JP2016025799A - System supervisory control device - Google Patents

System supervisory control device Download PDF

Info

Publication number
JP2016025799A
JP2016025799A JP2014150062A JP2014150062A JP2016025799A JP 2016025799 A JP2016025799 A JP 2016025799A JP 2014150062 A JP2014150062 A JP 2014150062A JP 2014150062 A JP2014150062 A JP 2014150062A JP 2016025799 A JP2016025799 A JP 2016025799A
Authority
JP
Japan
Prior art keywords
power
accommodation
demand
section
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014150062A
Other languages
Japanese (ja)
Other versions
JP6356517B2 (en
Inventor
小坂 忠義
Tadayoshi Kosaka
忠義 小坂
勝弘 松田
Katsuhiro Matsuda
勝弘 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2014150062A priority Critical patent/JP6356517B2/en
Publication of JP2016025799A publication Critical patent/JP2016025799A/en
Application granted granted Critical
Publication of JP6356517B2 publication Critical patent/JP6356517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce inconvenience of a user as well as prevent overload at the time of power return.SOLUTION: A calculation unit, on the basis of information on a plurality of transfer switches, determines a plurality of transfer path candidates, each of which is a candidate for a transfer path including a transfer switch between a power return section and a power distribution line other than a specific power distribution line of a plurality of power distribution lines; calculates, for each transfer path candidate of the plurality of transfer path candidates, preparation power, which is an amount of power capable of being increased in addition to power being supplied to the transfer path candidate; calculates, as demand power, the sum of power consumption of loads before an accident in the power return section; and selects, as a transfer path, a transfer path candidate having preparation power larger than the demand power from the plurality of transfer path candidates. A communication unit transmits a switch-on instruction to a transfer switch included in the selected transfer path to transfer power to the power return section through the transfer path.SELECTED DRAWING: Figure 1

Description

本発明は、配電系統の監視および制御を行う系統監視制御技術に関する。   The present invention relates to a system monitoring control technique for monitoring and controlling a distribution system.

負荷と太陽光発電設備などの分散電源とが混在する配電系統において、事故による停電状態が発生した場合、分散電源は安全のために自動的に停止する。その後、事故復旧操作が行われても、分散電源の起動には時間が掛かる。したがって、事故復旧操作の瞬間に過負荷状態となって再停電する恐れがある。   In a power distribution system in which a load and a distributed power source such as a photovoltaic power generation facility coexist, when a power failure occurs due to an accident, the distributed power source automatically stops for safety. After that, even if an accident recovery operation is performed, it takes time to start the distributed power supply. Therefore, there is a risk of a power failure due to an overload at the moment of the accident recovery operation.

特許文献1には、配電線が過負荷状態にならないように、特定需要家の負荷を遮断した状態で、分散電源が存在する配電線の配電線遮断器を投入して事故復旧を行う配電系統監視制御装置が記載されている。   Patent Document 1 discloses a power distribution system that restores an accident by inserting a distribution line breaker of a distribution line in which a distributed power source exists in a state where the load of a specific consumer is interrupted so that the distribution line does not become overloaded. A supervisory control device is described.

特許第4711651号公報Japanese Patent No. 4711651

特許文献1の技術では、分散電源が回復するまで特定需要家の負荷を連系させないため、特定需要家の停電状態が長時間に渡り、不便を強いられる事となる。自動回復機能が有効である小型の分散電源は数分で回復するが、大型の分散電源は管理者により手動で回復されるため、特定需要家の停電状態が数時間に及ぶ場合も考えられる。本発明の目的は、負荷と太陽光発電設備などの分散電源とが混在する配電系統において、事故による停電状態が発生した場合に、各需要家に平等に電力を復電させる電力融通手段を提供するものである。   In the technique of Patent Document 1, since the load of the specific customer is not linked until the distributed power source is restored, the power outage state of the specific customer is prolonged and inconvenience is imposed. A small distributed power supply for which the automatic recovery function is effective can be recovered in a few minutes. However, since a large distributed power supply is manually recovered by an administrator, a power outage state of a specific consumer may take several hours. An object of the present invention is to provide a power interchange means for evenly restoring power to each consumer when a power outage due to an accident occurs in a power distribution system in which a load and a distributed power source such as a photovoltaic power generation facility coexist. To do.

上記課題を解決するために、本発明の系統監視制御装置は、複数の配電線のそれぞれが電力系統に接続されており、前記複数の配電線の間に、平常時に開放される融通用開閉器が設けられており、前記複数の配電線のそれぞれが、平常時に投入される複数の配電用開閉器により分割可能な複数の区間を含み、前記複数の配電線の監視および制御を行う系統監視制御装置であって、前記複数の配電線内の区間に接続されている負荷の消費電力と、前記複数の配電線内の区間に接続されている分散電源の発電電力とを受信する通信部と、前記複数の配電線内の事故を検出した場合、前記事故が発生した区間を事故区間として特定し、前記事故区間を含む配電線内で前記事故区間以外の区間を復電区間として選択する演算部と、を備える。前記通信部は、前記事故区間と前記復電区間の間の配電用開閉器へ開放の指示を送信することにより、前記事故区間と前記復電区間の間を切断し、前記演算部は、前記複数の融通用開閉器の情報に基づいて、前記複数の配電線の中の前記特定配電線以外の配電線と前記復電区間との間の融通用開閉器を含む融通経路の候補である複数の融通経路候補を決定し、前記複数の融通経路候補のそれぞれの融通経路候補に対し、前記融通経路候補へ供給されている電力の増加可能分である予備力を算出し、前記事故前の前記復電区間内の負荷の消費電力の合計を需要電力として算出し、前記複数の融通経路候補の中で前記需要電力より大きい予備力を有する融通経路候補を融通経路として選択し、前記通信部は、前記融通経路に含まれる融通用開閉器へ投入の指示を送信することにより、前記融通経路から前記復電区間へ電力を融通する。   In order to solve the above-described problem, a system monitoring and control device according to the present invention is a versatile switch in which each of a plurality of distribution lines is connected to a power system, and is normally opened between the plurality of distribution lines. System monitoring control for monitoring and controlling the plurality of distribution lines, each of which includes a plurality of sections that can be divided by a plurality of distribution switches that are normally inserted. A communication unit that receives power consumption of a load connected to a section in the plurality of distribution lines and generated power of a distributed power source connected to a section in the plurality of distribution lines; When an accident in the plurality of distribution lines is detected, a calculation unit that identifies the section in which the accident has occurred as an accident section, and selects a section other than the accident section as a power recovery section in the distribution line including the accident section And comprising. The communication unit disconnects between the accident section and the power recovery section by transmitting an opening instruction to a switch for distribution between the accident section and the power recovery section, A plurality of candidates for an accommodation path including an accommodation switch between a distribution line other than the specific distribution line and the power recovery section in the plurality of distribution lines based on information on the plurality of exchange switches And determining a reserve capacity that is an increase in power supplied to the accommodation path candidate for each of the accommodation path candidates of the plurality of accommodation path candidates. The total power consumption of the load in the power recovery section is calculated as demand power, and an accommodation path candidate having reserve capacity larger than the demand power is selected as an accommodation path among the plurality of accommodation path candidates, and the communication unit The switch for accommodation included in the accommodation path By transmitting an indication of the input, to interchange power from the interchange path to the power recovery section.

本発明によれば、復電時の過負荷を防止するとともに、停電による需要家の不便を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, while preventing the overload at the time of a power recovery, the inconvenience of the consumer by a power failure can be reduced.

実施例の配電系統の構成を示す。The structure of the power distribution system of an Example is shown. 配電系統監視制御装置500の機能構成を示す。The function structure of the power distribution system monitoring and control apparatus 500 is shown. 電力融通方法計算手段505の動作を示す。The operation of the power interchange method calculation means 505 is shown. 電力融通ルート候補リスト614を示す。A power interchange route candidate list 614 is shown. 電力融通中電力監視手段511の動作を示す。The operation of the power monitoring means 511 during power interchange is shown. 電力融通と需要抑制と発電抑制の関係を示す。The relationship between power interchange, demand control and power generation control is shown. 最大発電可能電力把握手段507の第一具体例を示す。A first specific example of the maximum power generation possible power grasping means 507 will be shown. 最大発電可能電力把握手段507の第二具体例を示す。A second specific example of the maximum power generation possible power grasping means 507 will be shown. 最大発電可能電力把握手段507の第三具体例を示す。A third specific example of the maximum power generation possible power grasping means 507 will be shown. 第一ケースのタイミングチャートを示す。The timing chart of a 1st case is shown. 第二ケースのタイミングチャートを示す。The timing chart of a 2nd case is shown.

本発明は、次の用語により表現されることがある。電力系統は、変電所301、配電用変電所302、303、304などに対応する。融通用開閉器は、気中開閉器351、352、352、354、355、356などに対応する。配電用開閉器は、気中開閉器311、312、313、314などに対応する。融通経路は、電力融通ルートなどに対応する。融通経路候補は、電力融通ルート候補などに対応する。予備力は、合計予備力Y1+Y2などに対応する。系統監視制御装置は、配電系統監視制御装置500などに対応する。通信部は、通信部553などに対応する。演算部は、演算部552および記憶部551などに対応する。   The present invention may be expressed by the following terms. The power system corresponds to the substation 301, the distribution substations 302, 303, and 304. The interchangeable switch corresponds to the air switches 351, 352, 352, 354, 355, 356, and the like. The power distribution switch corresponds to the air switches 311, 312, 313, and 314. The accommodation path corresponds to a power accommodation route or the like. The accommodation route candidate corresponds to a power accommodation route candidate or the like. The reserve power corresponds to the total reserve power Y1 + Y2. The system monitoring control device corresponds to the distribution system monitoring control device 500 and the like. The communication unit corresponds to the communication unit 553 and the like. The calculation unit corresponds to the calculation unit 552, the storage unit 551, and the like.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例の配電系統の構成を示す。   FIG. 1 shows a configuration of a power distribution system of the embodiment.

変電所301は、上位変電所と配電用変電所302、303、304に接続されており、上位変電所からの電圧100kVを66kVに下げて配電用変電所302−304に送電する。以下の説明において配電用変電所302−304から上流を電力系統と呼び、それより下流を配電系統と呼ぶことがある。   The substation 301 is connected to the upper substation and the distribution substations 302, 303, and 304. The voltage from the upper substation is lowered to 66 kV and transmitted to the distribution substations 302 to 304. In the following description, the upstream from the distribution substation 302-304 may be referred to as a power system, and the downstream from it may be referred to as a distribution system.

配電用変電所302は、上位変電所と配電線に接続されており、電圧をさらに6.6kVまで下げて配電線802へ送電する。配電線802上には、所々に配電用の気中開閉器311−314が設置されている。気中開閉器311−314は、平常時はON(投入)であるが、停電発生時に停電区間を最小限の区間に限定する。配電線802のうち、気中開閉器311の下流には、柱上変圧器321を通して、エリア401内の一般家庭の負荷や50kW未満の小型の太陽光発電装置が接続されている。配電線802のうち、気中開閉器312の下流には、受電キュービクル111を通して、エリア402内の50kW以上2MW未満の大型の太陽光発電装置101が接続されている。配電線802のうち、気中開閉器313の下流には、柱上変圧器322を通して、エリア403内の一般家庭の負荷201、202、203や小型の太陽光発電装置102、103が接続されている。なお、1つの柱上変圧器に接続されている一般家庭や太陽光発電装置は、通常、この図に示されている数よりも多いが、ここでは省略している。   The distribution substation 302 is connected to the upper substation and the distribution line, and further reduces the voltage to 6.6 kV and transmits power to the distribution line 802. On the distribution line 802, air switches 311 to 314 for distribution are installed in places. The air switches 311 to 314 are normally ON (turned on), but limit the power outage section to the minimum section when a power outage occurs. The distribution line 802 is connected downstream of the air switch 311 through a pole transformer 321 to a load of a general household in the area 401 and a small-sized photovoltaic power generation apparatus of less than 50 kW. A large-scale photovoltaic power generation apparatus 101 of 50 kW or more and less than 2 MW in the area 402 is connected to the downstream side of the air switch 312 in the distribution line 802 through the power receiving cubicle 111. Out of the distribution line 802, ordinary household loads 201, 202, 203 and small solar power generation devices 102, 103 in the area 403 are connected to the downstream of the air switch 313 through a pole transformer 322. Yes. Note that the number of general households and photovoltaic power generation devices connected to one pole transformer is usually larger than the number shown in this figure, but is omitted here.

