JP2010137344A - Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance - Google Patents

Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance Download PDF

Info

Publication number
JP2010137344A
JP2010137344A JP2008318131A JP2008318131A JP2010137344A JP 2010137344 A JP2010137344 A JP 2010137344A JP 2008318131 A JP2008318131 A JP 2008318131A JP 2008318131 A JP2008318131 A JP 2008318131A JP 2010137344 A JP2010137344 A JP 2010137344A
Authority
JP
Japan
Prior art keywords
corrosion resistance
less
stainless steel
ferritic stainless
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008318131A
Other languages
Japanese (ja)
Inventor
Tomohiro Ishii
知洋 石井
Shin Ishikawa
伸 石川
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008318131A priority Critical patent/JP2010137344A/en
Publication of JP2010137344A publication Critical patent/JP2010137344A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shearing method for improving shearing-end-face corrosion resistance of a ferritic stainless steel plate used in the atmospheric environment without executing corrosion-resistant processing thereon. <P>SOLUTION: A clearance is equal to or less than 12% for shearing the ferritic stainless steel plate which contains ≤0.02% C, 0.05-0.8% Si, 0.05-1.0% Mn, ≤0.04% P, ≤0.1% Al, 20-24% Cr, 0.3-0.8% Cu, 0.05-6.0% Ni, ≤0.02% N and 0.001-0.1% S. The average crystal grain size of a ferrite phase is ≥5 μm and ≤25 μm, and 50-400 particles of MnS having the particle size of ≥0.05 μm and ≤1 μm exist in 1 cm<SP>2</SP>, and the clearance (%) is (x/d)×100, (wherein x represents a gap (mm) between a blade and a stand, and d represents a thickness (mm) of the steel plate). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、せん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断方法に関し、特に、せん断加工後、せん断端面の耐食性処理を行わずに、大気環境中で使用される鋼板について、そのせん断端面の耐食性の有利な向上を図ろうとするものである。   The present invention relates to a method for shearing a ferritic stainless steel sheet having excellent corrosion resistance at the shear end face, and particularly, for a steel sheet used in an atmospheric environment without performing the corrosion resistance treatment on the shear end face after shearing, the corrosion resistance of the shear end face. It is intended to improve the above.

フェライト系ステンレス鋼は、その優れた耐食性から幅広い用途に使用されている。エレベーターの内板などのほとんど加工の必要のないものから、自動車排気用配管などの加工の厳しいものまで、その用途は様々である。このようなフェライト系ステンレス鋼板の製造過程では、その利便性からせん断加工による鋼板の切出し、整形、打ち抜きが行われる場合が多い。そして、通常、このフェライト系ステンレス鋼板では、端面の耐食性処理を行わずに使用される。   Ferritic stainless steel is used in a wide range of applications because of its excellent corrosion resistance. Applications range from those that require little processing, such as the inner plate of an elevator, to those that require severe processing, such as automobile exhaust piping. In the manufacturing process of such a ferritic stainless steel sheet, cutting, shaping, and punching of the steel sheet by shearing are often performed for convenience. In general, this ferritic stainless steel sheet is used without subjecting the end surface to corrosion resistance.

フェライト系ステンレス鋼を、せん断加工して端面の耐食性処理を行わずに使用した場合、平滑な表面と比較して端面の腐食は激しく、流れさびやもらいさびの原因となって、鋼板全体の耐食性を低下させる原因となる。この端面さびの問題は、端面で地鉄の露出するめっき鋼板などと違い、端面であっても不動態化によって耐食性がある程度保たれるフェライト系ステンレス鋼では、あまり重要視されていなかった。しかし、フェライト系ステンレス鋼の市場が拡大するにつれて使用環境も拡大し、平滑な表面と端面との耐食性の差が問題とされるようになった。   When ferritic stainless steel is used without shear treatment and end face corrosion resistance treatment, the end face is more corrosive than a smooth surface, which causes flow rust and rust, resulting in overall corrosion resistance of the steel sheet. It will cause the decrease. The problem of this end face rust has not been considered as important in ferritic stainless steels that maintain corrosion resistance to some extent by passivation even at the end face, unlike plated steel sheets where the end face is exposed from the steel. However, as the market for ferritic stainless steel has expanded, the use environment has expanded, and the difference in corrosion resistance between smooth surfaces and end faces has become a problem.

端面の腐食は凹凸によるミクロな隙間腐食によって起こるといわれている。隙間腐食に関しては古くから研究されており、最近でも特許文献1や特許文献2などに耐隙間腐食性に優れたフェライト系ステンレス鋼板が開示されている。これらのフェライト系ステンレス鋼板は、隙間腐食などの局部腐食に対して効果があるものの、せん断端面における発銹を抑制するためには、必ずしも十分とはいえず、端面腐食が発生する場合があった。
こういった背景から、特にせん断端面の耐食性に優れたフェライト系ステンレス鋼板が望まれている。
It is said that end face corrosion is caused by micro crevice corrosion due to unevenness. Crevice corrosion has been studied for a long time, and recently, ferritic stainless steel sheets having excellent crevice corrosion resistance have been disclosed in Patent Document 1 and Patent Document 2. Although these ferritic stainless steel sheets are effective against local corrosion such as crevice corrosion, they are not always sufficient to suppress the cracking at the shear end face, and end face corrosion may occur. .
From such a background, a ferritic stainless steel sheet that is particularly excellent in the corrosion resistance of the shear end face is desired.

特開2005−89828号公報JP 2005-89828 A 特開2006−257544号公報JP 2006-257544 A

本発明は、上記の問題を有利に解決するもので、特に、耐食性処理を行わず大気環境中で使用されるフェライト系ステンレス鋼板のせん断端面の耐食性を劣化させることのないフェライト系ステンレス鋼板のせん断方法を提案することを目的とする。   The present invention advantageously solves the above problems, and in particular, shearing of a ferritic stainless steel sheet that does not deteriorate the corrosion resistance of the shear end face of the ferritic stainless steel sheet that is used in an atmospheric environment without performing corrosion resistance treatment. The purpose is to propose a method.

