JPS6367417B2 - - Google Patents

Info

Publication number
JPS6367417B2
JPS6367417B2 JP55146691A JP14669180A JPS6367417B2 JP S6367417 B2 JPS6367417 B2 JP S6367417B2 JP 55146691 A JP55146691 A JP 55146691A JP 14669180 A JP14669180 A JP 14669180A JP S6367417 B2 JPS6367417 B2 JP S6367417B2
Authority
JP
Japan
Prior art keywords
data
equipment
power
supportable
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146691A
Other languages
Japanese (ja)
Other versions
JPS5771231A (en
Inventor
Hiroshi Watanabe
Takaaki Nakajima
Yoshimi Tezuka
Akira Tanaka
Takao Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP55146691A priority Critical patent/JPS5771231A/en
Publication of JPS5771231A publication Critical patent/JPS5771231A/en
Publication of JPS6367417B2 publication Critical patent/JPS6367417B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、広域的電力系統について通常時での
開閉器の開閉状態や設備負荷に関しての固有ある
いは計測に係るデータを予め把握処理しておくこ
とによつて、系統に事故が発生した際その復旧を
それら処理済のデータを用い可及的迅速に行なう
ようにした方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables the grid to be improved by understanding and processing in advance specific or measured data regarding the opening/closing status of switches and equipment loads during normal times for a wide-area power system. This invention relates to a system that uses processed data to perform recovery as quickly as possible when an accident occurs.

従来にあつては電力系統に短絡、地絡等の事故
が発生した場合、その旨の情報は担当電気所より
総合制御所(複数の電気所を集中的に制御するの
意)へ送られ、総合制御所は自主判断の下に担当
電気所を介して復旧操作を行なうか、あるいは事
故の種類や状況によつては電力系統の総合運用業
務を遂行する給電所からの復旧操作指令をまつて
総合制御所が複数の電気所を介して復旧操作を行
なつているのが実状である。電気所はまた場合に
よつては自動再閉路装置や自動復旧装置によつて
復旧操作を行ない得るが、復旧操作が統一的、円
滑に行ない得ないという欠点がある。即ち、給電
所や総合制御所、電気所の復旧操作分担区分が明
確でないばかりか、総合制御所や電気所による復
旧操作(一部は自動化)は迅速ではあるが局所的
復旧に止まり、また、給電所による復旧操作の場
合は広域的復旧が可能であるも復旧に多くの時間
を要し、時間少なくして統一的な自動復旧操作を
行ない得ないというものである。
In the past, when an accident such as a short circuit or ground fault occurred in the power system, information to that effect was sent from the electric power station in charge to the general control center (meaning central control of multiple electric stations). The general control center will either carry out restoration operations through the electric power station in charge based on its own judgment, or, depending on the type and circumstances of the accident, it will receive a restoration operation command from the power supply station, which is responsible for the overall operation of the power system. The reality is that the general control center performs restoration operations via multiple electrical stations. Electrical stations may also carry out restoration operations using automatic reclosing devices or automatic restoration devices in some cases, but this has the disadvantage that restoration operations cannot be carried out uniformly and smoothly. In other words, not only is the division of responsibility for restoration operations between power supply stations, general control centers, and electric stations not clear, but restoration operations (some of which are automated) by general control centers and electric stations are quick, but only local recovery. In the case of restoration operations performed by power supply stations, wide-area restoration is possible, but it takes a lot of time for restoration, and it is not possible to perform unified automatic restoration operations in a short amount of time.