配電用変電所303は、上位変電所と配電線に接続されており、電圧を6.6kVまで下げて配電線803へ送電する。配電線803には、受電キュービクル112を通して、エリア404内の大型の太陽光発電装置104や工場などの大型の負荷204が接続されている。その下流の配電線803には、柱上変圧器323を通して、エリア405内の一般家庭の負荷や小型の太陽光発電装置105、106が接続されている。   The distribution substation 303 is connected to the upper substation and the distribution line, and transmits the power to the distribution line 803 by reducing the voltage to 6.6 kV. A large load 204 such as a large photovoltaic power generation device 104 or a factory in the area 404 is connected to the distribution line 803 through the power receiving cubicle 112. The downstream distribution line 803 is connected to a general household load in the area 405 and small solar power generation devices 105 and 106 through a pole transformer 323.

配電用変電所304は、上位変電所と配電線に接続されており、電圧を6.6kVまで下げて配電線804へ送電する。   The distribution substation 304 is connected to the upper substation and the distribution line, and transmits the power to the distribution line 804 with the voltage lowered to 6.6 kV.

配電線802、803の間は、電力融通用の気中開閉器351、352によって接続されている。配電線803、804の間は、電力融通用の気中開閉器353、356によって接続されている。配電線802、804の間は、電力融通用の気中開閉器355によって接続されている。配電線802と、図示しない他の配電線との間は、電力融通用の気中開閉器354によって接続されている。気中開閉器351、352、353、354、355、356は、平常時にはOFF(開放)の状態であり、配電線間は切り離されている。このように平常時には各配電線(支線)が独立していることで、停電発生時の停電箇所を迅速に同定できるという利点がある。   The distribution lines 802 and 803 are connected by air switches 351 and 352 for power interchange. The distribution lines 803 and 804 are connected by air switches 353 and 356 for power interchange. The distribution lines 802 and 804 are connected by an air switch 355 for power interchange. The distribution line 802 and another distribution line (not shown) are connected by an air switch 354 for power interchange. The air switches 351, 352, 353, 354, 355, and 356 are normally in an OFF (open) state, and the distribution lines are disconnected. As described above, since each distribution line (branch line) is independent in normal times, there is an advantage that a power outage point at the time of a power outage can be quickly identified.

配電系統監視制御装置500は、変電所301毎に、変電所301を管理する事業所に設けられていても良いし、中央給電指令所に設けられていても良い。配電系統監視制御装置500は、通信ネットワーク800を介して変電所301に接続されている。配電系統監視制御装置500は更に、通信ネットワーク800を介して、配電用変電所302、302、304、その下流の気中開閉器、一般家庭、太陽光発電装置、受電キュービクル、太陽光発電装置などに接続されている。通信ネットワーク800は、電力線と共に設けられていても良いし、インターネットや無線通信回線など、他の通信回線であっても良い。   The distribution system monitoring and control device 500 may be provided for each substation 301 at a business site that manages the substation 301 or may be provided at a central power supply command station. The distribution system monitoring control device 500 is connected to the substation 301 via the communication network 800. The distribution system monitoring and control device 500 is further connected to a distribution substation 302, 302, 304, an air switch in the downstream, a general household, a solar power generation device, a power receiving cubicle, a solar power generation device, etc. via a communication network 800. It is connected to the. The communication network 800 may be provided together with a power line, or may be another communication line such as the Internet or a wireless communication line.

配電系統監視制御装置500は、管理下の配電線802、803、804内の負荷や発電機から測定値を受信し、測定値に基づいて事故を検出する。更に、配電系統監視制御装置500は、事故の検出時や復旧時において、気中開閉器や太陽光発電装置や負荷へ指令を送信することによりこれらを制御する。太陽光発電装置は、太陽光発電パネルと、太陽光発電パネルにより発電された電力を変換するPCS(Power Conditioning Subsystem)とを含む。PCSは、配電系統監視制御装置500からの指令を受信し、指令に従って配電線へ出力する電力を制御し、電力に関する計測値を配電系統監視制御装置500へ送信する。   The distribution system monitoring and control device 500 receives measured values from loads and generators in the distribution lines 802, 803, and 804 under management, and detects an accident based on the measured values. Furthermore, the distribution system monitoring and control device 500 controls these by transmitting commands to the air switch, solar power generation device, and load when an accident is detected or recovered. The solar power generation device includes a solar power generation panel and a PCS (Power Conditioning Subsystem) that converts electric power generated by the solar power generation panel. The PCS receives a command from the distribution system monitoring and control device 500, controls the power output to the distribution line according to the command, and transmits a measurement value related to the power to the distribution system monitoring and control device 500.

太陽光発電装置が大量に普及した場合、配電線の電圧や電力系統全体の周波数の変化を低減するために太陽光発電装置の出力を抑制する場合がある。本実施例において、配電系統監視制御装置500は、発電抑制率を指令として太陽光発電装置へ送信することにより、太陽光発電装置の出力を抑制する。   When a large number of solar power generation devices are used, the output of the solar power generation device may be suppressed in order to reduce changes in the voltage of the distribution line and the frequency of the entire power system. In the present embodiment, the power distribution system monitoring and control device 500 suppresses the output of the solar power generation device by transmitting the power generation suppression rate as a command to the solar power generation device.

配電系統監視制御装置500は、配電線802の電圧に基づいて事故を検出すると、配電線802上のすべての気中開閉器311、312、313、314をOFFにする。その後、配電系統監視制御装置500は、上流の気中開閉器から順にONにすることにより、再び電力が供給される区間を追加し、再度事故が検出された場合、追加された区間を停電区間(事故区間)として特定する。   When the distribution system monitoring and control apparatus 500 detects an accident based on the voltage of the distribution line 802, it turns off all the air switches 311, 312, 313, and 314 on the distribution line 802. After that, the power distribution system monitoring and control device 500 adds the section to which power is supplied again by turning it on in order from the upstream air switch, and when an accident is detected again, the added section is the power outage section. Identified as (accident section).

図2は、配電系統監視制御装置500の構成を示す。   FIG. 2 shows a configuration of the power distribution system monitoring and control apparatus 500.

配電系統監視制御装置500は、例えばコンピュータであり、メモリなどの記憶部551と、CPU(Central Processing Unit)などの演算部552と、NIC(Network Interface Card)などの通信部553とを含む。記憶部551は、配電系統監視制御機能のためのプログラムおよびデータを格納する。演算部552は、記憶部551に格納されているプログラムおよびデータに従って、配電系統監視制御機能を実行する。通信部553は、演算部552からの指示に従って通信ネットワーク800との通信を行う。なお、配電系統監視制御機能のためのプログラムが、コンピュータにより読み取り可能な記憶媒体に格納され、コンピュータが記憶媒体からプログラムを読み出しても良い。   The distribution system monitoring control device 500 is, for example, a computer, and includes a storage unit 551 such as a memory, a calculation unit 552 such as a CPU (Central Processing Unit), and a communication unit 553 such as a NIC (Network Interface Card). The storage unit 551 stores a program and data for the distribution system monitoring control function. The calculation unit 552 executes the distribution system monitoring control function according to the program and data stored in the storage unit 551. The communication unit 553 communicates with the communication network 800 in accordance with instructions from the calculation unit 552. A program for the distribution system monitoring control function may be stored in a computer-readable storage medium, and the computer may read the program from the storage medium.

配電系統監視制御装置500は、機能として、消費電力監視手段501と、分散電源発電電力監視手段502と、区間電力計算手段503と、区間電力データベース504と、電力融通方法計算手段505と、最大発電可能電力把握手段507と、開閉器操作手段508と、発電抑制率設定手段509と、需要抑制率通知手段510と、電力融通中電力監視手段511と、最大送電可能電力把握手段512とを含む。   The distribution system monitoring and control device 500 functions as a power consumption monitoring unit 501, a distributed power generation power monitoring unit 502, a section power calculation unit 503, a section power database 504, a power interchange method calculation unit 505, and a maximum power generation. It includes a possible power grasping means 507, a switch operating means 508, a power generation suppression rate setting means 509, a demand restraint rate notification means 510, a power interchangeable power monitoring means 511, and a maximum transmittable power grasping means 512.

消費電力監視手段501は、負荷201、202、203など、管理下の全区間内の負荷から、通信ネットワーク800および通信部553を介して消費電力の測定値を受信する。分散電源発電電力監視手段502は、太陽光発電装置101、102、103、104、105、106など、管理下の全区間の分散電源から、通信ネットワーク800および通信部553を介して分散電源の発電電力の測定値を受信する。区間電力計算手段503は、区間毎に、区間内の負荷の消費電力の合計である合計消費電力を算出し、区間内の分散電源の発電電力の合計である合計発電電力を算出し、合計消費電力から合計発電電力を減じた値を需要電力として算出する。言い換えれば、或る区間の需要電力は、当該区間が当該区間外から受電する電力である。区間電力計算手段503は、合計消費電力、合計発電電力、需要電力を区間電力データベース504に記録する。   The power consumption monitoring unit 501 receives measured values of power consumption via the communication network 800 and the communication unit 553 from loads in all sections under management such as the loads 201, 202, and 203. The distributed power generation power monitoring means 502 generates power from the distributed power source via the communication network 800 and the communication unit 553 from the distributed power sources of all sections under management such as the solar power generation devices 101, 102, 103, 104, 105, 106. Receive power measurements. The section power calculation means 503 calculates, for each section, the total power consumption that is the sum of the power consumption of the loads in the section, calculates the total generated power that is the sum of the generated power of the distributed power sources in the section, and the total consumption The value obtained by subtracting the total generated power from the power is calculated as demand power. In other words, the demand power in a certain section is the power that the section receives from outside the section. The section power calculation means 503 records the total power consumption, the total generated power, and the demand power in the section power database 504.

消費電力監視手段501、分散電源発電電力監視手段502、区間電力計算手段503の動作は、停電の発生と関係なく、常時一定時間毎に計測し、区間電力データベース504を更新していく。   The operations of the power consumption monitoring unit 501, the distributed power generation power monitoring unit 502, and the section power calculation unit 503 are always measured at regular intervals regardless of the occurrence of a power failure, and the section power database 504 is updated.

区間電力データベース504は更に、配電線内の気中開閉器と、配電線間の気中開閉器の情報とを格納する。   The section power database 504 further stores an air switch in the distribution line and information on the air switch between the distribution lines.

最大送電可能電力把握手段512は、通信ネットワーク800および通信部553を介して、配電用変電所302、303、304のそれぞれから、最大送電可能電力と、現在の送電電力との測定値を受信する。なお、管理者が、電力会社等から通知された最大送電可能電力および送電電力を、最大送電可能電力把握手段512へ入力しても良い。最大発電可能電力把握手段507は、通信ネットワーク800および通信部553を介して、分散電源により発電可能な電力である最大発電可能電力を取得する。最大発電可能電力把握手段507の詳細については後述する。   Maximum transmittable power grasping means 512 receives measured values of the maximum transmittable power and the current transmitted power from each of distribution substations 302, 303, and 304 via communication network 800 and communication unit 553. . The administrator may input the maximum transmittable power and the transmitted power notified from the power company or the like to the maximum transmittable power grasping means 512. The maximum power generation possible power grasping means 507 acquires the maximum power generation possible power that is the power that can be generated by the distributed power source via the communication network 800 and the communication unit 553. Details of the maximum power generation possible power grasping means 507 will be described later.