発明者らは、せん断端面の耐食性の改善を図るべく種々の検討を加えた。特に、せん断端面の腐食状態について綿密な観察を行ったところ、腐食の起点が破断面にあり、当該破断面を減少させることおよび破断面の表面粗さを軽減させることが、腐食の防止につながることを見出した。ここで、破断面とは図1に示すのように、せん断後に加工面を観察すると確認される、「だれ」、「せん断面」、「破断面」および「バリ」と呼ばれる表面状態のうちのひとつである。   The inventors made various studies in order to improve the corrosion resistance of the shear end face. In particular, close observation of the corrosion state of the shear end face shows that the starting point of corrosion is on the fracture surface, and reducing the fracture surface and reducing the surface roughness of the fracture surface will lead to prevention of corrosion. I found out. Here, as shown in FIG. 1, the fracture surface is confirmed by observing the processed surface after shearing, among the surface states called “sag”, “shear surface”, “fracture surface” and “burr”. One.

そこで、上記耐食性の改善に関し、さらに検討を重ねた結果、破断面の低減については、せん断加工時の条件を適正に設定することが有効であることを見出した。すなわち、せん断時における鋼板の厚みおよび刃と台の隙間を適正に設定すること、具体的には、刃と台の隙間を鋼板の厚みで割った値(クリアランス)を小さくすることが、破断面の低減に有利に作用するとの知見を得た。
また、破断面の表面粗度については、フェライト相の結晶粒径およびMnSの分散状態を制御することが有効であるとの知見を得た。
さらに、発明者らは、耐食性改善成分としてCrを20%以上添加するとともに、CuとNiを複合的に添加することにより、耐食性が一層改善されることも併せて見出した。
Thus, as a result of further investigations regarding the improvement of the corrosion resistance, it has been found that it is effective to appropriately set the conditions at the time of shearing for reducing the fracture surface. In other words, the thickness of the steel sheet and the gap between the blade and the table at the time of shearing are set appropriately. Specifically, the value obtained by dividing the gap between the blade and the table by the thickness of the steel sheet (clearance) is reduced. It has been found that it works favorably in reducing
Moreover, about the surface roughness of the fracture surface, the knowledge that it was effective to control the crystal grain diameter of a ferrite phase and the dispersion state of MnS was obtained.
Furthermore, the inventors have also found that the corrosion resistance is further improved by adding 20% or more of Cr as a corrosion resistance improving component and adding Cu and Ni in combination.

本発明は、上記の知見に立脚するものであり、その要旨構成は次のとおりである。
(1)質量%で、C:0.02%以下、Si:0.05〜0.8%、Mn:0.05〜1.0%、P:0.04%以下、Al:0.1%以下、Cr:20〜24%、Cu:0.3〜0.8%、Ni:0.05〜6.0%およびN:0.02%以下を含み、かつS:0.001〜0.1%を含有し、残部がFeおよび不可避的不純物からなり、さらにフェライト相の平均結晶粒径が5〜25μmの範囲で、かつ鋼中に0.05〜1μmの粒径のMnSを1cm当たり50〜400個有するフェライト系ステンレス鋼板をせん断加工するに際し、下記式で表されるクリアランスを、12%以下に抑えることを特徴とするせん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断加工方法。

クリアランス(%)=(x/d)×100
ここで、x:刃と台の隙間(mm)
d:鋼板の厚み(mm)
The present invention is based on the above findings, and the gist of the present invention is as follows.
(1) By mass%, C: 0.02% or less, Si: 0.05 to 0.8%, Mn: 0.05 to 1.0%, P: 0.04% or less, Al: 0.1% or less, Cr: 20 to 24%, Cu: 0.3 to 0.8%, Ni: 0.05 to 6.0% and N: 0.02% or less, and S: 0.001 to 0.1%, the balance is made of Fe and inevitable impurities, and the average grain size of the ferrite phase is 5 to 5%. When ferritic stainless steel sheet having 50 to 400 MnS having a particle diameter of 0.05 to 1 μm in a steel in the range of 25 μm per cm 2 is sheared, the clearance represented by the following formula is suppressed to 12% or less. A method for shearing ferritic stainless steel sheet having excellent corrosion resistance on the shear end face.
Record
Clearance (%) = (x / d) x 100
Where x: gap between blade and base (mm)
d: Steel sheet thickness (mm)

(2)前記鋼板が、さらに質量%でNb:0.005〜0.6%、Ti:0.005〜0.6%、Zr:0.5%以下およびMo:3.0%以下のうちから選んだ1または2種以上を含有することを特徴とする前記(1)に記載のせん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断加工方法。   (2) The steel sheet further contains one or more selected from Nb: 0.005 to 0.6%, Ti: 0.005 to 0.6%, Zr: 0.5% or less, and Mo: 3.0% or less in mass%. The shearing method of a ferritic stainless steel sheet having excellent corrosion resistance of the shear end face according to the above (1).

本発明のせん断方法によれば、主に大気環境中でせん断端面をそのままの状態で使用する製品において、せん断端面の耐食性の向上を図ることができる。このことで、フェライト系ステンレス鋼板全体の耐食性を向上させることができ、その結果、鋼板の腐食による美観の損失、寿命の低下などを抑制することが可能である。   According to the shearing method of the present invention, it is possible to improve the corrosion resistance of the shear end face in a product that uses the shear end face as it is mainly in an atmospheric environment. As a result, the corrosion resistance of the entire ferritic stainless steel sheet can be improved, and as a result, it is possible to suppress loss of aesthetics, decrease in life, and the like due to corrosion of the steel sheet.

以下、本発明を具体的に説明する。まず、本発明で使用するフェライト系ステンレス鋼板での成分組成を上記の範囲に限定した理由について説明する。なお、鋼の成分を示す%については、特に断らない限り質量%を意味する。   The present invention will be specifically described below. First, the reason why the component composition in the ferritic stainless steel sheet used in the present invention is limited to the above range will be described. In addition,% which shows the component of steel means the mass% unless there is particular notice.

C:0.02%以下
Cは、鋼中に不可避的に混入する元素であるが、0.02%を超えると硬くなってプレス加工性が著しく低下するとともに、Cr236を析出し、結晶粒界を鋭敏化して耐食性を低下させる。従って、Cは少ないほうが望ましいが、0.02%までは許容できる。
C: 0.02% or less C is an element inevitably mixed in the steel, but if it exceeds 0.02%, it hardens and press workability is remarkably lowered, and Cr 23 C 6 is precipitated, and the grain boundaries are reduced. Sensitize to reduce corrosion resistance. Therefore, it is desirable that C is small, but 0.02% is acceptable.

