまま電磁気部品に用いることはできない。また、結晶粒径が大きすぎるため、曲げ加工後の肌荒れが懸念される。   Patent Document 2 discloses a hot-rolled steel sheet excellent in formability and magnetic properties. However, the hot-rolled steel sheet cannot be used as an electromagnetic component as it is because of its poor surface condition. Moreover, since the crystal grain size is too large, there is a concern about rough skin after bending.

また、特許文献3には、磁気特性と加工性に優れたTVブラウン管マスクフレーム用冷延鋼板が開示されている。しかしながら、このTVブラウン管マスクフレーム用冷延鋼板は、Cu、Sn、Ni、Cr等の不純物元素の相当量の含有を前提とするものであり、純鉄系の成分組成を前提とする、本発明に係る軟磁性鋼板とはそもそも前提が異なる技術である。   Patent Document 3 discloses a cold-rolled steel sheet for a TV CRT mask frame having excellent magnetic properties and workability. However, this cold-rolled steel sheet for a TV CRT mask frame is premised on containing a substantial amount of impurity elements such as Cu, Sn, Ni, Cr, etc., and is premised on a pure iron-based component composition. This is a technology that is originally different from the soft magnetic steel sheet.

特開2003−226938号公報Japanese Patent Laid-Open No. 2003-226938 特開2010−53387号公報JP 2010-53387 A 特開平11−50207号公報Japanese Patent Laid-Open No. 11-50207

本発明は、このような事情を鑑みてなされたものであり、その目的は、優れた磁気特性を有する軟磁性鋼板およびその製造方法、ならびに、軟磁性部材の製造方法を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the soft magnetic steel plate which has the outstanding magnetic characteristic, its manufacturing method, and the manufacturing method of a soft magnetic member.

また、本発明の他の目的は、優れた成形性を有する軟磁性鋼板およびその製造方法、ならびに、軟磁性部材の製造方法を提供することにある。   Another object of the present invention is to provide a soft magnetic steel sheet having excellent formability, a method for producing the same, and a method for producing a soft magnetic member.

また、本発明の他の目的は、優れた耐肌荒れ性を有する軟磁性鋼板およびその製造方法、ならびに、軟磁性部材の製造方法を提供することにある。   Another object of the present invention is to provide a soft magnetic steel sheet having excellent skin roughness resistance, a method for producing the same, and a method for producing a soft magnetic member.

また、本発明の他の目的は、優れた被削性を有する軟磁性鋼板およびその製造方法、ならびに、軟磁性部材の製造方法を提供することにある。   Another object of the present invention is to provide a soft magnetic steel sheet having excellent machinability, a method for producing the same, and a method for producing a soft magnetic member.

本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification.

本発明に係る第1発明は、
成分組成が、質量%で、
C:0.001〜0.02%、
Si:0〜0.05%、
Mn:0.05〜0.5%、
P:0〜0.02%、
S:0〜0.1%、
Al:0〜0.01%、
Cr:0〜0.1%、
N:0〜0.005%
であり、残部が鉄および不可避的不純物からなる軟磁性鋼板であって、
平均結晶粒径が5〜50μmであり、
さらに、当該軟磁性鋼板のKAM値Kaと、当該軟磁性鋼板を850℃で3時間焼鈍した後のKAM値Kbとの比Ka/Kbが1.2〜4.5である
ことを特徴とする、板厚0.8〜4.0mmの軟磁性鋼板である。
ここに、「KAM値」とは、「Kernel Average Misorientation値」を意味する。
The first invention according to the present invention is:
Ingredient composition is mass%,
C: 0.001 to 0.02%,
Si: 0 to 0.05%,
Mn: 0.05 to 0.5%
P: 0 to 0.02%,
S: 0 to 0.1%,
Al: 0 to 0.01%,
Cr: 0 to 0.1%,
N: 0 to 0.005%
And the balance is a soft magnetic steel plate made of iron and inevitable impurities,
The average crystal grain size is 5-50 μm,
Furthermore, the ratio Ka / Kb between the KAM value Ka of the soft magnetic steel sheet and the KAM value Kb after annealing the soft magnetic steel sheet at 850 ° C. for 3 hours is 1.2 to 4.5. A soft magnetic steel sheet having a thickness of 0.8 to 4.0 mm.
Here, the “KAM value” means a “Kernel Average Mission value”.

本発明に係る第2発明は、上記第1発明において、
前記Sの含有量が、S:0.015〜0.1質量%である、軟磁性鋼板である。
According to a second aspect of the present invention, in the first aspect,
It is a soft magnetic steel plate in which the content of S is S: 0.015 to 0.1% by mass.

本発明に係る第3発明は、上記第1発明において、
前記Sの含有量が、S:0〜0.06質量%である、軟磁性鋼板である。
According to a third aspect of the present invention, in the first aspect,
It is a soft magnetic steel plate in which the content of S is S: 0 to 0.06% by mass.

本発明に係る第4発明は、上記第1〜第3発明のいずれか1つの発明において、
さらに、Mn/S原子比が3〜20であり、
MnS析出物の平均粒径が0.05〜4μmで、かつ、
粒径0.2μm以上のMnS析出物の個数密度が0.02〜0.5個/μmである、軟磁性鋼板である。
According to a fourth aspect of the present invention, in any one of the first to third aspects of the invention,
Furthermore, the Mn / S atomic ratio is 3-20,
The average particle size of the MnS precipitate is 0.05-4 μm, and
This is a soft magnetic steel sheet in which the number density of MnS precipitates having a particle size of 0.2 μm or more is 0.02 to 0.5 / μm 2 .

本発明に係る第5発明は、
上記第1〜第3発明のいずれか1つの発明の成分組成を有する鋼材を熱間圧延して熱延板とする熱延工程と、
前記熱延板を圧下率R1:40%以上で冷間圧延して冷延板とする粗冷延工程と、
前記冷延板を、下記式1を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持して軟化焼鈍板とする軟化焼鈍工程と、
さらに、前記軟化焼鈍板を、圧下率R2:0.5〜10%で冷間圧延する仕上げ冷延工程と、
を備えたことを特徴とする、軟磁性鋼板の製造方法である。
式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2 ≦265
ただし、650℃≦T1≦780℃である。
The fifth invention according to the present invention is:
A hot rolling step of hot rolling a steel material having the component composition of any one of the first to third inventions into a hot rolled sheet;
A rough cold rolling process in which the hot rolled sheet is cold rolled at a rolling reduction R1: 40% or more to form a cold rolled sheet;
A softening annealing step in which the cold-rolled sheet is held at a softening annealing temperature T1 ° C. and a softening annealing time H1 second so as to satisfy the following formula 1,
Furthermore, a finish cold rolling step of cold rolling the softened annealed plate at a rolling reduction R2: 0.5 to 10%;
A method for producing a soft magnetic steel sheet, comprising:
Formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}] 1/2 ≦ 265
However, it is 650 degreeC <= T1 <= 780 degreeC.