統一的な自動復旧操作を可能ならしめるために
はコンピユータ等の導入が考えられる。これは第
1図に示す如く給電所1と総合制御所2,21
oの各々とにコンピユータを配置せしめ、給電
所1・総合制御所2間では信号の授受が可である
とともに給電所1は総合制御所21〜2oの各々を
制御し得、またこれと同様に電気所3,311〜3
1n,321〜32n,……,3o1〜3onは管轄担当総
合制御所との間で信号の授受が可であるとともに
その管轄担当総合制御所は所轄電気所の各々を制
御し得るようにシステム構成し、コンピユータに
よつて復旧操作を迅速、且つ統一的、広域的に円
滑に行なわんとするものである。第2図はそれら
コンピユータによる復旧操作処理フローの概略を
示したものである。給電所1内コンピユータは平
常時処理として系統状態の把握(後に詳述)と負
荷予測用準備処理とをプログラム実行している
が、一旦系統に事故が発生すればその処理は一時
停止され、復旧操作処理に入るようにされる。即
ち、事故が発生すればその旨は総合制御所内コン
ピユータを介して給電所内コンピユータに伝達さ
れ、給電所内コンピユータはステツプ4で平常時
処理によつて得られたデータにもとづき事故検出
を行なうようにされる。電力系統や設備の事故検
出は保護リレーとトリツプしや断器の組合条件、
表示計測情報、しや断器やリレーの状変情報にも
とづいて行なわれるものである。この事故検出後
はステツプ5で総合制御所内コンピユータが給電
所内コンピユータに負担をかけることなく自主判
断によつて以降行なわれる復旧操作を円滑に行な
うための準備操作、例えば事故トリツプしや断器
の片側断路器開放を行なうようにされる。この後
給電所内コンピユータはステツプ6で総合制御所
内コンピユータを介し事故設備切離操作、具体的
には事故設備に直接接続されている断路器の開放
操作を行なう。これは、事故トリツプしや断器の
みでは事故設備を健全設備より切り離せない場合
に要する操作であり、事故範囲が複数の総合制御
所に跨がる場合は広域判断を要するので、給電所
より操作指令を発する必要があるわけである。こ
のステツプ6での処理が終了したならば次にステ
ツプ7で停電設備・負荷の復旧操作手順が作成さ
れる。これは適当な復旧論理を用い、コンピユー
タが平常時処理によつて得られているデータにも
とづき復旧操作を模擬実行しながら手順を作成す
るものであり、次のステツプ8ではステツプ7で
決定された操作手順を具体的な目的指令に変換し
たうえで総合制御所へ送る。これにより復旧操作
処理は完了され停電設備・負荷には電力が供され
るようになるものである。復旧操作処理が完了し
たならば、給電所内コンピユータは必要なデータ
を更新したうえで再び平常時処理を実行しながら
事故に備えて待機することになるものである。
In order to enable unified automatic recovery operations, it is possible to introduce computers and the like. As shown in Figure 1, this consists of a power supply station 1 and a general control center 2, 2 1 ~
A computer is placed in each of the power supply stations 1 to 2o , and signals can be exchanged between the power supply station 1 and the general control center 2, and the power supply station 1 can control each of the general control centers 21 to 2o . Similarly, electric station 3, 3 11 ~ 3
1n , 3 21 ~ 3 2n , ..., 3 o1 ~ 3 on can exchange signals with the general control center in charge, and the general control center in charge can control each of the electric stations in charge. The purpose of this system is to use computers to perform recovery operations quickly, uniformly, and smoothly over a wide area. FIG. 2 shows an outline of the recovery operation processing flow by these computers. The computer in power supply station 1 executes a program to grasp the system status (described in detail later) and prepare for load prediction as part of normal processing, but once an accident occurs in the grid, the processing is temporarily stopped and the process is suspended until recovery. The operation process is started. That is, if an accident occurs, the fact is transmitted to the power supply station computer via the general control center computer, and the power supply station computer detects the accident based on the data obtained through normal processing in step 4. Ru. Accident detection in power systems and equipment is based on the combination conditions of protective relays, trippers and disconnectors,
This is done based on display measurement information and information on changes in the condition of the breaker and relay. After this accident is detected, in Step 5, the computer in the general control center performs preparatory operations to smoothly carry out subsequent recovery operations based on its own judgment without placing a burden on the computer in the power supply station, such as accident tripping or one side disconnection. The disconnector is opened. Thereafter, in step 6, the power supply station computer performs an operation to disconnect the faulty equipment, specifically, to open the disconnector directly connected to the faulty equipment, via the general control center computer. This is a necessary operation when the accidental equipment cannot be isolated from the healthy equipment with only an accident trip or a disconnection.If the accident area spans multiple general control centers, wide-area judgment is required, so it is necessary to perform this operation from the power supply station. It is necessary to issue a command. When the process in step 6 is completed, in step 7, a recovery operation procedure for the power outage equipment/load is created. This involves using appropriate recovery logic and creating a procedure while a computer executes a simulated recovery operation based on the data obtained through normal processing. The operating procedures are converted into specific objective commands and then sent to the general control center. As a result, the restoration operation process is completed and power is supplied to the power outage equipment and loads. Once the restoration operation process is completed, the computer in the power supply station updates the necessary data and resumes normal processing while standing by in preparation for an accident.