Si:0.05〜0.8%
Siは、脱酸剤として有用な元素である。しかしながら、含有率が0.05%未満では十分な脱酸効果が得られず、酸化物が多量に鋼中に分散し、溶接性、プレス加工性が低下する。一方、0.8%を超えて添加すると鋼が硬質化して加工性の低下を招く。従って、Siは0.05〜0.8%の範囲に限定する。
Si: 0.05-0.8%
Si is an element useful as a deoxidizer. However, if the content is less than 0.05%, a sufficient deoxidation effect cannot be obtained, and a large amount of oxide is dispersed in the steel, so that weldability and press workability are deteriorated. On the other hand, if added over 0.8%, the steel becomes hard and the workability is reduced. Therefore, Si is limited to the range of 0.05 to 0.8%.

Mn:0.05〜1.0%
Mnは、脱酸作用がある。加えて本発明で使用するフェライト系ステンレス鋼板では、MnSの分散状態を制御することで、せん断端面中の破断面部分における面粗さの低下を防ぐという効果があることがわかった。その機構は明らかではないが、以下のように推察される。つまり、耐食性に影響を与えない程度の比較的微細なMnS粒子の存在が、破断面の亀裂の伝播を容易にし、直線的な破断面の形状が生じ易くなる、というものである。ただし、その効果は、Mn量が0.05%未満では得られず、一方、1.0%を超えるとMnSの析出および粗大化を促し、逆に耐食性の低下を招く。従って、Mnは0.05〜1.0%の範囲に限定する。
Mn: 0.05 to 1.0%
Mn has a deoxidizing action. In addition, it was found that the ferritic stainless steel sheet used in the present invention has an effect of preventing a reduction in surface roughness at the fractured surface portion in the shear end face by controlling the dispersion state of MnS. The mechanism is not clear, but is presumed as follows. In other words, the presence of relatively fine MnS particles that do not affect the corrosion resistance facilitates the propagation of cracks on the fracture surface, and the shape of a linear fracture surface is likely to occur. However, the effect cannot be obtained if the amount of Mn is less than 0.05%. On the other hand, if it exceeds 1.0%, precipitation and coarsening of MnS are promoted, and conversely, corrosion resistance is reduced. Therefore, Mn is limited to a range of 0.05 to 1.0%.

P:0.04%以下
Pは、耐食性を低下させる元素である。また、結晶粒界に偏析することで熱間加工性を低下させるため、過剰の添加は製造を困難にする。よって、含有量は低いほうが望ましいが、0.04%以下までは許容できる、望ましくは、P:0.03%以下である。
P: 0.04% or less P is an element that lowers corrosion resistance. Moreover, since hot workability is reduced due to segregation at the crystal grain boundaries, excessive addition makes manufacture difficult. Therefore, the content is preferably low, but is acceptable up to 0.04% or less, preferably P: 0.03% or less.

Al:0.1%以下
Alは、脱酸のために有効な成分であるが、0.1%を超えるとAl系の非金属介在物による表面傷の増加とともに加工性をも低下させる。従って、Alは0.1%以下とする。
Al: 0.1% or less Al is an effective component for deoxidation, but if it exceeds 0.1%, the surface damage due to Al-based non-metallic inclusions increases and the workability also decreases. Therefore, Al is made 0.1% or less.

Cr:20〜24%
Crは、フェライト系ステンレス鋼の耐食性を決める重要な元素である。本発明では、後述するCuとの複合効果による耐食性の一層の向上を得るために、少なくとも20%以上のCrを含有させるものとした。
CrとCuを複合含有させることにより、耐食性が向上する機構は、まだ明確に解明されたわけではないが、以下のように推察される。
Cr量が20%以上になると、結晶格子に含まれる原子のうちおよそ5分の1がCr原子となる。フェライト系ステンレス鋼は体心立方格子であるため、第1近接原子が4個、第2近接原子が6個となる。任意のCr原子から第2近接原子の距離に平均で1個以上のCr原子があることになる。ここで、鋼表面にあるCr原子は酸化物または水酸化物として、酸素を仲立ちに第2近接原子の距離まで相互作用を及ぼしあい不動態被膜を形成すると考えられる。よって、20%以上になると、Crがネットワークを形成し不動態被膜を形成しやすくなると考えられる。また、Feを溶出して不動態被膜を強固にするためには、Feが溶出した後にCrによる不動態被膜が形成されねばならない。
一方、Cuは、自然浸漬電位の貴化によって不動態被膜からのFeの溶出を促進し、より強固な不動態被膜を形成する効果があると考えられることから、酸素を仲立ちとしたCrのネットワークが結成しやすく、不動態化しやすい20%以上のCr添加時にCu添加の効果が顕著になったものと考えられる。
しかし、Cr量が24%を超えるとσ相を生成しやすくなり材料の硬化、耐食性の低下につながる。従って、Crは20〜24%の範囲に限定する。
Cr: 20-24%
Cr is an important element that determines the corrosion resistance of ferritic stainless steel. In the present invention, in order to further improve the corrosion resistance due to the combined effect with Cu described later, at least 20% or more of Cr is included.
The mechanism of improving the corrosion resistance by compounding Cr and Cu has not been clearly elucidated yet, but is presumed as follows.
When the amount of Cr is 20% or more, about one fifth of the atoms contained in the crystal lattice becomes Cr atoms. Since ferritic stainless steel has a body-centered cubic lattice, there are four first neighboring atoms and six second neighboring atoms. There will be one or more Cr atoms on average on the distance from any Cr atom to the second adjacent atom. Here, it is considered that Cr atoms on the steel surface act as oxides or hydroxides, interact with oxygen to the distance of the second adjacent atom, and form a passive film. Therefore, when it becomes 20% or more, it is considered that Cr forms a network and a passive film is easily formed. Further, in order to elute Fe and strengthen the passive film, a passive film made of Cr must be formed after Fe is eluted.
On the other hand, Cu is considered to have an effect of promoting the elution of Fe from the passive film by making the natural immersion potential noble and forming a stronger passive film. It is considered that the effect of addition of Cu becomes remarkable when 20% or more of Cr is easily formed and is easily passivated.
However, if the Cr content exceeds 24%, a σ phase is likely to be formed, leading to hardening of the material and a decrease in corrosion resistance. Therefore, Cr is limited to a range of 20 to 24%.