電力融通方法計算手段505は、電力融通を行う際、区間電力データベース504から、電力融通による復電の対象となる区間である復電区間の停電直前の合計消費電力を読み取る。配電線802と柱上変圧器321の間で短絡801が発生したケースにおいて、復電区間は、気中開閉器312、314の間の区間であり、エリア402、403を含む。電力融通方法計算手段505は、電力系統からの最大送電可能電力と、送電電力とを、最大送電可能電力把握手段512から入手する。更に、電力融通方法計算手段505は、復電区間へ電力融通可能な最大発電可能電力を最大発電可能電力把握手段507から入手し、分散電源の発電電力を分散電源発電電力監視手段502から入手する。電力融通方法計算手段505は、これらのデータより、電力融通ルートを選定する。開閉器操作手段508は、選定された電力融通ルートに従い、通信ネットワーク800および通信部553を介して、気中開閉器を操作することにより、電力融通を実行する。これにより、電力系統から融通元の配電線へ導電電力が増加するため、発電抑制率設定手段509は、通信ネットワーク800および通信部553を介して、融通元の配電線内の太陽光発電装置の発電抑制率を減少させる指示を送信する。また、電力融通だけで復電区間の電力を賄えない場合、需要抑制率通知手段510は、通信ネットワーク800および通信部553を介して、復電区間内の負荷、もしくは融通元の配電線に接続されている負荷の消費電力を抑制する指示を送信する。   When performing power accommodation, the power accommodation method calculation unit 505 reads the total power consumption immediately before a power failure in the power recovery section, which is a section subject to power recovery by power accommodation, from the section power database 504. In a case where a short circuit 801 occurs between the distribution line 802 and the pole transformer 321, the power recovery section is a section between the air switches 312 and 314 and includes areas 402 and 403. The power interchange method calculating unit 505 obtains the maximum transmittable power from the power system and the transmitted power from the maximum transmittable power grasping unit 512. Further, the power accommodation method calculation unit 505 obtains the maximum power that can be generated to the power recovery section from the maximum power generation grasping unit 507 and obtains the generated power of the distributed power source from the distributed power generation power monitoring unit 502. . The power accommodation method calculation means 505 selects a power accommodation route from these data. The switch operating means 508 executes power interchange by operating the air switch via the communication network 800 and the communication unit 553 according to the selected power interchange route. As a result, the conductive power increases from the electric power system to the distribution source distribution line, so that the power generation suppression rate setting means 509 is connected to the solar power generation device in the distribution source distribution line via the communication network 800 and the communication unit 553. An instruction to reduce the power generation suppression rate is transmitted. Further, when the power in the power recovery section cannot be covered only by power interchange, the demand restraint rate notifying unit 510 sends the load in the power recovery section or the distribution source power line via the communication network 800 and the communication unit 553. An instruction for suppressing power consumption of the connected load is transmitted.

電力融通方法計算手段505の処理が終わると、電力融通中電力監視手段511が動作を開始する。電力融通中電力監視手段511は、電力融通中の合計消費電力と合計発電電力とを監視し、発電抑制率設定手段509、需要抑制率通知手段510を用いて融通元および融通先の配電線の電圧が所定の電圧範囲内になるように調整を行う。また、電力融通中電力監視手段511は、融通する電力を縮小できると判定した場合、電力融通方法計算手段505に処理を戻して、電力融通ルートの再設定を行う。   When the processing of the power interchange method calculation unit 505 is finished, the power monitoring unit 511 during power interchange starts its operation. The power interchanged power monitoring unit 511 monitors the total power consumption and the total generated power during power interchange, and uses the power generation suppression rate setting unit 509 and the demand suppression rate notification unit 510 to determine the distribution source and distribution destination distribution lines. Adjustment is performed so that the voltage is within a predetermined voltage range. Further, when it is determined that the power to be interchanged can be reduced, the power monitoring unit 511 during power interchange returns the processing to the power interchange method calculation unit 505 to reset the power interchange route.

以下、事故を検出した場合に行われる電力融通方法計算手段505の動作について説明する。   Hereinafter, the operation of the power interchange method calculation means 505 performed when an accident is detected will be described.

図3は、電力融通方法計算手段505の動作を示す。   FIG. 3 shows the operation of the power interchange method calculation means 505.

工程601で電力融通方法計算手段505は、事故発生に応じて動作を開始する。   In step 601, the power interchange method calculation unit 505 starts operation in response to the occurrence of an accident.

工程602で電力融通方法計算手段505は、停電箇所の同定を行い、停電区間前後の気中開閉器311、312をOFFとし、配電線802において気中開閉器311、312より上流の開閉器が存在すればONにする。工程603で電力融通方法計算手段505は、気中開閉器の情報に基づいて、復電区間への電力融通ルートの候補である電力融通ルート候補を選定し、電力融通ルート候補リスト614を作成し、電力融通ルート候補の中から一つの電力融通ルートを選択する。   In step 602, the power interchange method calculation means 505 identifies the location of the power outage, turns off the air switches 311 and 312 before and after the power outage section, and switches the upstream of the air switches 311 and 312 in the distribution line 802. If it exists, turn it ON. In step 603, the power interchange method calculation means 505 selects a power interchange route candidate that is a candidate for a power interchange route to the power recovery section based on the information in the air switch, and creates a power interchange route candidate list 614. Then, one power interchange route is selected from the power interchange route candidates.

図4は、電力融通ルート候補リスト614を示す。   FIG. 4 shows a power interchange route candidate list 614.

電力融通ルート候補リスト614は、電力融通ルート候補毎のエントリを有する。或る電力融通ルート候補のエントリは、電力融通ルート候補を示す候補番号と、当該電力融通ルート候補を接続するために閉じられる気中開閉器を示す開閉器番号と、電力系統からの電力融通の予備力である系統予備力Y1[MW]と、分散電源からの電力融通の予備力である分散電源予備力Y2[MW]と、合計予備力Y1+Y2[MW]とを示す。電力系統または分散電源を供給元とする予備力は、当該供給元から当該電力融通ルート候補へ供給可能な最大の電力から、当該供給元から当該電力融通ルート候補へ供給されている電力を減じた値であり、当該供給元から当該電力融通ルート候補へ供給されている電力の増加可能分である。電力融通ルート候補の合計予備力は、当該電力融通ルート候補へ供給されている電力の増加可能分である。この合計予備力を、電力融通ルート候補から復電区間へ融通する電力に充てることができる。   The power interchange route candidate list 614 has an entry for each power interchange route candidate. The entry of a certain power interchange route candidate includes a candidate number indicating a power interchange route candidate, a switch number indicating an air switch that is closed to connect the power interchange route candidate, and a power interchange from the power system. A system reserve Y1 [MW], which is a reserve, a distributed power reserve Y2 [MW], which is a reserve for power interchange from a distributed power supply, and a total reserve Y1 + Y2 [MW] are shown. The reserve capacity with the power system or distributed power source as the supply source is obtained by subtracting the power supplied from the supply source to the power interchange route candidate from the maximum power that can be supplied from the supply source to the power interchange route candidate. This is a value that can be increased from the supply source to the power interchange route candidate. The total reserve capacity of the power interchange route candidate is an increase of the power supplied to the power interchange route candidate. This total reserve capacity can be used for electric power to be accommodated from the power interchange route candidate to the power recovery section.

電力融通方法計算手段505は、電力融通ルート候補毎に、最大送電可能電力把握手段512により得られる最大送電可能電力から送電電力を減じた値を、系統予備力Y1として算出する。電力融通方法計算手段505は、電力融通ルート候補毎に、分散電源の最大発電可能電力把握手段507により得られる最大発電可能電力から、分散電源発電電力監視手段502により得られる発電電力を減じた値を、分散電源予備力Y2として算出する。電力融通方法計算手段505は、電力融通ルート候補毎に、系統予備力Y1と分散電源予備力Y2の和を合計予備力として算出する。   The power interchange method calculation unit 505 calculates, for each power interchange route candidate, a value obtained by subtracting the transmitted power from the maximum transmittable power obtained by the maximum transmittable power grasping unit 512 as the system reserve power Y1. The power accommodation method calculation means 505 is a value obtained by subtracting the generated power obtained by the distributed power generation power monitoring means 502 from the maximum power available power obtained by the maximum power generation available power grasping means 507 of the distributed power source for each power accommodation route candidate. Is calculated as the distributed power reserve Y2. The power interchange method calculation means 505 calculates the sum of the system reserve Y1 and the distributed power reserve Y2 as the total reserve for each power interchange route candidate.

例えば、工程603で電力融通方法計算手段505は、電力融通ルート候補リスト614の中で最も合計予備力の小さい電力融通ルート候補を電力融通ルートとして選択し、次の工程に進む。工程604で電力融通方法計算手段505は、区間電力データベース504から融通先である復電区間の需要電力D1を求める。ここで、電力融通方法計算手段505は、復電区間内の負荷が復旧し、復電区間内の分散電源は復旧していないとして、復電区間内の合計消費電力を停電前の合計消費電力とし、復電区間内の合計発電電力を0とする。したがって、ここでの需要電力D1は、停電前の復電区間内の合計消費電力に等しい。工程605で電力融通方法計算手段505は、電力融通ルート候補リスト614から電力融通ルートに対応する系統予備力Y1を読み取り、工程606では電力融通ルートに対応する分散電源予備力Y2を読み取り、合計予備力Y1+Y2を算出する。工程607で電力融通方法計算手段505は、復電区間の需要電力D1と合計予備力Y1+Y2の大小比較を行う。   For example, in step 603, the power accommodation method calculation means 505 selects a power accommodation route candidate having the smallest total reserve capacity from the power accommodation route candidate list 614 as the power accommodation route, and proceeds to the next step. In step 604, the power accommodation method calculation means 505 obtains the demand power D1 of the power recovery section that is the accommodation destination from the section power database 504. Here, the power interchange method calculation means 505 assumes that the load in the power recovery section has been restored and the distributed power source in the power recovery section has not been restored, and the total power consumption in the power recovery section is calculated as the total power consumption before the power failure. And the total generated power in the power recovery section is zero. Therefore, the demand power D1 here is equal to the total power consumption in the power recovery section before the power failure. In step 605, the power accommodation method calculation means 505 reads the system reserve Y1 corresponding to the power accommodation route from the power accommodation route candidate list 614, and in step 606, reads the distributed power reserve Y2 corresponding to the power accommodation route to obtain the total reserve. The force Y1 + Y2 is calculated. In step 607, the power interchange method calculation means 505 compares the demand power D1 in the power recovery section with the total reserve capacity Y1 + Y2.

工程607においてD1<Y1+Y2と判定された場合(YES)、復電区間の需要電力が電力融通ルートの合計予備力(供給能力)より小さいため、工程612で電力融通方法計算手段505は、配電線803の各所の電圧が所定の電圧範囲内に収まるように融通元の配電線803の分散電源の発電抑制率を再設定する。これにより、電力融通方法計算手段505は、復電区間の需要電力に合わせて、融通元の分散電源の発電を抑制する。その後、工程613で電力融通方法計算手段505は、電力融通ルートに従って開閉器の操作を行い、動作を終了する。このとき、開閉器操作手段508は、電力融通ルートに従って電力融通用の気中開閉器に対し、ONにする指示を送信する。   If it is determined in step 607 that D1 <Y1 + Y2 (YES), since the power demand in the power recovery section is smaller than the total reserve capacity (supply capability) of the power interchange route, the power interchange method calculation means 505 in step 612 The power generation suppression rate of the distributed power source of the distribution line 803 of the interchange source is reset so that the voltage at each point 803 falls within a predetermined voltage range. Thereby, the power accommodation method calculation means 505 suppresses the power generation of the distributed power source of the accommodation source according to the demand power in the power recovery section. Thereafter, in step 613, the power accommodation method calculation unit 505 operates the switch according to the power accommodation route, and ends the operation. At this time, the switch operating means 508 transmits an instruction to turn ON to the air switch for power accommodation according to the power accommodation route.