ところで平常時処理のうちの系統状態把握は電
力系統・設備の運転状態や開閉器の開閉状態を常
時把握しておき、その処理結果としてのデータは
事故復旧操作処理時には事故検出のみならず、事
故設備切離操作手順の作成や停電設備・負荷の復
旧操作手順の作成に供され、復旧操作を迅速なら
しめるものであるから、その処理は極めて重要で
あるといえる。本発明はこの処理に関するもので
あつて、以下その処理の概要を説明する。
By the way, as part of normal processing, the system status grasp involves constantly grasping the operating status of the power system and equipment and the opening/closing status of switches, and the data as a result of this processing is used not only to detect accidents but also to detect accidents during accident recovery operations. This processing is extremely important because it is used to create procedures for disconnecting equipment and procedures for restoring power outage equipment and loads, and speeds up restoration operations. The present invention relates to this processing, and an outline of the processing will be explained below.

尚、平常時処理のうちの負荷予測用準備処理と
は事故後から一定時間後の負荷を予測するために
常時その準備処理をしておくことをいうが、これ
は本発明には直接関しないことである。
Note that among the normal processing, the preparation processing for load prediction refers to the preparation processing that is always performed in order to predict the load after a certain period of time after the accident, but this is not directly related to the present invention. That's true.

本発明は平常時大別して開閉器開閉データ、分
割系統データ、応援可能点データを電力系統・設
備の運転状態、開閉器開閉状態などより予め求め
ておき、事故発生時にはそれらのデータを用いて
復旧操作を迅速に決定せんとするものである。
In the present invention, switch opening/closing data, split system data, support possible point data are obtained in advance from the operating status of the power system/equipment, switch opening/closing status, etc. during normal times, and when an accident occurs, these data are used to restore the system. The purpose is to quickly determine operations.

上記各データについては後に詳述するところで
あるが、先ず開閉器開閉データより説明すれば、
これは送電線、母線、バンクなどの設備を接続し
ているしや断器、断路器などの組合せ開閉器群を
1つの開閉器と看做し、その開閉器の開閉状態を
予め論理データとして求めておくものである。ま
た、分割系統データとは設備データ(例えばグラ
フ表現)と開閉器開閉データより給電所の担当系
統を電源系統単位に区分したものであり、更に応
援可能点データとは設備データ、計測情報、開閉
器開閉データ、分割系統データより変電所、ルー
ト単位の送電線の固有負荷および停電設備・負荷
への切替送電に用いる応援可能点、応援可能電力
を求めたものである。
Each of the above data will be explained in detail later, but first, the switch opening/closing data will be explained.
This considers a group of combination switches such as lines, disconnectors, and disconnectors that connect equipment such as transmission lines, busbars, and banks as one switch, and stores the open/close status of the switch as logical data in advance. It's something to look for. In addition, divided system data is the division of the system in charge of a power supply station into power system units based on equipment data (for example, graphical representation) and switch switching data, and supportable point data is equipment data, measurement information, switch switching data, etc. The specific load of the transmission line for each substation and route, as well as the supportable points and supportable power used for switching power transmission to power outage equipment and loads, were determined from the switching data and split system data.

第3図はそれら平常時処理の概要を示す。この
処理は一般的にはコンピユータによつて行なわれ
るところとなろうが、このような処理を平常時行
なわしめる理由は、事故発生後にその処理を実行
したのでは復旧に多くの時間を要することになる
からである。尚、第3図中ステツプ11〜13は
それぞれ開閉器開閉データ作成処理、分割系統デ
ータ作成処理、応援可能点データ作成処理を示
す。
FIG. 3 shows an overview of these normal processes. This processing would generally be performed by a computer, but the reason for performing such processing during normal times is that if it were performed after an accident, it would take a lot of time to recover. Because it will be. Incidentally, steps 11 to 13 in FIG. 3 indicate a switch opening/closing data creation process, a split system data creation process, and a supportable point data creation process, respectively.

次に各処理の内容を詳述する。 Next, the contents of each process will be explained in detail.