Cu:0.3〜0.8%
Cuは、上記したCrとの複合効果のほか、単独でも、腐食発生後のステンレス鋼の表面に被膜を形成し、アノード反応による地鉄の溶解を抑制する効果がある。従って、耐発銹性の向上および耐隙間腐食性の向上にも有用な元素である。
さらに、Cuは、後述のNiとの複合効果も認められている。ここで、Niとの複合効果は、鋼板表面の電位を貴化し、Niを優先的に溶解してpH低下を抑制する効果である。この効果は、Cu量が0.3%未満ではあまり期待できず、一方、0.8%を超えるとCu自身の溶解が促進され、耐食性が低下する。従って、Cuの添加量は0.3%〜0.8%の範囲に限定する。
Cu: 0.3 to 0.8%
In addition to the above-mentioned combined effect with Cr, Cu alone has the effect of forming a film on the surface of stainless steel after the occurrence of corrosion and suppressing the dissolution of the ground iron due to the anode reaction. Therefore, it is an element useful for improving rust resistance and crevice corrosion resistance.
Furthermore, Cu has been recognized to have a combined effect with Ni described later. Here, the combined effect with Ni is an effect of making the potential of the steel sheet surface noble and preferentially dissolving Ni to suppress the pH drop. This effect cannot be expected so much when the Cu content is less than 0.3%. On the other hand, when the Cu content exceeds 0.8%, the dissolution of Cu itself is promoted and the corrosion resistance is lowered. Therefore, the addition amount of Cu is limited to the range of 0.3% to 0.8%.

Ni:0.05〜6.0%
Niは、上記したCuとの複合効果のほか、単独でも、酸によるアノード反応を抑制し、より低いpHでも不動態の維持を可能にする元素である。すなわちNiは、耐隙間腐食性に効果が高く、活性溶解状態における腐食の進行を顕著に抑制する。本発明では、不動態状態においてもNiが溶解することで、隙間などの外部との溶液循環が少ない環境におけるpH低下を抑制する効果が確認された。Cuとの複合添加により、溶解してpHを低下させるFeやCrに対して、Niが優先的に溶解し、その効果はより顕著となる。
Ni量が0.05%に満たないと、耐隙間腐食性向上効果が得られない、一方、6.0%を超えると鋼を硬質化させその加工性を低下させることに加え、フェライト相とオーステナイト相の二相組織が形成され、各相の組成に違いが生じてマイクロセルを形成するため、耐食性を低下させる。従って、Niは0.05〜6.0%の範囲に限定する。好ましくは、0.1%以上、より好ましくは0.2%以上含有させることが望ましい。
Ni: 0.05-6.0%
In addition to the above-described combined effect with Cu, Ni is an element that alone, suppresses the anodic reaction due to acid, and enables the passive state to be maintained even at a lower pH. That is, Ni is highly effective in crevice corrosion resistance and significantly suppresses the progress of corrosion in the active dissolution state. In the present invention, it was confirmed that Ni was dissolved even in a passive state, thereby suppressing the pH drop in an environment where there was little solution circulation with the outside such as a gap. By the combined addition with Cu, Ni is preferentially dissolved with respect to Fe and Cr which are dissolved to lower the pH, and the effect becomes more remarkable.
If the Ni content is less than 0.05%, the effect of improving crevice corrosion resistance cannot be obtained. On the other hand, if the Ni content exceeds 6.0%, the steel is hardened and its workability is lowered. A phase structure is formed, and a difference occurs in the composition of each phase to form a microcell, thus reducing the corrosion resistance. Therefore, Ni is limited to the range of 0.05 to 6.0%. The content is preferably 0.1% or more, more preferably 0.2% or more.

N:0.02%以下
Nは、鋼中に不可避的に混入する元素である。鋼中に固溶して耐食性を向上させる効果もある。しかし、0.02%を超えて含有されるとプレス加工性が著しく低下する。従って、Nは、0.02%以下とする。
N: 0.02% or less N is an element inevitably mixed in steel. It also has the effect of improving the corrosion resistance by dissolving in steel. However, if it exceeds 0.02%, the press workability is remarkably lowered. Therefore, N is set to 0.02% or less.

S:0.001〜0.1%
Sは、本発明で使用するフェライト系ステンレス鋼板において重要な元素である。従来、Sは、ステンレス鋼中でMnなどと析出物MnSを形成し、耐食性低下の要因となるため、低減することが望ましいとされていた。
しかしながら、発明者らの研究では、従来好ましくないとされていたMnSであっても、その粒径および分散状態を適正に制御することで、せん断端面の耐食性の向上に貢献することが究明された。そこで、本発明では積極的にSを含有させる。しかしながら、含有量が0.001%に満たないとその含有効果に乏しく、一方、0.1%を超えるとS系析出物の粗大化が認められ、当該効果が得られにくくなる。従って、Sは0.001〜0.1%の範囲に限定する。より好ましくは0.001%以上、0.05%以下の範囲である。
S: 0.001 to 0.1%
S is an important element in the ferritic stainless steel sheet used in the present invention. Conventionally, it has been considered desirable to reduce S because it forms precipitate MnS with Mn and the like in stainless steel, which causes a decrease in corrosion resistance.
However, the inventors' research has revealed that even MnS, which has been considered unfavorable in the past, contributes to the improvement of the corrosion resistance of the shear end face by appropriately controlling the particle size and dispersion state. . Therefore, in the present invention, S is positively contained. However, when the content is less than 0.001%, the content effect is poor. On the other hand, when the content exceeds 0.1%, coarsening of the S-based precipitate is recognized, and it is difficult to obtain the effect. Therefore, S is limited to the range of 0.001 to 0.1%. More preferably, it is 0.001% or more and 0.05% or less of range.

以上、基本成分について説明したが、本発明ではその他にも耐食性改善のために、以下に述べる元素を適宜含有させることができる。   The basic components have been described above. However, in the present invention, the following elements can be appropriately contained for improving the corrosion resistance.

Nb:0.005〜0.6%
Nbは、C、Nを固定してCr炭窒化物による鋭敏化を防ぎ、耐食性を向上させる元素である。しかしながらNb量が0.005%未満ではその添加効果に乏しく、一方、0.6%を超えるとラーベス相が形成され加工性を低下させるので、Nbは、0.005〜0.6%とすることが好ましい。
Nb: 0.005-0.6%
Nb is an element that fixes C and N, prevents sensitization by Cr carbonitride, and improves corrosion resistance. However, if the amount of Nb is less than 0.005%, the effect of addition is poor. On the other hand, if it exceeds 0.6%, a Laves phase is formed and the workability is lowered, so Nb is preferably 0.005 to 0.6%.