工程607においてD1≧Y1+Y2と判定された場合(NO)、復電区間の需要電力が電力融通ルートの合計予備力以上であるため、工程608で電力融通方法計算手段505は、電力融通ルート候補リスト614の中に電力融通ルートよりも合計予備力の大きい電力融通ルート候補が存在するかどうかを判定する。工程607において合計予備力の大きい電力融通ルート候補が存在すると判定された場合(YES)、工程609で電力融通方法計算手段505は、他の電力融通ルート候補の中で電力融通ルートの次に合計予備力の大きい電力融通ルート候補を新たな電力融通ルートとして選択して工程605に戻る。工程607において合計予備力の大きい電力融通ルート候補が存在しないと判定された場合(NO)、電力融通方法計算手段505は、これ以上合計予備力を拡大できないと判断し、需要抑制を行う。需要抑制対象は、融通先の復電区間に限定されても良いし、融通元の配電線を含んでも良い。   When it is determined in step 607 that D1 ≧ Y1 + Y2 (NO), since the power demand in the power recovery section is equal to or greater than the total reserve capacity of the power accommodation route, in step 608, the power accommodation method calculation unit 505 determines the power accommodation route candidate list. In 614, it is determined whether there is a power interchange route candidate having a total reserve capacity larger than that of the power interchange route. When it is determined in step 607 that there is a power interchange route candidate with a large total reserve capacity (YES), in step 609, the power interchange method calculation means 505 calculates the sum after the power interchange route among other power interchange route candidates. A power accommodation route candidate having a large reserve capacity is selected as a new power accommodation route, and the process returns to step 605. When it is determined in step 607 that there is no power accommodation route candidate with a large total reserve capacity (NO), the power accommodation method calculation unit 505 determines that the total reserve capacity cannot be increased any more, and suppresses demand. The target of demand suppression may be limited to the power recovery section of the accommodation destination or may include the distribution line of the accommodation source.

需要抑制対象が復電区間である場合、工程610で電力融通方法計算手段505は、需要抑制対象の需要抑制率Rを、D1*R<Y1+Y2を満たすように設定し、工程611で需要抑制率通知手段510は、需要抑制対象の需要家へ需要抑制率、または需要抑制の指示を通知する。負荷毎、または需要家毎に、予め優先度が設定されていても良い。この場合、電力融通方法計算手段505は例えば、需要抑制率または需要抑制量に基づいて、優先度が高い負荷から順に、受電電力が合計予備力より小さくなるまで、需要抑制対象を選択する。その後、電力融通方法計算手段505は、前述の工程612、613を実行して動作を終了する。   When the demand suppression target is a power recovery section, in step 610, the power accommodation method calculation unit 505 sets the demand suppression rate R of the demand suppression target to satisfy D1 * R <Y1 + Y2, and in step 611, the demand suppression rate The notification means 510 notifies the demand suppression target consumer of a demand suppression rate or a demand suppression instruction. Priorities may be set in advance for each load or for each customer. In this case, for example, the power accommodation method calculation unit 505 selects the demand suppression target based on the demand suppression rate or the demand suppression amount, in order from the load with the highest priority until the received power becomes smaller than the total reserve capacity. Thereafter, the power interchange method calculation means 505 executes the above-described steps 612 and 613 and ends the operation.

需要抑制率を通知された需要家は、需要を抑制する。なお、需要抑制率通知手段510が、需要家との契約に基づき、直接、負荷を制御しても良い。   The customer who is notified of the demand restraint rate restrains demand. Note that the demand suppression rate notifying unit 510 may directly control the load based on a contract with a consumer.

以上が電力融通方法計算手段505の動作である。   The above is the operation of the power interchange method calculation means 505.

電力融通方法計算手段505の動作によれば、これにより、電力融通ルート候補毎に、融通元の配電線により復電区間へ供給可能な電力を算出し、復電区間における需要電力を算出することにより、融通元の供給能力と融通先の需要に基づいて、電力融通ルートを決定し、過負荷を防止することができる。また、融通元の供給能力が過多である場合、発電抑制により供給能力を減少させることができる。また、融通元の供給能力が不足する場合、需要抑制により需要を減少させることができる。また、過負荷を防ぎつつ、融通元の配電線の数をできるだけ少なく保つことができる。新たな停電区間の特定のためには、融通元として必要のない配電線を独立させておくことが望ましい。したがって、融通元の配電線の数は少ないことが望ましい。また、管理下の融通元および融通先以外の配電線の予備力を最大に保つことができ、その予備力を新たな事故の復電区間への電力融通に用いることができる。   According to the operation of the power interchange method calculation means 505, this calculates the power that can be supplied to the power recovery section by the distribution source distribution line for each power interchange route candidate, and calculates the demand power in the power recovery section. Thus, it is possible to determine the power accommodation route based on the supply capacity of the accommodation source and the demand of the accommodation destination and prevent overload. In addition, when the supply capacity of the accommodation source is excessive, the supply capacity can be reduced by suppressing power generation. In addition, when the supply capacity of the accommodation source is insufficient, the demand can be reduced by suppressing the demand. In addition, the number of distribution lines that can be accommodated can be kept as small as possible while preventing overload. In order to identify a new power outage section, it is desirable to keep the distribution lines that are not necessary as an interchange source independent. Therefore, it is desirable that the number of interchangeable distribution lines is small. Further, the reserve capacity of the distribution lines other than the managed interchange source and the interchange destination can be kept to the maximum, and the reserve capacity can be used for power interchange to the power recovery section of a new accident.

以下、電力融通中に行われる電力融通中電力監視手段511の動作について説明する。   The operation of the power interchange power monitoring means 511 performed during power interchange will be described below.

図5は、電力融通中電力監視手段511の動作を示す。   FIG. 5 shows the operation of the power monitoring means 511 during power interchange.

工程702で電力融通中電力監視手段511は、区間電力データベース504から復電区間の現在の合計消費電力を読み出し、復電区間の需要電力D1を計算する。工程703で電力融通中電力監視手段511は、電力融通ルートの合計予備力が、電力融通ルート候補リスト614の中の合計予備力の最大値かどうかを判定する。   In step 702, the power interchange power monitoring means 511 reads the current total power consumption of the power recovery section from the section power database 504 and calculates the demand power D1 of the power recovery section. In step 703, the power accommodation power monitoring unit 511 determines whether the total reserve capacity of the power accommodation route is the maximum value of the total reserve capacity in the power accommodation route candidate list 614.

工程703で電力融通ルートの合計予備力が最大値であると判定された場合(YES)、工程704で電力融通中電力監視手段511は、復電区間の需要電力D1と合計予備力Y1+Y2の大小比較を行う。   When it is determined in step 703 that the total reserve capacity of the power interchange route is the maximum value (YES), in step 704, the power interchange power monitoring means 511 determines whether the demand power D1 in the power recovery section and the total reserve capacity Y1 + Y2 are large or small. Make a comparison.

工程704でD1≧Y1+Y2であると判定された場合(NO)、復電区間の需要電力が電力融通ルートの合計予備力以上であるため、工程705で電力融通中電力監視手段511は、需要抑制率Rを条件D1*R<Y1+Y2となるように設定し、工程706で需要抑制対象の需要家に通知する。工程704でD1<Y1+Y2であると判定された場合(YES)、復電区間の需要電力が電力融通ルートの合計予備力より小さいため、工程707で電力融通中電力監視手段511は、合計予備力を縮小する電力融通ルートの選択が可能か判定する。工程707で設定が可能であると判定された場合(YES)、工程708で電力融通中電力監視手段511は、電力融通ルート候補リスト614の中から合計予備力を縮小する電力融通ルート候補を新たな電力融通ルートとして再選択し、処理をスタートへ戻す。このとき、開閉器操作手段508は、再選択された電力融通ルートに従って、電力融通用の気中開閉器に対し、状態を変更する指示を送信する。工程707で設定が不可能であると判定された場合(NO)、電力融通中電力監視手段511は、処理をスタートへ戻す。電力融通中電力監視手段511は、一定時間毎にスタートから動作する。   If it is determined in step 704 that D1 ≧ Y1 + Y2 (NO), since the power demand in the power recovery section is equal to or greater than the total reserve capacity of the power interchange route, the power monitoring means 511 during power interchange suppresses the demand in step 705. The rate R is set so as to satisfy the condition D1 * R <Y1 + Y2, and the customer whose demand is to be suppressed is notified in step 706. If it is determined in step 704 that D1 <Y1 + Y2 (YES), since the power demand in the power recovery section is smaller than the total reserve capacity of the power interchange route, in step 707 the power interchange power monitoring means 511 displays the total reserve capacity. It is determined whether it is possible to select a power interchange route that reduces the power consumption. When it is determined in step 707 that setting is possible (YES), in step 708, the power accommodation power monitoring unit 511 newly selects a power accommodation route candidate for reducing the total reserve capacity from the power accommodation route candidate list 614. Re-select as a suitable power interchange route and return to the start. At this time, the switch operating means 508 transmits an instruction to change the state to the air switch for power accommodation in accordance with the reselected power accommodation route. When it is determined in step 707 that the setting is impossible (NO), the power interchange power monitoring unit 511 returns the process to the start. The power monitoring means 511 during power interchange operates from the start at regular intervals.

工程703で電力融通ルートの合計予備力が最大値でないと判定された場合(NO)、工程709で電力融通中電力監視手段511は、復電区間の需要電力D1と合計予備力Y1+Y2の大小比較を行う。   When it is determined in step 703 that the total reserve capacity of the power interchange route is not the maximum value (NO), in step 709, the power interchange power monitoring means 511 compares the demand power D1 in the power recovery section with the total reserve capacity Y1 + Y2. I do.

工程709でD1<Y1+Y2であると判定された場合(YES)、復電区間の需要電力が電力融通ルートの合計予備力より小さいため、工程710で電力融通中電力監視手段511は、電力融通ルートの合計予備力が、電力融通ルート候補リスト614の中の合計予備力の最小値かどうかを判定する。   If it is determined in step 709 that D1 <Y1 + Y2 (YES), since the power demand in the power recovery section is smaller than the total reserve capacity of the power accommodation route, the power monitoring means 511 during power accommodation in step 710 determines the power accommodation route. Is determined to be the minimum value of the total reserve capacity in the power interchange route candidate list 614.

工程710で電力融通ルートの合計予備力が最小値であると判定された場合(YES)、工程711で電力融通中電力監視手段511は、これ以上、合計予備力を下げられないので、融通元の配電線803内の分散電源の発電抑制率を再設定し、処理をスタートへ戻す。   When it is determined in step 710 that the total reserve capacity of the power accommodation route is the minimum value (YES), the power monitoring means 511 during power accommodation cannot further reduce the total reserve capacity in step 711, so The power generation suppression rate of the distributed power source in the distribution line 803 is reset, and the process is returned to the start.

工程710で電力融通ルートの合計予備力が最小値でないと判定された場合(YES)、電力融通中電力監視手段511は、処理を工程707へ移行させる。   When it is determined in step 710 that the total reserve capacity of the power accommodation route is not the minimum value (YES), the power monitoring means 511 during power accommodation moves the process to step 707.

