JP2006304403A - Supervisory controller for distribution system, method, and program - Google Patents

Supervisory controller for distribution system, method, and program Download PDF

Info

Publication number
JP2006304403A
JP2006304403A JP2005118359A JP2005118359A JP2006304403A JP 2006304403 A JP2006304403 A JP 2006304403A JP 2005118359 A JP2005118359 A JP 2005118359A JP 2005118359 A JP2005118359 A JP 2005118359A JP 2006304403 A JP2006304403 A JP 2006304403A
Authority
JP
Japan
Prior art keywords
distributed power
distribution system
load accommodation
power source
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005118359A
Other languages
Japanese (ja)
Other versions
JP4427482B2 (en
Inventor
Kenichi Tanomura
顕一 田能村
Yasuo Okuda
靖男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005118359A priority Critical patent/JP4427482B2/en
Publication of JP2006304403A publication Critical patent/JP2006304403A/en
Application granted granted Critical
Publication of JP4427482B2 publication Critical patent/JP4427482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supervisory controller for a distribution system, a method and a program which can prevent the uncertainty of a dispersion power supply after the system is switched for load interchange and a protection stop to stably interchange electric power among interruption zones, by selecting a load interchange route which minimizes the effects on the dispersion power source on the load interchange side. <P>SOLUTION: Electric amount detectors 601f, 601g arranged in the distribution system detect the electric amount of the current/voltage/effective electric power/ineffective electric power or the like of the dispersion power supplies 6f, 6g. The supervisory controller 3 for the distribution system accommodates dispersion power source equipment data D2 in addition to the distribution system equipment data D1. A dispersion power supply state grasping means 301 grasps the state of the dispersion power supply by obtaining the electric amount measured data of the dispersion power supply. A load interchange route selecting means 302 selects the load interchanging route based on the state of the dispersion power source obtained by the dispersion power source grasping means 301 and the dispersion power source equipment data D2 in addition to the load interchange amount obtained by a load interchanging amount computing means 32 and the dispersion power source equipment data D1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、上位電力系統から電力供給を受けると共に、複数の分散電源と連系する配電系統を監視または制御する配電系統監視制御装置と方法、プログラムに関するものである。   The present invention relates to a power distribution system monitoring control apparatus, method, and program for receiving power supply from a host power system and monitoring or controlling a power distribution system interconnected with a plurality of distributed power sources.

一般に、配電系統は、樹枝形状(放射形状)に構成されており、配電系統監視制御装置により監視または制御されるようになっている。従来、配電系統には、上位電力系統からのみ電力が供給されていたが、近年では、太陽光発電や風力発電、燃料電池、マイクロガスタービンといった各種の分散電源が導入されてきており、配電系統への連系が増加している。   Generally, a power distribution system is configured in a tree shape (radiation shape) and is monitored or controlled by a power distribution system monitoring and control device. Conventionally, power is supplied only from the upper power system to the power distribution system, but in recent years, various distributed power sources such as solar power generation, wind power generation, fuel cells, and micro gas turbines have been introduced. Linkage to has increased.

しかしながら、従来の配電系統は、上位電力系統から電力供給のみを想定したものであり、系統に分散電源が連系されることは想定されていなかった。そのため、従来の配電系統監視制御装置は、配電系統から取り込まれた開閉器情報により、事故時の早期停電復旧や系統工事に伴う系統切替を行うように機能構成されており、系統に連系される分散電源については何ら考慮されていなかった。   However, the conventional power distribution system assumes only power supply from the upper power system, and it has not been assumed that a distributed power source is connected to the system. For this reason, the conventional distribution system monitoring and control device is configured to function as an early power failure restoration at the time of an accident and system switching accompanying system construction based on the switch information captured from the distribution system. No consideration was given to distributed power sources.

図11は、このような従来の配電系統監視制御装置により配電系統の監視制御を行う場合の構成例を示す図である。この図11に示すように、配電系統は、配電用変電所1と複数の配電線2から構成されており、配電系統監視制御装置3は、配電用変電所1内に設置された遠方監視制御装置4と通信線5を通じて配電線2の監視制御を行うようになっている。   FIG. 11 is a diagram showing a configuration example in the case where monitoring control of the distribution system is performed by such a conventional distribution system monitoring control device. As shown in FIG. 11, the distribution system is composed of a distribution substation 1 and a plurality of distribution lines 2, and the distribution system monitoring control device 3 is a remote monitoring control installed in the distribution substation 1. Monitoring and control of the distribution line 2 is performed through the device 4 and the communication line 5.

ここで、配電系統監視制御装置3は、記憶部A1と演算・通信部B1を有する監視制御用計算機30Aと表示操作装置30Bから構成されている。監視制御用計算機30Aの記憶部A1には、配電系統の設備に関する配電系統設備データD1が格納されている。また、監視制御用計算機30の演算・通信部B1は、系統状態監視手段31、負荷融通利用計算手段32、負荷融通ルート選定手段33、開閉器操作指令出力手段34、を備えている。   Here, the power distribution system monitoring control device 3 includes a monitoring control computer 30A having a storage unit A1 and a calculation / communication unit B1, and a display operation device 30B. The storage unit A1 of the monitoring control computer 30A stores distribution system facility data D1 related to the distribution system facility. The calculation / communication unit B1 of the supervisory control computer 30 includes system state monitoring means 31, load accommodation utilization calculation means 32, load accommodation route selection means 33, and switch operation command output means 34.

一方、配電系統の配電用変電所1内には、上位電力系統からの供給電圧を配電電圧に変換する配電用変圧器11、配電用変圧器11に遮断器12を介して接続された三相母線13、三相母線13と複数の配電線2とを接続する複数の遮断器14、を備えている。なお、配電線2は、実際には多数存在する場合が多いが、図11中では、簡略化の観点から配電線2a〜2cのみを示しており、それに伴い、複数の遮断器14についても、対応する遮断器14a〜14cのみを示している。   On the other hand, in the distribution substation 1 of the distribution system, there are a distribution transformer 11 for converting the supply voltage from the upper power system into a distribution voltage, and a three-phase circuit connected to the distribution transformer 11 via a circuit breaker 12. A plurality of circuit breakers 14 for connecting the bus 13, the three-phase bus 13 and the plurality of distribution lines 2 are provided. In addition, in many cases, the distribution line 2 actually exists in many cases, but in FIG. 11, only the distribution lines 2a to 2c are shown from the viewpoint of simplification, and accordingly, the plurality of circuit breakers 14 are also Only the corresponding circuit breakers 14a-14c are shown.

複数の配電線2は、配電網を構成するために樹枝形状に接続されており、各配電線2には、配電線を区分して配電区間を規定するための開閉手段として、複数の開閉器SWが設置されると共に、各2つの配電線2間には、配電線間を連系する開閉器SWが設置されている。すなわち、配電線区分用の開閉器としては、配電線2aに5つの開閉器SWa1〜SWa5、配電線2bに4つの開閉器SWb1〜SWb5、配電線2cに4つの開閉器SWc1〜SWc4が、それぞれ設置されている。また、配電線連系用の開閉器としては、配電線2a−2b間に開閉器SWab、配電線2b−2c間に開閉器SWbc、配電線2c−2a間に開閉器SWcaが、それぞれ設置されている。   The plurality of distribution lines 2 are connected in a dendritic shape to form a distribution network, and each distribution line 2 has a plurality of switches as switching means for dividing the distribution lines and defining the distribution section. SW is installed, and between each two distribution lines 2, switch SW which connects between the distribution lines is installed. That is, as switches for distribution line classification, five switches SWa1 to SWa5 are provided on the distribution line 2a, four switches SWb1 to SWb5 are provided on the distribution line 2b, and four switches SWc1 to SWc4 are provided on the distribution line 2c. is set up. Moreover, as a switch for interconnection of distribution lines, a switch SWab is installed between the distribution lines 2a-2b, a switch SWbc is installed between the distribution lines 2b-2c, and a switch SWca is installed between the distribution lines 2c-2a. ing.

ここで、配電線区分用の開閉器SWa〜SWcは、常時は「閉状態」で運用され、配電線連系用の開閉器SWab〜SWcaは、常時は「開状態」で運用される。配電線2に設置されたこれらの開閉器SWには、各開閉器を操作対象とする子局装置STがそれぞれ接続されている。すなわち、配電線区分用の開閉器SWa1〜SWa5,SWb1〜SWb5,SWc1〜SWc4には子局装置STa1〜STa5,STb1〜STb5,STc1〜STc4がそれぞれ接続され、配電線連系用の開閉器SWab〜SWcaには、子局装置STab〜STcaがそれぞれ接続されている。   Here, the distribution line classifying switches SWa to SWc are always operated in the “closed state”, and the distribution line interconnection switches SWab to SWca are always operated in the “open state”. The switches SW installed in the distribution line 2 are connected to the slave station devices ST that operate the switches. That is, the slave station devices STa1 to STa5, STb1 to STb5, STc1 to STc4 are connected to the switches SWa1 to SWa5, SWb1 to SWb5, SWc1 to SWc4 for distribution line classification, respectively, and the switch SWab for distribution line interconnection is connected. The slave station devices STab to STca are connected to .about.SWca, respectively.

各開閉器SWの入り切りは、これらの子局装置STを通じて、配電系統監視制御装置3により遠隔制御される。また、これらの子局装置STのうち、常時「閉状態」で運用されている配電線区分用の開閉器SWa〜SWcの各子局装置STa〜STcは、遠隔制御するためのデータ送受信機能以外に、各配電線2a〜2cが充電すると、一定時間「X時限」後に投入する機能と、投入後の一定時間「Y時限」以内に再度停電になると自動投入をロックする機能を備えている。この機能により、配電系統に事故が発生した際に、事故発生区間が特定できるようになっている。   On / off of each switch SW is remotely controlled by the distribution system monitoring and control device 3 through these slave station devices ST. Of these slave station devices ST, each of the slave station devices STa to STc of the distribution line classification switches SWa to SWc that are always operated in the “closed state” is other than the data transmission / reception function for remote control. In addition, when each of the distribution lines 2a to 2c is charged, it has a function of turning on after a certain period of time “X time period” and a function of locking automatic turning on when a power failure occurs again within a certain time “Y time period” after turning on. With this function, when an accident occurs in the power distribution system, the accident occurrence section can be specified.

配電線2aにおける開閉器SWa4−SWa5間の配電区間、および配電線2cにおける開閉器SWc2−SWc3間の配電区間には、常時「閉状態」で運用される開閉器8f,8gを介して分散電源6f,6gがそれぞれ連系されており、所内負荷7f,7gと接続されている。   In the distribution section between the switches SWa4 and SWa5 in the distribution line 2a and the distribution section between the switches SWc2 and SWc3 in the distribution line 2c, the distributed power supply is provided via the switches 8f and 8g that are always operated in the “closed state”. 6f and 6g are interconnected, and are connected to the in-house loads 7f and 7g.

遠方監視制御装置4と子局装置ST間は、ポーリング方式で通信が行われており、遠方監視制御装置4は同一通信線内の子局装置STに対してポーリングで状態問合せを順次行い、状態に変化があれば、配電系統監視制御装置3の監視制御用計算機30Aにその状態が送信される。   The remote monitoring control device 4 and the slave station device ST communicate with each other by a polling method. The remote monitoring control device 4 sequentially polls the slave station device ST in the same communication line by polling, and the state If there is a change, the status is transmitted to the monitoring control computer 30A of the distribution system monitoring control device 3.

通常、子局装置STは、配電系統から駆動電源を確保しているため、配電系統に停電が発生すると、遠方監視制御装置4とその子局装置STとは通信ができなくなる(この状態は「子局の無応答状態」と呼ぶ)。この場合、遠方監視制御装置4は、当該子局装置STが「無応答状態」であることを、配電系統監視制御装置3に通知する。   Normally, since the slave station device ST secures drive power from the distribution system, if a power failure occurs in the distribution system, the remote monitoring control device 4 and its slave station device ST cannot communicate (this state is “child” Called “station unresponsive”.) In this case, the remote monitoring control device 4 notifies the distribution system monitoring control device 3 that the slave station device ST is in the “no response state”.