Ti:0.005〜0.6%
Tiは、C、Nを固定してCr炭窒化物による鋭敏化を防ぎ、耐食性を向上させる元素である。しかしながらTi量が0.005%未満ではその添加効果に乏しく、一方、0.6%を超えるとステンレス鋼板の硬質化を招き、加工性を低下させる。さらにTi系析出物により表面粗度の低下を招く。従って、Tiは、0.005〜0.6%とすることが好ましい。
Ti: 0.005-0.6%
Ti is an element that fixes C and N, prevents sensitization by Cr carbonitride, and improves corrosion resistance. However, if the amount of Ti is less than 0.005%, the effect of addition is poor. On the other hand, if it exceeds 0.6%, the stainless steel plate is hardened and the workability is lowered. Further, the Ti-based precipitate causes a reduction in surface roughness. Therefore, Ti is preferably 0.005 to 0.6%.

Zr:0.5%以下
ZrもTiと同様にC、Nを固定してCr炭窒化物による鋭敏化を防ぐ効果がある。しかし、Zr量が0.5%を超えるとZrO2等を生成し、表面傷の原因となるので、Zrは0.5%以下とすることが好ましい。
Zr: 0.5% or less Zr also has the effect of fixing C and N as in the case of Ti and preventing sensitization by Cr carbonitride. However, if the amount of Zr exceeds 0.5%, ZrO 2 and the like are generated and cause surface scratches, so Zr is preferably 0.5% or less.

Mo:3.0%以下
Moは、耐食性を向上させる元素である。本発明によればCr、Cu、Niを複合添加することによりせん断端面の耐食性を向上させることができるが、Moを添加することによってその耐食性はさらに向上する。しかし、Mo量が3.0%を超えると加工性の低下を招くので、Moは3.0%以下とすることが好ましい。
Mo: 3.0% or less Mo is an element that improves corrosion resistance. According to the present invention, the corrosion resistance of the shear end face can be improved by compound addition of Cr, Cu, and Ni, but the corrosion resistance is further improved by adding Mo. However, if the amount of Mo exceeds 3.0%, the workability is reduced, so Mo is preferably 3.0% or less.

以上、成分系について説明したが、本発明で使用するフェライト系ステンレス鋼板は、成分組成を上記の範囲とするだけでは不十分で、フェライト相の平均結晶粒径およびMnSの析出状態を以下の範囲とすることが重要である。   Although the component system has been described above, it is not sufficient for the ferritic stainless steel sheet used in the present invention to have the component composition within the above range. Is important.

フェライト相の平均結晶粒径:5〜25μm
フェライト系ステンレス鋼板の主な相であるフェライト相の平均結晶粒径は、ステンレス鋼板の強度とせん断端面中の破断面の粗度に影響を与える。せん断端面には、せん断面、破断面、バリ等が形成されるが、このうち破断面の面積は、小さいほど腐食が抑制され、バリの高さは、小さいほど、塩分などの腐食因子が堆積しにくくなり、腐食を抑制することができる。
ここでフェライト相の平均結晶粒径が5μm未満の場合、強度が向上しバリは形成されにくくなるが、破断面の面積増加が大きくなり、耐食性が低下してしまう。
一方、フェライト相の平均結晶粒径が25μm超では、軟質化の影響によるバリの増加、破断面粗度の低下およびミクロ隙間の形成により、耐食性の低下が大きい。従って、フェライト相の平均結晶粒径は、5〜25μmとする。
なお、フェライト相の粒径を上記の範囲に制御するには、熱間圧延および冷間圧延工程の圧延率が重要であり、熱間圧延の粗圧延工程の少なくとも1パスを圧下率40%以上とし、冷間圧延の圧下率を70%以上とすることが好ましい。
Average crystal grain size of ferrite phase: 5 to 25 μm
The average crystal grain size of the ferrite phase, which is the main phase of the ferritic stainless steel sheet, affects the strength of the stainless steel sheet and the roughness of the fracture surface in the shear end face. The shear end face is formed with shear planes, fracture surfaces, burrs, etc. Of these, the smaller the area of the fracture surface, the more corrosion is suppressed, and the smaller the burr height, the more corrosion factors such as salinity are deposited. This makes it difficult to prevent corrosion.
Here, when the average crystal grain size of the ferrite phase is less than 5 μm, the strength is improved and burrs are hardly formed, but the increase in the area of the fracture surface is increased and the corrosion resistance is lowered.
On the other hand, when the average crystal grain size of the ferrite phase exceeds 25 μm, the corrosion resistance is greatly reduced due to the increase of burrs due to the effect of softening, the reduction of the fracture surface roughness and the formation of micro gaps. Therefore, the average crystal grain size of the ferrite phase is 5 to 25 μm.
In order to control the grain size of the ferrite phase within the above range, the rolling rate in the hot rolling and cold rolling processes is important, and at least one pass in the rough rolling process in hot rolling is 40% or more. And the rolling reduction in cold rolling is preferably 70% or more.

MnS: 0.05〜1μmの粒子が1cm2の範囲に50〜400個有する
以下、MnSの析出状態を上記の範囲に限定した理由について説明する。
本発明では、せん断を行った端面の破断面は腐食の起点となることが確認された。これは、主に、表面が粗いため、腐食因子が堆積しやすいことに加えて、凹凸による微細な隙間形状が、付着溶液の低pH化、高塩分化を促進するため、腐食が起こりやすい環境となっているためと考えられる。従って、せん断面の破断面の粗度を低減することで、腐食の起こりにくい破断面が形成されると予想される。
そこで本発明者らは、腐食の起こりにくい破断面の形成に関し、種々の実験を行った。その結果、破断面の粗さが算術平均粗さRaで1μm以下になると腐食の発生が少ないことが明らかとなった。
次に本発明者らは、MnSに着目し、フェライト相の平均結晶粒径が5〜25μmの範囲でかつ表面粗さがRa:1μm以下となる条件を求める試験を実施した。その結果、鋼中の0.05〜1μmの粒径を持つMnSの粒子を1cm2の範囲に、50〜400個有することが重要であることが明らかとなった。ここで、対象とするMnSの粒径を0.05〜1μmの範囲としたのは、0.05μm未満MnSの粒子では粗度の低減に効果が小さく、1μmを超えるMnSの粒子では、表面にあらわれたMnSが欠落して、粗度を増加させるためである。
よって、本発明では、粒径が0.05〜1μmの大きさのMnSを対象とするものとした。
MnS: 50 to 400 particles having a size of 0.05 to 1 μm in a range of 1 cm 2 Hereinafter, the reason why the precipitation state of MnS is limited to the above range will be described.
In the present invention, it was confirmed that the fracture surface of the end face subjected to shearing becomes a starting point of corrosion. This is mainly due to the fact that the surface is rough and corrosion factors are likely to accumulate, and the fine gap shape due to the unevenness promotes the low pH and high salt differentiation of the adhesion solution. This is considered to be because. Therefore, it is expected that a fracture surface that is unlikely to corrode is formed by reducing the roughness of the fracture surface of the shear surface.
Therefore, the present inventors conducted various experiments regarding the formation of a fracture surface where corrosion is unlikely to occur. As a result, it was found that the occurrence of corrosion was small when the fracture surface roughness was 1 μm or less in terms of arithmetic average roughness Ra.
Next, the present inventors paid attention to MnS and conducted a test for obtaining a condition in which the average crystal grain size of the ferrite phase is in the range of 5 to 25 μm and the surface roughness is Ra: 1 μm or less. As a result, it has become clear that it is important to have 50 to 400 MnS particles having a particle diameter of 0.05 to 1 μm in the range of 1 cm 2 in steel. Here, the target particle size of MnS was set to the range of 0.05 to 1 μm because the effect of reducing the roughness is small with particles of less than 0.05 μm MnS, and MnS appeared on the surface with particles of MnS exceeding 1 μm. This is because the roughness is increased.
Therefore, the present invention is intended for MnS having a particle size of 0.05 to 1 μm.