工程709でD1≧Y1+Y2であると判定された場合(NO)、復電区間の需要電力が電力融通ルートの合計予備力以上であるため、工程712で電力融通中電力監視手段511は、電力融通ルート候補リスト614の中から合計予備力を拡大する電力融通ルート候補を新たな電力融通ルートとして再選択し、処理をスタートに戻す。このとき、開閉器操作手段508は、再選択された電力融通ルートに従って、電力融通用の気中開閉器に対し、状態を変更する指示を送信する   If it is determined in step 709 that D1 ≧ Y1 + Y2 (NO), since the power demand in the power recovery section is greater than or equal to the total reserve capacity of the power interchange route, the power monitoring means 511 during power interchange in step 712 The power interchange route candidate that expands the total reserve capacity from the route candidate list 614 is reselected as a new power interchange route, and the process is returned to the start. At this time, the switch operating means 508 transmits an instruction to change the state to the air switch for power accommodation according to the reselected power accommodation route.

停電区間が復旧したことを検出すると、電力融通中電力監視手段511は動作を終了させ、開閉器操作手段508は、気中開閉器311、312をONにすることにより停電区間と復電区間を接続し、電力融通を終了させる。   When it is detected that the power failure section has been restored, the power interchange power monitoring means 511 terminates the operation, and the switch operating means 508 turns on the air switches 311 and 312 to turn the power failure section and power recovery section on. Connect and terminate power interchange.

以上の電力融通中電力監視手段511の動作によれば、電力融通中に、電力融通開始から遅れて分散電源が復旧する場合や、太陽光発電のように分散電源の発電電力が変化する場合であっても、分散電源の発電電力の変化に応じて、電力融通ルート、発電抑制率、需要抑制率を変更することができる。   According to the operation of the power interchange means 511 described above, when the distributed power source is restored after the start of the power interchange during the power interchange, or when the generated power of the distributed power source changes as in solar power generation. Even if it exists, according to the change of the generated electric power of a distributed power supply, an electric power interchange route, a power generation suppression rate, and a demand suppression rate can be changed.

以下、電力融通方法計算手段505および電力融通中電力監視手段511により決定される電力融通と需要抑制と発電抑制の関係について説明する。   Hereinafter, the relationship between power accommodation, demand restraint, and power generation restraint determined by the power accommodation method calculating means 505 and the power interchange during power monitoring means 511 will be described.

図6は、電力融通と需要抑制と発電抑制の関係を示す。   FIG. 6 shows the relationship between power interchange, demand suppression, and power generation suppression.

この図の各行は、電力融通方法計算手段505および電力融通中電力監視手段511により決定される需要抑制率と、電力融通ルート候補の合計予備力と、発電抑制率との組み合わせを示す。行が上に行くほど、復電区間の需要電力から電力融通ルートの合計予備力を減じた値(D1−(Y1+Y2))である不足電力が大きい状態を示す。ここでは、5個の電力融通ルート候補が決定され、最大、大、中、小、最小の5段階の合計予備力がそれぞれ算出されたとする。需要抑制率として、大、中、小、なしの4段階の値が設定されるとする。発電抑制率として、大、中、小、なしの4段階の値が設定されるとする。   Each row in this figure indicates a combination of a demand suppression rate determined by the power interchange method calculation unit 505 and the power interchange in-progress power monitoring unit 511, the total reserve capacity of power interchange route candidates, and the power generation suppression rate. As the line goes up, the power shortage, which is a value (D1− (Y1 + Y2)) obtained by subtracting the total reserve capacity of the power interchange route from the power demand in the power recovery section, is larger. Here, it is assumed that five power interchange route candidates are determined, and total reserve powers of five levels of maximum, large, medium, small, and minimum are respectively calculated. Assume that four levels of values of large, medium, small, and none are set as the demand suppression rate. Assume that four levels of values of large, medium, small, and none are set as the power generation suppression rate.

復電区間の需要電力が電力融通ルート候補の中の最大の合計予備力より大きい場合、配電系統監視制御装置500は、電力融通ルート候補の中から最大の合計予備力を有する電力融通ルートを選択して電力融通を行うと共に、復電区間の需要電力と電力融通ルートの合計予備力との差に応じて需要抑制を行い、発電抑制を行わない。この場合、不足電力は正になり、不足電力が大きくなるほど、配電系統監視制御装置500は需要抑制率を大きくする。   When the power demand in the power recovery section is larger than the maximum total reserve capacity among the power interchange route candidates, the distribution system monitoring and control device 500 selects the power interchange route having the maximum total reserve capacity from the power interchange route candidates. In addition to power interchange, demand is suppressed according to the difference between the demand power in the power recovery section and the total reserve capacity of the power interchange route, and power generation is not suppressed. In this case, the power shortage becomes positive, and the power distribution monitoring and control device 500 increases the demand suppression rate as the power shortage increases.

復電区間の需要電力が電力融通ルート候補の中の最大の合計予備力より小さく、且つ復電区間の需要電力が電力融通ルート候補の中の最小の合計予備力より大きい場合、配電系統監視制御装置500は、復電区間の需要電力に応じて電力融通ルートを選択して電力融通を行い、需要抑制および発電抑制を行わない。この場合、配電系統監視制御装置500は、電力融通ルート候補の中から、復電区間の需要電力以上で最小の合計予備力を有する電力融通ルートを選択する。   When the power demand in the power recovery section is smaller than the maximum total reserve capacity in the power interchange route candidate and the power demand in the power recovery section is greater than the minimum total reserve capacity in the power interchange route candidate, the distribution system monitoring control The device 500 selects a power accommodation route according to the demand power in the power recovery section, performs power accommodation, and does not perform demand suppression and power generation suppression. In this case, the power distribution system monitoring and control apparatus 500 selects a power accommodation route having a minimum total reserve capacity that is equal to or greater than the power demand in the power recovery section, from among the power accommodation route candidates.

復電区間の需要電力が電力融通ルート候補の中の最小の合計予備力より小さい場合、配電系統監視制御装置500は、電力融通ルート候補の中から最小の合計予備力を有する電力融通ルートを選択して電力融通を行うと共に、電力融通ルートの合計予備力と復電区間の需要電力との差に応じて発電抑制を行い、需要抑制を行わない。この場合、不足電力は負になり、不足電力が小さくなるほど、配電系統監視制御装置500は発電抑制率を大きくする。   When the power demand in the power recovery section is smaller than the minimum total reserve capacity in the power interchange route candidates, the distribution system monitoring and control device 500 selects the power interchange route having the minimum total reserve capacity from the power interchange route candidates. In addition to power accommodation, power generation is suppressed according to the difference between the total reserve capacity of the power accommodation route and the demand power in the power recovery section, and demand is not suppressed. In this case, the power shortage becomes negative, and the power distribution suppression monitoring device 500 increases the power generation suppression rate as the power shortage decreases.

以下、最大発電可能電力把握手段507について説明する。   Hereinafter, the maximum power generation possible power grasping means 507 will be described.

現在の太陽光発電装置の殆どは最大電力で発電し、系統に逆潮流を行っている。将来、配電系統に太陽光発電装置が大量普及した場合、系統保護の目的で太陽光発電装置の発電電力を抑制する場合が想定される。発電抑制運転を行っている際、本来発電できる最大電力(=最大発電可能電力)を知る事は一般的には難しい。以下、分散電源の最大発電可能電力を把握するための幾つかの具体例について説明する。   Most of the current solar power generation devices generate electricity with maximum power and perform reverse power flow in the system. In the future, when a large number of solar power generation devices are widely used in the distribution system, it is assumed that the generated power of the solar power generation device is suppressed for the purpose of system protection. It is generally difficult to know the maximum power that can be generated (= maximum power that can be generated) during power generation suppression operation. Hereinafter, some specific examples for grasping the maximum power that can be generated by the distributed power source will be described.

図7は、最大発電可能電力把握手段507の第一具体例を示す。   FIG. 7 shows a first specific example of the maximum power generation possible power grasping means 507.

ここでは、分散電源900が太陽光発電装置である場合について説明する。第一具体例において、分散電源900は、太陽光発電パネル901と、太陽光発電パネル901の制御や電力変換を行うPCS902と、通信ネットワーク800と接続されている通信装置903と、配電系統と分散電源900の間で送受される電力を示す電力計測器904とを含む。通信装置903は、電力計測器により測定される分散電源の発電電力と、PCS902により算出される分散電源の最大発電可能電力とを配電系統監視制御装置500へ送信する。配電系統監視制御装置500において、分散電源発電電力監視手段502は、各分散電源900から発電電力を受信し、最大発電可能電力把握手段507は、各分散電源900から最大発電可能電力を受信する。   Here, a case where the distributed power source 900 is a solar power generation device will be described. In the first specific example, the distributed power source 900 includes a photovoltaic power generation panel 901, a PCS 902 that controls the photovoltaic power generation panel 901 and power conversion, a communication device 903 connected to the communication network 800, a distribution system, and a distributed system. And a power meter 904 that indicates power transmitted and received between the power sources 900. The communication device 903 transmits the generated power of the distributed power source measured by the power meter and the maximum power that can be generated by the distributed power source calculated by the PCS 902 to the distribution system monitoring control device 500. In the distribution system monitoring and control apparatus 500, the distributed power generation power monitoring means 502 receives the generated power from each distributed power supply 900, and the maximum power generation possible power grasping means 507 receives the maximum power generation possible power from each distributed power supply 900.

分散電源900は更に、日射量計906と、日射量計906および通信装置903に接続されたEMS(Energy Management System)905とを含んでいても良い。この場合、EMS905が日射量に基づいて最大発電可能電力を算出する。   The distributed power supply 900 may further include a solar radiation meter 906 and an EMS (Energy Management System) 905 connected to the solar radiation meter 906 and the communication device 903. In this case, the EMS 905 calculates the maximum power that can be generated based on the amount of solar radiation.

分散電源900は、PCS902と通信装置903の間に接続された計算装置907を含んでもいても良い。この場合、計算装置907が最大発電可能電力を算出する。   The distributed power supply 900 may include a computing device 907 connected between the PCS 902 and the communication device 903. In this case, the calculation device 907 calculates the maximum power that can be generated.

図8は、最大発電可能電力把握手段507の第二具体例を示す。   FIG. 8 shows a second specific example of the maximum power generation possible power grasping means 507.

第二具体例において、分散電源900は、太陽光発電パネル901と、PCS902と、通信装置903とを含む。通信装置903は、PCS902の動作電圧および電流と、太陽光発電パネル901のパネル温度などを配電系統監視制御装置500へ送信する。配電系統監視制御装置500は、動作電圧、電流、パネル温度に基づいて、最大発電可能電力を算出する。   In the second specific example, the distributed power supply 900 includes a solar power generation panel 901, a PCS 902, and a communication device 903. The communication device 903 transmits the operating voltage and current of the PCS 902, the panel temperature of the photovoltaic power generation panel 901, and the like to the distribution system monitoring control device 500. The distribution system monitoring and control device 500 calculates the maximum power that can be generated based on the operating voltage, current, and panel temperature.

パネル温度毎に、日射量と最大発電可能電力の関係が予め定められている。日射量が大きくなるほど、最大発電可能電力が大きくなる。また、パネル温度が低いほど、最大発電可能電力は大きくなる。   The relationship between the amount of solar radiation and the maximum power that can be generated is determined in advance for each panel temperature. The greater the amount of solar radiation, the greater the maximum power that can be generated. Also, the lower the panel temperature, the greater the maximum power that can be generated.

また、日射量毎に、PCS902により太陽光発電パネル901に印加されている動作電圧と、太陽光発電パネル901を流れる電流との関係が予め定められている。この関係によれば、特定の動作電圧で発電電力が最大になる。このときの発電電力を最大発電可能電力とし、発電抑制率に応じてPCS902の動作電圧を変化させることにより発電電力を変化させることができる。   In addition, for each amount of solar radiation, the relationship between the operating voltage applied to the photovoltaic power generation panel 901 by the PCS 902 and the current flowing through the photovoltaic power generation panel 901 is determined in advance. According to this relationship, the generated power is maximized at a specific operating voltage. The generated power can be changed by setting the generated power at this time as the maximum power that can be generated and changing the operating voltage of the PCS 902 according to the power generation suppression rate.