以上のような図11の構成において、例えば、配電線2aに配電線事故(図11中の事故点P)が発生した場合には、配電用変電所1内の遮断器14aが遮断され、配電線2aを構成する常時「閉状態」の開閉器SWa1〜SWa5は、「閉状態」から「無電圧開放状態」となり、配電線2aは「停電状態」となる。このとき、電圧低下リレー等の保護が働くことにより、配電線2aと分散電源6fとを接続している常時「閉状態」の開閉器8fが「切状態」となり、配電系統から切り離された分散電源6fと所内負荷7fは自立運転に移行する。   In the configuration of FIG. 11 as described above, for example, when a distribution line accident (accident point P in FIG. 11) occurs in the distribution line 2a, the circuit breaker 14a in the distribution substation 1 is interrupted and the distribution line 2a is disconnected. The switches SWa1 to SWa5 that are always in the “closed state” constituting the electric wire 2a are changed from the “closed state” to the “no-voltage open state”, and the distribution line 2a is changed to the “power failure state”. At this time, the protection such as the voltage drop relay works, so that the normally closed switch 8f that connects the distribution line 2a and the distributed power source 6f becomes the “off state”, and the dispersion is disconnected from the distribution system. The power source 6f and the in-house load 7f shift to a self-sustaining operation.

遮断器14aが遮断された後、一定時間が経過すると、遮断器14aが投入され、配電線2aの開閉器SWa1〜SWa5は、SWa1から順次、「入状態」となる。配電線事故が継続している場合、事故点Pの配電区間の一端を構成している開閉器SWa2を投入すると、再び事故電流が流れるため、遮断器14aが再び遮断され、配電線2aは再び「停電状態」となる。   When a certain time elapses after the circuit breaker 14a is interrupted, the circuit breaker 14a is turned on, and the switches SWa1 to SWa5 of the distribution line 2a are sequentially turned on from SWa1. When the distribution line accident continues, when the switch SWa2 constituting one end of the distribution section at the accident point P is turned on, the fault current flows again, so that the circuit breaker 14a is interrupted again, and the distribution line 2a is again “Power failure”.

このように、開閉器SWa2を投入したときに事故電流が流れた場合には、投入した開閉器SWa2と次の開閉器SWa3との間の配電区間で事故が継続している。この場合、遮断器5aが投入されて開閉器SWa1を「入状態」としても、続く開閉器SWa2,SWa3は開放されたままとなり、事故が発生していない開閉器SWa3−SWa5間の配電区間は停電状態となるため、この配電区間には、他の配電線2bまたは2cから電力を融通することになる。   Thus, when an accident current flows when the switch SWa2 is turned on, the accident continues in the power distribution section between the turned-on switch SWa2 and the next switch SWa3. In this case, even if the circuit breaker 5a is turned on and the switch SWa1 is set to the “ON state”, the subsequent switches SWa2 and SWa3 remain open, and the distribution section between the switches SWa3 to SWa5 where no accident has occurred is Since it will be in a power failure state, electric power is interchanged from the other distribution lines 2b or 2c in this distribution section.

このように、他の配電線からの電力の融通が必要になった場合に、配電系統監視制御装置3においてはまず、負荷融通量計算手段32により、配電系統設備データD1から得られる各配電線容量および当該配電線の区間毎の契約負荷情報と、配電線の送出し電流から、各配電線の予備力および負荷融通量を計算する。続いて、負荷融通ルート選定手段33により、配電線2aの停電区間(開閉器SWa3−SWa5間の区間)に電力を供給できる負荷融通ルートを選定する。   As described above, when it is necessary to interchange power from other distribution lines, in the distribution system monitoring and control device 3, first, each distribution line obtained from the distribution system facility data D1 by the load accommodation amount calculation means 32 is used. From the capacity and contract load information for each section of the distribution line, and the distribution current of the distribution line, the reserve capacity and load accommodation amount of each distribution line are calculated. Subsequently, the load accommodation route selection means 33 selects a load accommodation route that can supply power to the power outage section (section between the switches SWa3 to SWa5) of the distribution line 2a.

次に、決定した負荷融通ルートで電力を供給するために必要な、「常時開の開閉器を入状態にする指令」を開閉器操作指令出力手段34から遠方監視制御装置4に送る。遠方監視制御装置4は、受けた指令に従い、「常時開の開閉器を入状態にする信号」を該当する子局装置STへ送る。子局装置STは、信号に従い、操作対象とする開閉器SWを入状態にする。   Next, a “command to turn on a normally open switch” necessary for supplying power through the determined load accommodation route is sent from the switch operation command output means 34 to the remote monitoring control device 4. The remote monitoring control device 4 sends a “signal for turning on the normally open switch” to the corresponding slave station device ST in accordance with the received command. The slave station device ST turns on the switch SW to be operated according to the signal.

例えば、図11において、配電線2bに十分な予備力がある場合には、配電線2a−2b間を連系する開閉器SWabが負荷融通ルートとなり、開閉器SWabを入状態にして開閉器SWa3−SWa5間の区間へ電力を供給する。あるいは、配電線2cに十分な予備力がある場合には、配電線2c−2a間を連系する開閉器SWcaを入状態にして開閉器SWa3−SWa5間の区間へ電力を供給することで、事故発生区間を除いた全ての区間を復旧する。
特開2003−189472公報
For example, in FIG. 11, when the distribution line 2b has a sufficient reserve, the switch SWab linked between the distribution lines 2a-2b becomes a load accommodation route, the switch SWab is turned on, and the switch SWa3 -Supply power to the section between SWa5. Or when there is sufficient reserve power in the distribution line 2c, the switch SWca connecting the distribution lines 2c-2a is turned on to supply power to the section between the switches SWa3-SWa5. Restore all sections except the section where the accident occurred.
JP 2003-189472 A

上記のように、従来の配電系統においては、系統に分散電源が連系されることが想定されていなかったため、従来の配電系統監視制御装置においては、分散電源を何ら考慮せずに配電系統の監視制御が処理されていた。しかし、近年では、分散電源が配電系統に連系されてきており、1つの配電系統に複数の分散電源が連系されることも多くなってきており、従来の配電系統監視制御装置では、次のような問題を生じる可能性がある。   As described above, in the conventional power distribution system, it was not assumed that the distributed power supply is connected to the system. Therefore, in the conventional power distribution system monitoring and control device, the power distribution system is not considered without considering the distributed power supply. Supervisory control was being processed. However, in recent years, distributed power sources have been linked to the power distribution system, and a plurality of distributed power sources have often been linked to a single power distribution system. The following problems may occur.

すなわち、配電線で事故が発生し、停電区間へ他の配電線から電力を融通する場合、従来の配電系統監視制御装置においては、配電線の送出し電流を計測し、さらに分散電源の出力電流等を計測して、その合計から配電線負荷を求め、停電区間に必要な負荷融通量を計算することになる。そして、得られた負荷融通量を各配電線の予備力と比較して、停電区間の負荷に電力を供給できる負荷融通ルートを選定することになる。   In other words, when an accident occurs in a distribution line and power is interchanged from another distribution line to a power outage section, the conventional distribution system monitoring and control device measures the distribution current of the distribution line and further outputs the output current of the distributed power source. Etc., the distribution line load is obtained from the total, and the load accommodation amount necessary for the power outage section is calculated. And the load accommodation route which can supply electric power to the load of a power failure area will be selected by comparing the obtained load accommodation amount with the reserve capacity of each distribution line.

このような手法においては、負荷融通ルートに分散電源が接続されている場合、負荷融通時のための連系開閉器の投入による外乱で、系統切替後に分散電源自体が不安定な状態になったり、また、保護協調が取られていないため保護停止する等の問題が発生する可能性がある。   In such a method, when a distributed power source is connected to the load accommodation route, the distributed power source itself may become unstable after system switching due to disturbance caused by turning on the interconnection switch for load accommodation. Moreover, since protection coordination is not taken, there is a possibility that problems such as protection stop may occur.

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、負荷融通側の分散電源への影響が最小となる負荷融通ルートを選定することにより、負荷融通のための系統切替後の分散電源不安定や保護停止を防止し、停電区間へ安定に電力を融通できる配電系統監視制御装置と方法、プログラムを提供することである。   The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to select a load accommodation route that minimizes the influence on the distributed power source on the load accommodation side. An object is to provide a distribution system monitoring control device, method, and program capable of preventing distributed power supply instability and protection stop after system switching for load accommodation, and stably accommodating power to a power outage section.

本発明は、上記目的を達成するために、分散電源の電気量に基づいて分散電源の状態を把握して負荷融通ルートを選定することにより、負荷融通側の分散電源への影響が最小となる負荷融通ルートを選定できるようにしたものである。   In order to achieve the above object, the present invention minimizes the influence on the distributed power source on the load accommodation side by grasping the state of the distributed power source based on the amount of electricity of the distributed power source and selecting the load accommodation route. The load accommodation route can be selected.

本発明の配電系統監視制御装置は、上位電力系統から電力供給を受けると共に、複数の分散電源と連系する配電系統を監視または制御する配電系統監視制御装置において、系統状態監視手段、負荷融通量計算手段、分散電源状態把握手段、負荷融通ルート選定手段、を備えたことを特徴としている。ここで、系統状態監視手段は、配電系統の状態を監視する手段である。負荷融通量計算手段は、配電系統の状態と当該配電系統の設備に関する配電系統設備データに基づき、当該配電系統中の停電区間と当該停電区間に対する負荷融通量を計算する手段である。分散電源状態把握手段は、分散電源の電気量に基づいて当該分散電源の状態を把握する手段である。負荷融通ルート選定手段は、分散電源の状態、負荷融通量、分散電源の設備に関する分散電源設備データ、および配電系統設備データに基づき、配電系統中で当該負荷融通量の負荷融通を行う負荷融通ルートを選定する手段である。   The power distribution system monitoring and control device of the present invention is a power distribution system monitoring and control device that receives power supply from a higher power system and monitors or controls a power distribution system linked to a plurality of distributed power sources. It is characterized by comprising a calculation means, a distributed power state grasping means, and a load accommodation route selection means. Here, the system state monitoring means is means for monitoring the state of the distribution system. The load accommodation amount calculation means is a means for calculating a power outage section in the power distribution system and a load accommodation amount for the power outage section based on the distribution system equipment data relating to the state of the power distribution system and the equipment of the power distribution system. The distributed power supply state grasping means is means for grasping the state of the distributed power supply based on the amount of electricity of the distributed power supply. The load accommodation route selection means is a load accommodation route that performs load accommodation of the load accommodation amount in the distribution system based on the state of the distributed power source, the load accommodation amount, the distributed power facility data on the facility of the distributed power source, and the distribution system facility data. It is a means to select.

また、本発明の配電系統監視制御方法と配電系統監視制御プログラムは、上記配電系統監視制御装置の特徴を、方法およびコンピュータプログラムの観点からそれぞれ把握したものである。   Further, the distribution system monitoring control method and the distribution system monitoring control program of the present invention grasp the characteristics of the distribution system monitoring control device from the viewpoints of the method and the computer program.

以上のような本発明によれば、分散電源の電気量に基づいて事故の前後における分散電源の状態を把握することにより、負荷融通ルートの選定時には、分散電源の状態に応じて、負荷融通側の分散電源への影響を的確に評価できる。また、分散電源の状態に加えて、分散電源設備データを使用することにより、分散電源への影響をより的確に評価できる。したがって、負荷融通側の分散電源への影響が最小となる負荷融通ルートを選定することが可能となる。   According to the present invention as described above, by determining the state of the distributed power supply before and after the accident based on the amount of electricity of the distributed power supply, when selecting a load accommodation route, depending on the state of the distributed power supply, the load accommodation side The impact on the distributed power supply can be accurately evaluated. In addition to the state of the distributed power supply, the influence on the distributed power supply can be more accurately evaluated by using the distributed power supply facility data. Therefore, it is possible to select a load accommodation route that minimizes the influence on the distributed power supply on the load accommodation side.