次に、かかるMnSの析出状態について調査したところ、単位面積:1cm2当たりの析出個数が50個未満では粗度の低減化に効果が乏しく、一方、400個超では、加工性および耐食性を低下させることが判明した。
従って、本発明で使用するフェライト系ステンレス鋼板では、粒径が0.05μm以上、1μm以下のMnS を1cm2当たり50〜400個有するものとした。
なお、MnSの粒径および析出個数を上記の範囲に制御するには、熱延板焼鈍および冷延板焼鈍、それぞれの工程の処理温度が重要であり、その条件を、熱延板焼鈍温度:850〜1000℃、冷延板焼鈍温度:800〜950℃とすることが好ましい。
Next, the state of precipitation of MnS was investigated. When the number of precipitates per unit area: 1 cm 2 was less than 50, the effect of reducing the roughness was poor. On the other hand, when the number was more than 400, workability and corrosion resistance were reduced. Turned out to be.
Therefore, the ferritic stainless steel sheet used in the present invention has 50 to 400 MnS having a particle size of 0.05 μm or more and 1 μm or less per 1 cm 2 .
In addition, in order to control the particle diameter and the number of precipitations of MnS within the above ranges, the processing temperature of each step of hot-rolled sheet annealing and cold-rolled sheet annealing is important. Preferably, the temperature is 850 to 1000 ° C. and the cold rolled sheet annealing temperature is 800 to 950 ° C.

次に、本発明で使用するフェライト系ステンレス鋼板の製造方法について説明する。
本発明では、上述したとおりフェライト相の平均粒径およびMnSの析出分散状態が重要であり、そのために上述した工程を上述した条件で実施することが肝要である。また、その他の工程については、特に制限はなく従来公知の方法を適用できる。ちなみに、代表的な製造条件を示すと、以下のとおりである。
Next, the manufacturing method of the ferritic stainless steel plate used by this invention is demonstrated.
In the present invention, as described above, the average particle diameter of the ferrite phase and the precipitation dispersion state of MnS are important. Therefore, it is important to carry out the above-described steps under the above-described conditions. Moreover, there is no restriction | limiting in particular about another process, A conventionally well-known method is applicable. Incidentally, typical production conditions are as follows.

フェライト系ステンレス鋼を1150〜1200℃に加熱後、仕上げ温度を600〜750℃として板厚2.5〜6mmに熱間圧延を施す。このとき粗圧延工程の少なくとも1パスを圧下率40%以上とする。仕上げ圧延後に通常の速度で冷却すると結晶粒径が粗大化するため、仕上圧延後は20℃/s以上の冷却速度で500℃以下まで冷却する。
その後、500℃以下で巻き取り熱間圧延鋼帯とする。巻き取り後の冷却速度は特に規定しないが、475℃付近でいわゆる475℃脆性による靭性の低下が起こるため425〜525℃の範囲の冷却速度は100℃/h以上が望ましい。こうして作製した熱間圧延鋼帯を850〜1000℃の温度で焼鈍し酸洗を行う。次に、圧下率70%以上の冷間圧延を施し、800〜950℃の温度で冷延板焼鈍し、酸洗を行って冷延板として製造する。
Ferritic stainless steel is heated to 1150-1200 ° C, and then hot rolled to a thickness of 2.5-6 mm at a finishing temperature of 600-750 ° C. At this time, at least one pass of the rough rolling process is set to a rolling reduction of 40% or more. When the steel sheet is cooled at a normal rate after the finish rolling, the crystal grain size becomes coarse. Therefore, after the finish rolling, it is cooled to 500 ° C. or less at a cooling rate of 20 ° C./s or more.
Then, it is set as a hot-rolled steel strip wound up at 500 ° C. or less. Although the cooling rate after winding is not particularly defined, the cooling rate in the range of 425 to 525 ° C. is preferably 100 ° C./h or more because so-called 475 ° C. brittleness occurs near 475 ° C. The hot-rolled steel strip thus produced is annealed at a temperature of 850 to 1000 ° C. and pickled. Next, cold rolling with a rolling reduction of 70% or more is performed, cold-rolled sheet annealing is performed at a temperature of 800 to 950 ° C., and pickling is performed to produce a cold-rolled sheet.

さて、本発明では、上記のようにして得られたフェライト系ステンレス鋼板にせん断加工を施すわけであるが、このせん断加工に際し、加工条件を適正に設定することにより、破断面を効果的に低減することができる。以下、本発明の特徴である破断面を低減できるせん断加工方法について説明する。
発明者らは、上記の目的を達成すべく、加工条件を種々変更して数多くの実験を行ったところ、破断面率の低減には、クリアランスがとりわけ重要であることが判明した。
ここに、クリアランスとは、図2に示すように、鋼板の厚みdに対する刃と台の隙間xの比率のことである。
せん断加工の際のクリアランスは、せん断端面中の破断面の面積、およびバリの高さに影響する。種々のクリアランスを検討した結果、本発明のフェライト系ステンレス鋼の場合、12%以下とすれば、破断面の面積が全体の40%以下と小さく、また、バリの高さも低く抑えられ、耐食性が向上することが明らかとなった。従って、せん断加工の際のクリアランスは12%以下とする。
Now, in the present invention, the ferritic stainless steel plate obtained as described above is subjected to shearing, and in this shearing, the fracture surface is effectively reduced by setting the processing conditions appropriately. can do. Hereinafter, a shearing method that can reduce the fracture surface, which is a feature of the present invention, will be described.
In order to achieve the above-mentioned object, the inventors conducted various experiments with various processing conditions, and it was found that clearance is particularly important for reducing the fracture surface ratio.
Here, the clearance is the ratio of the gap x between the blade and the table to the thickness d of the steel plate, as shown in FIG.
The clearance during shearing affects the area of the fracture surface in the shear end face and the height of the burr. As a result of examining various clearances, in the case of the ferritic stainless steel of the present invention, if it is 12% or less, the area of the fracture surface is as small as 40% or less of the whole, and the height of the burr is kept low, and the corrosion resistance is reduced It became clear that it improved. Therefore, the clearance during shearing is 12% or less.