したがって、最大発電可能電力把握手段507は、動作電圧、電流、パネル温度から、最大発電可能電力および発電電力を算出することができる。   Therefore, the maximum power generation possible power grasping means 507 can calculate the maximum power generation possible power and the generated power from the operating voltage, current, and panel temperature.

図9は、最大発電可能電力把握手段507の第三具体例を示す。   FIG. 9 shows a third specific example of the maximum power generation possible power grasping means 507.

第三具体例において、配電系統監視制御装置500の管理下の各エリアには、通信ネットワーク800に接続された通信装置913と、日射量計916とが設けられている。通信装置913は、日射量計916により測定された日射量の情報を配電系統監視制御装置500へ送信する。配電系統監視制御装置500の最大発電可能電力把握手段507は、受信した日射量の情報に基づいて、各エリアの最大発電可能電力を計算する。   In the third specific example, a communication device 913 connected to the communication network 800 and a solar radiation meter 916 are provided in each area under the management of the distribution system monitoring control device 500. The communication device 913 transmits information on the amount of solar radiation measured by the solar radiation meter 916 to the distribution system monitoring control device 500. The maximum power generation possible power grasping means 507 of the distribution system monitoring control device 500 calculates the maximum power generation possible power of each area based on the received information on the amount of solar radiation.

第一ケースの動作によれば、太陽光発電装置が大量に普及した場合でも、配電系統監視制御装置500は、停電後に、過負荷を発生させることなく、且つ特定の需要家に不便を強いることなく、復電させることができる。   According to the operation of the first case, even when a large number of photovoltaic power generation devices are widely used, the power distribution system monitoring and control device 500 does not cause an overload after a power failure and inconveniences a specific consumer. Without power recovery.

以下、配電系統監視制御装置500の動作の具体例として二つのケースについて説明する。   Hereinafter, two cases will be described as specific examples of the operation of the distribution system monitoring and control apparatus 500.

第一ケースとして、配電線802と柱上変圧器321の間で短絡801が発生し、配電線802が停電したとする。配電系統監視制御装置500は、配電線802上のすべての気中開閉器311、312、313、314をOFFにし、気中開閉器311をONにしたときに再び停電するので、気中開閉器311および312の間の区間を停電区間として特定する。配電系統監視制御装置500は、再び気中開閉器311をOFFにする。このままでは配電線802において、停電区間以外の気中開閉器312および314の間の区間も停電したままなので、配電系統監視制御装置500は、この区間を復電区間とする。配電系統監視制御装置500は、停電区間のすぐ下流の気中開閉器312をOFFに保ったまま、その下流の気中開閉器313、314をONにし、電力融通用の気中開閉器352、353をONにすることにより、図1における破線の矢印に示されるように、融通元の配電線803、804から融通先の配電線802の復電区間へ電力を融通する。   As a first case, it is assumed that a short circuit 801 occurs between the distribution line 802 and the pole transformer 321 and the distribution line 802 is out of power. Since the distribution system monitoring and control device 500 turns off all the air switches 311, 312, 313, and 314 on the distribution line 802 and turns on the air switches 311, the power switch is again turned on. The section between 311 and 312 is specified as the power outage section. The distribution system monitoring control device 500 turns off the air switch 311 again. In this state, in the distribution line 802, the section between the air switches 312 and 314 other than the power outage section remains blacked out, so the distribution system monitoring and control device 500 sets this section as the power recovery section. The distribution system monitoring and control device 500 keeps the air switch 312 immediately downstream of the power outage section OFF, turns on the air switches 313 and 314 downstream of the air switch 312 and turns on the air switches 352 for power interchange, By turning ON 353, power is accommodated from the distribution source distribution lines 803 and 804 to the power return section of the distribution destination distribution line 802, as indicated by the dashed arrows in FIG.

図10は、第一ケースのタイミングチャートを示す。   FIG. 10 shows a timing chart of the first case.

この図は、復電区間の需要電力と、太陽光発電装置101、102、104、105、106の発電抑制率と、気中開閉器311、312、313、314、314、352、353のそれぞれのON/OFF状態との時間変化を示す。   This figure shows the demand power in the power recovery section, the power generation suppression rate of the solar power generation devices 101, 102, 104, 105, 106, and the air switches 311, 312, 313, 314, 314, 352, 353, respectively. The time change with ON / OFF state is shown.

時刻0〜t1の期間は、平常時を表す。このときの復電区間内の負荷である負荷201、202、203の消費電力の合計をP1とする。復電区間の需要電力P2は、P1から、復電区間内の太陽光発電装置101、102、103の発電電力の合計G1を減じた値であり、配電用変電所302から配電線802を介して復電区間が受電している電力である。復電区間の需要電力は、気中開閉器312、314における測定値により測定される。このとき、太陽光発電装置101、102、103の発電抑制率は50%に設定されている。   The period from time 0 to t1 represents a normal time. The total power consumption of the loads 201, 202, and 203, which are loads in the power recovery section at this time, is P1. The power demand P2 in the power recovery section is a value obtained by subtracting the total generated power G1 of the photovoltaic power generation apparatuses 101, 102, and 103 in the power recovery section from P1, and is supplied from the distribution substation 302 via the distribution line 802. This is the power received by the power recovery section. The power demand in the power recovery section is measured by the measured values in the air switches 312 and 314. At this time, the power generation suppression rates of the solar power generation apparatuses 101, 102, and 103 are set to 50%.

時刻t1において短絡801が発生すると、配電系統監視制御装置500は、停電区間を同定し、電力融通ルートの選定と融通元の発電抑制率の緩和量の算出を行う。このとき、復電区間内の分散電源は復旧していないため、復電区間の需要電力P1は、停電前の消費電力P1に等しい。配電線803、804から配電線802への電力融通ルートが選定されたとする。この場合、融通元の配電線803の太陽光発電装置104、105、106の発電抑制率が緩和される。   When the short circuit 801 occurs at time t1, the power distribution system monitoring and control device 500 identifies the power outage section, and selects the power interchange route and calculates the relaxation amount of the power generation suppression rate at the interchange source. At this time, since the distributed power supply in the power recovery section has not been restored, the demand power P1 in the power recovery section is equal to the power consumption P1 before the power failure. It is assumed that a power interchange route from the distribution lines 803 and 804 to the distribution line 802 is selected. In this case, the power generation suppression rate of the photovoltaic power generation apparatuses 104, 105, and 106 of the distribution line 803 serving as the accommodation source is reduced.

時刻t2において配電系統監視制御装置500は、各配電線の情報に基づいて電力融通ルートを決定し、決定された電力融通ルートに従って気中開閉器313、314、352、353をONにする。これにより、配電線803、804からの電力融通により復電区間へ再び電力が供給される(復電)。配電系統監視制御装置500は、配電線803、804から配電線802へ経路を電力融通ルート候補とし、電力融通ルート候補の合計予備力を算出し、合計予備力が復電区間の需要電力より大きい電力融通ルート候補を電力融通ルートとして選択する。ここでは、配電線803、804から復電区間への電力融通ルートが選択されている。電力融通の開始により、配電用変電所303からの配電線803の需要電力が大きくなるため、配電系統監視制御装置500は、配電線803に連系している太陽光発電装置104、105、106の発電抑制率を緩和する(減少させる)ことにより、発電電力を増加させる。このケースにおいて、発電抑制率は、50%から0%(抑制なし)へと緩和される。   At time t <b> 2, the distribution system monitoring and control device 500 determines a power accommodation route based on the information of each distribution line, and turns on the air switches 313, 314, 352, and 353 according to the decided power accommodation route. Thus, power is supplied again to the power recovery section by power interchange from the distribution lines 803 and 804 (power recovery). The distribution system monitoring and control apparatus 500 sets a route from the distribution lines 803 and 804 to the distribution line 802 as a power interchange route candidate, calculates the total reserve capacity of the power interchange route candidate, and the total reserve capacity is larger than the demand power in the power recovery section. A power interchange route candidate is selected as a power interchange route. Here, the power interchange route from the distribution lines 803 and 804 to the power recovery section is selected. Since the demand for the distribution line 803 from the distribution substation 303 is increased due to the start of the power interchange, the distribution system monitoring and control device 500 is connected to the distribution line 803 by the photovoltaic power generation apparatuses 104, 105, and 106. The generated power is increased by relaxing (decreasing) the power generation suppression rate. In this case, the power generation suppression rate is relaxed from 50% to 0% (no suppression).

時刻t3において小型の太陽光発電装置102、103が自動復帰し、復電区間の発電電力が増加することにより復電区間の需要電力が低下する。このとき、配電系統監視制御装置500は、配電線803の下流の電圧が所定の電圧範囲を逸脱しないように、太陽光発電装置104、105、106の発電抑制率を求める。このケースにおいて、配電系統監視制御装置500は、太陽光発電装置102、103の復帰に応じて、太陽光発電装置104、105、106の発電抑制率を10%、20%と徐々に大きくしていく。ここで、配電系統監視制御装置500は、太陽光発電装置102、103の発電抑制率も太陽光発電装置104、105、106に合わせる。   At time t3, the small photovoltaic power generators 102 and 103 automatically recover, and the power generation in the power recovery section increases, so that the power demand in the power recovery section decreases. At this time, the distribution system monitoring and control device 500 obtains the power generation suppression rate of the solar power generation devices 104, 105, and 106 so that the voltage downstream of the distribution line 803 does not deviate from the predetermined voltage range. In this case, the distribution system monitoring and control device 500 gradually increases the power generation suppression rate of the solar power generation devices 104, 105, and 106 to 10% and 20% in response to the return of the solar power generation devices 102 and 103. Go. Here, the distribution system monitoring and control device 500 also adjusts the power generation suppression rate of the solar power generation devices 102 and 103 to the solar power generation devices 104, 105, and 106.

時刻t4で大型の太陽光発電装置101が復帰すると、復電区間の需要電力が大きく低下する。配電系統監視制御装置500は、配電線804を用いない配電線803から配電線802への電力融通ルート候補の合計予備力を算出する。復電区間の需要電力が、この電力融通ルート候補の合計予備力を下回ると、配電系統監視制御装置500は、この電力融通ルート候補を電力融通ルートとして選択し、気中開閉器353をOFFにすることにより、配電線804から配電線802への電力融通を停止し、配電線803から配電線802への電力融通だけを継続する。このとき、配電系統監視制御装置500は、融通元の配電線803内の各所の電圧が所定の電圧範囲を逸脱しないように、太陽光発電装置101、102、103、104、105、106の発電抑制率を求める。このケースにおいて、配電系統監視制御装置500は、これらの発電抑制率を20%のままに維持している。   When the large-scale photovoltaic power generation apparatus 101 returns at time t4, the power demand in the power recovery section is greatly reduced. The distribution system monitoring and control apparatus 500 calculates the total reserve capacity of power interchange route candidates from the distribution line 803 to the distribution line 802 that do not use the distribution line 804. When the power demand in the power recovery section falls below the total reserve capacity of this power interchange route candidate, the distribution system monitoring and control device 500 selects this power interchange route candidate as the power interchange route and turns off the air switch 353. By doing so, the power interchange from the distribution line 804 to the distribution line 802 is stopped, and only the power interchange from the distribution line 803 to the distribution line 802 is continued. At this time, the power distribution system monitoring and control apparatus 500 generates power from the solar power generation apparatuses 101, 102, 103, 104, 105, and 106 so that the voltage at each place in the distribution line 803 that is the source of the supply does not deviate from a predetermined voltage range. Find the inhibition rate. In this case, the power distribution system monitoring control device 500 maintains these power generation suppression rates at 20%.