本発明によれば、分散電源の電気量に基づいて分散電源の状態を把握して負荷融通ルートを選定することにより、負荷融通側の分散電源への影響が最小となる負荷融通ルートを選定できるため、負荷融通のための系統切替後の分散電源不安定や保護停止を防止し、停電区間へ安定に電力を融通できる配電系統監視制御装置と方法、プログラムを提供することができる。   According to the present invention, the load accommodation route that minimizes the influence on the distributed power source on the load accommodation side can be selected by grasping the state of the distributed power source based on the amount of electricity of the distributed power source and selecting the load accommodation route. Therefore, it is possible to provide a distribution system monitoring and control device, method, and program capable of preventing the distributed power supply instability and the protection stop after the system switching for load accommodation, and stably accommodating power to the power failure section.

以下には、本発明を適用した実施形態について、図面に従って詳細に説明する。説明の簡略化の観点から、各図を通して同等の構成要素には同一の符号を付す。   Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings. From the viewpoint of simplifying the explanation, the same components are denoted by the same reference numerals throughout the drawings.

[1.第1の実施形態]
[1−1.構成]
図1は本発明を適用した第1の実施形態に係る配電系統監視制御装置の構成を示す図である。この図1に示すように、本実施形態の配電系統は、図11に示した配電系統と同様の構成において、分散電源6fと所内負荷7f、分散電原6gと所内負荷7gのそれぞれの連系点に、分散電源6f,6gの電流・電圧・有効電力・無効電力等の電気量を検出する電気量検出装置601f,601gが設置されている。そして、これらの電気量検出装置601f,601gには、測定された分散電源の電気量測定データを遠方監視制御装置4へ送るためのデータ伝送装置602f,602gがそれぞれ接続されている。
[1. First Embodiment]
[1-1. Constitution]
FIG. 1 is a diagram showing a configuration of a distribution system monitoring and control apparatus according to a first embodiment to which the present invention is applied. As shown in FIG. 1, the distribution system of the present embodiment has the same configuration as the distribution system shown in FIG. 11, and each interconnection of the distributed power source 6f and the on-site load 7f and the distributed power source 6g and the on-site load 7g. On the other hand, there are installed electric quantity detection devices 601f and 601g for detecting electric quantity such as current, voltage, active power, reactive power and the like of the distributed power sources 6f and 6g. These electric quantity detection devices 601f and 601g are connected to data transmission devices 602f and 602g for sending the measured electric quantity measurement data of the distributed power source to the remote monitoring control device 4, respectively.

また、本実施形態の配電系統監視制御装置3は、図11に示した従来の配電系統監視制御装置の構成において、監視制御計算機30Aの記憶部A1に、配電系統設備データD1に加えて、分散電源6f,6gに関する分散電源設備データD2を格納すると共に、演算・通信部A2に、分散電源6f,6gの電気量測定データを取得して分散電源6f,6gの状態を把握する分散電源状態把握手段301を追加したものである。   Further, in the configuration of the conventional power distribution system monitoring control apparatus shown in FIG. 11, the power distribution system monitoring control apparatus 3 of the present embodiment is distributed in the storage unit A1 of the monitoring control computer 30A in addition to the power distribution system facility data D1. Distributed power supply status data grasps the status of the distributed power supplies 6f and 6g by storing the distributed power supply equipment data D2 related to the power supplies 6f and 6g and acquiring the electric quantity measurement data of the distributed power supplies 6f and 6g in the calculation / communication unit A2. Means 301 is added.

そして、本実施形態の負荷融通ルート選定手段302は、負荷融通量計算手段32から得られる負荷融通量と、記憶部A1から得られる配電系統設備データD1に加えて、分散電源状態把握手段301から得られる分散電源6f,6gの状態および分散電源設備データD2を用いることにより、従来の負荷融通ルート選定手段33とは異なる手法で負荷融通ルートを選定する。   In addition to the load accommodation amount obtained from the load accommodation amount calculation unit 32 and the distribution system facility data D1 obtained from the storage unit A1, the load accommodation route selection unit 302 according to this embodiment includes the distributed power state grasping unit 301. By using the state of the distributed power sources 6f and 6g and the distributed power facility data D2, the load accommodation route is selected by a method different from the conventional load accommodation route selection means 33.

図2は、分散電源状態把握手段301の構成の一例を示す図である。この図2に示すように、分散電源状態把握手段301は、測定データ整合チェック部3011、測定データ時間的変化チェック部3012、および分散電源状態判別部3013から構成される。   FIG. 2 is a diagram illustrating an example of the configuration of the distributed power supply state grasping unit 301. As shown in FIG. 2, the distributed power state grasping unit 301 includes a measurement data matching check unit 3011, a measurement data temporal change check unit 3012, and a distributed power state determination unit 3013.

ここで、測定データ整合チェック部3011は、分散電源6f,6gの電気量測定データ間の時間的整合をチェックし、測定データ時間的変化チェック部3012は、時間的整合のとれた電気量測定データの時間的変化をチェックする。分散電源状態判別部3013は、時間的変化のチェック結果に基づき、分散電源6f,6gが事故に起因して配電系統から解列された状態であるか否かを判別する。   Here, the measurement data matching check unit 3011 checks the temporal matching between the electrical quantity measurement data of the distributed power supplies 6f and 6g, and the measurement data temporal change check unit 3012 is the electrical quantity measurement data that is temporally matched. Check for changes over time. The distributed power supply state determination unit 3013 determines whether or not the distributed power supplies 6f and 6g are disconnected from the distribution system due to an accident based on the check result of the temporal change.

図3は、負荷融通ルート選定手段302の構成の一例を示す図である。この図3に示すように、負荷融通ルート選定手段302は、負荷融通量修正計算部3021、負荷融通ルート候補抽出部3022、分散電源影響算定部3023、負荷融通ルート決定部3024、および開閉器操作手順作成部3025から構成される。   FIG. 3 is a diagram illustrating an example of the configuration of the load accommodation route selection unit 302. As shown in FIG. 3, the load accommodation route selection means 302 includes a load accommodation amount correction calculation unit 3021, a load accommodation route candidate extraction unit 3022, a distributed power source influence calculation unit 3023, a load accommodation route determination unit 3024, and a switch operation. It consists of a procedure creation unit 3025.

ここで、負荷融通量修正計算部3021は、分散電源の状態、負荷融通量、および分散電源設備データD2に基づき、当該負荷融通量を当該分散電源の状態に応じて修正し、修正後負荷融通量を得る。負荷融通ルート候補抽出部3022は、配電系統設備データD1に基づき、配電系統中で修正後負荷融通量の負荷融通を行う負荷融通ルートの候補を抽出する。分散電源影響算定部3023は、分散電源の状態と分散電源設備データD2に基づき、負荷融通を行うための系統切替時における分散電源への影響度を算出する。負荷融通ルート決定部3024は、系統切替時に操作すべき開閉器の数と分散電源への影響度に基づいて決定される優先順位を使用して、負荷融通ルートの候補の中から当該優先順位の高い候補を負荷融通ルートに決定する。開閉器操作手順作成部3025は、決定した負荷融通ルートで負荷融通を行うための開閉器操作手順を作成する。図4は、分散電源設備データD2の一例を示す図である。   Here, the load accommodation amount correction calculation unit 3021 corrects the load accommodation amount according to the state of the distributed power source based on the state of the distributed power source, the load accommodation amount, and the distributed power source facility data D2, and the corrected load accommodation. Get quantity. Based on the distribution system facility data D1, the load accommodation route candidate extraction unit 3022 extracts load accommodation route candidates that perform load accommodation of the corrected load accommodation amount in the distribution system. The distributed power source influence calculation unit 3023 calculates the degree of influence on the distributed power source at the time of system switching for load accommodation based on the state of the distributed power source and the distributed power facility data D2. The load accommodation route determination unit 3024 uses the priority order determined based on the number of switches to be operated at the time of system switching and the degree of influence on the distributed power source, and determines the priority order from among the load accommodation route candidates. A high candidate is determined as a load accommodation route. The switch operating procedure creating unit 3025 creates a switch operating procedure for performing load accommodation with the determined load accommodation route. FIG. 4 is a diagram illustrating an example of the distributed power supply facility data D2.

なお、以上のような配電系統監視制御装置3において、監視制御用計算機30Aは、コンピュータとその制御用のソフトウェアから実現される。すなわち、記憶部A1は、コンピュータの各種のメモリや補助記憶装置等により実現される。また、演算・通信部A2は、データの処理演算を行う演算部と処理されたデータや処理に使用するデータの通信を行う通信部の両方の機能を有する部分である。このような演算・通信部A2は、具体的には、コンピュータのメインメモリとそれに記憶された配電系統監視制御用として特化されたプログラム、そのプログラムによって制御されるCPU、通信用のモデム、等により実現される。   In the power distribution system monitoring and control apparatus 3 as described above, the monitoring control computer 30A is realized by a computer and its control software. That is, the storage unit A1 is realized by various memories of the computer, an auxiliary storage device, and the like. The calculation / communication unit A2 is a part having both functions of a calculation unit that performs data processing calculation and a communication unit that performs communication of processed data and data used for processing. Specifically, the arithmetic / communication unit A2 includes a computer main memory and a program specialized for power distribution system monitoring control stored therein, a CPU controlled by the program, a communication modem, and the like. It is realized by.

また、表示操作装置30Bは、コンピュータに一般的に接続されるマウスやキーボード等の入力装置とディスプレイなどの表示装置、および出力用のソフトウェア等により実現されるマンマシン・インタフェース装置である。   The display operation device 30B is a man-machine interface device realized by an input device such as a mouse and a keyboard generally connected to a computer, a display device such as a display, and output software.

[1−2.作用]
以上のような構成を有する配電系統監視制御装置3の作用は次の通りである。図1において、分散電源6fと所内負荷7f、分散電原6gと所内負荷7gのそれぞれの連系点に設置された電気量検出装置601f,601gにより、分散電源6f,6gの電流・電圧・有効電力・無効電力等の電気量が検出されると、測定された電気量測定データは、データ伝送装置602f,602gにより、遠方監視制御装置4へ送られる。遠方監視制御装置4は、分散電源6f,6gの電気量測定データを配電系統監視制御装置3の監視制御用計算機30Aへ送る。
[1-2. Action]
The operation of the distribution system monitoring and control device 3 having the above configuration is as follows. In FIG. 1, the electric current detection devices 601f and 601g installed at the interconnection points of the distributed power source 6f and the on-site load 7f and the distributed power source 6g and the on-site load 7g respectively provide the current / voltage / effectiveness of the distributed power sources 6f and 6g When the amount of electricity such as electric power and reactive power is detected, the measured electricity amount measurement data is sent to the remote monitoring control device 4 by the data transmission devices 602f and 602g. The remote monitoring control device 4 sends the electric quantity measurement data of the distributed power supplies 6f and 6g to the monitoring control computer 30A of the distribution system monitoring control device 3.

例えば、配電線2aの事故点Pで事故が発生した場合には、事故電流が流れて遮断器14aが遮断され、配電系統2aが無電圧状態となり、開閉器SWa1〜SWa5が無電圧開放される。この場合、配電線2aと分散電源6fとを接続している開閉器8fが電圧低下保護により開放されるため、分散電源6fと所内負荷7fは自立運転状態へ移行する。   For example, when an accident occurs at the fault point P of the distribution line 2a, an accident current flows, the circuit breaker 14a is cut off, the distribution system 2a enters a non-voltage state, and the switches SWa1 to SWa5 are opened without voltage. . In this case, since the switch 8f connecting the distribution line 2a and the distributed power source 6f is opened due to the voltage drop protection, the distributed power source 6f and the in-house load 7f shift to the self-sustaining operation state.

一定時間後、遮断器14aが投入されて、配電線2aの開閉器SWa1まで充電されると、開閉器SWa1は入状態となる。続いて、開閉器SWa2が充電され、入状態となるが、事故が継続している場合は、再び事故電流が流れ、遮断器14aが開放される。一定時間後、遮断器5aが再び投入され、配電線2aの開閉器SWa1から順次、入状態となるが、開閉器SWa2,SWa3は、投入ロックがされており、開閉器SWa3から下位の区間は停電状態となる。   After a certain time, when the circuit breaker 14a is turned on and charged to the switch SWa1 of the distribution line 2a, the switch SWa1 is turned on. Subsequently, the switch SWa2 is charged and turned on, but when the accident continues, the accident current flows again and the circuit breaker 14a is opened. After a certain period of time, the circuit breaker 5a is turned on again, and is sequentially turned on from the switch SWa1 of the distribution line 2a. However, the switches SWa2 and SWa3 are turned on and the section below the switch SWa3 is closed. A power failure occurs.

