JPH06141467A - Accident-restoration operating apparatus - Google Patents
Accident-restoration operating apparatusInfo
- Publication number
- JPH06141467A JPH06141467A JP4306431A JP30643192A JPH06141467A JP H06141467 A JPH06141467 A JP H06141467A JP 4306431 A JP4306431 A JP 4306431A JP 30643192 A JP30643192 A JP 30643192A JP H06141467 A JPH06141467 A JP H06141467A
- Authority
- JP
- Japan
- Prior art keywords
- switch
- section
- restored
- load
- switches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、計算機による配電線系
統の事故復旧操作装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a computer-based fault recovery operation device for a distribution line system.
【0002】[0002]
【従来の技術】現在の配電系統の事故復旧操作方式は、
例えば特願昭53−37777号に示されているよう
に、配電系統全ての配電線の予備力を算出し、その予備
力と系統上の開閉器の組み合わせの中から、未復旧区間
を最小にするような組み合わせを見つけ、その組み合わ
せに基づいて、融通送電手順を作成するという構成にな
っている。2. Description of the Related Art The current disaster recovery operation method for distribution systems is
For example, as shown in Japanese Patent Application No. 53-37777, the reserve capacity of all distribution lines of the distribution system is calculated, and the unrestored section is minimized from the combination of the reserve capacity and the switch on the system. The configuration is such that a flexible transmission procedure is created based on the combination that is found.
【0003】[0003]
【発明が解決しようとする課題】配電系統が大きくなる
につれて、配電系統上の配電線,開閉器の数が増えるた
めに、その組み合わせの数も膨大となる。したがって、
その膨大な数の組み合わせの中から最適な組み合わせを
見つけ出さねばならないことになる。そのため、最適な
組み合わせの発見,融通送電手順の作成に時間がかか
り、緊急性の高い事故による電力供給障害の復旧には適
さない場合があった。本発明は上記事情に鑑みてなされ
たものであり、最適な組み合わせの発見に要する時間を
大幅に減少させ、事故による電力供給障害を高速に解決
することの可能な事故復旧操作装置を提供することを目
的としている。As the power distribution system becomes larger, the number of distribution lines and switches in the power distribution system also increases, resulting in an enormous number of combinations. Therefore,
It is necessary to find the optimum combination from the huge number of combinations. Therefore, it takes a long time to find the optimum combination and to create the flexible transmission procedure, which may not be suitable for the recovery of the power supply failure due to a highly urgent accident. The present invention has been made in view of the above circumstances, and provides an accident recovery operation device capable of significantly reducing the time required for finding an optimal combination and quickly solving a power supply failure due to an accident. It is an object.
【0004】[0004]
【課題を解決するための手段】本発明の[請求項1]に
係る事故復旧操作装置は、図1に示すように実際の開閉
器を監視・操作するテレコン装置1と、計算機2と操作
卓3と配電系統の状態を記憶する記憶装置4とからな
り、計算機は配電系統の状態の監視・制御をする監視・
制御手段21と、配電線の予備力を算出する負荷算出手段
22と、融通送電手順作成手段23とを備えている。又、
[請求項2]に係る事故復旧操作装置は請求項1と同一
ハード構成を有し、融通送電手順作成手段23の機能のみ
を異にしている。An accident recovery operating device according to [Claim 1] of the present invention is, as shown in FIG. 1, a teleconverter device 1 for monitoring and operating an actual switch, a computer 2, and a console. 3 and a storage device 4 for storing the state of the distribution system, the computer monitors and controls the state of the distribution system.
Control means 21 and load calculation means for calculating reserve capacity of distribution line
22 and an interchange power transmission procedure creating means 23. or,
The accident recovery operating device according to [Claim 2] has the same hardware configuration as that of Claim 1, and is different only in the function of the interchange power transmission procedure creating means 23.
【0005】[0005]
【作用】本発明の[請求項1]に係る事故復旧操作装置
は、テレコン装置1は配電線の現在負荷電流値,配電系
統の構成機器の入切の変化等を計算機2内の監視・制御
手段21へ通知し、これを受けた監視・制御手段21は、そ
のデータ及び系統の変化結果を記憶装置4に保存する。
テレコン装置1を介して配電系統に事故が発生したこと
が監視・制御手段21へ通知されると、事故区間及び電力
供給障害区間が発生したことを記憶装置4内の配電系統
との比較等により、監視・制御手段21にて認識する。監
視・制御手段21が停電区間が発生したと認識すると、融
通送電手順作成手段23へ停電区間を通知する。融通ルー
ト決定において、停電区間に接続する遠方制御可能な開
閉器を復旧対象開閉器として収集し、この復旧対象開閉
器の電源配電線の予備力を負荷算出手段22により算出
し、各復旧対象開閉器及びその予備力を登録・保存す
る。又、停電区間を含む配電線の電力供給障害前の電流
値から各区間の負荷を負荷算出手段22により算出し、そ
のうちの停電区間に関する区間負荷を保存する。次いで
登録した開閉器毎の予備力の大きい順に並べ替え、その
最大の予備力を持つ開閉器を融通開閉器の候補として、
その融通開閉器の接続する停電区間の区間負荷と比較す
る。ここで開閉器の予備力が区間負荷より大きければ、
その開閉器を融通開閉器として登録する。融通開閉器の
登録を行なったことにより、その融通開閉器に接続する
停電区間を既復旧区間として登録し、停電区間数を1区
間減少させる。新たに、復旧対象開閉器収集を行ない、
上記処理を下記,,に示す終了条件のいずれか1
つを満たすまで繰り返す。 停電区間が、全て既復旧区間となっている。 復旧対象開閉器が、全て融通開閉器として登録され
ている。 残っている復旧対象開閉器の予備力が、接続する停
電区間の電力供給障害前の区間負荷より小さい。 そして融通ルート決定終了後、手順としての編集を行な
い、操作卓3への表示を行なう。又、操作手順の実行を
監視・制御手段21へ通知し、監視・制御手段21はテレコ
ン装置1に対して制御命令を送信し、該当手順を実行す
る。In the accident recovery operation device according to [Claim 1] of the present invention, the teleconverter device 1 monitors and controls the current load current value of the distribution line, changes in the on / off state of the components of the distribution system, etc. in the computer 2. The means 21 is notified, and the monitoring / control means 21 receiving the notification saves the data and the result of the system change in the storage device 4.