本発明に係る第6発明は、
上記第1〜第3発明いずれか1つの発明の成分組成を有する鋼材を熱間圧延して熱延板とする熱延工程と、
前記熱延板を圧下率R1:40%以上で冷間圧延して冷延板とする粗冷延工程と、
前記冷延板を、下記式1を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持して軟化焼鈍板とする軟化焼鈍工程と、
前記軟化焼鈍板を、さらに、圧下率R2:0.5〜10%で冷間圧延することにより軟磁性鋼板を得る仕上げ冷延工程と、
前記軟磁性鋼板を部材形状に成形して成形部材とする成形工程と、
前記成形部材を、下記式2を満足するように、磁気焼鈍温度T2℃で磁気焼鈍時間H2秒間保持することにより軟磁性部材を得る磁気焼鈍工程と
を備えたことを特徴とする、軟磁性部材の製造方法である。
式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2 ≦265
ただし、650℃≦T1≦780℃である。
式2:320≦[{100−R2+0.2×(273+T2)}+H2×exp{−10/(273+T2)}]1/2
ただし、750℃≦T2≦900℃である。
The sixth invention according to the present invention is:
A hot rolling step of hot-rolling a steel material having the composition of any one of the first to third inventions into a hot-rolled sheet;
A rough cold rolling process in which the hot rolled sheet is cold rolled at a rolling reduction R1: 40% or more to form a cold rolled sheet;
A softening annealing step in which the cold-rolled sheet is held at a softening annealing temperature T1 ° C. and a softening annealing time H1 second so as to satisfy the following formula 1,
A finish cold rolling step of obtaining a soft magnetic steel sheet by cold rolling the softened annealed plate at a rolling reduction R2 of 0.5 to 10%;
A forming step of forming the soft magnetic steel sheet into a member shape and forming a formed member;
A soft magnetic member comprising: a magnetic annealing step for obtaining a soft magnetic member by holding the molded member at a magnetic annealing temperature T2 ° C. so as to satisfy the following formula 2 and a magnetic annealing time H2 seconds: It is a manufacturing method.
Formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}] 1/2 ≦ 265
However, it is 650 degreeC <= T1 <= 780 degreeC.
Formula 2: 320 ≦ [{100−R2 + 0.2 × (273 + T2)} 2 + H2 × exp {−10 / (273 + T2)}] 1/2
However, 750 ° C. ≦ T2 ≦ 900 ° C.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

本発明の一実施の形態によれば、優れた磁気特性を有する軟磁性鋼板を提供することができる。   According to one embodiment of the present invention, a soft magnetic steel sheet having excellent magnetic properties can be provided.

軟磁性鋼板について高い磁性を得るための要件は、成分組成として添加元素や不純物を適正範囲に制御すること、磁気焼鈍後の部材において十分にひずみ、すなわち塑性変形による転位を除去し、適正範囲の結晶粒径にすることが重要である。一方、成形性については、基本的な特性として、引張試験での伸びが大きいことが重要である。   The requirements for obtaining high magnetism for the soft magnetic steel sheet are to control the additive elements and impurities as appropriate components in the proper range, to sufficiently dissect strain in the member after magnetic annealing, that is, to remove dislocations caused by plastic deformation, It is important to have a crystal grain size. On the other hand, as for the moldability, it is important that the elongation in the tensile test is large as a basic characteristic.

そこで、本発明者らは、種々の成分組成の鋼板について、その製造条件と組織形態および成形性との関係、さらには磁気焼鈍後の組織形態と磁気特性との関係を詳細に検討した。その結果、鋼板の結晶粒径とひずみ量を適正化することで、成形性を向上させるとともに、磁気焼鈍を実施することによって効果的に組織形態を変化させ、磁気特性も向上させることができることを見出した。上記知見に基づき、さらに検討を進め、本発明を完成するに至った。   Therefore, the present inventors examined in detail the relationship between the manufacturing conditions, the structure morphology, and the formability of the steel sheets having various component compositions, and the relationship between the structure morphology after magnetic annealing and the magnetic properties. As a result, by optimizing the crystal grain size and strain amount of the steel sheet, it is possible to improve the formability and effectively change the form of the structure and improve the magnetic properties by carrying out magnetic annealing. I found it. Based on the above findings, further studies have been made and the present invention has been completed.

以下、まず本発明に係る軟磁性鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the soft magnetic steel sheet according to the present invention will be described first.

〔軟磁性鋼板の組織〕
上述したとおり、本発明に係る軟磁性鋼板は、結晶粒径とひずみ量が制御されている点に特徴を有する。
[Structure of soft magnetic steel sheet]
As described above, the soft magnetic steel sheet according to the present invention is characterized in that the crystal grain size and strain amount are controlled.

<平均結晶粒径:5〜50μm>
軟磁性鋼板、すなわち磁気焼鈍前の鋼板ままの平均結晶粒径は、成形性に直接影響し、細かすぎると硬さが増加して伸びが低下するため、その下限は5μm、好ましくは6μm、さらに好ましくは7μmとした。一方、上記鋼板ままの平均結晶粒径が大きすぎると、鋼板に対して曲げ加工を行った際に、肌荒れが著しく発生したり、鋼板に対して、打抜き加工を行った際にバリが発生したりするため、その上限は50μm、好ましくは45μm、さらに好ましくは40μmとした。
<Average crystal grain size: 5 to 50 μm>
The average crystal grain size of the soft magnetic steel sheet, that is, the steel sheet before magnetic annealing, directly affects the formability, and if it is too fine, the hardness increases and the elongation decreases, so the lower limit is 5 μm, preferably 6 μm. Preferably it was 7 micrometers. On the other hand, if the average crystal grain size of the steel sheet is too large, when the steel sheet is bent, rough skin occurs significantly, or burrs occur when the steel sheet is punched. Therefore, the upper limit is 50 μm, preferably 45 μm, and more preferably 40 μm.

<当該軟磁性鋼板のKAM値Kaと、当該軟磁性鋼板を850℃で3時間焼鈍した後のKAM値Kbとの比Ka/Kb:1.2〜4.5>
KAM(Kernel Average Misorientation)値は、材料は塑性変形したときの塑性ひずみ量に関係する指標である。本発明においては、当該軟磁性鋼板を850℃で3時間加熱焼鈍することによって結晶粒径をある程度以上に大きくして、かつ塑性ひずみが概ねなくなった状態におけるKAM値Kbを基準として、これに対する鋼板ままのKAM値Kaの倍率Ka/Kbを用いて、当該軟磁性鋼板のひずみ量を相対的に評価するようにした。高圧下率の冷間圧延によって塑性ひずみ量が大きくなると、KAM値が増大し、成形時における伸びが劣化するため、Ka/Kbの上限を4.5、好ましくは4.0、さらに好ましくは3.5とする。一方、塑性ひずみは後の磁気焼鈍において結晶粒を粗大化させる駆動力にもなること、すなわち、軟磁性鋼板にひずみをある程度導入することによって、良好な磁気特性を確保し、曲げ加工後の肌荒れや、打抜き加工後のバリの発生を抑制することができる。このため、軟磁性鋼板中のひずみ量を適切なレベルにしておく必要があり、Ka/Kbの下限を1.2、好ましくは1.3、さらに好ましくは1.4とする。
<Ratio Ka / Kb of the KAM value Ka of the soft magnetic steel plate and the KAM value Kb after annealing the soft magnetic steel plate at 850 ° C. for 3 hours: 1.2 to 4.5>
The KAM (Kernel Average Misoration) value is an index related to the amount of plastic strain when the material is plastically deformed. In the present invention, the soft magnetic steel sheet is annealed at 850 ° C. for 3 hours to increase the crystal grain size to a certain level and the KAM value Kb in the state in which the plastic strain is almost eliminated is used as a reference. Using the Ka / Kb magnification Ka / Kb of the KAM value Ka, the strain amount of the soft magnetic steel sheet was relatively evaluated. When the amount of plastic strain increases due to cold rolling under high pressure, the KAM value increases and the elongation during molding deteriorates. Therefore, the upper limit of Ka / Kb is 4.5, preferably 4.0, more preferably 3 .5. On the other hand, plastic strain also becomes a driving force that coarsens crystal grains in the subsequent magnetic annealing, that is, by introducing strain to some extent in the soft magnetic steel sheet, ensuring good magnetic properties and roughening after bending Moreover, generation | occurrence | production of the burr | flash after a punching process can be suppressed. For this reason, it is necessary to set the amount of strain in the soft magnetic steel sheet to an appropriate level, and the lower limit of Ka / Kb is set to 1.2, preferably 1.3, and more preferably 1.4.