この場合に、事故区間を除く停電区間に電力を供給するため、配電系統監視制御装置3は、次のように動作する。すなわち、まず、系統状態監視手段31が、事故前の配電系統の状態を負荷融通量計算手段32に送る。負荷融通量計算手段32は、事故前後の配電線送出し電流値、当該配電線の全区間kwおよび当該区間kwから按分率を求め、配電線電流の按分率から区間負荷を求め、停電区間の区間負荷を負荷融通量とする。すなわち、このような負荷融通量計算段階では、分散電源の有無は考慮されていない。負荷融通量計算手段32で得られた負荷融通量計算結果は、負荷融通ルート手段302へ送られる。   In this case, in order to supply power to the power outage section excluding the accident section, the distribution system monitoring and control device 3 operates as follows. That is, first, the system state monitoring unit 31 sends the state of the distribution system before the accident to the load accommodation amount calculating unit 32. The load accommodation amount calculation means 32 calculates the distribution line sending current value before and after the accident, the distribution section kw and the distribution ratio from the distribution section kw, calculates the section load from the distribution line distribution ratio, The section load is the load accommodation amount. That is, the presence / absence of a distributed power source is not considered in such a load accommodation amount calculation stage. The load accommodation amount calculation result obtained by the load accommodation amount calculation means 32 is sent to the load accommodation route means 302.

一方、分散電源状態把握手段32においては、遠方監視制御装置21から分散電源端の電気量測定データを受信し、この受信した電気量測定データを次のように処理する。   On the other hand, the distributed power state grasping means 32 receives the electrical quantity measurement data at the distributed power supply terminal from the remote monitoring control device 21 and processes the received electrical quantity measurement data as follows.

まず、測定データ整合チェック部3011は、電気量測定データに付加されている計測時間データから、電気量測定データ間の時間的な整合をチェックし、整合のとれた電気量測定データを測定データ時間的変化チェック部3012に送る。測定データ時間的変化チェック部3012は、事故前から事故後の測定データの時間的変化、例えば、分散電源の出力有効電力の変化や電圧の変化、をチェックし、その結果を分散電源状態判別部3013へ送る。   First, the measurement data matching check unit 3011 checks the temporal matching between the electrical quantity measurement data from the measurement time data added to the electrical quantity measurement data, and the matched electrical quantity measurement data is measured as the measurement data time. To the change check unit 3012. A measurement data temporal change check unit 3012 checks a temporal change in measurement data from before the accident to after the accident, for example, a change in output active power or a change in voltage of the distributed power source, and the result is a distributed power state determination unit. Send to 3013.

分散電源状態判別部3013は、測定データ時間的変化チェック部3012からの時間的変化のチェック結果に基づき、分散電源が配電系統に連系されている状態から事故に起因して解列された状態となっているか、事故前から停止状態か、あるいは起動中であるか、停止中であるか、等の判別を行う。例えば、分散電源の出力に事故前後で殆ど時間的変化がない場合は、当該分散電源は、事故配電線の分散電源でなく、離れた箇所に連系され、事故後も定常運転状態であると判断する。また、分散電源の出力が事故後「0」となっている場合には、当該分散電源は、事故後に配電系統から解列された状態であると判断する。各分散電源の状態判別結果は、負荷融通ルート選定手段302へ送られる。   The distributed power supply state discriminating unit 3013 is a state where the distributed power supply is disconnected due to an accident from the state where the distributed power supply is connected to the distribution system based on the check result of the temporal change from the measurement data temporal change check unit 3012 Or whether the vehicle has been stopped before the accident, whether it has been started, or has been stopped. For example, if there is almost no temporal change in the output of the distributed power supply before and after the accident, the distributed power supply is not connected to the distributed power supply of the accident distribution line, but is connected to a remote location and is in a steady operation state after the accident. to decide. When the output of the distributed power supply is “0” after the accident, it is determined that the distributed power supply is disconnected from the power distribution system after the accident. The status determination result of each distributed power source is sent to the load accommodation route selection means 302.

負荷融通ルート選定手段302においては、分散電源状態把握手段301から取得した分散電源の状態判別結果を使用して、分散電源への影響を最小にする負荷融通ルートを選定するために、次のような処理を行う。   The load accommodation route selection unit 302 uses the distributed power source state determination result obtained from the distributed power source state grasping unit 301 to select a load accommodation route that minimizes the influence on the distributed power source as follows. Perform proper processing.

まず、負荷融通量修正計算部3021は、分散電源の状態判別結果と、負荷融通量計算手段32で計算された負荷融通量、および分散電源設備データD2に基づいて、分散電源の状態を考慮した停電区間への負荷融通量を算出する。   First, the load accommodation amount correction calculation unit 3021 considers the state of the distributed power source based on the state determination result of the distributed power source, the load accommodation amount calculated by the load accommodation amount calculation means 32, and the distributed power facility data D2. Calculate the load capacity to the power outage section.

その方法は、例えば、負荷融通量計算手段32で計算された負荷融通量Poが、事故前後の配電線送出し電流の差分から求めたものである場合に、事故前に分散電源が配電系統へ電力を供給していたか否かに応じて、次のようにして求められる。   In the method, for example, when the load accommodation amount Po calculated by the load accommodation amount calculation means 32 is obtained from the difference between the distribution line sending currents before and after the accident, the distributed power source is supplied to the distribution system before the accident. It is calculated as follows depending on whether or not power is supplied.

すなわち、事故前に分散電源が配電系統へ電力を供給していた(逆潮流)場合は、事故後に分散電源が解列されている状態ならば、逆潮流PgをPoに加算し、新たな負荷融通量Po'を次の(1)式により求め、負荷融通ルート候補抽出部3022へ送る。
Po'=Po+Pg …(1)
In other words, if the distributed power supply is supplying power to the distribution system before the accident (reverse power flow), if the distributed power supply is disconnected after the accident, the reverse power flow Pg is added to Po to create a new load. The accommodation amount Po ′ is obtained by the following equation (1) and sent to the load accommodation route candidate extraction unit 3022.
Po '= Po + Pg (1)

逆潮流でない場合は、事故前の分散電源連系点の有効電力Pgと分散電源設備データ34の運転出力計画値、および所内負荷計画値を参照して、所内負荷量PLを算定し、次の(2)式でPo'を求める。所内負荷量が直接計測できる場合には、(2)式の計算結果精度は向上する。
Po'=Po+PL …(2)
If it is not reverse power flow, the in-house load amount PL is calculated by referring to the active power Pg at the distributed power grid connection point before the accident, the planned operation output value of the distributed power facility data 34, and the in-house load plan value. Find Po ′ by equation (2). When the in-house load amount can be directly measured, the calculation result accuracy of equation (2) is improved.
Po '= Po + PL (2)

なお、事故前後でその配電線に分散電源が連系されていない状態である場合には、負荷融通量修正計算部3021は、修正計算を行わずに、負荷融通量計算手段32で計算された負荷融通量Poをそのまま(Po'=Poとして)負荷融通ルート候補抽出部3022へ送る。   If the distributed power source is not connected to the distribution line before and after the accident, the load accommodation amount correction calculation unit 3021 calculates the load accommodation amount calculation means 32 without performing the correction calculation. The load accommodation amount Po is sent to the load accommodation route candidate extraction unit 3022 as it is (Po ′ = Po).

負荷融通ルート候補抽出部3022は、配電系統設備データD1に基づいて、負荷融通量Po'を十分賄えるだけの余裕がある配電線および電力供給ルート(負荷融通ルート)の候補を抽出する。例えば、図1の配電系統において、配電線2bと配電線2cの事故後の送出し電力をP2b,P2cとし、配電線容量をそれぞれC6b,C6cとした場合に、次の(3)式と(4)式が成立する場合には、配電線2bが負荷融通ルート候補として抽出される。
C2b−P2b > Po’ …(3)
C2c−P2c < Po’ …(4)
The load accommodation route candidate extraction unit 3022 extracts distribution line and power supply route (load accommodation route) candidates that have a margin enough to cover the load accommodation amount Po ′ based on the distribution system facility data D1. For example, in the distribution system of FIG. 1, when the transmission power after the accident of the distribution lines 2b and 2c is P2b and P2c and the distribution line capacities are C6b and C6c, respectively, When the formula 4) holds, the distribution line 2b is extracted as a load accommodation route candidate.
C2b-P2b> Po '(3)
C2c-P2c <Po '(4)

なお、実際の配電系統は多数の配電線から構成されているため、実際に抽出される負荷融通ルート候補は、単数であることは少なく、概して、複数の負荷融通ルート候補が抽出される。負荷融通ルート候補抽出部3022で抽出された複数の負荷融通ルート候補は、負荷融通ルート決定部3024に送られる。   In addition, since an actual power distribution system is composed of a large number of distribution lines, the number of load accommodation route candidates that are actually extracted is rarely single, and a plurality of load accommodation route candidates are generally extracted. The plurality of load accommodation route candidates extracted by the load accommodation route candidate extraction unit 3022 are sent to the load accommodation route determination unit 3024.

一方、分散電源影響算定部3023は、分散電源状態把握手段301から取得した分散電源の状態判別結果と分散電源設備データD2から、負荷融通を行うための系統切替時における各分散電源への影響度を算定する。例えば、「分散電源の運転出力が定格出力の100%に近い」程、「定格出力が大きい」程、「分散電源の連系箇所が系統切替え用開閉器に近い」程、分散電源への影響度が大きくなると考えられる。影響度の算出式は、影響度を左右するこれらの項目を0〜1の値で正規化し、重み付け係数を乗じて加算する式とする。例えば、次の(5)式により影響度を求めることができる。   On the other hand, the distributed power influence calculation unit 3023 determines the degree of influence on each distributed power supply at the time of system switching for load accommodation from the distributed power supply status determination result obtained from the distributed power supply status grasping unit 301 and the distributed power supply facility data D2. Is calculated. For example, the more the "output of the distributed power source is closer to 100% of the rated output", the "the higher the rated output" is, the more "the connection point of the distributed power source is closer to the system switching switch" The degree is thought to increase. The calculation formula for the influence degree is an expression in which these items that influence the influence degree are normalized by a value of 0 to 1, multiplied by a weighting coefficient, and added. For example, the influence degree can be obtained by the following equation (5).

E=w1・A1+w2・A2+w3・A3 …(5)
ここで、
E:影響度数
A1:分散電源の運転出力割合(=運転出力/定格出力,0≦A1≦1)
w1:A1の重み係数(0≦w1≦1)
A2:分散電源定格出力(=定格出力/配電系統内の分散電源最大定格出力,0≦A2≦1)
w2:A2の重み係数(0≦w2≦1)
A3:対象とする系統切替え用開閉器からの電気的距離(=開閉器から最短連系点までのインピーダンス/開閉器から対象連系点までのインピーダンス,0≦A3≦1)
w3:A3の重み係数(0≦w3≦1)
E = w1, A1 + w2, A2 + w3, A3 (5)
here,
E: Frequency of influence A1: Operating output ratio of distributed power supply (= Operating output / rated output, 0 ≦ A1 ≦ 1)
w1: A1 weighting factor (0 ≦ w1 ≦ 1)
A2: Distributed power supply rated output (= rated output / distributed power supply maximum rated output in the distribution system, 0≤A2≤1)
w2: A2 weighting factor (0≤w2≤1)
A3: Electrical distance from the target system switching switch (= impedance from the switch to the shortest connection point / impedance from the switch to the target connection point, 0 ≦ A3 ≦ 1)
w3: A3 weighting factor (0≤w3≤1)

分散電源影響算定部3023で算出された各分散電源への影響度数は、負荷融通ルート決定部3024へ送られる。   The degree of influence on each distributed power source calculated by the distributed power source influence calculating unit 3023 is sent to the load accommodation route determining unit 3024.

負荷融通ルート決定部3024は、各負荷融通ルート候補について、当該負荷融通ルートで負荷融通を行うための系統切替時に操作する開閉器の操作総数N、分散電源の影響度数E、から、各負荷融通ルート候補の優先順位を決定する。例えば、次の(6)式により各候補の優先度を求めることができる。   For each load accommodation route candidate, the load accommodation route determination unit 3024 calculates each load accommodation from the total operation number N of the switches operated at the time of system switching for performing load accommodation in the load accommodation route and the influence degree E of the distributed power source. Determine the priority of route candidates. For example, the priority of each candidate can be obtained by the following equation (6).