(1) 開閉器開閉データ作成処理 この処理は例えば第4図aに示す如く設備A,
B間に1つのしや断器CBi1とこれを両側より挾
むが如く2つの断路器LSi1,LSi2を具える場合に
これらを同図bに示す如く1つの開閉器CBiと看
倚し、その開閉器CBiの開閉状態Iをしや断器
CBi1の開閉状態I2および断路器LSi1,LSi2の開閉
状態I1,I3より論理データとして求めんとするも
のである。即ち、開状態、閉状態をそれぞれ論理
“0”,“1”に対応させればI(=I1,I2,I3)が
“1”であるときは設備A,Bが接続されている
ことが即知れるものである。上記の論理はしや断
器や断路器の種々の接続形態にも一般に適用可能
である。例えば第5図aに示す如く設備A〜C間
にしや断器、断路器が存し、それらの開閉状態が
図示の如くであるとすれば、設備A,B、B,
C、C,A間の開閉状態IAB,IBC,ICAは以下の如
くに求められるものである。
(1) Switch opening/closing data creation process This process is performed, for example, as shown in Figure 4a, in equipment A,
In the case where there is one breaker CBi 1 between B and two breaker LSi 1 and LSi 2 sandwiching it from both sides, these can be considered as one switch CBi as shown in Figure b. Then, the open/close status I of the switch CBi is switched off.
It is intended to be obtained as logical data from the open/close state I 2 of CBi 1 and the open/close states I 1 , I 3 of disconnectors LSi 1 , LSi 2 . That is, if the open state and closed state correspond to logic "0" and "1", respectively, when I (=I 1 , I 2 , I 3 ) is "1", equipment A and B are connected. You can immediately know that there is one. The above logic is also generally applicable to various connection configurations of bridges, disconnectors and disconnectors. For example, as shown in Figure 5a, if there is a circuit breaker and a disconnector between equipment A and C, and their open/close states are as shown in the figure, then equipment A, B, B,
The open/close states I AB , I BC , and I CA between C, C, and A are determined as follows.

IAB=I1・I2・I3 IBC=I3・I4 ICA=I4・I2・I1 設備間の開閉状態はまた論理積のみならず、論
理和としても場合によつては表現される。例えば
第5図bの場合設備A,Bは2つのルートの何れ
かによつて接続され得るから、その開閉状態IAB
は以下の如くに表現される。
I AB = I 1 , I 2 , I 3 I BC = I 3 , I 4 I CA = I 4 , I 2 , I It is expressed. For example, in the case of Fig. 5b, equipment A and B can be connected by either of two routes, so their open/closed state I AB
is expressed as follows.

IAB=I1・I2・I3+I4 以上のような処理の結果をデータとして持つ場
合の持ち方は、例えば開閉器CBiの開閉状態とそ
のCBiによつて接続可とされている設備名称・番
号である。
I AB = I 1・ I 2・ I 3 + I 4 When the results of the above processing are held as data, for example, the open/closed state of the switch CBi and the equipment that can be connected by that CBi are stored. Name/number.

(2) 分割系統データ作成処理 本処理は担当系統内に存する設備が何れの電源
より電力の供給を受けているかを調べ、電源毎に
設備を区分せんとするものである。例えば前出の
第4図a,bにおいて設備A,Bが開閉器CBiの
閉状態で接続可であるとすれば、設備A,Bは同
一電源に帰属すると判定し、このような判定を各
電源点より開閉器CBi毎に行ない、系統を検索す
ることにより電源系統は複数の系統に分割される
ことになるものである。
(2) Processing to create divided system data This process investigates which power source the equipment in the responsible system is receiving power from, and attempts to classify the equipment by power source. For example, in Figure 4 a and b above, if equipment A and B can be connected with the switch CBi closed, it is determined that equipment A and B belong to the same power source, and such a determination is applied to each The power supply system is divided into a plurality of systems by searching the system for each switch CBi from the power supply point.

第6図は相当系統を電源によつて分割した一例
である。図中G1〜G4は外部電源、G1′は内部電
源、L1,L2は外部負荷をそれぞれ示している。
当然ながら分割系統A,B,C相互間には電気的
接続がない。即ちG1,G2とG4,G1′との間、G1
G2とG3との間、G3とG4,G1′との間は担当系統内
では電気的に接続されていないものである。分割
系統A,B,C相互の境界線上には開状態におか
れた開閉器のみが存在するだけである。
FIG. 6 is an example of dividing the corresponding system by power source. In the figure, G1 to G4 are external power supplies, G1 ' is an internal power supply, and L1 and L2 are external loads, respectively.
Naturally, there is no electrical connection between the divided systems A, B, and C. That is, between G 1 , G 2 and G 4 , G 1 ′, G 1 ,
There are no electrical connections between G 2 and G 3 , and between G 3 and G 4 and G 1 ' within the assigned system. There are only open switches on the boundary line between the divided systems A, B, and C.