次に、本発明に係る軟磁性部材を特徴づける組織について説明する。   Next, the structure characterizing the soft magnetic member according to the present invention will be described.

〔軟磁性部材の組織〕
本発明に係る軟磁性部材は、結晶粒径が制御されている点に特徴を有する。
[Structure of soft magnetic material]
The soft magnetic member according to the present invention is characterized in that the crystal grain size is controlled.

<当該軟磁性部材の全域での平均結晶粒径:30μm以上>
上記軟磁性鋼板を成形し磁気焼鈍した後の軟磁性部材においては、結晶粒をできるだけ粗大化することによって磁気特性、特に保磁力が小さいという良好な磁気特性が得られるため、当該軟磁性部材の全域での平均結晶粒径を30μm以上、好ましくは40μm以上、さらに好ましくは50μm以上とする。
<Average crystal grain size in the entire area of the soft magnetic member: 30 μm or more>
In the soft magnetic member after the soft magnetic steel sheet is formed and magnetically annealed, the crystal grains are made as coarse as possible to obtain magnetic properties, particularly good magnetic properties with low coercive force. The average crystal grain size in the entire region is 30 μm or more, preferably 40 μm or more, more preferably 50 μm or more.

次に、本発明に係る軟磁性鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition constituting the soft magnetic steel sheet according to the present invention will be described. Hereinafter, all the units of chemical components are mass%.

〔軟磁性鋼板の成分組成〕
C:0.001〜0.02%
Cは、鋼中に固溶して、あるいは炭化物を形成して磁気特性を劣化させるため、極力低減させるべきであるが、C含有量が0.001%を下回っても磁気特性の向上効果は小さいため、その下限を0.001%とする。一方、C含有量が0.02%を超えると急激に磁気特性が劣化するため、その上限を0.02%、好ましくは0.015%、さらに好ましくは0.01%とする。
[Component composition of soft magnetic steel sheet]
C: 0.001 to 0.02%
C should be reduced as much as possible because it dissolves in steel or forms carbides to deteriorate the magnetic properties. However, even if the C content is less than 0.001%, the effect of improving the magnetic properties is not achieved. Since it is small, the lower limit is made 0.001%. On the other hand, if the C content exceeds 0.02%, the magnetic properties deteriorate rapidly, so the upper limit is made 0.02%, preferably 0.015%, more preferably 0.01%.

Si:0〜0.05%
Siは、脱酸剤として使用されるが、伸びを低下させる作用があるため、Si含有量の上限を0.05%、好ましくは0.04%、さらに好ましくは0.03%とする。
Si: 0 to 0.05%
Si is used as a deoxidizer, but has the effect of reducing elongation, so the upper limit of Si content is 0.05%, preferably 0.04%, and more preferably 0.03%.

Mn:0.05〜0.5%
Mnは脱酸作用を有するので、本発明においては、磁気特性とプレス成形性の両立のために、C、SおよびAlの各含有量を従来鋼に比べて低めにしている代わりに、Mnが脱酸剤としての役割を果たしており、Mn含有量を0.05%以上、好ましくは0.1%以上、さらに好ましくは0.15%以上としてその効果を発揮させる。一方、Mnを過剰に含有させると伸び、および磁気特性が低下するため、Mn含有量の上限を0.5%、好ましくは0.4%、さらに好ましくは0.3%とする。
Mn: 0.05 to 0.5%
Since Mn has a deoxidizing action, in the present invention, in order to achieve both magnetic properties and press formability, instead of lowering the contents of C, S and Al as compared with conventional steel, Mn It plays a role as a deoxidizer, and exhibits its effect when the Mn content is 0.05% or more, preferably 0.1% or more, more preferably 0.15% or more. On the other hand, if Mn is contained excessively, elongation and magnetic properties are lowered, so the upper limit of the Mn content is 0.5%, preferably 0.4%, and more preferably 0.3%.

P:0〜0.02%
Pは伸び、磁気特性ともに低下させるため、P含有量の上限を0.02%、好ましくは0.015%、さらに好ましくは0.01%とする。
P: 0 to 0.02%
Since P decreases both elongation and magnetic properties, the upper limit of the P content is 0.02%, preferably 0.015%, and more preferably 0.01%.

S:0〜0.1%
Sは過剰に含まれると、伸び、および磁気特性を低下させるため、S含有量の上限を0.1%とし、高い磁気特性、または伸びが求められる場合においては、好ましくは0.06%、さらに好ましくは0.02%とする。
一方で、Sは適量含有させることにより、伸びや磁気特性を若干犠牲にしつつも、Mnとともに鋼中でMnSを形成し、打抜き加工時に応力が負荷されたときに応力集中箇所となって、被削性を向上し、打抜き時のバリ発生を抑制することができる。こうした効果を得るには、S含有量を0.015%以上、好ましくは0.04%以上とする。
S: 0 to 0.1%
When S is excessively contained, the elongation and magnetic properties are lowered. Therefore, the upper limit of the S content is set to 0.1%, and when high magnetic properties or elongation is required, preferably 0.06%, More preferably, it is 0.02%.
On the other hand, when S is contained in an appropriate amount, MnS is formed in steel together with Mn while sacrificing elongation and magnetic properties, and when stress is applied during punching, it becomes a stress concentration point. The machinability can be improved and the occurrence of burrs during punching can be suppressed. In order to obtain such an effect, the S content is 0.015% or more, preferably 0.04% or more.

Al:0〜0.01%
Alは脱酸剤として作用するため、磁気特性に有害なO、すなわち酸素と結合して無害化するために有効な元素である。しかしながら、Alを過剰に含有させるとNと結合してAlNを生成し、結晶粒を微細化して伸びを低下させたり、磁気焼鈍後にも結晶粒が微細なままとなって磁気特性も劣化させるため、Al含有量の上限を0.01%、好ましくは0.007%、さらに好ましくは0.005%とする。
Al: 0 to 0.01%
Since Al acts as a deoxidizing agent, it is an element effective for detoxifying by combining with O, which is harmful to magnetic properties, that is, oxygen. However, if Al is contained excessively, it combines with N to produce AlN, and the crystal grains are refined to reduce the elongation, or the magnetic grains remain fine even after magnetic annealing and the magnetic properties are deteriorated. The upper limit of the Al content is 0.01%, preferably 0.007%, and more preferably 0.005%.

Cr:0〜0.1%
Crは、鋼中に硫化物などの析出物を形成すると磁気特性の劣化を招くため、極力低減すべきであり、Cr含有量を0.1%以下、好ましくは0.07%以下、さらに好ましくは0.05%以下とする。
Cr: 0 to 0.1%
Cr forms a precipitate such as sulfide in the steel, which causes deterioration of magnetic properties. Therefore, Cr should be reduced as much as possible, and the Cr content is 0.1% or less, preferably 0.07% or less, and more preferably. Is 0.05% or less.

N:0〜0.005%
Nは鋼中に固溶すると磁気特性を劣化させ、またその一部がAlNを形成してもやはり結晶粒が微細化することによって磁気特性が劣化するため、N含有量を0.005%以下、好ましくは0.004%以下、さらに好ましくは0.003%以下とする。
N: 0 to 0.005%
When N dissolves in steel, the magnetic properties deteriorate, and even if some of them form AlN, the magnetic properties deteriorate due to the refinement of crystal grains, so the N content is 0.005% or less. , Preferably 0.004% or less, more preferably 0.003% or less.

さらに、本発明の軟磁性鋼板では、鋼板の被削性を改善するため、MnとSの比、およびMnSの形態を以下のように制御することも好ましい。   Furthermore, in the soft magnetic steel sheet of the present invention, in order to improve the machinability of the steel sheet, it is also preferable to control the ratio of Mn and S and the form of MnS as follows.