Pr=a1/N+a2/E …(6)
ここで、
Pr:優先度数
a1:系統切替え用開閉器の操作総数Nに関する重み係数
a2:分散電源の影響度数Eに関する重み係数
Pr = a1 / N + a2 / E (6)
here,
Pr: Priority level a1: Weighting factor for total operation number N of system switching switches a2: Weighting factor for distributed power source influence frequency E

この(6)式においては、Nが大きい(開閉器の操作総数が多い)程、Eが大きい(分散電源の影響度が大)程、優先度数が小さくなる。優先度数「Pr」を負荷融通ルート候補毎に求めて、数値の大きな順に並べることにより、優先順位が決定される。負荷融通ルート決定部3024は、このようにして決定された優先順位の高い負荷融通ルート候補から順に、当該候補が実施可能であるか否かを確認し、負荷融通ルートを決定する。   In this equation (6), the greater the N (the greater the total number of switch operations), the smaller the priority number the greater E (the greater the influence of the distributed power supply). The priority order is determined by obtaining the priority number “Pr” for each load accommodation route candidate and arranging them in descending order of numerical values. The load accommodation route determination unit 3024 confirms whether or not the candidates can be executed in order from the load accommodation route candidates with the higher priority determined in this way, and determines the load accommodation route.

負荷融通ルート決定部3024で最終的に決定された負荷融通ルートのデータは、開閉器操作手順作成部3025に送られる。開閉器操作手順作成部3025は、負荷融通ルートで系統切替を行うために必要な開閉器の操作手順を作成し、開閉器操作信号出力手段34へ送る。   The data of the load accommodation route finally determined by the load accommodation route determination unit 3024 is sent to the switch operation procedure creation unit 3025. The switch operating procedure creating unit 3025 creates a switch operating procedure necessary for performing system switching on the load accommodation route, and sends it to the switch operating signal output means 34.

開閉器操作信号出力手段34は、対象となる開閉器SWの制御指令を遠方監視制御装置4へ送る。   The switch operation signal output means 34 sends a control command for the target switch SW to the remote monitoring control device 4.

遠方監視制御装置4は、対象となる開閉器SWを操作対象とする子局装置STへ当該開閉器SWの入または切の操作指令を送り、子局装置は、その操作指令に応じて当該開閉器SWの入または切の操作を実行する。   The remote monitoring control device 4 sends an operation command to turn on or off the switch SW to the slave station device ST that operates the target switch SW, and the slave station device opens or closes the switch according to the operation command. The operation of turning on or off the device SW is executed.

なお、前述した(1)〜(6)の評価式は、負荷融通ルートを選定するための評価式の一例であり、これらの他にも多種多様な評価式が考えられる。   The above-described evaluation formulas (1) to (6) are examples of an evaluation formula for selecting a load accommodation route, and various other evaluation formulas can be considered.

[1−3.効果]
以上のように、本実施形態によれば、分散電源の電気量に基づいて事故発生前後の分散電源の状態を把握して負荷融通ルートを選定することにより、負荷融通側の分散電源への影響度が最小となる負荷融通ルートを選定できるため、負荷融通のための系統切替時の分散電源不安定や保護停止を防止し、停電区間へ安定に電力を融通することができる。
[1-3. effect]
As described above, according to the present embodiment, the influence on the distributed power source on the load accommodation side is determined by grasping the state of the distributed power source before and after the occurrence of the accident based on the amount of electricity of the distributed power source and selecting the load accommodation route. Since the load accommodation route with the minimum degree can be selected, it is possible to prevent distributed power source instability and protection stop at the time of system switching for load accommodation, and to stably power supply to the power failure section.

[1−4.負荷融通ルート選定手段の変形例]
図5〜図8は、第1の実施形態に係る配電系統監視制御装置の負荷融通ルート選定手段302(図3)の変形例として、一部の構成が異なる負荷融通ルート選定手段302A〜302Dをそれぞれ示す図である。以下には、これらの変形例について順次説明する。
[1-4. Modification of load accommodation route selection means]
5 to 8 show, as modifications of the load accommodation route selection unit 302 (FIG. 3) of the distribution system monitoring and control device according to the first embodiment, load accommodation route selection units 302A to 302D having different configurations. FIG. Hereinafter, these modified examples will be sequentially described.

図5に示す負荷融通ルート選定手段302Aは、第1の実施形態に係る負荷融通ルート選定手段302(図3)の構成において、分散電源影響算定部3023の代わりに、分散電源連系有無判別部3026を設けたものであり、他の部分の構成は、図3と同様である。この図5に示す負荷融通ルート選定手段302Aの作用は次の通りである。   A load accommodation route selection unit 302A shown in FIG. 5 is a distributed power source interconnection presence / absence determination unit instead of the distributed power source influence calculation unit 3023 in the configuration of the load accommodation route selection unit 302 (FIG. 3) according to the first embodiment. 3026 is provided, and the configuration of other parts is the same as that in FIG. The operation of the load accommodation route selection means 302A shown in FIG. 5 is as follows.

図5の負荷融通ルート選定手段302Aにおいて、分散電源連系有無判別部3026は、分散電源設備データD2から分散電源の連系情報を抽出し、分散電源状態把握手段301からの情報と照らし合わせて、分散電源の連系有無を判別し、分散電源連系有りの場合は信号「1」を、分散電源連系無しの場合は信号「0」を、分散電源が連系されている配電線番号および連系されている区間番号とともに、負荷融通ルート決定部3024へ送る。   In the load accommodation route selection unit 302A of FIG. 5, the distributed power source interconnection presence / absence determining unit 3026 extracts the distributed power source interconnection information from the distributed power source facility data D2, and compares it with the information from the distributed power source state grasping unit 301. Determines whether the distributed power supply is connected or not. When the distributed power supply is connected, the signal “1” is displayed. When the distributed power supply is not connected, the signal “0” is displayed. The distribution line number to which the distributed power supply is connected. The route number is sent to the load accommodation route determination unit 3024 together with the linked section number.

負荷融通ルート決定部3024は、分散電源連系有無判別部3026からの信号に基づき、負荷融通ルート候補のうち、ルート上で分散電源が連系されていない負荷融通ルート候補を優先的に選択する。例えば、負荷融通ルート候補のルート上に分散電源がある場合には信号「1」が得られるので、それらを負荷融通ルート候補毎に加算して、その値が小さな順位に並べることで、分散電源の連系が最も少ない負荷融通ルート候補を選択し、負荷融通ルートに決定することができる。   The load accommodation route determination unit 3024 preferentially selects load accommodation route candidates that are not linked to the distributed power source on the route from among the load accommodation route candidates based on the signal from the distributed power source interconnection presence / absence determination unit 3026. . For example, when there is a distributed power source on the route of the load accommodation route candidate, the signal “1” is obtained. Therefore, by adding them for each load accommodation route candidate and arranging the values in a small order, the distributed power source is obtained. It is possible to select a load accommodation route candidate with the least number of interconnections and determine it as a load accommodation route.

なお、負荷融通ルート選定手段302Aの他の作用は、図3の負荷融通ルート選定手段302の作用と同様であるため、説明を省略する。   The other operation of the load accommodation route selection unit 302A is the same as that of the load accommodation route selection unit 302 in FIG.

このような負荷融通ルート選定手段302Aによれば、分散電源の連系が最も少ない負荷融通ルートを効率よく選択することができる。したがって、負荷融通側の分散電源への影響度が最小となる負荷融通ルートを的確に選定することができる。   According to such load accommodation route selection means 302A, it is possible to efficiently select a load accommodation route with the least number of interconnected distributed power sources. Therefore, it is possible to accurately select a load accommodation route that minimizes the influence on the distributed power source on the load accommodation side.

図6に示す負荷融通ルート選定手段302Bは、第1の実施形態に係る負荷融通ルート選定手段302(図3)の構成において、分散電源影響算定部3023の代わりに、分散電源種類判別部3027を設けたものであり、他の部分の構成は、図3と同様である。この図6に示す負荷融通ルート選定手段302Bの作用は次の通りである。   The load accommodation route selection unit 302B illustrated in FIG. 6 includes a distributed power source type determination unit 3027 instead of the distributed power source influence calculation unit 3023 in the configuration of the load accommodation route selection unit 302 (FIG. 3) according to the first embodiment. The configuration of other parts is the same as that of FIG. The operation of the load accommodation route selection means 302B shown in FIG. 6 is as follows.

図6の負荷融通ルート選定手段302Bにおいて、分散電源種類判別部3027は、分散電源設備データD2から分散電源の種類と出力安定性ポイントA、過渡安定性ポイントBを抽出し、これらのポイントA,Bから、次(7)の式で総合評価ポイントTを求め、求めた総合評価ポイントTを負荷融通ルート決定部3024へ送る。
T = wa・A +wb・B …(7)
ただし、wa:Aの重み係数、wb:Bの重み係数
In the load accommodation route selection means 302B of FIG. 6, the distributed power supply type discriminating unit 3027 extracts the type of the distributed power supply, the output stability point A, and the transient stability point B from the distributed power supply facility data D2, and these points A, From B, the overall evaluation point T is obtained by the following equation (7), and the obtained overall evaluation point T is sent to the load accommodation route determination unit 3024.
T = wa · A + wb · B (7)
Wa: A weighting factor, wb: B weighting factor

ここで、分散電源の出力安定性については、再生可能エネルギー(風力、太陽光等)を変換して電力エネルギーを得るもので、出力安定のための対策(電力貯蔵用機器の併設など)が施されていない分散電源を出力安定性(低)とし、天然ガス等の燃料供給タイプの分散電源(燃料電池、同期発電機等)を出力安定性(高)とする。出力安定性の高低は、「0」(低)〜「1」(高)の正規化された実数ポイントで表現する。   Here, the output stability of a distributed power source is obtained by converting renewable energy (wind power, sunlight, etc.) to obtain power energy, and measures for stabilizing the output (such as the installation of power storage devices) are implemented. An undistributed distributed power source is set as output stability (low), and a fuel-supply type distributed power source (fuel cell, synchronous generator, etc.) such as natural gas is set as output stability (high). The level of output stability is expressed by normalized real number points from “0” (low) to “1” (high).

また、分散電源の過渡安定性は、100%負荷運転時に、負荷50%に低減された場合の応答を事前にシミュレーションにより求め、負荷変動時の出力変動量、出力が安定するまでの時間から過渡安定性を「0」(低)〜「1」(高)の正規化された実数ポイントで表現する。このような出力安定性、過渡安定性のポイントは、分散電源設備データD2に予め登録しておく。   In addition, the transient stability of the distributed power supply is determined from the response when the load is reduced to 50% during a 100% load operation by simulation in advance. The stability is expressed by normalized real points from “0” (low) to “1” (high). Such points of output stability and transient stability are registered in advance in the distributed power supply facility data D2.

負荷融通ルート決定部3024は、(7)式で計算された総合評価ポイントTに基づいて、総合評価ポイントTの大きな分散電源が連系されている負荷融通ルート候補を優先的に選択する。例えば、負荷融通ルート候補のルート上に存在する分散電源の総合評価ポイントを加算し、その値が大きな順位に並べることで、開閉器の操作に対する分散電源の安定性が最も高い負荷融通ルート候補を選択し、負荷融通ルートに決定することができる。   The load accommodation route determination unit 3024 preferentially selects a load accommodation route candidate to which a distributed power source having a large overall evaluation point T is linked, based on the overall evaluation point T calculated by Expression (7). For example, by adding the total evaluation points of distributed power sources that exist on the route of the load accommodation route candidate and arranging the values in a large order, the load accommodation route candidate with the highest stability of the distributed power source with respect to the operation of the switch can be obtained. You can select and determine the load accommodation route.

なお、負荷融通ルート選定手段302Bの他の作用は、図3の負荷融通ルート選定手段302の作用と同様であるため、説明を省略する。   The other operation of the load accommodation route selection unit 302B is the same as that of the load accommodation route selection unit 302 in FIG.