各分割系統データの内容はその分割系統に含ま
れる種々の情報、例えば開閉器、無電圧検出リレ
ー(UVR)、電源、負荷、設備データ等である。
これらデータが何れの分割系統に属するかはデー
タ個々にその旨の情報を付するか、あるいは分割
系統毎にデータを分割して持つなどの方法が考え
られる。
The contents of each divided system data include various information included in the divided system, such as switch, no-voltage detection relay (UVR), power supply, load, equipment data, etc.
To determine which division system these data belong to, it is possible to attach information to that effect to each data item, or to divide and hold data for each division system.

(3) 応援可能点データ作成処理 本処理では変電所、送電線ルート単位の固有負
荷算出、応援可能点算出、応援可能電力算出を行
なう。
(3) Supportable point data creation process This process calculates the specific load, supportable points, and supportable power for each substation and transmission line route.

先ず変電所、送電線ルート単位の固有負荷算出
より説明すれば、送電線個別、バンク個別の固有
負荷値は計測情報より直接求められ、これらの計
測値を用いルート単位の固有負荷を求めるもので
ある。例えば第7図において送電線A(ルート)
における固有負荷LはMW単位としてL=L1
L2として、また、変電所Bでの固有負荷TはT
=T1+T2として、固有負荷L3,L4と同様計測情
報である潮流値より直接求めるものである。計測
情報の得られない点については潮流計算等を用い
て潮流値を求めることになる。
First, to explain the specific load calculation for each substation and transmission line route, the specific load value for each individual transmission line or bank can be directly determined from measurement information, and these measured values are used to calculate the specific load for each route. be. For example, in Figure 7, power transmission line A (route)
The specific load L in MW is L=L 1 +
As L 2 , the specific load T at substation B is T
= T 1 + T 2 , and like the specific loads L 3 and L 4 , it is directly determined from the power flow value, which is measurement information. For points where measurement information cannot be obtained, tidal current values will be determined using tidal current calculations.

次に応援可能点算出について述べる。事故によ
つて停電した設備を充電するには、その設備に接
続されている開閉器のうち、片側電圧有で開状態
のものを投入することになるが、この開閉器とな
る可能性をもつものが応援可能点である。即ち、
予め得られている開閉器開閉データのうち、開閉
データが“0”の開状態開閉器であつて、しかも
両側の設備に電圧が有のものが応援可能点となる
ものである。尚、設備についての電圧データは分
割系統データを得るに際し附随的に求められる。
事故発生時においては上記応援可能点のうちその
片側の電圧がなくなつたものが実際の加電操作候
補開閉器として残り、そのうちから一点が選ばれ
ることになるものである。しかしながら、担当系
統内または担当系統と隣接地系統に跨つて多重事
故が発生した場合には、応援可能点データを使用
し得ないこともあり得る。
Next, we will discuss how to calculate support points. To charge equipment that has lost power due to an accident, one of the switches connected to the equipment that has voltage on one side and is open must be turned on. Things are points that can be supported. That is,
Among the switch opening/closing data obtained in advance, an open switch whose opening/closing data is "0" and whose equipment on both sides has voltage is a supportable point. Note that voltage data regarding equipment is obtained incidentally when obtaining divided system data.
In the event of an accident, among the supportable points, one of which the voltage has disappeared on one side remains as a switch candidate for actual energization operation, and one point is selected from among them. However, if multiple accidents occur within the system in charge or across the system in charge and the adjacent system, the support possible point data may not be usable.

最後に応援可能電力算出について説明する。 Finally, the calculation of supportable power will be explained.

既述の第6図を参照すれば、応援可能点は以下
のように分類される。
Referring to FIG. 6 already mentioned, supportable points are classified as follows.