When the monitoring / control means 21 is notified that an accident has occurred in the power distribution system via the teleconverter device 1, the occurrence of an accident section and a power supply failure section is compared with the power distribution system in the storage device 4 and the like. The monitoring / control means 21 recognizes. When the monitoring / control means 21 recognizes that a power failure section has occurred, it notifies the interchange power transmission procedure creating means 23 of the power failure section. In determining the interchange route, the distantly controllable switches connected to the power failure section are collected as the restoration target switches, the reserve power of the power distribution line of the restoration target switches is calculated by the load calculation means 22, and each restoration target switching is performed. Register and save vessels and their reserves. Further, the load calculation means 22 calculates the load of each section from the current value of the distribution line including the power failure section before the power supply failure, and the section load related to the power failure section is stored. Then, rearrange the registered reserve switches in descending order of reserve capacity, and select the switch with the maximum reserve capacity as a flexible switch candidate.
The section load of the power failure section connected to the flexible switch is compared. If the switch reserve is greater than the section load,
Register the switch as a flexible switch. By registering the accommodation switch, the power failure section connected to the accommodation switch is registered as an already restored section, and the number of power failure sections is reduced by one section. New collection of switches to be restored,
Any one of the following termination conditions for the above processing
Repeat until one is met. All blackout sections are already restored sections. All switches to be restored are registered as interchange switches. The reserve capacity of the remaining switch to be restored is smaller than the section load before the power supply failure in the connected power failure section. After the flexible route is determined, the procedure is edited and displayed on the console 3. Further, the execution of the operation procedure is notified to the monitoring / control means 21, and the monitoring / control means 21 transmits a control command to the teleconverter device 1 to execute the corresponding procedure.
【0006】本発明の[請求項2]に係る事故復旧操作
装置は、融通送電手順作成において、上記[請求項1]
との差異は同一予備力を持つ融通対象開閉器の選択につ
いて、片側区間が復旧済み、片側区間が健全停電区間で
ある開閉器を最優先に選択することにより、電源側に未
復旧区間が残るのを解消する点である。即ち、詳記すれ
ば以下の通りである。融通送電手順作成手段23で融通ル
ートを決定する場合において、同一予備力を持つ復旧操
作対象開閉器が複数存在する場合、以下の優先度の順に
復旧操作対象候補開閉器の選択を行なう。 既復旧区間に隣接し、負荷側に被融通区間が隣接す
る開閉器。 既復旧区間に隣接し、電源側に被融通区間が隣接す
る開閉器。 ,以外の開閉器。 選択された復旧操作対象候補開閉器が,にあたると
き、以下を行なう。 (a) 当該区間からの系統的に融通可能な健全停電区間群
における区間負荷合計を算出する。 (b) 上記区間群に接続する他の復旧操作対象開閉器の予
備力合計を算出する。 (c) (a) <(b) ならば、選択した復旧操作対象候補開閉
器を復旧操作対象開閉器とせず、次に優先順位の高い開
閉器を選択する。 (d) (a) ≧(b) ならば、選択した復旧操作対象候補開閉
器を復旧操作対象開閉器とする。 (e) (a) ≧(b) となる復旧操作対象候補開閉器が複数存
在する場合は、以下の優先順で予備力合計と区間負荷合
計の比較を行なう。 ・予備力合計と区間負荷合計の差が大きい方の開閉器。 ・差が同じであれば、区間負荷合計が大きい方の開閉
器。 ・区間負荷合計が同じであれば、より負荷側の開閉器。 又、選択された開閉器がにあたる場合は、当該開閉器
を復旧操作対象開閉器として選択する。選択された復旧
操作対象開閉器が以下の条件、即ち、 被融通区間の電力障害が起こる前の負荷より、復旧
操作対象開閉器の電源となる配電線の予備力が大きい。 復旧対象開閉器が遠方制御可能である。 という条件を満たしていれば、復旧操作対象開閉器を融
通開閉器として登録する。そして新たに復旧操作対象開
閉器収集を行ない、上記処理を下記終了条件を満たすま
で繰り返す。 停電区間が全て既復旧区間になっている。 復旧操作対象開閉器が全て融通開閉器として登録さ
れている。 残っている復旧操作対象開閉器の予備力が、接続す
る停電区間の電力供給障害前の区間負荷より小さい。The accident recovery operating device according to [Claim 2] of the present invention is the same as the above [Claim 1] in the preparation of the flexible transmission procedure.
The difference between the two is that when selecting the interchangeable switch that has the same reserve capacity, the unrecovered section remains on the power supply side by giving top priority to the switch whose one side section has been restored and one side section is the normal power failure section. It is a point to eliminate the problem. That is, the details are as follows. When the accommodation route is determined by the accommodation power transmission procedure creating means 23, if there are a plurality of restoration operation target switches having the same reserve capacity, the restoration operation target candidate switches are selected in the following priority order. A switch that is adjacent to the already-restored section and the concession section is adjacent to the load side. A switch that is adjacent to the already restored section and the concession section is adjacent to the power supply side. Switch other than. When the selected switch for restoration operation target switch hits, the following is performed. (a) Calculate the total section load in the group of healthy blackout sections that can be systematically interchanged from the section. (b) Calculate the total reserve capacity of the switches to be restored which are connected to the above section group. (c) If (a) <(b), the selected switch for restoration operation target is not set as the restoration operation target switch, and the switch with the next highest priority is selected. (d) If (a) ≥ (b), the selected switch for restoration operation target is the switch for restoration operation target. (e) When there are multiple restoration operation target switchgear for which (a) ≧ (b), the total reserve capacity and total zone load are compared in the following priority order.・ The switch with the larger difference between the total reserve capacity and the total section load.・ If the difference is the same, the switch with the larger total section load.・ If the total section load is the same, the switch on the more load side. If the selected switch is applicable, the switch is selected as the switch for restoration operation. The selected switch subject to restoration operation has the following conditions, that is, the reserve capacity of the distribution line that is the power source of the switch subject to restoration operation is larger than the load before the power failure in the concession section. The switch to be restored can be remotely controlled. If the condition is satisfied, the switch to be restored is registered as an interchange switch. Then, the recovery operation target switches are newly collected and the above process is repeated until the following end condition is satisfied. All blackout sections are already restored. All switches to be restored are registered as flexible switches. The remaining reserve of the switch to be restored is smaller than the section load before the power supply failure in the connected power failure section.