配電線803、804から配電線802へ電力を融通する場合や、配電線804から配電線803へ電力を融通する場合、配電系統監視制御装置500は、電力融通用の気中開閉器356をONにしても良い。配電線804から配電線802へ電力を融通し、且つ配電線803から配電線802へ電力を融通しない場合、配電系統監視制御装置500は、電力融通用の気中開閉器355をONにしても良い。配電線802において、気中開閉器311の上流に停電区間がある場合、配電系統監視制御装置500は、電力融通用の気中開閉器351をONにしても良い。   When power is interchanged from the distribution lines 803 and 804 to the distribution line 802, or when power is interchanged from the distribution line 804 to the distribution line 803, the distribution system monitoring and control device 500 turns on the air switch 356 for power interchange. Anyway. In the case where power is passed from the distribution line 804 to the distribution line 802 and power is not passed from the distribution line 803 to the distribution line 802, the distribution system monitoring and control device 500 turns on the air switch 355 for power accommodation. good. In the distribution line 802, when there is a power outage section upstream of the air switch 311, the power distribution system monitoring and control device 500 may turn on the air switch 351 for power interchange.

以上の第一ケースの動作によれば、配電線802に短絡801が発生した場合に、融通元の配電線803、804から融通先の復電区間へ電力融通を行うことにより、融通元の過負荷状態を防ぎつつ、復電区間における停電から復電までの時間を短縮することができる。   According to the operation of the first case described above, when a short circuit 801 occurs in the distribution line 802, power is exchanged from the distribution lines 803 and 804 of the interchange source to the return section of the interchange destination. While preventing the load state, the time from power failure to power recovery in the power recovery section can be shortened.

第二ケースは、第一ケースと同様の短絡801が発生し、停電前の復電区間の消費電力が第一ケースより大きいケースである。配電系統監視制御装置500は、復電時に電力融通用の気中開閉器352、353、354をONにし、配電線803、804と外部の配電線とから、配電線802へ電力融通を行う。   The second case is a case where a short circuit 801 similar to the first case occurs and the power consumption in the power recovery section before the power failure is larger than the first case. The distribution system monitoring and control device 500 turns on the air switches 352, 353, and 354 for power interchange when power is restored, and performs power interchange from the distribution lines 803 and 804 and an external distribution line to the distribution line 802.

図11は、第二ケースのタイミングチャートを示す。   FIG. 11 shows a timing chart of the second case.

時刻t2までは第一ケースと同様である。   The process is the same as in the first case until time t2.

時刻t2において気中開閉器313、314、352、353、354がONになっても復電区間の需要電力が電力融通ルートの合計予備力を上回るため、需要抑制が必要となる。このケースでは、復電区間であるエリア402、403を需要抑制対象とするが、電力融通ルートに関連する区間全域(融通元と融通先)を抑制対象としても良い。停電発生時には復電区間の需要電力が0なので、需要抑制率を100%と表現する。時刻t2で配電系統監視制御装置500は、復電区間の需要抑制率を50%に設定し、過負荷を予防する。配電系統監視制御装置500は、管理下の負荷毎に、需要家により設定される優先度を記憶する。配電系統監視制御装置500は、需要抑制率を満たすまで、優先度が高い順に負荷を需要抑制対象として選択する。配電系統監視制御装置500は、需要抑制対象を直接制御して需要抑制対象の消費電力を低減してもよい。また、配電系統監視制御装置500は、需要抑制対象の通知を、需要家に通知し、需要家が通知に応じて需要抑制対象の抑制率を設定してもよい。   Even if the air switches 313, 314, 352, 353, and 354 are turned on at time t2, the demand power in the power recovery section exceeds the total reserve capacity of the power interchange route, and thus demand suppression is required. In this case, areas 402 and 403 that are power recovery sections are targeted for demand suppression, but the entire section (accommodation source and accommodation destination) related to the power accommodation route may be targeted for suppression. Since the power demand in the power recovery section is zero when a power failure occurs, the demand suppression rate is expressed as 100%. At time t2, the distribution system monitoring control device 500 sets the demand suppression rate in the power recovery section to 50% to prevent overload. The distribution system monitoring and control device 500 stores the priority set by the customer for each load under management. The distribution system monitoring and control device 500 selects loads as demand suppression targets in descending order of priority until the demand suppression rate is satisfied. The power distribution system monitoring and control apparatus 500 may directly control the demand suppression target to reduce the power consumption of the demand suppression target. Moreover, the power distribution system monitoring and control apparatus 500 may notify the consumer of the demand suppression target notification, and the consumer may set the suppression rate of the demand suppression target according to the notification.

時刻t3で小型の太陽光発電装置102、103が自動復帰し、復電区間の発電電力が増加する。これに伴い、配電系統監視制御装置500は、復電区間の需要抑制率を減少させる。   At time t3, the small photovoltaic power generators 102 and 103 automatically return, and the generated power in the power recovery section increases. Along with this, the distribution system monitoring and control device 500 reduces the demand suppression rate in the power recovery section.

時刻t4で大型の太陽光発電装置101が復帰すると、復電区間の需要電力が大きく低下する。復電区間の需要電力が、配電線803から配電線802への電力融通ルート候補の合計予備力を下回ると、配電系統監視制御装置500は、気中開閉器354をOFFにすることにより、外部の配電線から気中開閉器354を介して配電線802への電力融通を停止し、配電線803から配電線802への電力融通だけを継続する。このとき、配電系統監視制御装置500は、融通元の配電線803内の各所の電圧が所定の電圧範囲を逸脱しないように、太陽光発電装置101、102、103、104、105、106の発電抑制率を求める。このケースにおいて、配電系統監視制御装置500は、これらの発電抑制率を10%に設定する。   When the large-scale photovoltaic power generation apparatus 101 returns at time t4, the power demand in the power recovery section is greatly reduced. When the power demand in the power recovery section falls below the total reserve capacity of the power interchange route candidates from the distribution line 803 to the distribution line 802, the distribution system monitoring and control device 500 turns off the air switch 354 to The power interchange from the distribution line to the distribution line 802 is stopped via the air switch 354, and only the power interchange from the distribution line 803 to the distribution line 802 is continued. At this time, the power distribution system monitoring and control apparatus 500 generates power from the solar power generation apparatuses 101, 102, 103, 104, 105, and 106 so that the voltage at each place in the distribution line 803 that is the source of the supply does not deviate from a predetermined voltage range. Find the inhibition rate. In this case, the distribution system monitoring control device 500 sets these power generation suppression rates to 10%.

以上の第二ケースの動作によれば、停電後に、過負荷を発生させることなく、且つ需要家の不便を最小限にして、復電させることができる。   According to the operation of the second case described above, power can be restored after a power failure without causing an overload and minimizing the inconvenience of consumers.

本発明は、以上の実施例に限定されるものでなく、その趣旨から逸脱しない範囲で、他の様々な形に変更することができる。   The present invention is not limited to the above embodiments, and can be modified in various other forms without departing from the spirit of the present invention.

101、102、103、104、105…太陽光発電装置 111、112…受電キュービクル 201、202、203、204…負荷 301…変電所 302、303、304…配電用変電所 311、312、313…気中開閉器 321、322、323…柱上変圧器 351、352、353、354、355、356…気中開閉器 500…配電系統監視制御装置 800…通信ネットワーク 802、803、804…配電線
101, 102, 103, 104, 105 ... Solar power generation devices 111, 112 ... Power receiving cubicles 201, 202, 203, 204 ... Loads 301 ... Substations 302, 303, 304 ... Distribution substations 311, 312, 313 ... Air Middle switch 321, 322, 323 ... pole transformer 351, 352, 353, 354, 355, 356 ... air switch 500 ... distribution system monitoring and control device 800 ... communication network 802, 803, 804 ... distribution line

Claims (6)