<Mn/S原子比:3〜20>
鋼中に含まれるMnとSが結合しMnS析出物として微細分散することで被削性が向上し、打抜き時のバリ発生が抑制される。こうした効果を得るため、Mn/Sの原子比で3以上を確保することが必要となる。Mn/S原子比のより好ましい範囲は5以上であり、上限は20である。
<Mn / S atomic ratio: 3-20>
By combining Mn and S contained in the steel and finely dispersing as MnS precipitates, the machinability is improved and the generation of burrs during punching is suppressed. In order to obtain such an effect, it is necessary to secure an Mn / S atomic ratio of 3 or more. A more preferable range of the Mn / S atomic ratio is 5 or more, and the upper limit is 20.

MnSの形態
<MnS析出物の平均粒径:0.05〜4μm>
打抜き時のバリ高さを低減するためには、MnSを分散させることが有効であるが、粗大すぎると磁気特性を低下させてしまうため、上限は4μmとする。また、微細すぎるとバリ高さ低減効果が発揮されなくなるため、下限を0.05μmとする。
ここで、MnS粒径とは、圧延板の圧延方向に平行で板面に垂直な断面において観察されるMnSの短径と長径の平均値を意味する。
MnS morphology <MnS precipitate average particle size: 0.05 to 4 μm>
In order to reduce the burr height at the time of punching, it is effective to disperse MnS. However, if it is too coarse, the magnetic properties are deteriorated, so the upper limit is set to 4 μm. On the other hand, if it is too fine, the burr height reduction effect will not be exhibited, so the lower limit is made 0.05 μm.
Here, the MnS grain size means an average value of the minor axis and the major axis of MnS observed in a cross section parallel to the rolling direction of the rolled sheet and perpendicular to the sheet surface.

<粒径0.2μm以上のMnS析出物:0.02〜0.5個/μm
MnS析出物を微細分散させる場合の個数密度も重要であり、0.02個/μm未満では効果がなく、0.5個/μm超では成形時の割れ発生が顕著になるため、その個数密度は0.02〜0.5個/μmとする。
<MnS precipitate having a particle size of 0.2 μm or more: 0.02 to 0.5 / μm 2 >
The number density in the case of finely dispersing MnS precipitates is also important. If it is less than 0.02 / μm 2 , there is no effect, and if it exceeds 0.5 / μm 2 , cracking during molding becomes prominent. The number density is 0.02 to 0.5 / μm 2 .

本発明の軟磁性鋼板は、上記記載した以外の成分は、Feおよび不可避的不純物であることが望ましい。ただし、本発明の効果を害しない範囲内であれば、上記以外の成分の含有を拒むものではない。   In the soft magnetic steel sheet of the present invention, the components other than those described above are desirably Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

<板厚0.8〜4.0mm>
本発明の軟磁性鋼板の板厚は、適用する部品形状やサイズに応じて選定すればよいが、本発明の対象となる自動車、電車、船舶などの電装部品に使用されるソレノイドやリレーなどのケースやカバー、鉄心等では、磁気回路を形成するため、板厚が薄すぎると部材を通る磁束が不足して吸引力や応答性などの部品特性が低下してしまう。また部品に必要な強度が確保できなくなるため、その下限は0.8mmとする。また、厚すぎると部品サイズの小型化ニーズに対応できなくなるため、その上限は4mmとする。
<Thickness 0.8-4.0mm>
The thickness of the soft magnetic steel sheet of the present invention may be selected according to the shape and size of the parts to be applied, but the solenoids and relays used for the electrical parts such as automobiles, trains, ships, etc. that are the subject of the present invention. Since a case, a cover, an iron core, etc. form a magnetic circuit, if the plate thickness is too thin, the magnetic flux passing through the member is insufficient, and the component characteristics such as attractive force and responsiveness deteriorate. Moreover, since the strength required for the components cannot be secured, the lower limit is set to 0.8 mm. Further, if it is too thick, it becomes impossible to meet the needs for downsizing of the component size, so the upper limit is set to 4 mm.

次に、本発明に係る軟磁性鋼板の製造方法について述べる。特に製造方法を限定するものではないが、たとえば下記のように製造することができる。   Next, a method for producing a soft magnetic steel sheet according to the present invention will be described. Although a manufacturing method in particular is not limited, For example, it can manufacture as follows.

〔軟磁性鋼板の好ましい製造方法〕
上記のような軟磁性鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行い、熱延材とする。この工程を熱延工程と呼ぶ。熱間圧延時の温度条件などは特に限定する必要はないが、例えば、950℃以下の圧延終了温度で、熱間圧延を行えばよい。
次いで、この熱延材を圧下率R1:40%以上で冷間圧延して冷延板とする。この工程を粗冷延工程と呼ぶ。その後、この冷延板を、式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2≦265、ただし、650℃≦T1≦780℃を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持して軟化焼鈍板とする。この工程を軟化焼鈍工程と呼ぶ。そして、この軟化焼鈍板を、さらに、圧下率R2:0.5〜10%で冷間圧延することも好ましい。この工程を仕上げ冷延工程と呼ぶ。これらの工程を経ることにより軟磁性鋼板を得ることができる。
[Preferred production method of soft magnetic steel sheet]
In order to produce the soft magnetic steel sheet as described above, first, a steel having the above component composition is melted and formed into a hot-rolled material by hot rolling after forming a slab by ingot forming or continuous casting. This process is called a hot rolling process. Although the temperature conditions at the time of hot rolling need not be particularly limited, for example, hot rolling may be performed at a rolling end temperature of 950 ° C. or lower.
Next, this hot-rolled material is cold-rolled at a rolling reduction R1: 40% or more to obtain a cold-rolled sheet. This process is called a rough cold rolling process. Then, this cold-rolled sheet is expressed by the formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}] 1/2 ≦ 265, where 650 ° C. ≦ T1 In order to satisfy ≦ 780 ° C., the soft annealing temperature is T1 ° C. and the soft annealing time is maintained for H 1 second to obtain a soft annealing plate. This process is called a soft annealing process. And it is also preferable to cold-roll this softening annealing board further by rolling reduction R2: 0.5-10%. This process is called a finish cold rolling process. A soft magnetic steel sheet can be obtained through these steps.

<圧下率R1:40%以上>
粗冷延工程における圧下率R1は、その後の軟化焼鈍工程における平均結晶粒径の制御のために重要である。圧下率R1が40%未満では鋼板上がりの結晶粒径が十分に大きくなりにくく、軟化焼鈍条件との組合せで所定の結晶粒径に制御することが難しいため、圧下率R1の下限を40%、より好ましくは50%、特に好ましくは60%とする。
<Rolling ratio R1: 40% or more>
The rolling reduction R1 in the rough cold rolling process is important for controlling the average crystal grain size in the subsequent softening annealing process. When the rolling reduction R1 is less than 40%, the crystal grain size of the steel sheet is not sufficiently large, and it is difficult to control to a predetermined crystal grain size in combination with the soft annealing condition, so the lower limit of the rolling reduction R1 is 40%. More preferably, it is 50%, and particularly preferably 60%.