【0007】[0007]
【実施例】以下、図面を参照して実施例を説明する。図
1は本発明による事故復旧操作装置の一実施例を示し、
図2は健全時の系統図を示す。図2において、CBは配
電線のしゃ断器を示し、Sは開閉器を表し、Kは区間を
表わす。又、塗りつぶされた開閉器は入状態を示し、塗
りつぶされていない開閉器は切状態を示す。図9は融通
ルート決定の流れを示す。図1において、事故復旧操作
装置は開閉器の開閉操作をするテレコン装置1と計算機
2と操作卓3と配電系統の状態を記憶する記憶装置4と
からなり、計算機2は配電系統の状態の監視・制御をす
る監視・制御手段21と配電線の予備力を算出する負荷算
出手段22と融通送電手順作成手段23を備えている。Embodiments Embodiments will be described below with reference to the drawings. FIG. 1 shows an embodiment of an accident recovery operation device according to the present invention,
FIG. 2 shows a system diagram in a healthy state. In FIG. 2, CB represents a breaker of the distribution line, S represents a switch, and K represents a section. Further, the switches which are painted out are in the on state, and the switches which are not painted are in the off state. FIG. 9 shows a flow of determining a flexible route. In FIG. 1, the accident recovery operation device is composed of a teleconverter device 1 for opening and closing a switch, a computer 2, a console 3 and a storage device 4 for storing the state of the distribution system, and the computer 2 monitors the state of the distribution system. A monitoring / control means 21 for controlling, a load calculating means 22 for calculating the reserve capacity of the distribution line, and an interchange power transmission procedure creating means 23 are provided.
【0008】次に作用について説明する。図3は区間K
41に事故が発生した状態を示す。この場合、監視・制御
手段21はテレコン装置1からの通知により、これを認識
する。負荷算出手段22は事故配電線CB4の各停電区間
(図3の区間K42,K43,K44)の区間負荷を算出し、
図7(a) に示す区間負荷テーブルに格納する(図9のF
1)。なお、区間負荷の算出に際しては、テレコン装置
1より監視・制御手段21を経由し記憶装置4に予め保存
されている事故前の配電線負荷電流値を、全ての区間に
対して予め各区間に設定され記憶装置4に保存されてい
る区間基本負荷を基に比例配分することにより行なう。
次に遠方制御可能な各停電区間に接続する開閉器を収集
する(対象開閉器収集、図9のF2)。この場合、各停
電区間に接続する開閉器(Sb ,Sc ,Se )が復旧対
象開閉器となり、各復旧対象開閉器の電源配電線(Sb
に対するCB1,Sc に対するCB3,Se に対するC
B6)の予備力を図1の負荷算出手段22で算出する。な
お、予備力はCB設備毎に予め設定されている許容電流
値と、テレコン装置1から監視・制御手段21に入力した
現在の配電線負荷電流値との差として算出することがで
きる。この予備力が各復旧対象開閉器の予備力となる
(図9のF3)。図7(b) に復旧対象開閉器テーブルを
示す。この復旧対象開閉器テーブルを予備力の大きい順
に並べ替えを行なった(図9のF4)結果を図7(c)に
示す。Next, the operation will be described. Figure 3 is section K
41 shows the state of the accident. In this case, the monitoring / control means 21 recognizes this by the notification from the teleconverter device 1. The load calculation means 22 calculates the section load of each blackout section (sections K42, K43, K44 in FIG. 3) of the accident distribution line CB4,
It is stored in the section load table shown in FIG. 7 (a) (F in FIG. 9).
1). When calculating the section load, the distribution line load current value before the accident, which is stored in advance in the storage device 4 via the monitoring / control means 21 from the teleconverter 1, is set in advance for each section in each section. This is performed by proportional distribution based on the section basic load set and stored in the storage device 4.
Next, the switches that are connected to each power cut section that can be remotely controlled are collected (target switch collection, F2 in FIG. 9). In this case, the switches (Sb, Sc, Se) connected to each power failure section are the restoration target switches, and the power distribution line (Sb) of each restoration target switch (Sb
For CB1, Sc for CB3, Se for C
The reserve force of B6) is calculated by the load calculating means 22 of FIG. The reserve capacity can be calculated as a difference between the allowable current value preset for each CB facility and the current distribution line load current value input from the teleconverter device 1 to the monitoring / control means 21. This reserve becomes the reserve for each switch to be restored (F3 in FIG. 9). Figure 7 (b) shows the switch table to be restored. FIG. 7 (c) shows the result of rearranging the switch tables to be restored in order of increasing reserve capacity (F4 in FIG. 9).
【0009】最大の予備力を持つSc を融通対象開閉器
候補として抽出し(図9のF5)、Sc が接続する区間
K42の区間負荷と比較する(図9のF6)。Sc の予備
力が100 で、K42の区間負荷が50であるから、Sc を融
通対象開閉器として図7(d)に示す融通対象開閉器テー
ブルに登録する(図9のF7)。もし、融通対象開閉器
候補の開閉器の予備力より接続している区間負荷の方が
大きかった場合は、その開閉器を復旧対象開閉器から除
き、次に予備力の大きい開閉器を融通対象開閉器候補と
して、接続区間の区間負荷との比較を行なう(図9のF
8)。区間K42はSc が復旧対象開閉器となったこと
で、停電区間から既復旧区間として停電区間から除かれ
るが、他の停電区間が残っているため(図9のF9)、
再度、復旧対象開閉器収集を行なう(図9のF2)。S
c が融通対象開閉器となったことにより、K42に接続す
る開閉器S43が新たに停電区間に接続する復旧対象開閉
器となる。このときの系統を図4に示す。開閉器S43が
新たに復旧対象開閉器として、復旧対象開閉器テーブル
に登録される。このとき、開閉器S43の予備力は、開閉
器Sc の予備力から区間K42の区間負荷を減じた値とな
る(図9のF3の予備力算出)。復旧対象開閉器収集を
行なった結果の復旧対象開閉器テーブルを図8(a) に示
す。復旧対象開閉器テーブルを予備力順に並べ替え(図
9のF4)、最大の予備力を持つ開閉器を抽出する(図
9のF5)と、Sb が対象となり、Sb の接続する区間
K44の区間負荷と比較し、Sb の予備力の方が大きいた
め、融通対象開閉器テーブルへ登録する(図9のF
6)。図8(b) にこのときの融通対象開閉器テーブル、
図5にこのときの系統状態を示す。Sc having the maximum reserve capacity is extracted as a switch target candidate for accommodation (F5 in FIG. 9) and compared with the section load of the section K42 to which Sc is connected (F6 in FIG. 9). Since the reserve capacity of Sc is 100 and the section load of K42 is 50, Sc is registered in the interchange target switch table shown in FIG. 7D as an interchange target switch (F7 in FIG. 9). If the section load connected is larger than the reserve capacity of the switch that is a candidate for interchange, that switch is removed from the switch to be restored, and the switch with the next largest reserve is targeted for interchange. As a switch candidate, the section load of the connecting section is compared (F in FIG. 9).