(a) 分割系統内部に存する応援可能点(但し(c)を
除く) (b) 分割系統と分割系統の境界に存する応援可能
点 (c) 担当系統と他の系統の境界に存する応援可能
点(一般に他系統との境界は開閉器上ではなく
送電線上でひかれるが、開閉器の投入により他
系統より応援電力を受ける結果となる応援可能
点である。即ち、当該開閉器と境界線の間に負
荷がない開閉器がこの応援可能点である。) 以下第8図により応援可能電力の求め方につい
て説明する。尚、図中におけるKは送電可能電
力、Ciは応援可能点、Siは送電線容量、Piは応援
可能電力、Tはバンク容量、Biは加電されるべ
き停電母線、kは予測送電電力、si,tは予測固
有負荷、Liは負荷であり、ここでいう予測とは適
当な方法を用いて現在から一定時間後の値を予測
することをいう。
(a) Points that can be supported within the divided system (excluding (c)) (b) Points that can be supported that exist on the boundary between divided systems (c) Points that can be supported that exist on the boundary between the system in charge and other systems (Generally, the border with other systems is drawn not on the switch but on the transmission line, but it is a supportable point that results in receiving support power from other systems when the switch is turned on. In other words, the border between the switch and the boundary line is drawn on the transmission line.) A switch with no load in between is a supportable point.) How to determine the supportable power will be explained below with reference to FIG. In the figure, K is the transmittable power, Ci is the supportable point, Si is the transmission line capacity, Pi is the supportable power, T is the bank capacity, Bi is the outage bus to be energized, k is the predicted transmitted power, si, t are predicted specific loads, Li is load, and prediction here means predicting a value after a certain period of time from the present using an appropriate method.

先ず(a)に関しての応援可能電力Pの求め方の一
例は以下のようである。仮にA点で発生した地絡
事故によつて負荷L2が停電した場合を想定する
と、負荷L2はC1点に存する開閉器を投入状態に
おくことによつてB1母線を加電することにより
救済され得る。このときの応援可能電力P1を制
限するものは送電線容量S1,S2だけであり、送電
可能電力(電源容量)Kとバンク容量Tとは負荷
L1,L2に対して共通であるので何等制限対象と
はならない。即ち、応援側と被応援側とに共通な
電源と設備にとつては中間に存する送電線の容量
のみが問題となるものである。よつてS1,S2から
の設備の予測固有負荷値を差し引くことによつて
余裕値を求め、そのうちの小さい方のものをC1
点の応援可能電力P1とする。
First, an example of how to obtain the supportable power P regarding (a) is as follows. Assuming that load L 2 loses power due to a ground fault that occurs at point A, load L 2 energizes bus B 1 by closing the switch at point C 1 . This can be salvageable. At this time, the only thing that limits the supportable power P 1 is the transmission line capacity S 1 , S 2 , and the transmittable power (power supply capacity) K and bank capacity T are the load
Since it is common to L 1 and L 2 , it is not subject to any restrictions. That is, for the power supply and equipment common to the supporting side and the supported side, only the capacity of the power transmission line existing in the middle is a problem. Therefore, the margin value is obtained by subtracting the predicted specific load value of the equipment from S 1 and S 2 , and the smaller of them is calculated as C 1
Let the supportable power P of a point be 1 .

P1=Min{(S1−s1),(S2−s2)} (但しs2=0) 尚、1つの応援可能点Cについては両方からの
応援可能電力が求められる。
P 1 =Min {(S 1 −s 1 ), (S 2 −s 2 )} (However, s 2 =0) For one supportable point C, the supportable power from both is calculated.

次に(b)に関しての応援可能電力Pの求め方は以
下のようである。
Next, regarding (b), how to find the supportable power P is as follows.

第8図において隣接分割系統に電源事故が発生
し負荷L3が停電した場合を想定すると、C2点に
存する開閉器を投入することによつて負荷L3
救済される。この際での応援可能電力P2を制限
するものは応援可能点C2から電源に至る全設備、
電源であり、したがつて送電可能電力K、バンク
容量Tおよび送電線容量S3である。よつてP2
次式より求められる。
In FIG. 8, assuming that a power failure occurs in the adjacent divided system and load L 3 loses power, load L 3 is relieved by closing the switch at point C2 . What limits the supportable power P 2 in this case is all the equipment from the supportable point C 2 to the power supply,
It is the power source, and therefore the transmittable power K, the bank capacity T and the transmission line capacity S3 . Therefore, P 2 can be obtained from the following equation.

P2=Min{(K−k),(T−t), (S3−s3)} (但しs3=0) 最後に(c)についての応援可能電力の求め方につ
いて説明する。この場合は(b)の場合と同様にして
求め得るが、この際の応援可能電力は応援可能点
についての応援可能電力情報として他給電所へ送
られる。一方、これとは逆に他系統より担当系統
が応援される場合には他系統給電所より応援可能
電力情報を受け取るものである。
P 2 = Min {(K-k), (T-t), (S 3 -s 3 )} (However, s 3 =0) Finally, how to obtain the supportable power regarding (c) will be explained. In this case, it can be obtained in the same manner as in case (b), but the supportable power in this case is sent to the other power supply station as supportable power information about the supportable point. On the other hand, when the system in charge is supported by another system, on the other hand, information on power that can be supported is received from the power supply station of the other system.