<式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2 ≦265、ただし、650℃≦T1≦780℃を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持>
上記粗冷延工程における圧下率R1の調整と併せて軟化焼鈍条件が上記式1を満たすように組み合わせることによって平均結晶粒径を5〜50μmに制御できる。上記式1の中辺の値が210未満では平均結晶粒径が小さすぎ、一方265を超えると平均結晶粒径が大きくなりすぎる。
なお、上記式1は以下のようにして導出したものである。すなわち、フェライト単相温度域での焼鈍時における再結晶および粒成長挙動は、冷間圧延のひずみ量と焼鈍温度と焼鈍時間の兼ね合いで決まるという一般論がある。そこで、ひずみ量が大きいほど、また焼鈍温度が低いほど再結晶粒径が小さくなり、その後の粒成長による結晶粒径を半径で表したrは、初期粒径を半径で表したrと、焼鈍温度Tと、焼鈍時間tとの関数として、r−r =k×tの関係式が成り立つと仮定した。ここで速度定数kはアレニウスの式である∝exp(−A/RT)に従うと仮定した。なお、Tの単位はKである。上記関係式は、たとえば、西沢泰二:「単相鋼と二相鋼における結晶粒成長」,鉄と鋼(1984)第15号,p.194−2020に詳しい。この一般論において、特別な粒成長抑制要因である析出物を極力減らした本発明の成分系の鋼板に対してはひずみの影響が通常より小さいとの仮説を当てはめ、粗冷延工程における圧下率R1と、軟化焼鈍条件であるT1およびH1との組合せを種々変更して実験を行い、プレス成形性と後の焼鈍後の磁気特性との関係を調査して回帰分析により上記式1を導出した。
<Formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}} 1/2 ≦ 265, provided that 650 ° C. ≦ T1 ≦ 780 ° C. is satisfied. In addition, the soft annealing time T1 ° C. and the soft annealing time H1 second hold>
The average grain size can be controlled to 5 to 50 μm by combining the softening annealing conditions so as to satisfy the above formula 1 together with the adjustment of the rolling reduction R1 in the rough cold rolling step. If the value of the middle side of the above formula 1 is less than 210, the average crystal grain size is too small, whereas if it exceeds 265, the average crystal grain size becomes too large.
The above equation 1 is derived as follows. That is, there is a general theory that the recrystallization and grain growth behavior during annealing in the ferrite single phase temperature range is determined by the balance between the strain amount of cold rolling, the annealing temperature, and the annealing time. Therefore, the larger the amount of strain and the lower the annealing temperature, the smaller the recrystallized grain size. The r representing the crystal grain size by the subsequent grain growth by the radius is r 0 representing the initial grain size by the radius, As a function of the annealing temperature T and the annealing time t, it was assumed that the relational expression r 2 −r 0 2 = k × t was established. Here, it is assumed that the rate constant k follows ア レ exp (−A / RT) which is an Arrhenius equation. The unit of T is K. For example, Nishizawa Yoji: “Grain growth in single-phase and dual-phase steels”, Iron and Steel (1984) No. 15, p. Detailed on 194-2020. In this general theory, the hypothesis that the effect of strain is smaller than usual for steel sheets of the component system of the present invention in which precipitates, which are a special grain growth inhibiting factor, are reduced as much as possible, is applied, and the rolling reduction rate in the rough cold rolling process is applied. Experiments were carried out with various combinations of R1 and soft annealing conditions T1 and H1, and the relationship between the press formability and the magnetic properties after the subsequent annealing was investigated and the above formula 1 was derived by regression analysis. .

<圧下率R2:0.5〜10%>
また、軟化焼鈍後に圧下率R2=0.5〜10%で仕上げ冷間圧延することも好ましい。仕上げ冷間圧延をすることで、曲げ加工後の肌荒れや、打抜き加工後のバリを防止し、伸びを確保することができるとともに、成形後の磁気焼鈍の後の結晶粒成長を促進させて磁気特性の向上に寄与する。これらの効果を発揮させるためには、圧下率R2は0.5%以上とする。ただし、10%を超えると伸びが低下する。
<Rolling ratio R2: 0.5 to 10%>
It is also preferable to perform finish cold rolling at a rolling reduction R2 = 0.5 to 10% after the soft annealing. Finishing cold rolling prevents roughening after bending and burrs after punching to ensure elongation, and promotes grain growth after magnetic annealing after molding to increase magnetism. Contributes to improved characteristics. In order to exert these effects, the rolling reduction R2 is 0.5% or more. However, if it exceeds 10%, the elongation decreases.

次に、本発明に係る軟磁性部材の製造方法について述べる。特に製造方法を限定するものではないが、たとえば下記のように製造することができる。   Next, a method for manufacturing a soft magnetic member according to the present invention will be described. Although a manufacturing method in particular is not limited, For example, it can manufacture as follows.

〔軟磁性部材の好ましい製造方法〕
上記のような軟磁性部材を製造するには、まず、上記推奨の製造方法で製造された上記軟磁性鋼板を部材形状に成形して成形部材とする。この工程を成形工程と呼ぶ。次いで、この成形部材を、式2:320≦[{100−R2+0.2×(273+T2)}+H2×exp{−10/(273+T2)}]1/2(ただし、750℃≦T2≦900℃)を満足するように、磁気焼鈍温度T2℃で磁気焼鈍時間H2秒間保持することにより軟磁性部材を得ることができる。この工程を磁気焼鈍工程と呼ぶ。
[Preferable manufacturing method of soft magnetic member]
In order to manufacture the soft magnetic member as described above, first, the soft magnetic steel sheet manufactured by the recommended manufacturing method is formed into a member shape to obtain a formed member. This process is called a molding process. Then, this molded member is expressed by the formula 2: 320 ≦ [{100−R2 + 0.2 × (273 + T2)} 2 + H2 × exp {−10 / (273 + T2)}] 1/2 (however, 750 ° C. ≦ T2 ≦ 900 ° C. ), A soft magnetic member can be obtained by holding the magnetic annealing temperature T2 ° C. and the magnetic annealing time H2 seconds. This process is called a magnetic annealing process.

<式2:320≦[{100−R2+0.2×(273+T2)}+H2×exp{−10/(273+T2)}]1/2(ただし、750℃≦T2≦900℃)を満足するように、磁気焼鈍温度T2℃で磁気焼鈍時間H2秒間保持>
上記式2の右辺の値が320未満では磁気特性が劣化する。
なお、上記式2は以下のようにして導出したものである。すなわち、成形によって各部位に付与されるひずみ量が大きく変わるなかで、ひずみ量の大小によらず、安定的に所定の磁気焼鈍後の磁気特性が得られるような、仕上げ冷延工程における圧化率R2と磁気焼鈍条件のT2およびH2との適正な組合せ条件を求めるために、本発明の対象鋼種について、R2とT2およびH2の組合せを種々変更して実験を行い、回帰分析により上記式2を導出した。
<Formula 2: 320 ≦ [{100−R2 + 0.2 × (273 + T2)} 2 + H2 × exp {−10 / (273 + T2)}] 1/2 (however, 750 ° C. ≦ T2 ≦ 900 ° C.) , Magnetic annealing temperature T2 ° C. and magnetic annealing time H2 seconds hold>
If the value on the right side of Equation 2 is less than 320, the magnetic characteristics deteriorate.
The above equation 2 is derived as follows. In other words, while the amount of strain imparted to each part changes significantly due to molding, pressure in the finish cold rolling process can stably obtain the magnetic characteristics after the prescribed magnetic annealing regardless of the amount of strain. In order to obtain an appropriate combination condition of the rate R2 and the magnetic annealing conditions T2 and H2, with respect to the target steel type of the present invention, experiments were performed with various combinations of R2, T2 and H2, and the above equation 2 was obtained by regression analysis. Was derived.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

〔実施例1〕
下記表1に示す成分の鋼材を熱間圧延して所定厚さの熱延板とした。この熱延板を酸洗した後、下記表2に示す条件で、粗冷延、軟化焼鈍、仕上げ冷延の順に処理を施して最終板厚1.0mmの軟磁性鋼板とした。なお、表2には、上記磁気焼鈍の条件を規定する上記式2の右辺の値を併記した。
[Example 1]
The steel materials having the components shown in Table 1 below were hot-rolled to obtain hot-rolled sheets having a predetermined thickness. After this hot-rolled sheet was pickled, it was processed in the order of rough cold rolling, soft annealing, and finish cold rolling under the conditions shown in Table 2 below to obtain a soft magnetic steel sheet having a final thickness of 1.0 mm. In Table 2, the value on the right side of the above equation 2 that defines the conditions for the magnetic annealing is also shown.