8). In the section K42, since Sc is the switch to be restored, it is excluded from the power failure section as the already restored section from the power failure section, but other power failure sections remain (F9 in Fig. 9).
Again, the switches to be restored are collected (F2 in FIG. 9). S
Since c becomes the interchange target switch, the switch S43 connected to K42 becomes the recovery target switch newly connected to the power failure section. The system at this time is shown in FIG. The switch S43 is newly registered as a recovery target switch in the recovery target switch table. At this time, the reserve force of the switch S43 becomes a value obtained by subtracting the section load of the section K42 from the reserve force of the switch Sc (calculation of reserve capacity of F3 in FIG. 9). Fig. 8 (a) shows the recovery target switch table as a result of collection of recovery target switches. When the switch tables to be restored are sorted in the order of reserve capacity (F4 in FIG. 9) and the switch with the largest reserve capacity is extracted (F5 in FIG. 9), Sb becomes the target and the section K44 where Sb is connected. Since the reserve capacity of Sb is larger than the load, it is registered in the interchange target switch table (F in FIG. 9).
6). Fig. 8 (b) shows the interchangeable switch table at this time,
FIG. 5 shows the system state at this time.
【0010】Sb によって区間K44が既復旧区間となる
が、停電区間が残っているため(図9のF9)、再度、
復旧対象開閉器収集(図9のF2)を行ない、開閉器S
44を新たに復旧対象開閉器として収集する。予備力算出
(図9のF3)を行ない、復旧対象開閉器テーブルの並
べ替え(図9のF4)を行なう。その結果を図8(c)に
示す。最大予備力を持つ開閉器S44を次の復旧対象開閉
器として抽出(図9のF5)し、接続区間K43の区間負
荷と予備力を比較する(図9のF6)。開閉器S44の予
備力の方が大きいので、融通対象開閉器テーブルに登録
を行ない、区間K43を既復旧区間とする(図9のF
7)。以上により停電区間が全て既復旧区間となり、終
了条件を満たし、融通ルート決定を終了する(図9のF
9)。このときの系統状態を図6に、融通対象開閉器テ
ーブルを図8(d) に示す。図8(d) に示される融通対象
開閉器テーブルのデータに基づいて、事故配電線におい
て、電気的に負荷側に接続している(以下、負荷側)開
閉器名から事故を復旧するための手順(以降、事故復旧
手順)を作成していく。図6によると、開閉器Sb の方
がSc より負荷側の復旧区間に接続するため、第1手順
となる。Sb を投入することによって、開閉器S44が投
入可能となり、第2手順となる。第3手順として、開閉
器Sc を投入する。このように、各融通ルート毎に復旧
手順を作成し、負荷側の復旧区間を復旧する融通ルート
から事故復旧手順として登録後、復旧手順を実行する。
配電線予備力と開閉器の組み合わせの数が減少するため
に、高速で復旧手順の作成を行なうことが可能となり、
復旧に要する時間を大幅に減少させることが可能となっ
た。The section K44 becomes an already restored section due to Sb, but the blackout section remains (F9 in FIG. 9).
The switches to be restored (F2 in FIG. 9) are collected and the switches S
44 are newly collected as switches to be restored. The reserve capacity is calculated (F3 in FIG. 9), and the restoration target switch table is rearranged (F4 in FIG. 9). The results are shown in Fig. 8 (c). The switch S44 having the maximum reserve is extracted as the next switch to be restored (F5 in FIG. 9), and the section load and reserve of the connection section K43 are compared (F6 in FIG. 9). Since the reserve capacity of the switch S44 is larger, it is registered in the interchange target switch table, and the section K43 is set as the already restored section (F in FIG. 9).
7). As a result, all the power outage sections become already restored sections, the end conditions are satisfied, and the interchange route determination is completed (F in FIG.
9). The system state at this time is shown in FIG. 6, and the interchangeable switch table is shown in FIG. 8 (d). Based on the data in the interchangeable switch table shown in Fig. 8 (d), in order to recover the accident from the switch name that is electrically connected to the load side (hereinafter, load side) in the fault distribution line Procedures (hereafter, accident recovery procedures) will be created. According to FIG. 6, since the switch Sb is connected to the recovery section on the load side of Sc, it is the first procedure. By turning on Sb, the switch S44 can be turned on, which is the second procedure. As the third procedure, the switch Sc is turned on. In this way, a recovery procedure is created for each accommodation route, and the recovery procedure is executed after registration as an accident recovery procedure from the accommodation route that recovers the recovery section on the load side.
Since the number of combinations of distribution line reserves and switches is reduced, it is possible to create restoration procedures at high speed,
It has become possible to significantly reduce the time required for restoration.
【0011】上記実施例は融通ルートの決定に際し、順
送融通開閉器を最優先する方式である。したがって電源
側区間に融通対象開閉器が存在しない場合、あるいは予
備力が不足した場合には電源側が復旧できず、結果とし
て未復旧区間が増える場合があり得る。以下に示す実施
例は、同一予備力を持つ融通対象開閉器の選択につい
て、片側区間が復旧済み及び片側区間が健全停電区間で
ある開閉器を最優先に選択することにより、電源側に未
復旧区間が残るのを解消しようとするものである。図1
0,図11を用いて説明する。図10は健全時の系統図、図1
1は事故発生時の系統図を示す。なお、本実施例で使用
する系統図図10〜図17は、本実施例の説明に便なるよう
に新たに作成したものである。又、図18は融通ルート決
定において使用するテーブル、図19は同一予備力を持つ
融通対象開閉器の選択の流れを示す流れ図である。The above embodiment is a system in which the progressive transfer switch has the highest priority when determining the transfer route. Therefore, when there is no switch to be accommodated in the power supply side section or when the reserve capacity is insufficient, the power supply side cannot be restored, and as a result, the unrestored section may increase. In the example shown below, regarding the selection of the interchange target switch having the same reserve capacity, by selecting the switch whose one side section has already been restored and whose one side section is the sound power failure section as the highest priority, it has not been restored to the power supply side. It is intended to eliminate the remaining section. Figure 1
0 and FIG. 11 will be described. Fig. 10 is a system diagram for a healthy condition, Fig. 1
Figure 1 shows the system diagram when an accident occurs. It should be noted that the system diagrams of FIGS. 10 to 17 used in the present embodiment are newly created to facilitate the description of the present embodiment. Further, FIG. 18 is a table used in determining an accommodation route, and FIG. 19 is a flow chart showing a flow of selecting an accommodation target switch having the same reserve capacity.