本発明は以上のようなものであるが、応援可能
電力算出は事故前に限らず事故発生後行なうこと
も考えられる。
Although the present invention is as described above, it is conceivable that supportable power calculation is performed not only before an accident but also after an accident occurs.

以上説明したように本発明は、広域的電力系統
について通常時での開閉器開閉状態や設備負荷に
関しての固有あるいは計測に係るデータを予め把
握処理しておくことによつて、系統に事故が発生
した際にはそれら把握処理されたデータを用い復
旧操作手順を迅速に決定し、これを以て事故復旧
を統一的、且つ自動的に、しかも可及的迅速に行
なわんとしたものである。本発明による場合設備
負荷に何等かの変更があつたとしても常に定まつ
た方式の下に事故復旧の操作が決定されるので、
如何なる事故であつても復旧が一様化されるばか
りか、何よりも事故復旧が迅速に行ない得る。こ
れは平常時にデータを予め事故復旧操作決定に適
した形に処理しているからであるが、事故復旧の
迅速化はサービスの向上に直接つながる事項であ
るから、本発明は社会に益するところ大なるもの
がある。
As explained above, the present invention is designed to prevent accidents from occurring in a wide-area power system by understanding and processing in advance specific or measured data regarding the switching status of switches and equipment loads during normal times in a wide-area power system. When an accident occurs, the data that has been grasped and processed is used to quickly determine the recovery operation procedure, and this is used to carry out accident recovery uniformly, automatically, and as quickly as possible. According to the present invention, even if there is any change in the equipment load, accident recovery operations are always determined based on a fixed method.
Not only will recovery be uniform no matter what the accident, but above all, accident recovery can be done quickly. This is because data is processed in advance in a form suitable for determining accident recovery operations during normal times, but since speeding up accident recovery is a matter that directly leads to improved services, the present invention will benefit society. There is something big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、給電所、総合制御所および電気所三
者の関係を示す階層構成図、第2図は、本発明に
係る事故復旧操作決定を示すフロー図、第3図
は、本発明による処理の概要を示すフロー図、第
4図a,b、第5図a,bは、本発明に係る開閉
器開閉データ作成処理の説明図、第6図は、同じ
く本発明に係る分割系統データ作成処理の説明
図、第7図、第8図は、同じく本発明に係る応援
可能点データ作成処理の説明図である。 1……給電所、2,21〜2o……総合制御所、
3,3o〜3on……電気所、11……開閉器開閉
データ作成処理ステツプ、12……分割系統デー
タ作成処理ステツプ、13……応援可能点データ
作成処理ステツプ。
Fig. 1 is a hierarchical configuration diagram showing the relationship between the power supply station, the general control center, and the electric power plant; Fig. 2 is a flow chart showing the determination of accident recovery operations according to the present invention; Flowcharts showing the outline of the process, FIGS. 4a, b, and 5a, b are explanatory diagrams of the switch opening/closing data creation process according to the present invention, and FIG. 6 is a flowchart showing the divided system data also according to the present invention. 7 and 8 are explanatory diagrams of the creation process, and FIGS. 7 and 8 are also explanatory diagrams of the supportable point data creation process according to the present invention. 1...Power supply station, 2,2 1 ~ 2 o ...General control center,
3, 3 o to 3 on ... Electrical station, 11... Switch opening/closing data creation processing step, 12... Divided system data creation processing step, 13... Supportable point data creation processing step.

Claims (1)