この各軟磁性鋼板について、成形性を評価するために、JIS 13B試験片に加工して引張試験を実施し、伸びを測定して、それを成形性の評価指標とした。   In order to evaluate the formability of each soft magnetic steel sheet, it was processed into a JIS 13B test piece, a tensile test was performed, the elongation was measured, and this was used as an evaluation index for formability.

また、曲げ加工時の肌荒れを評価するために、曲げ試験として、内径R:2mm、曲げ角度:180°に曲げ加工してR外側の表面粗さをカットオフ0.8μm、測定長5mmで測定し、それを肌荒れの評価指標とした。   In addition, in order to evaluate the rough skin during bending, as a bending test, the inner surface R was bent to 2 mm and the bending angle was 180 °, and the outer surface roughness of R was measured with a cutoff of 0.8 μm and a measurement length of 5 mm. It was used as an evaluation index for rough skin.

また、磁気焼鈍後の軟磁性部材の磁気特性を評価するために、上記各軟磁性鋼板を60mm×60mmに切断して、T2:850℃×H2:3時間の条件で、水素中で磁気焼鈍した後、単板測定枠を用い、JIS C2556に準じて直流磁気特性を評価した。なお、磁束密度および保磁力は印加磁場300A/mにて測定した。   Further, in order to evaluate the magnetic properties of the soft magnetic member after the magnetic annealing, each of the soft magnetic steel sheets is cut into 60 mm × 60 mm, and magnetic annealing is performed in hydrogen under conditions of T2: 850 ° C. × H2: 3 hours. After that, DC magnetic characteristics were evaluated according to JIS C2556 using a single plate measurement frame. The magnetic flux density and coercive force were measured with an applied magnetic field of 300 A / m.

また、鋼板ままの軟磁性鋼板と850℃×3時間磁気焼鈍した鋼板である軟磁性部材のそれぞれについて、以下のようにして、平均結晶粒径およびKAM値を測定した。   Moreover, the average crystal grain size and the KAM value were measured as follows for each of the soft magnetic steel plate as a steel plate and the soft magnetic member which was a steel plate magnetically annealed at 850 ° C. for 3 hours.

鋼板ままの平均結晶粒径については、各鋼板の縦断面をナイタール腐食した後、板厚をtとしたときのt/4位置を顕微鏡観察し、写真撮影した。そして、JIS G0551の標準図との比較法により粒度番号を求め、平均結晶粒径に換算した。一方、上記磁気焼鈍後の鋼板の平均結晶粒径については、当該軟磁性鋼板の全域での平均結晶粒径を評価するため、各鋼板の縦断面をナイタール腐食した後、最表面から200μm深さの表面部、板厚をtとしたときのt/4、およびt/2の各位置を顕微鏡観察し、写真撮影した。そして、JIS G0551の標準図との比較法により粒度番号を求め、平均結晶粒径に換算し、3つの位置のうち最小の値を上記磁気焼鈍後の鋼板の平均結晶粒径とした。   The average crystal grain size of the steel plates was photographed by observing a microscope at the t / 4 position when the plate thickness was t after corroding the longitudinal section of each steel plate. And the particle size number was calculated | required with the comparison method with the standard figure of JISG0551, and it converted into the average crystal grain size. On the other hand, with respect to the average crystal grain size of the steel plate after the magnetic annealing, in order to evaluate the average crystal grain size in the entire area of the soft magnetic steel plate, the depth of 200 μm from the outermost surface is obtained after the longitudinal section of each steel plate is subjected to nital corrosion. The surface portion of each and the positions of t / 4 and t / 2 when the plate thickness is t were observed with a microscope and photographed. And the particle size number was calculated | required by the comparison method with the standard figure of JISG0551, it converted into the average crystal grain size, and let the minimum value among three positions be the average crystal grain size of the steel plate after the said magnetic annealing.

KAM値については、各鋼板を鏡面研磨し、走査型電子顕微鏡としてJEOL社製 JSM−5410を用いて、板厚をtとしたときのt/4位置において、1step 0.2μmで500μm×500μmの領域の電子線後方散乱回折像を測定し、それを解析ソフトとしてTSL社製 OIM analysis 6を用いて、各測定点におけるKAM値を求め、それらを算術平均してKAM値とした。   For the KAM value, each steel plate is mirror-polished, using JSMOL 5410 made by JEOL as a scanning electron microscope, and at a t / 4 position when the plate thickness is t, 1 step 0.2 μm is 500 μm × 500 μm The electron backscatter diffraction image of the region was measured, and the KAM value at each measurement point was obtained using OIM analysis 6 manufactured by TSL as analysis software, and the KAM value was obtained by arithmetically averaging them.

下記表3に測定結果を示す。   Table 3 below shows the measurement results.

同表において、鋼No.1〜4および9〜12は、保磁力35A/m以下、磁界の強さ300A/mにおける磁束密度1.35T以上の優れた磁気特性を有し、さらに伸び35%以上の高い成形性、および曲げ加工後のRa2.5μm以下の優れた耐肌荒れ性を有していることを確認した。   In the table, Steel No. 1-4 and 9-12 have excellent magnetic properties such as a coercive force of 35 A / m or less, a magnetic flux density of 1.35 T or more at a magnetic field strength of 300 A / m, and a high formability of 35% or more in elongation. It was confirmed that it had excellent skin roughness resistance of Ra 2.5 μm or less after bending.

また、推奨の製造条件で製造することで、本発明に係る軟磁性鋼板が確実に得られ、さらにその軟磁性鋼板を推奨の磁気焼鈍条件で磁気焼鈍することで、本発明に係る軟磁性部材が確実に得られることが確認された。   Moreover, the soft magnetic steel sheet according to the present invention can be reliably obtained by manufacturing under the recommended manufacturing conditions, and the soft magnetic steel sheet according to the present invention can be obtained by magnetic annealing under the recommended magnetic annealing conditions. Was confirmed to be obtained reliably.

〔実施例2〕
下記表4に示す成分の鋼材を熱間圧延して所定厚さの熱延板とした。この熱延板を酸洗した後、下記表5に示す条件で、粗冷延、軟化焼鈍、仕上げ冷延の順に処理を施して最終板厚1.0mmの軟磁性鋼板とした。
[Example 2]
The steel materials having the components shown in Table 4 below were hot-rolled to obtain hot-rolled sheets having a predetermined thickness. After this hot-rolled sheet was pickled, it was processed in the order of rough cold rolling, soft annealing, and finish cold rolling under the conditions shown in Table 5 below to obtain a soft magnetic steel sheet having a final thickness of 1.0 mm.

この各軟磁性鋼板について、成形性を評価するために、JIS 13B試験片に加工して引張試験を実施し、伸びを測定して、それを成形性の評価指標とした。   In order to evaluate the formability of each soft magnetic steel sheet, it was processed into a JIS 13B test piece, a tensile test was performed, the elongation was measured, and this was used as an evaluation index for formability.

また、打抜き加工時の打抜き性の評価として、直径10mmのパンチと、直径10.20mmでクリアランス0.10mmのダイスを用いて打抜き、穴の周囲に生成したバリの最大高さを測定した。   Further, as an evaluation of punchability at the time of punching, punching was performed using a punch having a diameter of 10 mm and a die having a diameter of 10.20 mm and a clearance of 0.10 mm, and the maximum height of the burr generated around the hole was measured.