【0012】監視・制御手段21がテレコン装置1から停
電の発生を受け、負荷算出手段22が停電区間の区間負荷
を算出することは、前記各実施例の場合と同様である。
この場合の事故点はCB3の位置であり、したがって停
電区間はK31,K32,K33,K34,K35,K36である。
そして各停電区間の区間負荷は図18(a) に示す区間負荷
テーブルに格納する(図9のF1)。次に遠方制御可能
な各停電区間に接続する復旧操作対象開閉器を図18(b)
に示す復旧操作対象開閉器テーブルに収集する(図9の
F2)。各停電区間に接続する開閉器Sa ,Sb ,Sd
,Se が復旧操作対象開閉器となる。又、各復旧操作
対象開閉器の配電線CB(Sa に対するCB1,Sb に
対するCB2,Sd に対するCB4,Se に対するCB
5)の予備力を負荷算出手段22において算出する(図9
のF3)。この予備力が各復旧操作対象開閉器の予備力
となる。図18(b)の復旧操作対象開閉器テーブルを予備
力の大きい順に並べ替えた結果を図18(c)に示す(図9
のF4)。図18(c) から最大の予備力を持つSa を融通
開閉器候補として選択し(図9のF5)、Sa が接続す
る区間K33の区間負荷と比較する(図9のF6)。The monitoring / control means 21 receives a power failure from the teleconverter device 1, and the load calculating means 22 calculates the section load of the power failure section, as in the above-mentioned embodiments.
The accident point in this case is the position of CB3, and therefore the blackout section is K31, K32, K33, K34, K35, K36.
Then, the section load of each power failure section is stored in the section load table shown in FIG. 18 (a) (F1 in FIG. 9). Next, Fig. 18 (b) shows the switch to be restored that is connected to each power failure section that can be controlled remotely.
It collects in the switch table for recovery operation shown in (F2 of FIG. 9). Switches Sa, Sb, Sd connected to each blackout section
, Se are the switches to be restored. In addition, the distribution line CB of each switch to be restored (CB for Sa, CB1 for Sb, CB for Sd, CB for Se, and CB for Se)
The reserve force of 5) is calculated by the load calculating means 22 (FIG. 9).
F3). This reserve becomes the reserve for each switch to be restored. Fig. 18 (c) shows the result of rearranging the switch tables for restoration operation in Fig. 18 (b) in descending order of reserve capacity (Fig. 9).
F4). 18 (c), Sa having the maximum reserve is selected as a flexible switch candidate (F5 in FIG. 9) and compared with the section load of the section K33 to which Sa is connected (F6 in FIG. 9).
【0013】Sa の予備力が100 、K33の区間負荷が30
であるから、Sa を融通開閉器として登録する(図9の
F7)。Sa が融通開閉器となったことで、区間K33は
既復旧区間となり、停電区間から除く。このときの系統
を図12に示す。この状態では融通ルート作成終了条件を
満足していないため(図9のF9)、残った復旧操作対
象開閉器S33,S34,Sc ,Sb ,Sd ,Se の予備力
を再度計算し(図9のF3)、予備力の大きい順に並べ
替える(図9のF4)。その結果を図18(d) に示す。図
18(d) からS33とS34は同一の最大予備力であるから、
既復旧区間に隣接し、負荷側に被融通区間が隣接する開
閉器S33を復旧操作対象候補開閉器として選択し(図19
のF1)、S33について区間負荷合計と予備力合計を算
出する(図19のF3)。区間K31,K32の区間負荷合計
=70>Sb の予備力=50であるから、S33を復旧操作対
象開閉器として選択し(図19のF4)、S33の予備力と
S33が接続する区間K32の区間負荷と比較する(図19の
F6)。The reserve capacity of Sa is 100 and the section load of K33 is 30.
Therefore, Sa is registered as an interchange switch (F7 in FIG. 9). Since Sa becomes an interchange switch, section K33 becomes an already restored section and is excluded from the blackout section. The system at this time is shown in FIG. In this state, since the conditions for ending the flexible route are not satisfied (F9 in FIG. 9), the reserve forces of the remaining recovery operation target switches S33, S34, Sc, Sb, Sd, Se are calculated again (see FIG. 9). F3) and rearrange in descending order of reserve capacity (F4 in FIG. 9). The results are shown in Fig. 18 (d). Figure
From 18 (d), S33 and S34 have the same maximum reserve,
The switch S33 adjacent to the already-restored section and having the concession section adjacent to the load side is selected as a candidate switch for restoration operation (see FIG. 19).
F1) and S33, the total section load and the total reserve are calculated (F3 in FIG. 19). Since the total section load of sections K31 and K32 = 70> reserve capacity of Sb = 50, S33 is selected as the switch for restoration operation (F4 in Fig. 19), and the reserve capacity of S33 and the section K32 where S33 is connected. Compare with the section load (F6 in FIG. 19).
【0014】S33の予備力が70、K32の区間負荷が30で
あるから(図9のF6)、S33を融通開閉器として登録
する(図9のF7)。S33が融通開閉器となったこと
で、区間K32は既復旧区間となり、停電区間から除く。
このときの系統を図13に示す。この状態では融通ルート
作成終了条件を満足していないため(図9のF9)、残
った復旧操作対象開閉器Sc ,Sd ,Se ,S32,S34
の予備力を再度計算し(図9のF3)、予備力の大きい
順に並べ替える(図9のF4)。結果を図18(e)に示
す。図18(e) から最大予備力を持つSc を融通開閉器候
補として選択し(図9のF5)、Sc の予備力とSc が
接続する区間K36の区間負荷と比較する(図9のF
6)。Sc の予備力が60、K36の区間負荷が20であるか
ら、Sc を融通開閉器として登録する(図9のF7)。
Sc が融通開閉器となったことで、区間K36は既復旧区
間となり、停電区間から除かれる。このときの系統を図
14に示す。この状態では融通ルート作成終了条件を満足
していないため(図9のF9)、残った復旧操作対象開
閉器Sd ,S32,S34,S36の予備力を再度計算し(図
9のF3)、予備力の大きい順に並べ替える(図9のF
4)。その結果を図18(f) に示す。図18(f) から最大予
備力を持つSd を融通開閉器候補として選択し(図9の
F5)、Sd の予備力とSd が接続する区間K34の区間
負荷と比較する(図9のF6)。ここでSd の予備力が
50、K34の区間負荷が30であるから、Sd を融通開閉器
として登録する(図9のF7)。Since the reserve capacity of S33 is 70 and the section load of K32 is 30 (F6 in FIG. 9), S33 is registered as an interchange switch (F7 in FIG. 9). Since S33 has become an interchange switch, section K32 becomes an already restored section and is excluded from the blackout section.