このような負荷融通ルート選定手段302Bによれば、開閉器の操作に対する分散電源の安定性が最も高い負荷融通ルートを選択することができる。したがって、負荷融通側の分散電源への影響度が最小となる負荷融通ルートを的確に選定することができる。   According to such load accommodation route selection means 302B, it is possible to select the load accommodation route with the highest stability of the distributed power source with respect to the operation of the switch. Therefore, it is possible to accurately select a load accommodation route that minimizes the influence on the distributed power source on the load accommodation side.

図7に示す負荷融通ルート選定手段302Cは、第1の実施形態に係る負荷融通ルート選定手段302(図3)の構成において、分散電源影響算定部3023の代わりに、分散電源運転状態判別部3028を設けたものであり、他の部分の構成は、図3と同様である。この図7に示す負荷融通ルート選定手段302Cの作用は次の通りである。   The load accommodation route selection unit 302C shown in FIG. 7 is a distributed power source operating state determination unit 3028 instead of the distributed power source influence calculation unit 3023 in the configuration of the load accommodation route selection unit 302 (FIG. 3) according to the first embodiment. The structure of other parts is the same as that of FIG. The operation of the load accommodation route selection means 302C shown in FIG. 7 is as follows.

図7の負荷融通ルート選定手段302Cにおいて、分散電源運転状態判別部3028は、分散電源設備データD2から分散電源の運転計画値(運転出力、運転力率、負荷電力、負荷力率)を抽出し、分散電源状態把握手段301から得られる分散電源の電気量情報と照合する。分散電源運転状態判別部3028は、この照合結果に応じて、分散電源の運転状態を、(1)運転中(定出力状態)、(2)起動中(出力上昇状態)、(3)停止中(出力下降状態)、(4)停止状態(出力0状態)、の区分で表し、そのときの出力電力状態(%)(=出力電力(kW)/定格出力(kW)×100)から、負荷融通のための開閉器操作等による分散電源への影響を「0」〜「3」の整数(0:影響無し、1:影響小、2:影響中、3:影響大)で表す。   In the load accommodation route selection unit 302C of FIG. 7, the distributed power supply operation state determination unit 3028 extracts the operation plan value (operation output, operation power factor, load power, load power factor) of the distributed power supply from the distributed power supply facility data D2. Then, it collates with the electric quantity information of the distributed power source obtained from the distributed power source state grasping means 301. The distributed power supply operation state discriminating unit 3028 determines the operation state of the distributed power supply according to the collation result as follows: (1) Operating (constant output state), (2) Starting (output increasing state), (3) Stopping (Output falling state), (4) Stopped state (Output 0 state), the output power state (%) at that time (= output power (kW) / rated output (kW) × 100), the load The influence on the distributed power supply due to the operation of a switch for accommodation is expressed by an integer from “0” to “3” (0: no influence, 1: small influence, 2: medium influence, 3: large influence).

分散電源運転状態判別部3028は、このようにして得られた運転状態とその影響度を、分散電源が連系されている配電線番号および連系されている区間番号とともに、負荷融通ルート決定部3024へ送る。   The distributed power supply operating state discriminating unit 3028 shows the operating state and the influence degree thus obtained together with the distribution line number and the section number with which the distributed power source is linked, and the load accommodation route determining unit. Send to 3024.

負荷融通ルート決定部3024は、負荷融通ルート候補のルート上で、開閉器操作等による分散電源への影響が最も小さな負荷融通ルート候補を優先的に選択する。例えば、負荷融通ルート候補のルート上にある分散電源の影響度を全て重み付け加算して、その値が小さな順位に負荷融通ルート候補を並べることで、分散電源の影響が最も小さい負荷融通ルート候補を選択し、負荷融通ルートに決定することができる。   The load accommodation route determination unit 3024 preferentially selects a load accommodation route candidate that has the least influence on the distributed power source by a switch operation or the like on the route of the load accommodation route candidate. For example, by weighting and adding all the influences of distributed power sources on the route of load accommodation route candidates, and arranging the load accommodation route candidates in the order of the smallest value, the load accommodation route candidates having the least influence of the distributed power source can be obtained. You can select and determine the load accommodation route.

また、負荷融通ルート候補の重み付け加算値が一定値よりも大きい場合や、影響度「3」の分散電源がルート上にある場合には、その負荷融通ルート候補を除外するものと予め規定しておくことにより、影響度の高い候補や影響度の高い分散電源を含む負荷融通ルート候補を確実に除外することができる。   In addition, when the weighted addition value of the load accommodation route candidate is larger than a certain value, or when the distributed power source having the influence level “3” is on the route, the load accommodation route candidate is excluded in advance. This makes it possible to reliably exclude candidates for load accommodation including high-impact candidates and high-impact distributed power sources.

なお、負荷融通ルート選定手段302Cの他の作用は、図3の負荷融通ルート選定手段302の作用と同様であるため、説明を省略する。   The other operation of the load accommodation route selection unit 302C is the same as the operation of the load accommodation route selection unit 302 in FIG.

このような負荷融通ルート選定手段302Cによれば、開閉器の操作に対する分散電源への影響が最も小さい負荷融通ルートを選択することができる。したがって、負荷融通側の分散電源への影響度が最小となる負荷融通ルートを的確に選定することができる。   According to such load accommodation route selection means 302C, it is possible to select a load accommodation route that has the least influence on the distributed power source with respect to the operation of the switch. Therefore, it is possible to accurately select a load accommodation route that minimizes the influence on the distributed power source on the load accommodation side.

図8示す負荷融通ルート選定手段302Dは、第1の実施形態に係る負荷融通ルート選定手段302(図3)の構成において、分散電源影響算定部3023の代わりに、図6の分散電源種類判別部3027と図7の分散電源運転状態判別部3028を設けたものであり、他の部分の構成は、図3と同様である。この図8に示す負荷融通ルート選定手段302Dの作用は次の通りである。   The load accommodation route selection unit 302D shown in FIG. 8 is different from the distributed power source influence calculation unit 3023 in the configuration of the load accommodation route selection unit 302 (FIG. 3) according to the first embodiment. 3027 and the distributed power supply operating state determination unit 3028 of FIG. 7 are provided, and the configuration of other parts is the same as that of FIG. The operation of the load accommodation route selection means 302D shown in FIG. 8 is as follows.

図8の負荷融通ルート選定手段302Dにおいて、分散電源種類判別部3027と分散電源運転状態判別部3028によるデータの処理は、図6、図7の負荷融通ルート選定手段302B,302Cに関して上述した通りである。   In the load accommodation route selection means 302D of FIG. 8, the data processing by the distributed power supply type determination unit 3027 and the distributed power supply operation state determination unit 3028 is as described above with respect to the load accommodation route selection means 302B and 302C of FIGS. is there.

図8の負荷融通ルート選定手段302Dにおいて、負荷融通ルート決定部3024は、分散電源種類判別部3027と分散電源運転状態判別部3028の両方から処理結果を取得し、それらの処理結果に基づいて、負荷融通ルート候補のルート上に存在する分散電源の総合評価ポイントを加算すると共に、ルート上に存在する分散電源の影響係数「0」〜「3」を重み付け加算する。そして、総合評価ポイントの値が大きく、かつ、重み付け加算値が小さい負荷融通ルート候補を選択することで、分散電源への影響が小さく、かつ、開閉器の操作に対する分散電源の安定性が高い負荷融通ルート候補を選択し、負荷融通ルートに決定することができる。   In the load accommodation route selection unit 302D of FIG. 8, the load accommodation route determination unit 3024 acquires the processing results from both the distributed power supply type determination unit 3027 and the distributed power supply operation state determination unit 3028, and based on the processing results, The total evaluation points of the distributed power sources existing on the route of the load accommodation route candidate are added, and the influence coefficients “0” to “3” of the distributed power sources existing on the route are weighted and added. By selecting a load accommodation route candidate with a large overall evaluation point value and a small weighted addition value, the load that has a small impact on the distributed power source and a high stability of the distributed power source with respect to the operation of the switch An accommodation route candidate can be selected and determined as a load accommodation route.

なお、負荷融通ルート選定手段302Dの他の作用は、図3の負荷融通ルート選定手段302の作用と同様であるため、説明を省略する。   The other operation of the load accommodation route selection unit 302D is the same as that of the load accommodation route selection unit 302 in FIG.

このような負荷融通ルート選定手段302Dによれば、開閉器の操作に対する分散電源の安定性が高く、かつ、開閉器の操作に対する分散電源への影響が小さい負荷融通ルートを選択することができる。すなわち、図6、図7の負荷融通ルート選定手段302B,302Cの両方の効果が得られるため、負荷融通側の分散電源への影響度が最小となる負荷融通ルートをより的確に選定することができる。   According to such load accommodation route selection means 302D, it is possible to select a load accommodation route with high stability of the distributed power source with respect to the operation of the switch and small influence on the distributed power source with respect to the operation of the switch. That is, since the effects of both the load accommodation route selection means 302B and 302C of FIGS. 6 and 7 can be obtained, it is possible to more accurately select the load accommodation route that minimizes the degree of influence on the distributed power source on the load accommodation side. it can.

[2.第2の実施形態]
図9は、本発明を適用した第2の実施形態に係る配電系統監視制御装置の構成を示す図である。この図9に示すように、本実施形態は、図1に示した配電系統に、分散電源6f,6gを制御する分散電源外部制御装置603f,603gを追加し、配電系統監視制御装置3に分散電源制御指令手段303を追加すると共に、分散電源制御指令手段303と分散電源外部制御装置603f,603gとの間を高速信号伝送路604で接続したものである。なお、他の部分の構成は、第1の実施形態と同様である。
[2. Second Embodiment]
FIG. 9 is a diagram showing a configuration of a distribution system monitoring and control apparatus according to the second embodiment to which the present invention is applied. As shown in FIG. 9, in the present embodiment, distributed power source external control devices 603f and 603g for controlling the distributed power sources 6f and 6g are added to the power distribution system shown in FIG. A power supply control command unit 303 is added, and the distributed power supply control command unit 303 and the distributed power supply external control devices 603f and 603g are connected by a high-speed signal transmission path 604. The configuration of other parts is the same as that of the first embodiment.

本実施形態において、分散電源制御指令手段303は、負荷融通ルート選定手段302で選定された負荷融通ルート上で連系されている分散電源の情報を分散電源設備データD2から抽出し、負荷融通時の開閉器操作に伴う影響を最小にし、安定に運転できるように、発電出力電力の低減指令や、発電機励磁制御系の切換え指令等を、高速信号伝送路604を介して、分散電源外部制御装置603f,603gへ送る。分散電源6f,6gは、この制御指令に従って運転される。なお、配電系統監視制御装置3の他の作用は、第1の実施形態と同様である。   In the present embodiment, the distributed power control command unit 303 extracts information on the distributed power source connected on the load accommodation route selected by the load accommodation route selection unit 302 from the distributed power facility data D2, and at the time of load accommodation. In order to minimize the influence of the switch operation of the power generator and to enable stable operation, a command to reduce the generated output power, a command to switch the generator excitation control system, etc. are controlled via the high-speed signal transmission line 604. Send to devices 603f and 603g. The distributed power supplies 6f and 6g are operated according to this control command. In addition, the other effect | action of the power distribution system monitoring control apparatus 3 is the same as that of 1st Embodiment.

本実施形態によれば、第1の実施形態の効果に加えて、次のような効果が得られる。すなわち、開閉器の操作に対する分散電源への影響を最小化するための制御指令を分散電源に送り、一時的に分散電源の運転状態を変更することができる。したがって、分散電源への影響をより小さくすることができるので、負荷融通のための系統切替え時の分散電源不安定や保護停止をより積極的に防止し、停電区間へより安定に電力を融通することができる。   According to this embodiment, in addition to the effects of the first embodiment, the following effects can be obtained. That is, a control command for minimizing the influence of the switch operation on the distributed power source can be sent to the distributed power source, and the operating state of the distributed power source can be temporarily changed. Therefore, since the influence on the distributed power supply can be reduced, the distributed power supply instability and protection stoppage at the time of switching the system for load accommodation can be more actively prevented, and power can be more stably accommodated in the power outage section. be able to.