また、磁気焼鈍後の軟磁性部材の磁気特性を評価するために、上記各軟磁性鋼板を60mm×60mmに切断して、T2:850℃×H2:3時間の条件で、水素中で磁気焼鈍した後、単板測定枠を用い、JIS C2556に準じて直流磁気特性を評価した。なお、磁束密度および保磁力は印加磁場300A/mにて測定した。   Further, in order to evaluate the magnetic properties of the soft magnetic member after the magnetic annealing, each of the soft magnetic steel sheets is cut into 60 mm × 60 mm, and magnetic annealing is performed in hydrogen under conditions of T2: 850 ° C. × H2: 3 hours. After that, DC magnetic characteristics were evaluated according to JIS C2556 using a single plate measurement frame. The magnetic flux density and coercive force were measured with an applied magnetic field of 300 A / m.

鋼板ままの平均結晶粒径については、各鋼板の縦断面をナイタール腐食した後、板厚をtとしたときのt/4位置を顕微鏡観察し、写真撮影した。そして、JIS G0551の標準図との比較法により粒度番号を求め、平均結晶粒径に換算した。一方、上記磁気焼鈍後の鋼板の平均結晶粒径については、当該軟磁性鋼板の全域での平均結晶粒径を評価するため、各鋼板の縦断面をナイタール腐食した後、最表面から200μm深さの表面部、板厚をtとしたときの、およびt/2の各位置を顕微鏡観察し、写真撮影した。そして、JISG0551の標準図との比較法により粒度番号を求め、平均結晶粒径に換算し、3つの位置のうち最小の値を上記磁気焼鈍後の鋼板の平均結晶粒径とした。   The average crystal grain size of the steel plates was photographed by observing a microscope at the t / 4 position when the plate thickness was t after corroding the longitudinal section of each steel plate. And the particle size number was calculated | required with the comparison method with the standard figure of JISG0551, and it converted into the average crystal grain size. On the other hand, with respect to the average crystal grain size of the steel plate after the magnetic annealing, in order to evaluate the average crystal grain size in the entire area of the soft magnetic steel plate, the depth of 200 μm from the outermost surface is obtained after the longitudinal section of each steel plate is subjected to nital corrosion. The surface portion of each plate and the thickness of the plate at t and each position at t / 2 were observed with a microscope and photographed. And the particle size number was calculated | required by the comparison method with the standard figure of JISG0551, it converted into an average crystal grain size, and let the minimum value among three positions be the average crystal grain size of the steel plate after the said magnetic annealing.

KAM値については、各鋼板を鏡面研磨し、走査型電子顕微鏡としてJEOL社製 JSM−5410を用いて、板厚をtとしたときのt/4位置において、1step 0.2μmで500μm×500μmの領域の電子線後方散乱回折像を測定し、それを解析ソフトとしてTSL社製 OIM analysis 6を用いて、各測定点におけるKAM値を求め、それらを算術平均してKAM値とした。   For the KAM value, each steel plate is mirror-polished, using JSMOL 5410 made by JEOL as a scanning electron microscope, and at a t / 4 position when the plate thickness is t, 1 step 0.2 μm is 500 μm × 500 μm The electron backscatter diffraction image of the region was measured, and the KAM value at each measurement point was obtained using OIM analysis 6 manufactured by TSL as analysis software, and the KAM value was obtained by arithmetically averaging them.

MnS析出物の粒径は、鋼板の圧延方向に平行で板面に垂直な断面において倍率1000倍でSEM観察し、10視野について、MnSの長径と短径を測定してそれらの算術平均値を粒径と定義した。また、粒径0.2μm以上のMnS析出物の個数を測定し、個数密度を算出した   The particle size of the MnS precipitate was observed by SEM at a magnification of 1000 times in a cross section parallel to the rolling direction of the steel sheet and perpendicular to the plate surface, and the major and minor diameters of MnS were measured for 10 fields of view and their arithmetic average values were calculated. The particle size was defined. Further, the number density of MnS precipitates having a particle size of 0.2 μm or more was measured, and the number density was calculated.

下記表6に測定結果を示す。   The measurement results are shown in Table 6 below.

同表において、鋼No.101〜104および110〜113は、保磁力35A/m以下、磁界の強さ300A/m における磁束密度1.35T以上となり、優れた磁気特性を有していることを確認した。さらに、これらの鋼板は、伸び33%以上、打抜き試験後のバリ高さ1mm以下となり、優れた成形性、および被削性を有することを確認した。   In the table, Steel No. Nos. 101 to 104 and 110 to 113 had a magnetic force density of 1.35 T or more at a coercive force of 35 A / m or less and a magnetic field strength of 300 A / m 2, and were confirmed to have excellent magnetic properties. Further, these steel sheets had an elongation of 33% or more and a burr height of 1 mm or less after the punching test, and it was confirmed that they had excellent formability and machinability.

Claims (6)