The system at this time is shown in FIG. In this state, since the conditions for ending the flexible route are not satisfied (F9 in FIG. 9), the remaining recovery operation target switches Sc, Sd, Se, S32, and S34 are left.
Are calculated again (F3 in FIG. 9) and sorted in descending order of reserve (F4 in FIG. 9). The results are shown in Fig. 18 (e). From Fig. 18 (e), Sc with the maximum reserve is selected as an interchange switch candidate (F5 in Fig. 9) and compared with the reserve of Sc and the section load of section K36 where Sc connects (F in Figure 9).
6). Since the reserve capacity of Sc is 60 and the section load of K36 is 20, Sc is registered as an interchange switch (F7 in FIG. 9).
Since Sc has become an interchange switch, section K36 becomes an already restored section and is removed from the power failure section. Diagram of system at this time
Shown in 14. In this state, since the conditions for ending the flexible route are not satisfied (F9 in FIG. 9), the reserve forces of the remaining recovery operation target switches Sd, S32, S34 and S36 are calculated again (F3 in FIG. 9), and the reserve is prepared. Sort in descending order of strength (F in Figure 9
4). The results are shown in Fig. 18 (f). 18 (f), Sd having the maximum reserve is selected as an interchange switch candidate (F5 in FIG. 9) and compared with the reserve of Sd and the section load of section K34 where Sd is connected (F6 in FIG. 9). . Where the reserve of Sd is
Since the section load of 50 and K34 is 30, Sd is registered as an interchange switch (F7 in FIG. 9).
【0015】Sd が融通開閉器となったことで、区間K
34は既復旧区間となり、停電区間から除く。このときの
系統を図15に示す。この状態では融通ルート作成終了条
件を満足していないため(図9のF9)、残った復旧操
作対象開閉器S32,S35,S36の予備力を再度計算し
(図9のF3)、予備力の大きい順に並べ替える(図9
のF4)。その結果を図18(g) に示す。図18(g) からS
32とS36は同一最大予備力であり、かつ、既復旧区間に
隣接し、負荷側に被融通区間が隣接する開閉器である。
S32について、区間K31の区間負荷=40>S31の予備力
=0、S36について、区間K35の区間負荷=25>S35の
予備力=20であるから(図19のF3)、S32を復旧操作
対象候補開閉器として選択し(図19のF8)、S32の予
備力とS32が接続する区間K31の区間負荷と比較する
(図19のF6)。S32の予備力が40、K31の区間負荷が
40であるから(図9のF6)、S32を融通開閉器として
登録する(図9のF7)。S32が融通開閉器となったこ
とで、区間K31は既に復旧区間となり、このときの系統
を図16に示す。Since Sd has become a flexible switch, section K
34 is an already restored section and is excluded from the blackout section. The system at this time is shown in FIG. In this state, since the conditions for ending the accommodation route are not satisfied (F9 in FIG. 9), the reserve forces of the remaining recovery operation target switches S32, S35, S36 are calculated again (F3 in FIG. 9), and the reserve force is calculated. Sort in descending order (Fig. 9
F4). The results are shown in Fig. 18 (g). 18 (g) to S
The switches 32 and S36 have the same maximum reserve capacity, are adjacent to the already restored section, and have the concession section adjacent to the load side.
For S32, section load of section K31 = 40> reserve capacity of S31 = 0, and for S36, section load of section K35 = 25> reserve capacity of S35 = 20 (F3 in Fig. 19), so S32 is the recovery operation target. It is selected as a candidate switch (F8 in FIG. 19) and compared with the reserve capacity of S32 and the section load of section K31 to which S32 connects (F6 of FIG. 19). S32 reserve capacity is 40, K31 section load is
Since it is 40 (F6 in FIG. 9), S32 is registered as an interchange switch (F7 in FIG. 9). Since S32 becomes an interchange switch, section K31 has already become a restoration section, and the system at this time is shown in FIG.
【0016】この状態では融通ルート作成終了条件を満
足していないため(図9のF9)、残った復旧操作対象
開閉器S35,S36の予備力を再度計算し(図9のF
3)、予備力の大きい順に並べ替える(図9のF4)。
その結果を図18(h) に示す。図18(h) から最大予備力を
持つS36を融通開閉器候補として選択し(図9のF
5)、S36の予備力とS36が接続する区間K35の区間負
荷と比較する(図9のF6)。S36の予備力が40、K35
の区間負荷が25であるから、S36を融通開閉器として登
録する(図9のF7)。S36が融通開閉器となったこと
で、区間K35は既復旧区間となり、停電区間から除く。
このときの系統を図17に示す。図17により被融通区間が
全て既復旧区間となったため、融通ルート作成終了とす
る(図9のF9)。上記実施例によれば、電源側に開閉
器が存在しない場合でも電源側の未復旧区間を既復旧区
間とすることが可能となった。In this state, since the condition for ending the flexible route is not satisfied (F9 in FIG. 9), the reserve capacity of the remaining restoration operation target switches S35 and S36 is calculated again (F in FIG. 9).
3), rearrange in descending order of reserve capacity (F4 in FIG. 9).
The results are shown in Fig. 18 (h). From Fig. 18 (h), select S36 with the maximum reserve as a flexible switch candidate (F in Fig. 9).
5) Compare the reserve capacity of S36 with the section load of the section K35 to which S36 connects (F6 in FIG. 9). S36 reserve is 40, K35
Since the section load of (5) is 25, S36 is registered as an interchange switch (F7 in FIG. 9). Since S36 has become an interchange switch, section K35 will be an already restored section and will be excluded from the blackout section.
The system at this time is shown in FIG. Since all the concession sections have already been restored according to FIG. 17, the concession route creation is completed (F9 in FIG. 9). According to the above-mentioned embodiment, even if there is no switch on the power supply side, the unrestored section on the power supply side can be set as the restored section.