複数の配電線のそれぞれが電力系統に接続されており、前記複数の配電線の間に、平常時に開放される融通用開閉器が設けられており、前記複数の配電線のそれぞれが、平常時に投入される複数の配電用開閉器により分割可能な複数の区間を含み、前記複数の配電線の監視および制御を行う系統監視制御装置であって、
前記複数の配電線内の区間に接続されている負荷の消費電力と、前記複数の配電線内の区間に接続されている分散電源の発電電力とを受信する通信部と、
前記複数の配電線内の事故を検出した場合、前記事故が発生した区間を事故区間として特定し、前記事故区間を含む配電線内で前記事故区間以外の区間を復電区間として選択する演算部と、
を備え、
前記通信部は、前記事故区間と前記復電区間の間の配電用開閉器へ開放の指示を送信することにより、前記事故区間と前記復電区間の間を切断し、
前記演算部は、前記複数の融通用開閉器の情報に基づいて、前記複数の配電線の中の前記特定配電線以外の配電線と前記復電区間との間の融通用開閉器を含む融通経路の候補である複数の融通経路候補を決定し、前記複数の融通経路候補のそれぞれの融通経路候補に対し、前記融通経路候補へ供給されている電力の増加可能分である予備力を算出し、前記事故前の前記復電区間内の負荷の消費電力の合計を需要電力として算出し、前記複数の融通経路候補の中で前記需要電力より大きい予備力を有する融通経路候補を融通経路として選択し、
前記通信部は、前記融通経路に含まれる融通用開閉器へ投入の指示を送信することにより、前記融通経路から前記復電区間へ電力を融通する、
系統監視制御装置。
Each of the plurality of distribution lines is connected to an electric power system, and an interchangeable switch that is normally opened is provided between the plurality of distribution lines, and each of the plurality of distribution lines is normally connected. A system monitoring and control device that includes a plurality of sections that can be divided by a plurality of distribution switches that are charged, and that monitors and controls the plurality of distribution lines,
A communication unit that receives power consumption of a load connected to a section in the plurality of distribution lines, and generated power of a distributed power source connected to a section in the plurality of distribution lines,
When an accident in the plurality of distribution lines is detected, a calculation unit that identifies the section in which the accident has occurred as an accident section, and selects a section other than the accident section as a power recovery section in the distribution line including the accident section When,
With
The communication unit disconnects between the accident section and the power recovery section by transmitting an opening instruction to a switch for distribution between the accident section and the power recovery section,
The arithmetic unit includes an accommodation switch including an accommodation switch between a distribution line other than the specific distribution line and the power recovery section in the plurality of distribution lines based on information of the plurality of accommodation switches. A plurality of accommodation route candidates that are route candidates are determined, and a reserve capacity that is an increase in power supplied to the accommodation route candidate is calculated for each accommodation route candidate of the plurality of accommodation route candidates. Calculating the total power consumption of the load in the power recovery section before the accident as demand power, and selecting an accommodation path candidate having reserve capacity larger than the demand power as the accommodation path among the plurality of accommodation path candidates And
The communication unit transmits power from the accommodation path to the power recovery section by transmitting an input instruction to the accommodation switch included in the accommodation path.
System monitoring and control device.
前記融通中、前記演算部は、前記復電区間内の負荷の消費電力の合計から前記復電区間内の分散電源の発電電力の合計を減じた値を前記需要電力として算出し、前記演算部が、前記融通経路の予備力が前記需要電力より小さく、且つ前記複数の融通経路候補の中に、前記需要電力より大きい予備力を有する第一融通経路候補があると判定した場合、前記演算部は、前記第一融通経路候補を前記融通経路として変更し、前記通信部は、前記融通経路の変更に関する融通用開閉器へ指示を送信することにより、前記融通経路を用いて前記復電区間へ電力を融通する、
請求項1に記載の系統監視制御装置。
During the accommodation, the calculation unit calculates, as the demand power, a value obtained by subtracting the total generated power of the distributed power sources in the power recovery section from the total power consumption of the load in the power recovery section, However, when it is determined that the reserve capacity of the accommodation path is smaller than the demand power and there is a first accommodation path candidate having a reserve capacity larger than the demand power among the plurality of accommodation path candidates, the calculation unit Changes the first accommodation path candidate as the accommodation path, and the communication unit transmits an instruction to the accommodation switch related to the change of the accommodation path to the power recovery section using the accommodation path. To accommodate power,
The system monitoring control apparatus according to claim 1.
前記融通中、前記演算部が、前記複数の融通経路候補の中に、前記融通経路の予備力より小さく前記需要電力より大きい予備力を有する第二融通経路候補があると判定した場合、前記演算部は、第二融通経路候補を前記融通経路として変更し、前記通信部は、前記融通経路の変更に関する融通用開閉器へ指示を送信することにより、前記融通経路を用いて前記復電区間へ電力を融通する、
請求項2に記載の系統監視制御装置。
During the accommodation, when the calculation unit determines that there is a second accommodation path candidate having a reserve capacity smaller than the reserve capacity of the accommodation path and larger than the demand power among the plurality of accommodation path candidates, the calculation The unit changes the second accommodation route candidate as the accommodation route, and the communication unit transmits an instruction to the accommodation switch related to the change of the accommodation route to the power recovery section using the accommodation route. To accommodate power,
The system monitoring control apparatus according to claim 2.
前記融通中、前記演算部が、前記融通経路が前記複数の融通経路候補の中で最小の予備力を有すると判定した場合、前記演算部は、前記復電区間および前記融通経路の何れかに接続されている分散電源の中から対象分散電源を選択し、前記融通経路の予備力および前記需要電力に応じて必要な前記対象分散電源の発電電力を示す制御値を算出し、前記通信部は、前記制御値を含む指示を前記対象分散電源へ送信することにより、前記対象分散電源の発電電力を減少させる、
請求項3に記載の系統監視制御装置。
During the accommodation, when the computing unit determines that the accommodation route has a minimum reserve power among the plurality of accommodation route candidates, the computing unit may be placed in either the power recovery section or the accommodation route. Select a target distributed power source from among the connected distributed power sources, calculate a control value indicating the generated power of the target distributed power source required according to the reserve capacity of the accommodation path and the demand power, the communication unit , By reducing the generated power of the target distributed power supply by transmitting an instruction including the control value to the target distributed power supply,
The system monitoring control apparatus according to claim 3.
前記演算部が、前記融通経路の予備力が前記需要電力より小さく、且つ前記融通経路が前記複数の融通経路候補の中で最大の予備力を有すると判定した場合、前記演算部は、前記需要電力が前記融通経路の予備力以下になるように、前記対象負荷の需要抑制量を算出し、前記需要抑制量に基づいて、前記復電区間および前記融通経路の何れかに接続されている負荷の中から対象負荷を選択し、前記通信部は、前記対象負荷を有する需要家設備へ、需要抑制を示す指示を送信することにより、前記需要電力を減少させ、
前記融通中、前記演算部が、前記融通経路の予備力が前記需要電力より大きいと判定した場合、前記通信部は、前記対象負荷を有する需要家設備へ、前記需要抑制を解除する指示を送信する、
請求項4に記載の系統監視制御装置。
When the calculation unit determines that the reserve capacity of the accommodation path is smaller than the demand power and the accommodation path has the maximum reserve capacity among the plurality of accommodation path candidates, the calculation section The load that is connected to either the power recovery section or the accommodation path is calculated based on the demand restriction amount so that the power is less than the reserve capacity of the accommodation path. The target load is selected from the above, and the communication unit reduces the demand power by transmitting an instruction indicating demand suppression to the customer facility having the target load.
During the accommodation, when the arithmetic unit determines that the reserve capacity of the accommodation path is larger than the demand power, the communication unit transmits an instruction to release the demand suppression to the customer facility having the target load. To
The system monitoring control apparatus according to claim 4.
前記演算部は、前記複数の融通経路候補のそれぞれの融通経路候補に対し、前記電力系統から前記融通経路候補へ供給されている電力である送電電力と、前記電力系統から前記融通経路候補へ供給可能な最大の電力である最大送電可能電力とを取得し、前記最大送電可能電力から前記送電電力を減じた値を前記系統予備力として算出し、前記融通元分散電源から前記融通経路候補へ供給されている電力である発電電力と、前記融通元分散電源から前記融通経路候補へ供給可能な最大の電力である最大発電可能電力とを取得し、前記最大発電可能電力から前記発電電力を減じた値を前記分散電源予備力として算出し、前記系統予備力と前記分散電源予備力の和を前記予備力として算出する、
請求項1乃至5の何れか一項に記載の系統監視制御装置。
The calculation unit supplies, to each of the plurality of accommodation path candidates, transmission power that is power supplied from the power system to the accommodation path candidates, and supply from the power system to the accommodation path candidates. Obtaining the maximum transmittable power, which is the maximum possible power, calculating a value obtained by subtracting the transmitted power from the maximum transmittable power as the system reserve, and supplying it from the flexible source distributed power source to the flexible route candidate The generated power that is the generated power and the maximum power that can be generated that is the maximum power that can be supplied from the accommodation source distributed power source to the accommodation path candidate, and the generated power is subtracted from the maximum power that can be generated A value is calculated as the distributed power reserve, and the sum of the system reserve and the distributed power reserve is calculated as the reserve.
The system monitoring control apparatus according to any one of claims 1 to 5.
JP2014150062A 2014-07-23 2014-07-23 System monitoring and control device Active JP6356517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150062A JP6356517B2 (en) 2014-07-23 2014-07-23 System monitoring and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150062A JP6356517B2 (en) 2014-07-23 2014-07-23 System monitoring and control device

Publications (2)

Publication Number Publication Date
JP2016025799A true JP2016025799A (en) 2016-02-08
JP6356517B2 JP6356517B2 (en) 2018-07-11

Family

ID=55272135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150062A Active JP6356517B2 (en) 2014-07-23 2014-07-23 System monitoring and control device

Country Status (1)

Country Link
JP (1) JP6356517B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046726A (en) * 2016-09-16 2018-03-22 株式会社東芝 Erroneous operation prevention system
JP2018073238A (en) * 2016-11-01 2018-05-10 株式会社東芝 Protection control system
CN108695983A (en) * 2018-07-06 2018-10-23 唐榆东 A kind of photovoltaic power station Energy Management System and method
JP2020072638A (en) * 2018-10-25 2020-05-07 日本水力株式会社 Power supply method and power supply system for achieving the same
CN112564097A (en) * 2020-12-01 2021-03-26 国网浙江杭州市富阳区供电有限公司 Method for rapidly recovering load and reducing loss during multi-circuit line fault power failure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141467A (en) * 1992-10-20 1994-05-20 Toshiba Corp Accident-restoration operating apparatus
JPH0946894A (en) * 1995-07-28 1997-02-14 Kansai Electric Power Co Inc:The Protective method for distribution wire
JPH11289662A (en) * 1998-04-06 1999-10-19 Kansai Electric Power Co Inc:The Load interchange method in power distribution system
JP2000354329A (en) * 1999-06-07 2000-12-19 Mitsubishi Electric Corp Method for making recovery plan considering system clasification
JP2001103681A (en) * 1999-09-29 2001-04-13 Toshiba Corp Distribution line supervisory controller device and method and recording medium recording software for distribution line supervisory control
JP2006094611A (en) * 2004-09-22 2006-04-06 Kansai Electric Power Co Inc:The Power distribution system trouble recovering method and power distribution system trouble recovering apparatus
JP2006304403A (en) * 2005-04-15 2006-11-02 Toshiba Corp Supervisory controller for distribution system, method, and program
JP2011061931A (en) * 2009-09-08 2011-03-24 Toshiba Corp Comprehensive monitoring and control system for smart grids and micro grids
US20130197702A1 (en) * 2012-02-01 2013-08-01 General Electric Company Systems and Methods for Managing a Power Distribution System

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141467A (en) * 1992-10-20 1994-05-20 Toshiba Corp Accident-restoration operating apparatus
JPH0946894A (en) * 1995-07-28 1997-02-14 Kansai Electric Power Co Inc:The Protective method for distribution wire
JPH11289662A (en) * 1998-04-06 1999-10-19 Kansai Electric Power Co Inc:The Load interchange method in power distribution system
JP2000354329A (en) * 1999-06-07 2000-12-19 Mitsubishi Electric Corp Method for making recovery plan considering system clasification
JP2001103681A (en) * 1999-09-29 2001-04-13 Toshiba Corp Distribution line supervisory controller device and method and recording medium recording software for distribution line supervisory control
JP2006094611A (en) * 2004-09-22 2006-04-06 Kansai Electric Power Co Inc:The Power distribution system trouble recovering method and power distribution system trouble recovering apparatus
JP2006304403A (en) * 2005-04-15 2006-11-02 Toshiba Corp Supervisory controller for distribution system, method, and program
JP2011061931A (en) * 2009-09-08 2011-03-24 Toshiba Corp Comprehensive monitoring and control system for smart grids and micro grids
US20130197702A1 (en) * 2012-02-01 2013-08-01 General Electric Company Systems and Methods for Managing a Power Distribution System

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046726A (en) * 2016-09-16 2018-03-22 株式会社東芝 Erroneous operation prevention system
JP2018073238A (en) * 2016-11-01 2018-05-10 株式会社東芝 Protection control system
WO2018083815A1 (en) 2016-11-01 2018-05-11 株式会社 東芝 Protection control system
US10740092B2 (en) 2016-11-01 2020-08-11 Kabushiki Kaisha Toshiba Protection and control system
CN108695983A (en) * 2018-07-06 2018-10-23 唐榆东 A kind of photovoltaic power station Energy Management System and method
JP2020072638A (en) * 2018-10-25 2020-05-07 日本水力株式会社 Power supply method and power supply system for achieving the same
JP7117011B2 (en) 2018-10-25 2022-08-12 日本水力株式会社 Power supply method and power supply system realizing the same
CN112564097A (en) * 2020-12-01 2021-03-26 国网浙江杭州市富阳区供电有限公司 Method for rapidly recovering load and reducing loss during multi-circuit line fault power failure
CN112564097B (en) * 2020-12-01 2022-07-08 国网浙江杭州市富阳区供电有限公司 Method for rapidly recovering load and reducing loss during multi-circuit line fault power failure

Also Published As

Publication number Publication date
JP6356517B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5957501B2 (en) Power management system
Kirschen et al. Computing the value of security
EP2214283B1 (en) Supply-and-demand control system of distributed and coordinated type, for use in power systems
JP5677161B2 (en) Charge / discharge determination device and program
JP6356517B2 (en) System monitoring and control device
US20220231538A1 (en) Power distribution systems and methods
WO2010098456A1 (en) Power control device and method
JP2007060742A (en) Control system for electric power network
US10496060B2 (en) Power management system and method for power management
TW201351846A (en) System, method, and apparatus for powering equipment during a low voltage event
US20200373758A1 (en) System for frequency regulation on a power distribution network
JP6971196B2 (en) Power system and switching device
US11309734B2 (en) System for controlling power consumption on a distribution grid
JP5867149B2 (en) Power control unit and power control system
JP5497216B1 (en) Distribution system control method and information processing apparatus
KR101734148B1 (en) Congestion Management System For Transmission Line Overload Mitigation
JP6454929B2 (en) Storage battery control system, storage battery control method, and program
KR101734151B1 (en) Power System Management Method For Transmission Line Overload Mitigation
JP7256341B1 (en) Power supply and demand management device, power supply and demand management method
WO2018088568A1 (en) Electric power converting device, electric power converting system, and electric power converting method
JP2011244511A (en) Local area power supply recovery demand-supply balancing apparatus
JP2016046872A (en) Battery system and control method therefor
JP6536002B2 (en) Ampere breaker and power management system
KR101734150B1 (en) Power System Management System Using Power Reduction Ratio Between Generator And Transmission Line
JP2017042021A (en) Power storage control device, power conversion device, power storage system, power storage control method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180614

R150 Certificate of patent or registration of utility model

Ref document number: 6356517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150