成分組成が、質量%で、
C:0.001〜0.02%、
Si:0〜0.05%、
Mn:0.05〜0.5%、
P:0〜0.02%、
S:0〜0.1%、
Al:0〜0.01%、
Cr:0〜0.1%、
N:0〜0.005%
であり、残部が鉄および不可避的不純物からなる軟磁性鋼板であって、
平均結晶粒径が5〜50μmであり、
さらに、当該軟磁性鋼板のKAM値Kaと、当該軟磁性鋼板を850℃で3時間焼鈍した後のKAM値Kbとの比Ka/Kbが1.2〜4.5である
ことを特徴とする、板厚0.8〜4.0mmの軟磁性鋼板。
ここに、「KAM値」とは、「Kernel Average Misorientation値」を意味する。
Ingredient composition is mass%,
C: 0.001 to 0.02%,
Si: 0 to 0.05%,
Mn: 0.05 to 0.5%
P: 0 to 0.02%,
S: 0 to 0.1%,
Al: 0 to 0.01%,
Cr: 0 to 0.1%,
N: 0 to 0.005%
And the balance is a soft magnetic steel plate made of iron and inevitable impurities,
The average crystal grain size is 5-50 μm,
Furthermore, the ratio Ka / Kb between the KAM value Ka of the soft magnetic steel sheet and the KAM value Kb after annealing the soft magnetic steel sheet at 850 ° C. for 3 hours is 1.2 to 4.5. A soft magnetic steel sheet having a thickness of 0.8 to 4.0 mm.
Here, the “KAM value” means a “Kernel Average Mission value”.
前記Sの含有量が、S:0.015〜0.1質量%である、
請求項1に記載の軟磁性鋼板。
The S content is S: 0.015 to 0.1 mass%.
The soft magnetic steel sheet according to claim 1.
前記Sの含有量が、S:0〜0.06質量%である、
請求項1に記載の軟磁性鋼板。
The content of S is S: 0 to 0.06% by mass.
The soft magnetic steel sheet according to claim 1.
さらに、Mn/S原子比が3〜20であり、
MnS析出物の平均粒径が0.05〜4μmで、かつ、
粒径0.2μm以上のMnS析出物の個数密度が0.02〜0.5個/μmである、
請求項1〜3のいずれか1項に記載の軟磁性鋼板。
Furthermore, the Mn / S atomic ratio is 3-20,
The average particle size of the MnS precipitate is 0.05-4 μm, and
The number density of MnS precipitates having a particle size of 0.2 μm or more is 0.02 to 0.5 / μm 2 .
The soft magnetic steel plate according to any one of claims 1 to 3.
請求項1〜3のいずれか1項に記載の成分組成を有する鋼材を熱間圧延して熱延板とする熱延工程と、
前記熱延板を圧下率R1:40%以上で冷間圧延して冷延板とする粗冷延工程と、
前記冷延板を、下記式1を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持して軟化焼鈍板とする軟化焼鈍工程と、
さらに、前記軟化焼鈍板を、圧下率R2:0.5〜10%で冷間圧延する仕上げ冷延工程と、
を備えたことを特徴とする、軟磁性鋼板の製造方法。
式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2 ≦265
ただし、650℃≦T1≦780℃である。
A hot rolling step of hot rolling a steel material having the component composition according to any one of claims 1 to 3 to obtain a hot rolled sheet;
A rough cold rolling process in which the hot rolled sheet is cold rolled at a rolling reduction R1: 40% or more to form a cold rolled sheet;
A softening annealing step in which the cold-rolled sheet is held at a softening annealing temperature T1 ° C. and a softening annealing time H1 second so as to satisfy the following formula 1,
Furthermore, a finish cold rolling step of cold rolling the softened annealed plate at a rolling reduction R2: 0.5 to 10%;
A method for producing a soft magnetic steel sheet, comprising:
Formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}] 1/2 ≦ 265
However, it is 650 degreeC <= T1 <= 780 degreeC.
請求項1〜3のいずれか1項に記載の成分組成を有する鋼材を熱間圧延して熱延板とする熱延工程と、
前記熱延板を圧下率R1:40%以上で冷間圧延して冷延板とする粗冷延工程と、
前記冷延板を、下記式1を満足するように、軟化焼鈍温度T1℃で軟化焼鈍時間H1秒間保持して軟化焼鈍板とする軟化焼鈍工程と、
前記軟化焼鈍板を、さらに、圧下率R2:0.5〜10%で冷間圧延することにより軟磁性鋼板を得る仕上げ冷延工程と、
前記軟磁性鋼板を部材形状に成形して成形部材とする成形工程と、
前記成形部材を、下記式2を満足するように、磁気焼鈍温度T2℃で磁気焼鈍時間H2秒間保持することにより軟磁性部材を得る磁気焼鈍工程と
を備えたことを特徴とする、軟磁性部材の製造方法。
式1:210≦[{100−R1+0.2×(273+T1)}+H1×exp{−10/(273+T1)}]1/2 ≦265
ただし、650℃≦T1≦780℃である。
式2:320≦[{100−R2+0.2×(273+T2)}+H2×exp{−10/(273+T2)}]1/2
ただし、750℃≦T2≦900℃である。
A hot rolling step of hot rolling a steel material having the component composition according to any one of claims 1 to 3 to obtain a hot rolled sheet;
A rough cold rolling process in which the hot rolled sheet is cold rolled at a rolling reduction R1: 40% or more to form a cold rolled sheet;
A softening annealing step in which the cold-rolled sheet is held at a softening annealing temperature T1 ° C. and a softening annealing time H1 second so as to satisfy the following formula 1,
A finish cold rolling step of obtaining a soft magnetic steel sheet by cold rolling the softened annealed plate at a rolling reduction R2 of 0.5 to 10%;
A forming step of forming the soft magnetic steel sheet into a member shape and forming a formed member;
A soft magnetic member comprising: a magnetic annealing step for obtaining a soft magnetic member by holding the molded member at a magnetic annealing temperature T2 ° C. so as to satisfy the following formula 2 and a magnetic annealing time H2 seconds: Manufacturing method.
Formula 1: 210 ≦ [{100−R1 + 0.2 × (273 + T1)} 2 + H1 × exp {−10 / (273 + T1)}] 1/2 ≦ 265
However, it is 650 degreeC <= T1 <= 780 degreeC.
Formula 2: 320 ≦ [{100−R2 + 0.2 × (273 + T2)} 2 + H2 × exp {−10 / (273 + T2)}] 1/2
However, 750 ° C. ≦ T2 ≦ 900 ° C.
JP2015076878A 2014-06-26 2015-04-03 Soft magnetic steel sheet, method of manufacturing the same, and method of manufacturing soft magnetic member Active JP6518491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015076878A JP6518491B2 (en) 2014-06-26 2015-04-03 Soft magnetic steel sheet, method of manufacturing the same, and method of manufacturing soft magnetic member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014131629 2014-06-26
JP2014131629 2014-06-26
JP2015076878A JP6518491B2 (en) 2014-06-26 2015-04-03 Soft magnetic steel sheet, method of manufacturing the same, and method of manufacturing soft magnetic member

Publications (2)

Publication Number Publication Date
JP2016027191A true JP2016027191A (en) 2016-02-18
JP6518491B2 JP6518491B2 (en) 2019-05-22

Family

ID=55352682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076878A Active JP6518491B2 (en) 2014-06-26 2015-04-03 Soft magnetic steel sheet, method of manufacturing the same, and method of manufacturing soft magnetic member

Country Status (1)

Country Link
JP (1) JP6518491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104789A (en) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 Soft magnetic steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143719A (en) * 1978-04-28 1979-11-09 Kobe Steel Ltd Manufacture of non-oriented electrical iron sheet
JP2003055745A (en) * 2001-08-10 2003-02-26 Kobe Steel Ltd Soft magnetic low carbon steel having excellent machinability and magnetic property, production method therefor and method for producing soft magnetic low carbon steel parts obtained by using the same steel
JP2005060785A (en) * 2003-08-15 2005-03-10 Jfe Steel Kk Steel sheet for internal magnetic shielding and its manufacturing method
JP2005298969A (en) * 2004-03-17 2005-10-27 Jfe Steel Kk Steel sheet for magnetic shielding and its production method
JP2007046125A (en) * 2005-08-11 2007-02-22 Kobe Steel Ltd Soft magnetic steel material superior in cold forgeability, machinability and magnetic property, and soft magnetic steel parts superior in magnetic property
JP2010053387A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Hot-rolled steel sheet excellent in press-formability and magnetic characteristic and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143719A (en) * 1978-04-28 1979-11-09 Kobe Steel Ltd Manufacture of non-oriented electrical iron sheet
JP2003055745A (en) * 2001-08-10 2003-02-26 Kobe Steel Ltd Soft magnetic low carbon steel having excellent machinability and magnetic property, production method therefor and method for producing soft magnetic low carbon steel parts obtained by using the same steel
JP2005060785A (en) * 2003-08-15 2005-03-10 Jfe Steel Kk Steel sheet for internal magnetic shielding and its manufacturing method
JP2005298969A (en) * 2004-03-17 2005-10-27 Jfe Steel Kk Steel sheet for magnetic shielding and its production method
JP2007046125A (en) * 2005-08-11 2007-02-22 Kobe Steel Ltd Soft magnetic steel material superior in cold forgeability, machinability and magnetic property, and soft magnetic steel parts superior in magnetic property
JP2010053387A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Hot-rolled steel sheet excellent in press-formability and magnetic characteristic and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104789A (en) * 2016-12-28 2018-07-05 株式会社神戸製鋼所 Soft magnetic steel sheet

Also Published As

Publication number Publication date
JP6518491B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
TWI531663B (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI406957B (en) High-frequency iron loss low non-directional electromagnetic steel sheet and its manufacturing method
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
WO2017026125A1 (en) Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same
JP6379282B2 (en) Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
KR101692660B1 (en) Ferritic stainless steel sheet having excellent heat resistance
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6262599B2 (en) SOFT MAGNETIC STEEL MATERIAL, ITS MANUFACTURING METHOD, AND SOFT MAGNETIC PARTS OBTAINED FROM SOFT MAGNETIC STEEL
JPWO2010104067A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
TW201443248A (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
TW201502288A (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP6557526B2 (en) Soft magnetic steel sheet, laminated steel sheet using the same, and method for producing soft magnetic steel sheet
JP5950653B2 (en) Ferritic stainless steel plate with excellent surface roughness resistance
JP6453683B2 (en) Soft magnetic wire, bar and soft magnetic steel parts
JP2017066516A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP2017002392A (en) Soft magnetic steel sheet
JP6518491B2 (en) Soft magnetic steel sheet, method of manufacturing the same, and method of manufacturing soft magnetic member
JP2017128784A (en) Manufacturing method of soft magnetic steel component
JP2010137344A (en) Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP5375069B2 (en) Ferritic stainless steel plate with excellent corrosion resistance on the shear end face
JP6796483B2 (en) Soft magnetic steel sheet
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190422

R150 Certificate of patent or registration of utility model

Ref document number: 6518491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150