表1の試験No.3の成分組成からなり、平均粒径:21.0μm、0.05〜1μmのMnSの個数187個/cm2で、板厚:1.2mm、幅:60mm、長さ:80mmの供試材を用意した。この供試材を用いて、せん断加工のクリアランスとせん断端面の破断面率について調査を行った。破断面率の測定は、せん断端面の任意の10箇所について板厚方向のせん断面と破断面の長さの比をとり、それらの平均を取って破断面率とした。
結果を図3に示す。
同図に示したとおり、クリアランスの減少に伴って、破断面率が減少し、クリアランス12%以下とすることにより、破断面率を40%以下まで低減することができた。
Consisting of the composition of test No. 3 in Table 1, the average particle size: 21.0 μm, the number of MnS of 0.05-1 μm, 187 / cm 2 , plate thickness: 1.2 mm, width: 60 mm, length: 80 mm A sample was prepared. Using this specimen, the clearance of the shearing process and the fracture surface ratio of the shear end face were investigated. For the measurement of the fracture surface ratio, the ratio of the shear surface in the thickness direction to the length of the fracture surface at any 10 locations on the shear end surface was taken, and the average was taken as the fracture surface ratio.
The results are shown in FIG.
As shown in the figure, as the clearance decreased, the fracture surface ratio decreased. By setting the clearance to 12% or less, the fracture surface ratio could be reduced to 40% or less.

表1に示す種々の成分組成からなるフェライト系ステンレス鋼を溶製した後、1170℃の温度に加熱した後、仕上げ温度:700℃、巻き取り温度:450℃で熱間圧延を行い、板厚:4 mmの熱延板とした。その後、900〜1000℃で焼鈍を行い、酸洗後、冷間圧延で板厚:1.2mmとし、920℃の焼鈍を行い冷延板とした。
かくして得られた冷延板のMnSの結晶粒径と個数をSIMS(二次イオン質量分析計)により測定した。また、フェライト相の粒径は、JIS G 0552に記載の方法に準拠し求めた。
After melting ferritic stainless steels with various composition shown in Table 1 and heating to 1170 ℃, hot rolling at finishing temperature: 700 ℃ and winding temperature: 450 ℃, : 4 mm hot rolled sheet. Then, annealing was performed at 900 to 1000 ° C., pickling, cold rolling to a sheet thickness of 1.2 mm, and annealing at 920 ° C. to obtain a cold rolled sheet.
The crystal grain size and the number of MnS of the cold-rolled sheet thus obtained were measured by SIMS (secondary ion mass spectrometer). The grain size of the ferrite phase was determined in accordance with the method described in JIS G 0552.

以上の製造条件で得られたフェライト系ステンレス鋼板を、80×60mmに切出した。切出しの際には、クリアランスを10%の一定として、せん断加工を行った。切出した後、アセトンによる脱脂を行い、バリの出ている面を上にして傾き:60°でサイクル腐食試験機に配置し、JASO M 609-91に準拠したサイクル腐食試験を6サイクル行った。試験後、せん断端面において腐食が発生していないものを○、腐食の発生がみられたものを×で評価した。   The ferritic stainless steel sheet obtained under the above production conditions was cut into 80 × 60 mm. At the time of cutting, shearing was performed with a constant clearance of 10%. After cutting out, degreasing with acetone was performed, and the burred surface was placed on the cycle corrosion tester at an inclination of 60 °, and a cycle corrosion test according to JASO M 609-91 was performed for 6 cycles. After the test, the case where corrosion did not occur on the shear end face was evaluated as ○, and the case where corrosion was observed was evaluated as ×.

得られた結果を表1に併記する。
同表から明らかなように、本発明の成分組成範囲を満足し、かつ本発明の条件に従いせん断加工を施したものは、いずれも良好なせん断端面耐食性を得ることができた。
試験No.1〜5の結果より、Crの添加率が20.0〜24.0%の範囲でせん断端面の耐食性が良いことがわかる。試験No.6〜11の結果より、Niの添加率が0.05〜6.0%の範囲でせん断端面の耐食性が良いことがわかる。試験No.12〜16の結果より、Cuの添加率が0.3〜0.8%の範囲でせん断端面の耐食性が良いことがわかる。試験No.17〜21の結果より、フェライト相の結晶粒径が5〜25μmの範囲でせん断端面の耐食性が良いことがわかる。試験No.22〜27の結果より、鋼中のMnS個数が1cm2当たり50〜400個でせん断端面の耐食性が良いことがわかる。
The obtained results are also shown in Table 1.
As is clear from the table, all of the components satisfying the component composition range of the present invention and subjected to shearing according to the conditions of the present invention were able to obtain good shear end face corrosion resistance.
From the results of Test Nos. 1 to 5, it can be seen that the corrosion resistance of the shear end face is good when the Cr addition rate is in the range of 20.0 to 24.0%. From the results of Test Nos. 6 to 11, it can be seen that the corrosion resistance of the shear end face is good when the addition rate of Ni is in the range of 0.05 to 6.0%. From the results of Test Nos. 12 to 16, it can be seen that the corrosion resistance of the shear end face is good when the Cu addition rate is in the range of 0.3 to 0.8%. From the results of Test Nos. 17 to 21, it is understood that the corrosion resistance of the shear end face is good when the crystal grain size of the ferrite phase is in the range of 5 to 25 μm. From the results of Test Nos. 22 to 27, it can be seen that the number of MnS in the steel is 50 to 400 per cm 2 and the corrosion resistance of the shear end face is good.