なお、本実施形態においても、第1の実施形態と同様に、図3の負荷融通ルート選定手段302の代わりに、図5〜図8の負荷融通ルート選定手段302A〜302Dを使用することが可能であり、同様の効果が得られるものである。   Also in this embodiment, as in the first embodiment, the load accommodation route selection means 302A to 302D in FIGS. 5 to 8 can be used instead of the load accommodation route selection means 302 in FIG. The same effect can be obtained.

[3.第3の実施形態]
図10は、本発明を適用した第3の実施形態に係るプログラムの構成を示す図である。この図10において、プログラム90は、コンピュータを、図1や図9の配電系統監視制御装置3として作用させるためのものであり、系統状態監視処理901、負荷融通量計算処理902、分散電源状態把握処理903、負荷融通ルート選定処理904、分岐処理905、分散電源制御指令処理906、開閉器操作信号出力処理907、および必要なデータから構成される。
[3. Third Embodiment]
FIG. 10 is a diagram showing a configuration of a program according to the third embodiment to which the present invention is applied. In FIG. 10, a program 90 is for causing a computer to act as the distribution system monitoring and control device 3 of FIGS. 1 and 9, and a system state monitoring process 901, a load capacity calculation process 902, and a distributed power supply state grasping. A process 903, a load accommodation route selection process 904, a branch process 905, a distributed power supply control command process 906, a switch operation signal output process 907, and necessary data are configured.

ここで、系統状態監視処理901および負荷融通量計算処理902は、従来の技術について説明したような、系統状態監視手段31および負荷融通量計算手段32の作用をそれぞれプログラムコード化したものである。また、分散電源状態把握処理903、負荷融通ルート選定処理904、分散電源制御指令処理906、および開閉器操作信号出力処理907は、第1、第2の実施形態について説明したような、分散電源状態把握手段301、負荷融通ルート選定手段302、分散電源制御指令手段303および開閉器操作出力手段34の作用をそれぞれプログラムコード化したものである。また、分岐処理905は、分散電源制御指令手段303を含む第2の実施形態と、分散電源制御指令手段303を含まない第1の実施形態の処理を分岐させるための処理である。   Here, the system state monitoring process 901 and the load accommodation amount calculation process 902 are the program codes of the operations of the system state monitoring unit 31 and the load accommodation amount calculation unit 32 as described in the related art. In addition, the distributed power supply state grasping process 903, the load accommodation route selection process 904, the distributed power supply control command process 906, and the switch operation signal output process 907 are the distributed power supply state as described in the first and second embodiments. The actions of the grasping means 301, the load accommodation route selecting means 302, the distributed power supply control command means 303, and the switch operation output means 34 are respectively program coded. The branch process 905 is a process for branching the processes of the second embodiment including the distributed power control command unit 303 and the first embodiment not including the distributed power control command unit 303.

このプログラム90は、例えば、CD−ROM91等の記録媒体に記録されている。記録媒体としては、フレキシブルディスク,MO,ハードディスク、磁気テープ,フラッシュメモリ等、電子情報が記録できるもの全てを対象とする。このプログラム90はまた、ネットワークを通じて適用先のコンピュータに提供してもよい。   The program 90 is recorded on a recording medium such as a CD-ROM 91, for example. As the recording medium, all the media that can record electronic information, such as a flexible disk, MO, hard disk, magnetic tape, flash memory, and the like are targeted. The program 90 may also be provided to the application computer through a network.

本実施形態によれば、一般の汎用コンピュータにプログラムを提供することにより、当該コンピュータを、第1、第2の実施形態に係る配電系統監視制御装置と同様に作用させることができ、同様な効果を得ることができる。   According to this embodiment, by providing a program to a general-purpose computer, the computer can be operated in the same manner as the power distribution system monitoring and control device according to the first and second embodiments, and the same effect can be obtained. Can be obtained.

[4.他の実施形態]
なお、本発明は、前述した実施形態や変形例に限定されるものではなく、本発明の範囲内で他にも多種多様な変形例が実施可能である。例えば、前述した変形例を適宜組み合わせることも可能である。さらに、前記実施形態で示した配電系統監視制御装置の構成や処理内容は、一例にすぎず、分散電源の電気量に基づいて分散電源の状態を把握して負荷融通ルートを選定する限り、具体的な装置構成や処理内容は自由に変更可能である。
[4. Other Embodiments]
The present invention is not limited to the above-described embodiments and modifications, and various other modifications can be implemented within the scope of the present invention. For example, the above-described modified examples can be appropriately combined. Furthermore, the configuration and processing contents of the power distribution system monitoring and control apparatus shown in the above embodiment are merely examples, and as long as the load accommodation route is selected by grasping the state of the distributed power source based on the amount of electricity of the distributed power source. The general apparatus configuration and processing contents can be freely changed.

本発明を適用した第1の実施形態に係る配電系統監視制御装置の構成を示す図。The figure which shows the structure of the power distribution system monitoring control apparatus which concerns on 1st Embodiment to which this invention is applied. 図1に示す分散電源状態把握手段の構成の一例を示す図。The figure which shows an example of a structure of the distributed power supply state grasping | ascertainment means shown in FIG. 図1に示す負荷融通ルート選定手段の構成の一例を示す図。The figure which shows an example of a structure of the load accommodation route selection means shown in FIG. 分散電源設備データD2の一例を示す図。The figure which shows an example of the distributed power supply equipment data D2. 図3に示す負荷融通ルート選定手段の変形例を示す図。The figure which shows the modification of the load accommodation route selection means shown in FIG. 図3に示す負荷融通ルート選定手段の別の変形例を示す図。The figure which shows another modification of the load accommodation route selection means shown in FIG. 図3に示す負荷融通ルート選定手段の別の変形例を示す図。The figure which shows another modification of the load accommodation route selection means shown in FIG. 図3に示す負荷融通ルート選定手段の別の変形例を示す図。The figure which shows another modification of the load accommodation route selection means shown in FIG. 本発明を適用した第2の実施形態に係る配電系統監視制御装置の構成を示す図。The figure which shows the structure of the power distribution system monitoring control apparatus which concerns on 2nd Embodiment to which this invention is applied. 本発明を適用した第3の実施形態に係るプログラムの構成を示す図。The figure which shows the structure of the program which concerns on 3rd Embodiment to which this invention is applied. 従来の配電系統監視制御装置により拝殿系統の監視制御を行う場合の構成例を示す図。The figure which shows the structural example in the case of performing monitoring control of the palace system by the conventional power distribution system monitoring control apparatus.

符号の説明Explanation of symbols

1…配電用変電所
11…配電用変圧器
12,14a〜14c…遮断器
13…三相母線
2a〜2c…配電線
SWa1〜SWa5,SWb1〜SWb5,SWc1〜SWc4…(配電線区分用の)開閉器
SWab〜SWca…(配電線連系用の)開閉器
STa1〜STa5,STb1〜STb5,STc1〜STc4,STab〜STca…子局装置
3…配電系統監視制御装置
30A…監視制御用計算機
30B…表示操作装置
A1…記憶部
A2…演算・通信部
D1…配電系統設備データ
D2…分散電源設備データ
31…系統状態監視手段
32…負荷融通量計算手段
33,302…負荷融通ルート選定手段
34…開閉器操作信号出力手段
301…分散電源状態把握手段
303…分散電源制御指令手段
4…遠方監視制御装置
5…通信線
6f,6g…分散電源
601f,601g…電気量検出装置
602f,602g…データ伝送装置
603f,603g…分散電源外部制御装置
604…高速信号伝送路
7f,7g…所内負荷
8f,8g…開閉器
DESCRIPTION OF SYMBOLS 1 ... Distribution substation 11 ... Distribution transformer 12, 14a-14c ... Circuit breaker 13 ... Three-phase bus 2a-2c ... Distribution line SWa1-SWa5, SWb1-SWb5, SWc1-SWc4 ... (For distribution line division) Switches SWab to SWca ... Switches STa1 to STa5, STb1 to STb5, STc1 to STc4, STab to STca ... Slave station device 3 ... Distribution system monitoring and control device 30A ... Monitoring control computer 30B ... Display operation device A1 ... Storage unit A2 ... Calculation / communication unit D1 ... Distribution system facility data D2 ... Distributed power supply facility data 31 ... System state monitoring means 32 ... Load accommodation amount calculation means 33, 302 ... Load accommodation route selection means 34 ... Open / close Operation signal output means 301 ... Distributed power supply state grasping means 303 ... Distributed power supply control command means 4 ... Remote monitoring control device 5 ... Communication lines 6f, 6g ... minutes Power 601f, 601g ... electric quantity detecting device 602f, 602 g ... data transmission device 603 f, 603 g ... distributed power external control device 604 ... high-speed signal transmission line 7f, 7 g ... plant load 8f, 8 g ... switch

Claims (9)