【特許請求の範囲】[Claims] 1 予め既知の、設備間に存する断路器、しや断
器についての開閉情報、設備データ、他給電所か
らの応援可能電力情報および系統・設備について
の計測情報にもとづき給電所に設置されたコンピ
ユータが停電事故発生時に復旧操作を決定した
後、該決定に係る操作を同じくコンピユータを擁
した総合制御所を介して実行させることによつて
事故復旧を図る際、給電所設置コンピユータは平
常時上記開閉情報および設備データにもとづき接
続可とされた設備間の接続状態を論理的に判定す
る開閉器開閉データ作成処理と、該処理により得
られた開閉器開閉データおよび上記設備データに
もとづき担当系統内の設備を、何れの電源より電
力を供給されているかによつて電源毎に区分する
分割系統データ作成処理と、該処理により得られ
た分割系統データ、上記開閉器開閉データ、設備
データおよび計測情報にもとづき変電所個別、送
電線個別の固有負荷算出、応援可能点としての開
閉器の抽出および応援可能電力算出を行なう応援
可能点データ作成処理とを行なうべくされ、事故
発生時には上記各処理によつて得られているデー
タにもとづき復旧操作が逸早く行なわれるように
したことを特徴とする自動復旧操作決定方式。
1. A computer installed at a power supply station based on previously known opening/closing information on disconnectors and disconnectors existing between facilities, equipment data, supportable power information from other power supply stations, and measurement information about the system and equipment. After determining the recovery operation when a power outage accident occurs, when attempting to recover from the accident by executing the operation related to the decision via the general control center that also has a computer, the computer installed at the power supply station will not open or close as described above during normal times. A switch opening/closing data creation process that logically determines the connection status between equipment that has been determined to be connectable based on the information and equipment data, and a switch opening/closing data creation process that logically determines the connection status between equipment that has been determined to be connectable based on information and equipment data, and A division system data creation process that divides the equipment into each power source according to which power source supplies power, and the division system data obtained by this process, the above-mentioned switch opening/closing data, equipment data, and measurement information. The system is designed to calculate the specific load of each substation and transmission line, extract switchgears as supportable points, and create supportable point data to calculate supportable power.In the event of an accident, the above processes An automatic recovery operation determination method is characterized in that the recovery operation is quickly performed based on the obtained data.
JP55146691A 1980-10-20 1980-10-20 Automatic recovery operation deciding system Granted JPS5771231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146691A JPS5771231A (en) 1980-10-20 1980-10-20 Automatic recovery operation deciding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146691A JPS5771231A (en) 1980-10-20 1980-10-20 Automatic recovery operation deciding system

Publications (2)

Publication Number Publication Date
JPS5771231A JPS5771231A (en) 1982-05-04
JPS6367417B2 true JPS6367417B2 (en) 1988-12-26

Family

ID=15413383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146691A Granted JPS5771231A (en) 1980-10-20 1980-10-20 Automatic recovery operation deciding system

Country Status (1)

Country Link
JP (1) JPS5771231A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645013B2 (en) * 1987-05-26 1997-08-25 東京電力株式会社 Power system accident recovery system
JPS63316635A (en) * 1987-06-19 1988-12-23 Tokyo Electric Power Co Inc:The System for automatic recovery from accident in power system
JP2618905B2 (en) * 1987-08-07 1997-06-11 東京電力株式会社 Automatic creation of system operation procedure in power system
JPH06133459A (en) * 1992-10-13 1994-05-13 Togami Electric Mfg Co Ltd Load interchanging method

Also Published As

Publication number Publication date
JPS5771231A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
CN108957243A (en) A kind of method for locating single-phase ground fault and system applied to power distribution network
CN111030058B (en) Power distribution network partition protection method based on 5G communication
CN112421761B (en) Relay protection reconstruction self-healing method for hub traction power supply system
JP5112124B2 (en) Power distribution system operation device
JPS6367417B2 (en)
Castro Jr et al. Automatic power distribution reconfiguration algorithm including operating constraints
JPS6367416B2 (en)
CN113013871A (en) Load transfer method for power distribution network equipment during fault and maintenance
Kimura et al. Applying IEC 61850 to real life: Modernization project for 30 electrical substations
JP2009017617A (en) Monitoring control system and method
JP2618905B2 (en) Automatic creation of system operation procedure in power system
JP2577392B2 (en) Pre-accident grid status creation method for automatic recovery in the event of a power grid accident
JPH1080057A (en) Distribution automating system
Lehtonen et al. An automatic fault management model for distribution networks
JP2624532B2 (en) Power system operation method
JPH0923583A (en) Distribution system operating equipment
JPS6056048B2 (en) Automatic power grid restoration system determination method
CN117878852A (en) Multipoint input type feeder automation method
Kazymova THE STRATEGIC DIRECTIONS AND REALITIES OF DEVELOPMENT OF NON-PERFECT SECTORS OF THE ECONOMY OF AZERBAIJAN
JP2644243B2 (en) Shutdown adjustment calculation method for power system equipment
Pellini et al. Fuzzy logic applied to registration of alarms and events in substations with IEC 61850
JPS6112455B2 (en)
JP2645013B2 (en) Power system accident recovery system
CN116365484A (en) Distributed feeder automation fault processing method and system
CN102195279A (en) Typical fault reconstruction method capable of processing fault of power system