【0017】[0017]
【発明の効果】以上説明したように、本発明による請求
項1によれば組み合わせ数を減少させることにより、復
旧手順の作成にかかる時間を従来より短縮することが可
能となり、迅速な事故復旧操作が可能となる。又、請求
項2によれば電源側開閉器が存在しない、あるいは融通
予備力が不足している場合でも、電源側に未復旧区間が
残らないように融通ルートを決定することが可能になっ
た。As described above, according to claim 1 of the present invention, by reducing the number of combinations, it is possible to shorten the time required to create a recovery procedure as compared with the conventional method, and to perform a quick accident recovery operation. Is possible. Further, according to claim 2, even when the power source side switch does not exist or the accommodation reserve capacity is insufficient, it becomes possible to determine the accommodation route so that the unrestored section does not remain on the power source side. .
【図1】本発明による事故復旧操作装置の一実施例の構
成図。FIG. 1 is a configuration diagram of an embodiment of an accident recovery operation device according to the present invention.
【図2】健全な配電系統図。FIG. 2 is a sound distribution system diagram.
【図3】区間K41に事故が発生した場合の配電系統図。FIG. 3 is a distribution system diagram when an accident occurs in section K41.
【図4】Sc 選択時の系統図。FIG. 4 is a system diagram when Sc is selected.
【図5】Sb 選択時の系統図。FIG. 5 is a system diagram when Sb is selected.
【図6】融通ルート決定終了の系統図。FIG. 6 is a system diagram of the end of the interchange route determination.
【図7】各停電区間の区間負荷を格納する区間負荷テー
ブル及び開閉器テーブル。FIG. 7 is a section load table and a switch table that store section loads of each power failure section.
【図8】復旧対象開閉器と予備力を格納する復旧対象開
閉器テーブル及び融通対象開閉器テーブル。FIG. 8 shows a recovery target switch and a recovery target switch table that stores a recovery target switch and reserve capacity.
【図9】融通ルート決定の流れを示す図。FIG. 9 is a diagram showing a flow of determining an interchange route.
【図10】他の実施例を説明する健全時の系統図。FIG. 10 is a system diagram for explaining another embodiment in a healthy state.
【図11】CB3の系統に事故が発生した系統図。FIG. 11 is a system diagram in which an accident has occurred in the system of CB3.
【図12】順次停電区間を復旧していく系統図。[Fig. 12] System diagram for sequentially recovering from power failure sections.
【図13】順次停電区間を復旧していく系統図。[Fig. 13] System diagram for sequentially recovering from power failure sections.
【図14】順次停電区間を復旧していく系統図。[Fig. 14] System diagram for sequentially recovering from power failure sections.
【図15】順次停電区間を復旧していく系統図。[Fig. 15] System diagram for sequentially recovering from power failure sections.
【図16】順次停電区間を復旧していく系統図。[Fig. 16] System diagram for sequentially recovering from a power failure section.
【図17】順次停電区間を復旧していく系統図。[Fig. 17] System diagram for sequentially recovering from power failure sections.
【図18】融通ルート決定において使用するテーブル。FIG. 18 is a table used in determining a flexible route.
【図19】同一予備力を持つ融通対象開閉器の設定の流れ
を示す流れ図。FIG. 19 is a flowchart showing a flow of setting the interchangeable switch having the same reserve capacity.
1 テレコン装置 2 計算機 3 操作卓 4 記憶装置 21 監視・制御手段 22 負荷算出手段 23 融通送電手順作成手段 DESCRIPTION OF SYMBOLS 1 Teleconverter device 2 Computer 3 Operator console 4 Storage device 21 Monitoring / control means 22 Load calculation means 23 Flexible transmission procedure creation means
Claims (2)
配電系統上の電力供給障害区間を検出し、その電力供給
障害区間へ他配電線から融通送電を行なうようにした配
電系統の事故復旧操作装置において、融通送電手順の作
成を行なうに際し、被融通区間に隣接する配電線上の開
閉器のみを復旧対象開閉器とし、その電源となる配電線
の予備力の大きい順に前記開閉器を選択し、その各開閉
器が以下に示す2つの条件を満足するとき、 被融通区間の電力供給障害が起こる前の負荷より、
復旧対象開閉器の予備力の方が大。 復旧対象開閉器が遠方制御可能。 その時点で融通開閉器として登録し、前記融通開閉器が
隣接する被融通区間を既復旧区間とし、以下に示す3つ
の条件、 被融通区間が、全て既復旧区間となった。 復旧対象開閉器が、全て融通開閉器として登録され
た。 残っている復旧対象開閉器の予備力が、被融通区間
の電力供給障害前の負荷より小となった。 のうちの1つでも満足するとき、融通送電手順終了とし
て、開閉器を操作することを特徴とする事故復旧操作装
置。1. An accident in a distribution system in which the distribution system is monitored, a power supply failure section on the distribution system is detected based on the monitoring information, and flexible power transmission is performed from the other distribution line to the power supply failure section. When creating the interchange power transmission procedure in the restoration operation device, only the switches on the distribution line adjacent to the concession section are the restoration target switches, and the switches are selected in descending order of reserve capacity of the distribution line that will be the power source. However, when each switch satisfies the following two conditions, from the load before the power supply failure in the concession section occurs,
The reserve capacity of the switch to be restored is larger. The switch to be restored can be controlled remotely. At that time, it was registered as an interchange switch, and the concession section adjacent to the accommodation switch was set as an already-restored section, and the following three conditions and the section to be accommodated were all already-restored sections. All the switches to be restored have been registered as interchange switches. The remaining reserve of the switch to be restored became smaller than the load before the power supply failure in the concession section. An accident recovery operation device, characterized in that when any one of the above is satisfied, the switch is operated as the end of the interchange power transmission procedure.
配電系統上の電力供給障害区間を検出し、その電力供給
障害区間へ他配電線から融通送電を行なうようにした配
電系統の事故復旧操作装置において、融通送電手順の作
成を行なうに際し、被融通区間に隣接する配電線上の開
閉器のみを復旧対象開閉器とし、その電源となる配電線
の予備力の大きい順に前記開閉器を選択し、又、予備力
が同一である復旧操作対象開閉器が複数存在するとき、
以下の優先順位にて復旧対象を選択し、 既復旧区間に隣接し、負荷側に被融通区間が隣接す
る開閉器。 既復旧区間に隣接し、電源側に被融通区間が隣接す
る開閉器。 ,以外の開閉器。 上記選択された開閉器が優先順位,であるとき、当
該開閉器から系統的に融通可能な健全停電区間群におけ
る区間負荷合計と、上記区間群に接続する他の復旧操作
対象開閉器の予備力合計とを比較し、区間負荷合計の方
が大であるとき、当該開閉器を復旧操作対象開閉器とし
て選択し、予備力合計の方が大であるとき、当該開閉器
を復旧操作対象開閉器として選択せず、次に優先度の高
い復旧操作対象候補開閉器を選択して、上記同様判定を
行ない、又、区間負荷合計の方が大である復旧操作対象
候補開閉器が複数存在するときは、以下の優先順位にて
予備力合計と区間負荷合計との比較を行ない、 予備力合計と区間負荷合計の差が大きい方の開閉
器。 差が同じであれば、区間負荷合計が大きい方の開閉
器。 区間負荷合計が同じであれば、より負荷側の開閉
器。 又、選択された開閉器が前記優先順位であるときは、
当該開閉器を復旧操作対象開閉器として選択し、選択さ
れた開閉器が以下の条件を満たしたとき、 被融通区間の電力障害が起こる前の負荷より、復旧
操作対象開閉器の電源となる配電線の予備力の方が大。 復旧対象開閉器が遠方制御可能。 復旧操作対象開閉器を融通開閉器として登録し、その開
閉器が隣接する被融通区間を既復旧区間とし、以下の条
件を1つでも満足するとき、 被融通区間が全て既復旧区間となった。 復旧対象開閉器が全て融通開閉器として登録され
た。 残っている復旧対象開閉器の予備力が、被融通区間
の電力障害前の負荷よりも小。 融通送電手順終了として、開閉器を操作することを特徴
とする事故復旧操作装置。2. An accident in a distribution system in which a distribution system is monitored, a power supply failure section on the distribution system is detected based on the monitoring information, and flexible power transmission is performed from the other distribution line to the power supply failure section. When creating the interchange power transmission procedure in the restoration operation device, only the switches on the distribution line adjacent to the concession section are the restoration target switches, and the switches are selected in descending order of reserve capacity of the distribution line that will be the power source. In addition, when there are multiple recovery operation target switches with the same reserve capacity,
A switch with the restoration target selected in the following priority order, adjacent to the already restored section and the concession section adjacent to the load side. A switch that is adjacent to the already restored section and the concession section is adjacent to the power supply side. Switch other than. When the selected switch is the priority order, the total section load in the healthy blackout section group that can be systematically interchanged from the relevant switch and the reserve capacity of other restoration target switches connected to the section group When the total section load is larger, the relevant switch is selected as the target switch for restoration operation, and when the total reserve is larger, the relevant switch is targeted for restoration operation. If there is more than one restoration operation target candidate switch whose total section load is larger, the restoration operation target candidate switch with the next highest priority is selected. Compares the total reserve capacity with the total section load in the following priority order, and the switch with the larger difference between the total reserve capacity and the total section load. If the difference is the same, the switch with the larger total section load. The switch on the more load side if the total section loads are the same. When the selected switch has the above priority,
When the switch is selected as the switch for recovery operation, and the selected switch satisfies the following conditions, the power supply of the switch for recovery operation is applied from the load before the power failure in the concession section. The reserve of electric wire is larger. The switch to be restored can be controlled remotely. The switch to be restored is registered as an interchange switch, and the concession section adjacent to that switch is the already restored section. When any of the following conditions is satisfied, all the concession sections are already restored sections. . All the switches to be restored have been registered as interchange switches. The reserve capacity of the remaining switch to be restored is smaller than the load before the power failure in the concession section. An accident recovery operation device characterized in that a switch is operated at the end of the interchange power transmission procedure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4306431A JPH06141467A (en) | 1992-10-20 | 1992-10-20 | Accident-restoration operating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4306431A JPH06141467A (en) | 1992-10-20 | 1992-10-20 | Accident-restoration operating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06141467A true JPH06141467A (en) | 1994-05-20 |
Family
ID=17956939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4306431A Pending JPH06141467A (en) | 1992-10-20 | 1992-10-20 | Accident-restoration operating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06141467A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016025799A (en) * | 2014-07-23 | 2016-02-08 | 株式会社日立製作所 | System supervisory control device |
WO2016194821A1 (en) * | 2015-05-29 | 2016-12-08 | 東京電力ホールディングス株式会社 | Power distribution control device, power distribution control method and program |
KR20220019360A (en) * | 2020-08-10 | 2022-02-17 | 송종용 | Automatic switching device for distribution line load |
-
1992
- 1992-10-20 JP JP4306431A patent/JPH06141467A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016025799A (en) * | 2014-07-23 | 2016-02-08 | 株式会社日立製作所 | System supervisory control device |
WO2016194821A1 (en) * | 2015-05-29 | 2016-12-08 | 東京電力ホールディングス株式会社 | Power distribution control device, power distribution control method and program |
KR20220019360A (en) * | 2020-08-10 | 2022-02-17 | 송종용 | Automatic switching device for distribution line load |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004282862A (en) | Controller for monitoring distribution system | |
KR20140061102A (en) | Intelligent distribution network back-up system for stable power supply and control method thereof | |
JPH06141467A (en) | Accident-restoration operating apparatus | |
CN104682551A (en) | Closed-loop screening method for power parallel conversion device and power parallel conversion device | |
JP2003061247A (en) | Device for calculating section load in distribution line | |
US5960372A (en) | Method of monitoring electrical wear on selector switch disconnectors in a high voltage station | |
JP4698173B2 (en) | Automatic creation method of system control procedure | |
JP3262429B2 (en) | Distribution system operating device | |
JP2000004538A (en) | Monitoring controller of electric power system | |
CN113281603B (en) | Detection circuit and method for relay protection terminal | |
JPH0923583A (en) | Distribution system operating equipment | |
JP2723410B2 (en) | Distribution system operating device | |
JPS6367417B2 (en) | ||
JP3662443B2 (en) | System stabilization device | |
JP2577392B2 (en) | Pre-accident grid status creation method for automatic recovery in the event of a power grid accident | |
JP2908219B2 (en) | Distribution line load accommodation calculation constraint relaxation method | |
JP2004015970A (en) | Method and apparatus for retrieving power system | |
JPS6353774B2 (en) | ||
JP2557374B2 (en) | Power system operating device | |
KR19980020450A (en) | Expert guide for recovery of electrostatic system and its recovery guide | |
JP2921034B2 (en) | System failure section judgment device | |
JP2003061239A (en) | Ground fault detecting apparatus | |
JPH0746762A (en) | Operating apparatus for power distribution system | |
JPS589532A (en) | Power system control system | |
KR19980076595A (en) | How to recover accident section of distribution automation system |