Figure 2010137344
Figure 2010137344

本発明によれば、せん断端面の耐食性処理を行わず大気環境中で使用しても、せん断端面の耐食性に優れるので、エレベーターの内板をはじめとして、ダクトフード、マフラーカッタおよび排水溝のふたなどの用途に対して好適に使用することができる。   According to the present invention, even if it is used in an atmospheric environment without carrying out the corrosion resistance treatment of the shear end face, the shear end face is excellent in corrosion resistance. Therefore, the elevator hood, duct hood, muffler cutter, drain groove cover, etc. It can use suitably for the use of.

せん断端面の表面状態を示した図である。It is the figure which showed the surface state of the shear end face. せん断加工時のクリアランスの説明図である。It is explanatory drawing of the clearance at the time of a shearing process. せん断端面の破断面率に及ぼすクリアランスの影響を示した図である。It is the figure which showed the influence of the clearance gap on the fracture surface ratio of a shear end surface.

Claims (2)

質量%で、C:0.02%以下、Si:0.05〜0.8%、Mn:0.05〜1.0%、P:0.04%以下、Al:0.1%以下、Cr:20〜24%、Cu:0.3〜0.8%、Ni:0.05〜6.0%およびN:0.02%以下を含み、かつS:0.001〜0.1%を含有し、残部がFeおよび不可避的不純物からなり、さらにフェライト相の平均結晶粒径が5〜25μmの範囲で、かつ鋼中に0.05〜1μmの粒径のMnSを1cm当たり50〜400個有するフェライト系ステンレス鋼板をせん断加工するに際し、下記式で表されるクリアランスを、12%以下に抑えることを特徴とするせん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断加工方法。

クリアランス(%)=(x/d)×100
ここで、x:刃と台の隙間(mm)
d:鋼板の厚み(mm)
In mass%, C: 0.02% or less, Si: 0.05 to 0.8%, Mn: 0.05 to 1.0%, P: 0.04% or less, Al: 0.1% or less, Cr: 20 to 24%, Cu: 0.3 to 0.8%, Ni: 0.05-6.0% and N: not more than 0.02% and S: 0.001-0.1%, the balance is made of Fe and inevitable impurities, and the average crystal grain size of the ferrite phase is in the range of 5-25 μm In addition, when shearing a ferritic stainless steel sheet having 50 to 400 MnS particles having a particle size of 0.05 to 1 μm per cm 2 in the steel, the clearance represented by the following formula is suppressed to 12% or less. A method for shearing ferritic stainless steel sheet having excellent corrosion resistance on the shear end face.
Record
Clearance (%) = (x / d) x 100
Where x: gap between blade and base (mm)
d: Steel sheet thickness (mm)
前記鋼板が、さらに質量%でNb:0.005〜0.6%、Ti:0.005〜0.6%、Zr:0.5%以下およびMo:3.0%以下のうちから選んだ1または2種以上を含有することを特徴とする請求項1に記載のせん断端面の耐食性に優れるフェライト系ステンレス鋼板のせん断加工方法。   The steel sheet further includes one or more selected from Nb: 0.005 to 0.6%, Ti: 0.005 to 0.6%, Zr: 0.5% or less, and Mo: 3.0% or less in mass%. The shearing method of a ferritic stainless steel sheet excellent in corrosion resistance of the shear end face according to claim 1.
JP2008318131A 2008-12-15 2008-12-15 Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance Withdrawn JP2010137344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318131A JP2010137344A (en) 2008-12-15 2008-12-15 Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318131A JP2010137344A (en) 2008-12-15 2008-12-15 Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance

Publications (1)

Publication Number Publication Date
JP2010137344A true JP2010137344A (en) 2010-06-24

Family

ID=42347920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318131A Withdrawn JP2010137344A (en) 2008-12-15 2008-12-15 Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance

Country Status (1)

Country Link
JP (1) JP2010137344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170115092A (en) 2015-03-26 2017-10-16 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 A ferrite-austenitic stainless steel sheet having excellent shear cross-section corrosion resistance
CN108348990A (en) * 2015-11-12 2018-07-31 株式会社Posco Austenitic stainless steel and its manufacturing method with excellent resistance to tangerine peel
CN110181112A (en) * 2018-02-23 2019-08-30 宝山钢铁股份有限公司 Cross cutting scissors blade clearance automatic control system
CN110666238A (en) * 2019-09-26 2020-01-10 太原科技大学 Shear blade gap adjusting device in hot shearing process of hobbing shear and calculating method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170115092A (en) 2015-03-26 2017-10-16 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 A ferrite-austenitic stainless steel sheet having excellent shear cross-section corrosion resistance
CN108348990A (en) * 2015-11-12 2018-07-31 株式会社Posco Austenitic stainless steel and its manufacturing method with excellent resistance to tangerine peel
CN110181112A (en) * 2018-02-23 2019-08-30 宝山钢铁股份有限公司 Cross cutting scissors blade clearance automatic control system
CN110181112B (en) * 2018-02-23 2021-02-19 宝山钢铁股份有限公司 Automatic control system for blade clearance of cross-cut shear
CN110666238A (en) * 2019-09-26 2020-01-10 太原科技大学 Shear blade gap adjusting device in hot shearing process of hobbing shear and calculating method thereof

Similar Documents

Publication Publication Date Title
KR101928636B1 (en) Rolled ferritic stainless-steel plate, process for producing same, and flange component
JP5315811B2 (en) Ferritic stainless steel plate with excellent resistance to sulfuric acid corrosion
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP6379282B2 (en) Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
EP2548988B1 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
EP2980251B1 (en) Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2013133497A (en) High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP2009068104A (en) Ferritic stainless steel sheet excellent in punchability, and manufacturing method therefor
KR101712333B1 (en) Ferritic stainless steel sheet with excellent blanking workability and process for manufacturing same
EP3604596A1 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
JP6566678B2 (en) Method for producing ferritic stainless steel sheet with excellent corrosion resistance at end face of burring part
JP2010137344A (en) Shearing method of ferritic stainless steel plate having excellent shear-end-face corrosion resistance
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP2012117084A (en) Highly oxidation-resistant ferrite stainless steel plate
JP5375069B2 (en) Ferritic stainless steel plate with excellent corrosion resistance on the shear end face
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
KR102590079B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
WO2018198835A1 (en) Material for cold-rolled stainless steel sheet, and production method therefor
JP2019173069A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE
JP2019173070A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE
JP6146401B2 (en) Ferritic stainless steel sheet
US20170275722A1 (en) Ferritic stainless steel sheet
JP6895864B2 (en) Duplex stainless steel, duplex stainless steel plate and duplex stainless linear steel with excellent corrosion resistance on sheared surfaces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306