上位電力系統から電力供給を受けると共に、複数の分散電源と連系する配電系統を監視または制御する配電系統監視制御装置において、
前記配電系統の状態を監視する系統状態監視手段と、
前記配電系統の状態と当該配電系統の設備に関する配電系統設備データに基づき、当該配電系統中の停電区間と当該停電区間に対する負荷融通量を計算する負荷融通量計算手段と、
前記分散電源の電気量に基づいて当該分散電源の状態を把握する分散電源状態把握手段と、
前記分散電源の状態、前記負荷融通量、前記分散電源の設備に関する分散電源設備データ、および前記配電系統設備データに基づき、前記配電系統中で当該負荷融通量の負荷融通を行う負荷融通ルートを選定する負荷融通ルート選定手段
を備えたことを特徴とする配電系統監視制御装置。
In the power distribution system monitoring and control device that receives power supply from the upper power system and monitors or controls the power distribution system connected to a plurality of distributed power sources,
System status monitoring means for monitoring the status of the power distribution system;
Based on the power distribution system equipment data relating to the state of the power distribution system and the equipment of the power distribution system, a power interchange amount calculation means for calculating a power interchange section in the power distribution system and a load capacity for the power outage section,
Distributed power source state grasping means for grasping the state of the distributed power source based on the amount of electricity of the distributed power source;
Select a load accommodation route for load accommodation of the load accommodation amount in the distribution system based on the state of the distributed power source, the load accommodation amount, distributed power facility data on the facility of the distributed power source, and the distribution system facility data A power distribution system monitoring and control device comprising load accommodation route selection means for performing power distribution route selection.
前記分散電源状態把握手段は、
前記分散電源の電気量測定データ間の時間的整合をチェックする測定データ整合チェック部と、
前記時間的整合のとれた前記電気量測定データの時間的変化をチェックする測定データ時間的変化チェック部と、
前記時間的変化のチェック結果に基づき、前記分散電源が事故に起因して前記配電系統から解列された状態であるか否かを判別する分散電源状態判別部を有する
ことを特徴とする請求項1に記載の配電系統監視制御装置。
The distributed power supply state grasping means is
A measurement data matching check unit for checking temporal matching between the electrical quantity measurement data of the distributed power source;
A measurement data temporal change check unit for checking a temporal change of the electric quantity measurement data that is time-matched;
The distributed power supply state determination unit for determining whether or not the distributed power supply is disconnected from the distribution system due to an accident based on the check result of the time change. 2. The distribution system monitoring and control device according to 1.
前記負荷融通ルート選定手段は、
前記分散電源の状態、前記負荷融通量、および前記分散電源設備データに基づき、当該負荷融通量を当該分散電源の状態に応じて修正し、修正後負荷融通量を得る負荷融通量修正計算部と、
前記配電系統設備データに基づき、前記配電系統中で前記修正後負荷融通量の負荷融通を行う負荷融通ルートの候補を抽出する負荷融通ルート候補抽出部と、
前記分散電源の状態と前記分散電源設備データに基づき、前記負荷融通を行うための系統切替時における分散電源への影響度を算出する分散電源影響算定部と、
前記系統切替時に操作すべき開閉器の数と前記分散電源への影響度に基づいて決定される優先順位を使用して、前記候補の中から当該優先順位の高い候補を前記負荷融通ルートに決定する負荷融通ルート決定部を有する
ことを特徴とする請求項1または請求項2に記載の配電系統監視制御装置。
The load accommodation route selection means is:
A load accommodation amount correction calculation unit for correcting the load accommodation amount according to the state of the distributed power source based on the state of the distributed power source, the load accommodation amount, and the distributed power facility data, and obtaining a corrected load accommodation amount; ,
Based on the distribution system facility data, a load accommodation route candidate extraction unit that extracts load accommodation route candidates for performing load accommodation of the corrected load accommodation amount in the distribution system;
Based on the state of the distributed power source and the distributed power facility data, a distributed power source influence calculating unit that calculates the degree of influence on the distributed power source at the time of system switching for performing the load accommodation,
Using the priority determined based on the number of switches to be operated at the time of system switching and the degree of influence on the distributed power source, the candidate having a higher priority among the candidates is determined as the load accommodation route. The distribution system monitoring and control device according to claim 1, further comprising a load accommodation route determination unit that performs the operation.
前記負荷融通ルート選定手段は、前記分散電源の状態と前記分散電源設備データに基づき、前記配電系統中の各部について前記分散電源との連系の有無を判別し、前記負荷融通ルートの候補の中から、分散電源と連系していない候補を優先的に選択するように構成されている
ことを特徴とする請求項1乃至請求項3のいずれか1項に記載の配電系統監視制御装置。
The load accommodation route selection means determines the presence or absence of interconnection with the distributed power source for each part in the distribution system based on the state of the distributed power source and the distributed power facility data, and includes among the candidates for the load accommodation route. The distribution system monitoring and control device according to any one of claims 1 to 3, wherein a candidate that is not connected to a distributed power source is preferentially selected.
前記負荷融通ルート選定手段は、前記分散電源設備データに基づき、分散電源の種別と出力安定性を判別し、前記負荷融通ルートの候補の中から、出力安定性の高い分散電源と連系している候補を優先的に選択するように構成されている
ことを特徴とする請求項1乃至請求項4のいずれか1項に記載の配電系統監視制御装置。
The load accommodation route selection means determines the type and output stability of the distributed power source based on the distributed power facility data, and is linked to a distributed power source having high output stability from among the load accommodation route candidates. The distribution system monitoring and control device according to any one of claims 1 to 4, wherein the candidate is preferentially selected.
前記負荷融通ルート選定手段は、前記分散電源の状態と前記分散電源設備データに基づき、前記分散電源の運転状態を判別し、運転状態に応じて決定される優先順位を使用して、前記負荷融通ルートの候補の中から当該優先順位の高い候補を選択するように構成されている
ことを特徴とする請求項1乃至請求項5のいずれか1項に記載の配電系統監視制御装置。
The load accommodation route selection means determines the operation state of the distributed power source based on the state of the distributed power source and the distributed power source equipment data, and uses the priority order determined according to the operation state, and uses the load accommodation method. The distribution system monitoring and control device according to any one of claims 1 to 5, wherein a candidate having a high priority is selected from route candidates.
前記負荷融通ルートと前記分散電源設備データに基づき、当該負荷融通ルート上に連系している前記分散電源を特定し、当該分散電源の制御装置に対して、前記負荷融通を行うための系統切替時に当該分散電源への影響を最小化するための制御指令を送信する分散電源制御指令手段
を備えたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の配電系統監視制御装置。
Based on the load accommodation route and the distributed power facility data, the distributed power source connected to the load accommodation route is identified, and system switching for performing the load accommodation for the control device of the distributed power source The distribution system monitoring control according to any one of claims 1 to 6, further comprising a distributed power supply control command means for transmitting a control command for minimizing an influence on the distributed power supply. apparatus.
記憶部、演算部、通信部を備えた配電系統監視制御装置を利用して、上位電力系統から電力供給を受けると共に、複数の分散電源と連系する配電系統を監視または制御する配電系統監視制御方法において、
前記演算部により、前記通信部を通じて前記配電系統の状態を監視する系統状態監視ステップと、
前記演算部により、前記配電系統の状態と前記記憶部に格納されている当該配電系統の設備に関する配電系統設備データに基づき、当該配電系統中の停電区間と当該停電区間に対する負荷融通量を計算する負荷融通量計算ステップと、
前記演算部により、前記通信部を通じて得られる前記分散電源の電気量に基づいて当該分散電源の状態を把握する分散電源状態把握ステップと、
前記演算部により、前記分散電源の状態、前記負荷融通量、前記記憶部に格納されている前記分散電源の設備に関する分散電源設備データ、および前記配電系統設備データに基づき、前記配電系統中で当該負荷融通量の負荷融通を行う負荷融通ルートを選定する負荷融通ルート選定ステップ
を有することを特徴とする配電系統監視制御方法。
Power distribution system monitoring and control using a power distribution system monitoring and control device having a storage unit, a calculation unit, and a communication unit to receive power from a higher power system and to monitor or control a power distribution system linked to a plurality of distributed power sources In the method
A system state monitoring step of monitoring the state of the distribution system through the communication unit by the arithmetic unit,
Based on the state of the power distribution system and the power distribution system facility data relating to the power distribution system equipment stored in the storage unit, the arithmetic unit calculates a power outage section in the power distribution system and a load accommodation amount for the power outage section. Load capacity calculation step,
A distributed power source state grasping step for grasping the state of the distributed power source based on the amount of electricity of the distributed power source obtained through the communication unit by the arithmetic unit;
Based on the state of the distributed power source, the load accommodation amount, the distributed power facility data relating to the facility of the distributed power source stored in the storage unit, and the distribution system facility data by the arithmetic unit, the power distribution system A distribution system monitoring and control method comprising a load accommodation route selection step for selecting a load accommodation route for performing load accommodation of a load accommodation amount.
コンピュータを利用して、上位電力系統から電力供給を受けると共に、複数の分散電源と連系する配電系統を監視または制御する配電系統監視制御プログラムにおいて、
前記配電系統の状態を監視する系統状態監視機能と、
前記配電系統の状態と当該配電系統の設備に関する配電系統設備データに基づき、当該配電系統中の停電区間と当該停電区間に対する負荷融通量を計算する負荷融通量計算機能と、
前記分散電源の電気量に基づいて当該分散電源の状態を把握する分散電源状態把握機能と、
前記分散電源の状態、前記負荷融通量、前記分散電源の設備に関する分散電源設備データ、および前記配電系統設備データに基づき、前記配電系統中で当該負荷融通量の負荷融通を行う負荷融通ルートを選定する負荷融通ルート選定機能
を前記コンピュータに実現させることを特徴とする配電系統監視制御プログラム。
In a power distribution system monitoring and control program that uses a computer to receive power from a higher power system and monitor or control a power distribution system linked to a plurality of distributed power sources,
A system state monitoring function for monitoring the state of the distribution system;
Based on the power distribution system equipment data relating to the state of the power distribution system and the equipment of the power distribution system, a power capacity calculation function for calculating a power capacity for the power outage section and the power outage section in the power distribution system,
A distributed power supply state grasping function for grasping the state of the distributed power supply based on the amount of electricity of the distributed power supply;
Select a load accommodation route for load accommodation of the load accommodation amount in the distribution system based on the state of the distributed power source, the load accommodation amount, distributed power facility data on the facility of the distributed power source, and the distribution system facility data A distribution system monitoring and control program that causes the computer to realize a function for selecting a load accommodation route.
JP2005118359A 2005-04-15 2005-04-15 Power distribution system monitoring and control device Expired - Fee Related JP4427482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118359A JP4427482B2 (en) 2005-04-15 2005-04-15 Power distribution system monitoring and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118359A JP4427482B2 (en) 2005-04-15 2005-04-15 Power distribution system monitoring and control device

Publications (2)

Publication Number Publication Date
JP2006304403A true JP2006304403A (en) 2006-11-02
JP4427482B2 JP4427482B2 (en) 2010-03-10

Family

ID=37472050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118359A Expired - Fee Related JP4427482B2 (en) 2005-04-15 2005-04-15 Power distribution system monitoring and control device

Country Status (1)

Country Link
JP (1) JP4427482B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (en) * 2009-06-29 2011-01-13 Tdk Corp System for controlling plurality of power supplies, and power conversion apparatus
JP2013042643A (en) * 2011-08-12 2013-02-28 Global Battery Co Ltd Emergency power supply system
KR101266953B1 (en) 2011-02-23 2013-05-30 한전케이디엔주식회사 Power supply system and method using distributed power system
WO2014007368A1 (en) * 2012-07-06 2014-01-09 日本電気株式会社 Power network system, control method for power network system, and control program
JP2015008575A (en) * 2013-06-25 2015-01-15 三菱電機株式会社 Selection method and selection device of power interchange pattern of distribution system
CN105071437A (en) * 2015-08-13 2015-11-18 同济大学 Island dividing method considering distributed power output and load uncertainty
JP2016025799A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 System supervisory control device
CN109617065A (en) * 2019-01-02 2019-04-12 清华大学 A kind of electric system power grids circuits planing method considering magnanimity Run-time scenario
JP7430167B2 (en) 2021-11-04 2024-02-09 株式会社中部プラントサービス How to restore power to regional microgrids

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010505A (en) * 2009-06-29 2011-01-13 Tdk Corp System for controlling plurality of power supplies, and power conversion apparatus
KR101266953B1 (en) 2011-02-23 2013-05-30 한전케이디엔주식회사 Power supply system and method using distributed power system
JP2013042643A (en) * 2011-08-12 2013-02-28 Global Battery Co Ltd Emergency power supply system
KR101278307B1 (en) * 2011-08-12 2013-06-25 세방전지(주) Power supply system
WO2014007368A1 (en) * 2012-07-06 2014-01-09 日本電気株式会社 Power network system, control method for power network system, and control program
US9825462B2 (en) 2012-07-06 2017-11-21 Nec Corporation Power network system, control method for power network system, and control program for power network system
JP2015008575A (en) * 2013-06-25 2015-01-15 三菱電機株式会社 Selection method and selection device of power interchange pattern of distribution system
JP2016025799A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 System supervisory control device
CN105071437A (en) * 2015-08-13 2015-11-18 同济大学 Island dividing method considering distributed power output and load uncertainty
CN109617065A (en) * 2019-01-02 2019-04-12 清华大学 A kind of electric system power grids circuits planing method considering magnanimity Run-time scenario
CN109617065B (en) * 2019-01-02 2020-09-15 清华大学 Power transmission network line planning method of power system considering mass operation scenes
JP7430167B2 (en) 2021-11-04 2024-02-09 株式会社中部プラントサービス How to restore power to regional microgrids

Also Published As

Publication number Publication date
JP4427482B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4427482B2 (en) Power distribution system monitoring and control device
CN103378603B (en) Open-circuit fault detection device, inverter controller, energy conversion system and method
Karimi et al. Under-frequency load shedding scheme for islanded distribution network connected with mini hydro
US11205892B2 (en) Method for locating phase faults in a microgrid
JP4776475B2 (en) Power grid interconnection system
CN108155663B (en) Method for controlling a distribution microgrid
EP3605436B1 (en) Method for locating phase faults in a microgrid and controller
US20150333520A1 (en) Distribution board for independent microgrid
Lefebvre et al. Undervoltage load shedding scheme for the Hydro-Québec system
JP4592659B2 (en) Power system interconnection system
CN115986813A (en) Power distribution network fault recovery method considering island dynamic division
JP2015163032A (en) Power supply system, power supply control apparatus, and power supply control method and program in power supply system
US11128128B2 (en) Directional over-current ground relay (DOCGR) using sampled value and method for operating the DOCGR
US7732943B2 (en) Method and a device for selecting and dimensioning measures in a case of instability in an electrical power system
McGuinness et al. Performance of protection relays during stable and unstable power swings
Liang et al. Microgrid formation and service restoration in distribution systems: A review
Bari et al. Smart and adaptive protection scheme for distribution network with distributed generation: A scoping review
KR20190050318A (en) Method for controlling power supply and microgrid system
CN109742845B (en) Rapid switching-on method of power supply rapid switching-off device based on optimal phase
CN113113900A (en) Microgrid protection control system, method, equipment and storage medium
KR20220050601A (en) Electric power system control system and method
Begovic et al. On wide area protection
Kezunovic et al. Hierarchical coordinated protection with high penetration of smart grid renewable resources (2. 3)
CN114865776B (en) Spare power automatic switching device and method without switching new energy unit and load and application
CN113009280B (en) Micro-grid fault positioning method based on fault characteristic active construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees