JP2016025786A - 熱電発電装置および熱電発電システム - Google Patents

熱電発電装置および熱電発電システム Download PDF

Info

Publication number
JP2016025786A
JP2016025786A JP2014149549A JP2014149549A JP2016025786A JP 2016025786 A JP2016025786 A JP 2016025786A JP 2014149549 A JP2014149549 A JP 2014149549A JP 2014149549 A JP2014149549 A JP 2014149549A JP 2016025786 A JP2016025786 A JP 2016025786A
Authority
JP
Japan
Prior art keywords
thermoelectric
support member
temperature
thermoelectric conversion
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014149549A
Other languages
English (en)
Inventor
陽一 早瀬
Yoichi Hayase
陽一 早瀬
充彦 水野
Michihiko Mizuno
充彦 水野
広之 土性
Hiroyuki Dosho
広之 土性
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014149549A priority Critical patent/JP2016025786A/ja
Publication of JP2016025786A publication Critical patent/JP2016025786A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】温度が変化する変温体の熱を利用した発電であってもその温度変化に起因する発電電力量のばらつきを抑制し得る熱電発電装置および熱電発電システムを提供する。【解決手段】第1の熱電変換部21および第2の熱電変換部22は、それぞれ一方の支持部材25a,26aがエンジン2に向かうようにそれぞれ配置されている。そして、第1の熱電変換部21は、一方の支持部材25aでの熱容量および熱抵抗が他方の支持部材25bでの熱容量および熱抵抗よりも小さく形成され、第2の熱電変換部22は、一方の支持部材26aでの熱容量および熱抵抗が他方の支持部材26bでの熱容量および熱抵抗よりも大きく形成される。【選択図】図4

Description

本発明は、熱電素子によって熱エネルギーを電気エネルギーとして回収する熱電発電装置および熱電発電システムに関するものである。
従来、熱電素子によって熱エネルギーを電気エネルギーとして回収する熱電発電装置として、例えば特許文献1に開示される熱電発電機が知られている。この熱電発電機は、高温の流体が流れる高温側のダクトと低温の流体が流れる低温側のダクトとの間に複数の熱電変換部が配置されており、高温の流体と低温の流体との温度差を利用して発電する。特に、上記熱電発電機では、熱源の熱出力が変化する場合でも電気出力を有利に変更するために、高温側および/または低温側の流体流れの動作を変化させている。
特開2013−233086号公報
ところで、上述のような構成では、熱電発電装置に対する熱源や周囲の温度が変化するために、熱電変換部に作用する温度分布に関して高温側と低温側とが逆転する場合がある。例えば、熱電発電装置がエンジンルームのボンネット裏に配置されてエンジンからの熱を受けて発電する場合、停止したエンジンよりも直射日光を受けるボンネットの方が熱くなる場合である。
通常、高温側および低温側は逆転しないため、想定される高温側および低温側を基準に熱容量および熱抵抗等を考慮した設計を行うことで、発電効率の向上を図っている。しかしながら、上述のように高温側と低温側とが逆転すると、想定と異なる温度分布となるために、この逆転後の温度分布で得られる温度差が逆転前の温度分布で得られる温度差よりも低くなる。このように、高温側と低温側との逆転に応じて発電に利用する温度差が大きく変化してしまうと、上記逆転時での発電効率が低下してしまい、安定した電力が確保できなくなるという問題がある。
本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、温度が変化する変温体の熱を利用した発電であってもその温度変化に起因する発電電力量のばらつきを抑制し得る熱電発電装置および熱電発電システムを提供することにある。
上記目的を達成するため、特許請求の範囲の請求項1に記載の発明は、温度が変化する変温体(2)に対して配置される複数の熱電変換部により発電を行う熱電発電装置(20,20a,20b)であって、前記熱電変換部は、電気的に接続されるP型熱電素子(24a)およびN型熱電素子(24b)を一対の支持部材で挟み込んで支持することで形成され、前記複数の熱電変換部のうちの一部を構成する第1の熱電変換部(21)と残部を構成する第2の熱電変換部(22)とは、前記一対の支持部材のうちの一方の支持部材(25a,26a)が前記変温体に向かうようにそれぞれ配置され、前記第1の熱電変換部は、前記一方の支持部材の熱容量および熱抵抗が他方の支持部材(25b)の熱容量および熱抵抗よりも小さく形成され、前記第2の熱電変換部は、前記一方の支持部材の熱容量および熱抵抗が他方の支持部材(26b)の熱容量および熱抵抗よりも大きく形成されることを特徴とする。
また、請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の熱電発電装置と、前記熱電発電装置の発電により得られた電力を抽出する電力抽出部(11)と、前記電力抽出部により抽出された電力が蓄電される2次電池(12,12a,12b)と、を備え、前記2次電池に蓄電される電力が電子装置(13,13a〜13c)に供給されることを特徴とする。
なお、特許請求の範囲および上記手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
請求項1の発明では、第1の熱電変換部および第2の熱電変換部は、それぞれ一方の支持部材が変温体に向かうようにそれぞれ配置されている。そして、第1の熱電変換部は、一方の支持部材の熱容量および熱抵抗が他方の支持部材の熱容量および熱抵抗よりも小さく形成され、第2の熱電変換部は、一方の支持部材の熱容量および熱抵抗が他方の支持部材の熱容量および熱抵抗よりも大きく形成される。
これにより、熱電発電装置は、変温体との間に温度差が生じる熱交換対象が、当該変温体との間に複数の熱電変換部を介在させるように存在することで、この温度差を利用して発電を行うことができる。
特に、変温体が上記熱交換対象よりも高温である状態では、第1の熱電変換部を構成する両熱電素子に作用する温度差の絶対値が、第2の熱電変換部を構成する両熱電素子に作用する温度差の絶対値よりも大きくなる。第1の熱電変換部は、変温体に向かうように配置される一方の支持部材の熱容量および熱抵抗が他方の支持部材の熱容量および熱抵抗よりも小さいため、第2の熱電変換部と比較して、変温体から支持部材に伝わった熱が放熱されにくく、熱交換対象側の支持部材に伝わった熱が放射されやすいからである。
また、変温体が上記熱交換対象よりも低温である状態では、第2の熱電変換部を構成する両熱電素子に作用する温度差の絶対値が、第1の熱電変換部を構成する両熱電素子に作用する温度差の絶対値よりも大きくなる。第2の熱電変換部は、他方の支持部材の熱容量および熱抵抗が変温体に向かうように配置される一方の支持部材の熱容量および熱抵抗よりも小さいため、第1の熱電変換部と比較して、上記熱交換対象から支持部材に伝わった熱が放熱されにくく、変温体側の支持部材に伝わった熱が放射されやすいからである。
このように変温体が上記熱交換対象よりも高温となる状態では、第1の熱電変換部を構成する両熱電素子に作用する温度差の絶対値が大きくなり、変温体が上記熱交換対象よりも低温となる状態では、第2の熱電変換部を構成する両熱電素子に作用する温度差の絶対値が大きくなる。このため、温度が変化する変温体の熱を利用した発電において、熱電変換部に作用する温度分布に関して高温側と低温側とが逆転する温度変化が生じる場合であっても、発電に利用する温度差を大きく保つことができるので、その温度変化に起因する発電電力量のばらつきを抑制することができる。
請求項5の発明では、上記熱電発電装置の発電により得られた電力が電力抽出部により抽出されて2次電池に蓄電される。そして、この2次電池に蓄電される電力が電子装置に供給される。
これにより、熱電変換部に作用する温度分布に関して高温側と低温側とが逆転する温度変化が生じる場所に熱電発電装置が配置されている場合でも、2次電池の蓄電量が高く維持されるので、2次電池を電源として利用する電子装置に対して確実に電力を供給することができる。
第1実施形態に係る熱電発電システムの概略構成を示す断面図である。 第1実施形態に係る熱電発電システムの電気的構成を示すブロック図である。 図1の熱電発電装置をボンネット側からみた上面図である。 第1の熱電変換部および第2の熱電変換部を拡大して示す断面図である。 図5(A)は、エンジン側高温状態での熱の流れを説明する断面図であり、図5(B)は、エンジン側高温状態における各熱電変換部での出力電流の流れを説明する拡大断面図である。 図6(A)は、ボンネット側高温状態での熱の流れを説明する断面図であり、図6(B)は、ボンネット側高温状態における各熱電変換部での出力電流の流れを説明する拡大断面図である。 各熱電変換部に作用する温度差の時間変化を示すグラフである。 図8(A)は、両熱電素子に作用する温度差の時間変化を示すグラフであり、図8(B)は、熱電変換部から出力される電圧Vの時間変化を示すグラフである。 第2実施形態に係る熱電発電装置の要部を示す拡大断面図である。 第3実施形態に係る熱電発電システムの電気的構成を示すブロック図である。 第3実施形態の変形例に係る熱電発電システムの電気的構成を示すブロック図である。 第4実施形態に係る熱電発電システムの概略構成を示す断面図である。 図12の熱電発電システムを側面から見た説明図である。
[第1実施形態]
以下、本発明に係る熱電発電装置および熱電発電システムを具現化した第1実施形態について、図面を参照して説明する。
図1および図2に示すように、本実施形態に係る熱電発電システム10は、熱電素子によって熱エネルギーを電気エネルギーとして回収する熱電発電装置20と、熱電発電装置20の発電により得られた電力を抽出する電力抽出部11と、電力抽出部11により抽出された電力が蓄電される2次電池12と、を備えている。本実施形態では、熱電発電システム10は、車両に搭載されており、エンジンルーム1内のエンジン2やボンネット3等の熱を利用して発電し、電子装置13に電力を供給するシステムとして構成されている。
電力抽出部11は、熱電発電装置20からの出力電流を制御する公知の電力制御回路11aと、2次電池12の蓄電量を測定しこの蓄電量が最大となるように2次電池12へ電力伝送する公知の蓄電回路11bとを備えている。なお、図1では、便宜上、2次電池12の図示を省略している。
電子装置13は、エンジン2の停止中でも2次電池12からの電力を受けて作動する装置として構成されるもので、本実施形態では、例えば、排気ガスの温度(排気温度)を測定する温度センサ装置として構成されている。この電子装置13は、排気温度を計測する計測手段として公知のセンシング部14と、無線通信手段として機能する公知の無線通信部15と、電子装置13の全体制御を司る制御部16とを備えている。無線通信部15は、制御部16により制御されて、センシング部14により得られた計測情報が、エンジン2を制御する制御装置等の外部機器4に対して無線送信されるように構成されている。また、電子装置13は、電力線の長さを短くするため、2次電池12の近傍に配置されている。
次に、熱電発電装置20の構成について、図3および図4を用いて詳述する。なお、図3は、図1の熱電発電装置20をボンネット側からみた上面図である。図4は、第1の熱電変換部21および第2の熱電変換部22を拡大して示す断面図である。
熱電発電装置20は、複数の熱電変換部を備えており、各熱電変換部は、ボンネット3の裏側であってエンジン2からの熱を受ける場所に配置されている。なお、エンジン2は、駆動中に発熱し、停止中にその発熱した温度が低下する「変温体」の一例に相当し得る。また、本実施形態では、ボンネット3は、エンジン2との間に温度差が生じる熱交換対象として機能し、エンジン2との間に温度差が生じるボンネット3が、当該エンジン2との間に熱電発電装置20の各熱電変換部を介在させるように存在している。
特に、各熱電変換部は、一部が、エンジン側が高温側となることを想定して構成される第1の熱電変換部21に区分けされ、残部が、ボンネット側が高温側となることを想定して構成される第2の熱電変換部22に区分される。各第1の熱電変換部21は、互いに電気的に接続されており、発電時に電圧V1となる電力を出力するように構成されている。各第2の熱電変換部22は、互いに電気的に接続されており、発電時に電圧V2となる電力を出力するように構成されている。
図3に示すように、各第1の熱電変換部21は、第2の熱電変換部22よりもエンジン2からの熱を受けやすくするため、エンジン2が垂直投影されるボンネット3の投影領域の内側に位置するように、ボンネット3の裏側にそれぞれ固定されている。これに対して、各第2の熱電変換部22は、上記投影領域の外側に位置するように、ボンネット3の裏側にそれぞれ固定されている。なお、図3では、ボンネット3を二点鎖線にて示し、ボンネット3に対して垂直投影されるエンジン2の投影領域の外縁を破線にて示している。
図4に示すように、第1の熱電変換部21は、銅パターン等の導電性の接合部材23a〜23cを介して電気的に接続されるP型熱電素子24aおよびN型熱電素子24bを一対の支持部材で挟み込んで支持することで構成されている。特に、第1の熱電変換部21が備える一対の支持部材は、P型熱電素子24a側の入出力端子となる接合部材23bとN型熱電素子24b側の入出力端子となる接合部材23cとの双方を覆う一方の支持部材25aと、P型熱電素子24aとN型熱電素子24bとを接続する接合部材23aを覆う他方の支持部材25bと、からなる。このため、第1の熱電変換部21は、一方の支持部材25aがエンジン2に向かい、他方の支持部材25bがボンネット3に向かうように配置される。
また、第2の熱電変換部22は、第1の熱電変換部21と同様に、接合部材23a〜23cを介して電気的に接続されるP型熱電素子24aおよびN型熱電素子24bを一対の支持部材で挟み込んで支持することで構成されている。特に、第2の熱電変換部22が備える一対の支持部材は、接合部材23bおよび接合部材23cの双方を覆う一方の支持部材26aと、接合部材23aを覆う他方の支持部材26bと、からなる。このため、第2の熱電変換部22は、一方の支持部材26aがエンジン2に向かい、他方の支持部材26bがボンネット3に向かうように配置される。
また、第1の熱電変換部21と第2の熱電変換部22との間には、図3および図4に示すように、一方の支持部材25aと一方の支持部材26aとの間の熱交換や他方の支持部材25bと他方の支持部材26bとの間の熱交換を抑制するため、断熱部材27が配置されている。
本実施形態では、第1の熱電変換部21において一方の支持部材25aと他方の支持部材25bとを異なる材料で構成することにより、一方の支持部材25aでの熱容量および熱抵抗を他方の支持部材25bでの熱容量および熱抵抗よりも小さくしている。また、第2の熱電変換部22において一方の支持部材26aと他方の支持部材26bとを異なる材料で構成することにより、一方の支持部材26aでの熱容量および熱抵抗を他方の支持部材26bでの熱容量および熱抵抗よりも大きくしている。具体的には、支持部材での熱容量および熱抵抗を小さくするための材料として例えばアルミニウム材料により一方の支持部材25aおよび他方の支持部材26bを構成し、支持部材での熱容量および熱抵抗を大きくするための材料として例えばセラミック材料により一方の支持部材26aおよび他方の支持部材25bを構成することで、上述のように両支持部材での熱容量および熱抵抗を異ならせている。
このように支持部材での熱容量および熱抵抗を異ならせる理由について、図5〜図8を用いて詳細に説明する。なお、図5(A)は、エンジン側高温状態での熱の流れを説明する断面図であり、図5(B)は、エンジン側高温状態における各熱電変換部21,22での出力電流の流れを説明する拡大断面図である。図6(A)は、ボンネット側高温状態での熱の流れを説明する断面図であり、図6(B)は、ボンネット側高温状態における各熱電変換部21,22での出力電流の流れを説明する拡大断面図である。図7は、各熱電変換部21,22に作用する温度差ΔToの時間変化を示すグラフである。図8(A)は、両熱電素子24a,24bに作用する温度差の時間変化を示すグラフであり、図8(B)は、熱電変換部21,22から出力される電圧Vの時間変化を示すグラフである。なお、図7および図8(A)では、各熱電変換部21,22に対して、エンジン側を正、ボンネット側を負とする温度差を、縦軸としている。
エンジン2が駆動している車両走行中では、図5(A)の矢印にて示すように、エンジン2が発熱してボンネット3が外気により冷却される。この場合には、図7の符号S1にて示すように、各熱電変換部21,22に作用する温度差ΔToは正となり、各熱電変換部21,22に対して、エンジン側が高温側、ボンネット側が低温側となる状態(以下、エンジン側高温状態ともいう)になる。このような温度分布では、一方の支持部材25a,26aが高温側、他方の支持部材25b,26bが低温側となる。
このため、図8(A)の符号S1にて示すように、第1の熱電変換部21を構成する両熱電素子24a,24bに両支持部材25a,25bを介して作用する温度差ΔT1の絶対値が、第2の熱電変換部22を構成する両熱電素子24a,24bに両支持部材26a,26bを介して作用する温度差ΔT2の絶対値よりも大きくなる。第1の熱電変換部21は、一方の支持部材25aでの熱容量および熱抵抗が他方の支持部材25bでの熱容量および熱抵抗よりも小さいため、第2の熱電変換部22と比較して、エンジン2から一方の支持部材25aに伝わった熱が放熱されにくく、ボンネット側の他方の支持部材25bに伝わった熱が放射されやすいからである。
上記エンジン側高温状態では、各熱電変換部21,22において、図5(B)に示すように、P型熱電素子24aから接合部材23aを介してN型熱電素子24bに流れる電流が生じる。そして、両熱電素子24a,24bに作用する温度差が大きくなるほどその熱電変換部から出力される電圧Vが高くなるため、エンジン側高温状態では、図8(B)の符号S1にて示すように、各第1の熱電変換部21から出力される電圧V1が高くなる。これに対して、エンジン側高温状態では、温度差ΔT2が温度差ΔT1よりも低くなるので、各第2の熱電変換部22から出力される電圧V2は電圧V1よりも低くなる。すなわち、エンジン側高温状態では、電圧V1が高くなるので電圧V2が低くなっても全体としての出力電圧を高くでき、熱電発電装置20の発電量を高く維持することができる。
一方、ボンネット3が直射日光を受けている状態でエンジン2が停止していると、図6(A)の矢印にて示すように、停止したエンジン2よりも直射日光を受けるボンネット3の方が熱くなる場合があり、この場合には、図7の符号S2にて示すように、各熱電変換部21,22に作用する温度差ΔToは負となり、各熱電変換部21,22に対して、ボンネット側が高温側、エンジン側が低温側となる状態(以下、ボンネット側高温状態ともいう)になる。このような温度分布では、他方の支持部材25b,26bが高温側、一方の支持部材25a,26aが低温側となる。
このため、図8(A)の符号S2にて示すように、温度差ΔT2の絶対値が温度差ΔT1の絶対値よりも大きくなる。第2の熱電変換部22は、他方の支持部材26bでの熱容量および熱抵抗が一方の支持部材26aでの熱容量および熱抵抗よりも小さいため、第1の熱電変換部21と比較して、ボンネット3から他方の支持部材26bに伝わった熱が放熱されにくく、エンジン側の一方の支持部材26aに伝わった熱が放射されやすいからである。
上記ボンネット側高温状態では、各熱電変換部21,22において、図6(B)に示すように、N型熱電素子24bから接合部材23aを介してP型熱電素子24aに流れる電流が生じる。そして、ボンネット側高温状態では、図8(B)の符号S2にて示すように、各第2の熱電変換部22から出力される電圧V2が高くなる。これに対して、ボンネット側高温状態では、温度差ΔT1の絶対値が温度差ΔT2の絶対値よりも低くなるので、各第1の熱電変換部21から出力される電圧V1は電圧V2よりも低くなる。すなわち、ボンネット側高温状態では、電圧V2が高くなるので電圧V1が低くなっても全体としての出力電圧を高くでき、熱電発電装置20の発電量を高く維持することができる。
このように、エンジン側高温状態だけでなく、エンジン2が停止しているボンネット側高温状態であっても熱電発電装置20の発電量が高く維持されるため、電力抽出部11により熱電発電装置20から抽出された電力が蓄電される2次電池12の蓄電量が高く維持される。このため、エンジン2の駆動中だけでなく、エンジン2の停止中であっても、2次電池12を利用する電子装置13に対して確実に電力を安定供給することができる。
以上説明したように、本実施形態に係る熱電発電装置20では、第1の熱電変換部21および第2の熱電変換部22は、それぞれ一方の支持部材25a,26aがエンジン2に向かうようにそれぞれ配置されている。そして、第1の熱電変換部21は、一方の支持部材25aでの熱容量および熱抵抗が他方の支持部材25bでの熱容量および熱抵抗よりも小さく形成され、第2の熱電変換部22は、一方の支持部材26aでの熱容量および熱抵抗が他方の支持部材26bでの熱容量および熱抵抗よりも大きく形成される。
これにより、熱電発電装置20は、エンジン2との間に温度差が生じるボンネット3が、当該エンジン2との間に複数の熱電変換部21,22を介在させるように存在することで、この温度差を利用して発電を行うことができる。
特に、上記エンジン側高温状態では、第1の熱電変換部21を構成する両熱電素子24a,24bに作用する温度差ΔT1の絶対値が、第2の熱電変換部22を構成する両熱電素子24a,24bに作用する温度差ΔT2の絶対値よりも大きくなる。また、上記ボンネット側高温状態では、第2の熱電変換部22を構成する両熱電素子24a,24bに作用する温度差ΔT2の絶対値が、第1の熱電変換部21を構成する両熱電素子24a,24bに作用する温度差ΔT1の絶対値よりも大きくなる。
このように、エンジン側高温状態では温度差ΔT1の絶対値が大きくなり、ボンネット側高温状態では温度差ΔT2の絶対値が大きくなるため、温度が変化するエンジン2やボンネット3の熱を利用した発電において、熱電変換部21,22に作用する温度分布に関して高温側と低温側とが逆転する温度変化が生じる場合であっても、発電に利用する温度差を大きく保つことができるので、その温度変化に起因する発電電力量のばらつきを抑制することができる。
また、本実施形態では、一方の支持部材25aと他方の支持部材25b、一方の支持部材26aと他方の支持部材26bを異なる材料で構成しているので、一方の支持部材25aでの熱容量および熱抵抗と他方の支持部材25bでの熱容量および熱抵抗、一方の支持部材26aでの熱容量および熱抵抗と他方の支持部材26bでの熱容量および熱抵抗をそれぞれ容易に異ならせることができる。
また、本実施形態では、第1の熱電変換部21と第2の熱電変換部22との間には断熱部材27が設けられている。このため、第1の熱電変換部21と第2の熱電変換部22とを密集して配置しても、一方の支持部材25aと一方の支持部材26aとの間や他方の支持部材25bと他方の支持部材26bとの間での熱交換が抑制される。これにより、第1の熱電変換部21と第2の熱電変換部22とを密集して配置でき、熱電発電装置20における省スペース化を図ることができる。
そして、本実施形態に係る熱電発電システム10では、上述のように構成される熱電発電装置20の発電により得られた電力が電力抽出部11により抽出されて2次電池12に蓄電される。そして、この2次電池12に蓄電される電力が電子装置13に供給される。
これにより、熱電変換部に作用する温度分布に関して高温側と低温側とが逆転する温度変化が生じる場所に熱電発電装置20が配置されている場合でも、2次電池12の蓄電量が高く維持されるので、2次電池12を電源として利用する電子装置13に対して確実に電力を安定供給することができる。
特に、本実施形態では、電子装置13は、2次電池12の近傍に配置されており、外部機器4と無線通信可能な無線通信部15を有している。このため、電子装置13に対して、電力線を削減し、電池交換等が不要な独立電源を有するシステムを構築することができる。
また、電子装置13は、排気温度を測定するセンシング部14を備え、このセンシング部14により計測された計測情報を無線通信部15により外部機器4に無線送信する。これにより、電子装置13は、上記ボンネット側高温状態のようにエンジン2が停止している状態であっても、計測した計測情報を外部機器4に無線送信することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る熱電発電装置および熱電発電システムについて、図9を用いて説明する。なお、図9は、第2実施形態に係る熱電発電装置20aの要部を示す拡大断面図である。
本第2実施形態では、厚みの違いを利用して両支持部材での熱容量および熱抵抗を異ならせる点が主に上記第1実施形態と異なる。このため、第1実施形態と実質的に同様の構成部分には同一符号を付して説明を省略する。
本実施形態に係る熱電発電装置20aは、一方の支持部材25aおよび他方の支持部材25bと一方の支持部材26aおよび他方の支持部材26bとの全ての支持部材を同一材料で構成し、その厚さを変えることで、両支持部材での熱容量および熱抵抗とを異ならせている。具体的には、図9に示すように、第1の熱電変換部21において、一方の支持部材25aの厚さを他方の支持部材25bの厚さよりも厚くすることにより、一方の支持部材25aでの熱容量および熱抵抗を他方の支持部材25bでの熱容量および熱抵抗よりも小さくしている。また、第2の熱電変換部22において、一方の支持部材26aの厚さを他方の支持部材26bの厚さよりも薄くすることにより、一方の支持部材26aでの熱容量および熱抵抗を他方の支持部材26bでの熱容量および熱抵抗よりも大きくしている。
このようにしても、一方の支持部材25aでの熱容量および熱抵抗と他方の支持部材25bでの熱容量および熱抵抗、一方の支持部材26aでの熱容量および熱抵抗と他方の支持部材26bでの熱容量および熱抵抗を容易に異ならせることができる。
[第3実施形態]
次に、本発明の第3実施形態に係る熱電発電装置および熱電発電システムについて、図10を用いて説明する。なお、図10は、第3実施形態に係る熱電発電システム10aの電気的構成を示すブロック図である。
本第3実施形態では、複数の2次電池を備える点が主に上記第1実施形態と異なる。このため、第1実施形態と実質的に同様の構成部分には同一符号を付して説明を省略する。
本発明に係る熱電発電システムは、複数の2次電池を備えることで、熱電発電装置20にて発電した電力を複数の電子装置に供給することができる。例えば、図10に示すように、本実施形態に係る熱電発電システム10aは、2つの2次電池12a,12bを備えている。そして、2次電池12aは、電子装置13aに電力を供給可能に構成され、2次電池12bは、電子装置13b,13cに電力を供給可能に構成されている。なお、電子装置13a〜13cは、それぞれ異なる物理量等をそのセンシング部14にて計測しその計測結果をその無線通信部15により外部機器4にそれぞれ無線送信するように構成されている。
特に、本実施形態では、電力抽出部11は、蓄電回路11bにて各2次電池12a,12bの蓄電量をそれぞれ測定し、各蓄電量が最大となるように2次電池12a,12bへ電力伝送する。具体的には、本実施形態では、電力抽出部11は、蓄電回路11bの測定結果から2次電池12aの充電量が2次電池12bの充電量よりも少ないと判断すると、充電量が少ない2次電池12aを充電対象として選択して、2次電池12aに対する充電を行う。なお、電力抽出部11は、例えば、蓄電回路11bの測定結果から、2次電池12aの充電量の減りが2次電池12bの充電量の減りよりも大きいと判断すると、充電量の減りが大きな2次電池12aを充電対象として選択して、2次電池12aに対する充電を行うこともできる。なお、電力抽出部11は、「蓄電量測定手段」および「選択手段」の一例に相当し得る。
このように、本実施形態に係る熱電発電システム10aでは、複数の2次電池12a,12bが設けられており、各2次電池12a,12bのうち電力抽出部11により抽出された電力を蓄電する2次電池が、蓄電回路11bの測定結果に応じて選択される。これにより、複数の2次電池12a,12bを備える場合でも各2次電池12a,12bの充電量不足をなくすことができ、2次電池12aを電源として利用する電子装置13aや2次電池12bを電源として利用する電子装置13b,13cに対して確実に電力を安定供給することができる。
図11は、第3実施形態の変形例に係る熱電発電システム10aの電気的構成を示すブロック図である。
電力抽出部11は、1つの熱電発電装置20から得られる電力を利用して複数の2次電池を充電することに限らず、複数の熱電発電装置20からそれぞれ得られる電力を利用して複数の2次電池を充電することもできる。例えば、第3実施形態の変形例として、図11に例示するように、3つの熱電発電装置20から得られる電力を利用して2つの2次電池12a,12bを充電することもできる。
なお、本実施形態および変形例の特徴的構成である複数の2次電池および複数の電子装置を備える構成は、他の実施形態にも適用することができる。
[第4実施形態]
次に、本発明の第4実施形態に係る熱電発電装置および熱電発電システムについて、図12および図13を用いて説明する。なお、図12は、第4実施形態に係る熱電発電システム10bの概略構成を示す断面図である。図13は、図12の熱電発電システム10bを側面から見た説明図である。
本第4実施形態では、ボンネット3と異なる他の変温体(熱交換対象)とエンジン2との間に生じる温度差を利用して発電する点が主に上記第1実施形態と異なる。このため、第1実施形態と実質的に同様の構成部分には同一符号を付して説明を省略する。
図12および図13に示すように、本実施形態に係る熱電発電システム10bでは熱電発電装置20bを採用しており、この熱電発電装置20bでは、ボンネット3と異なる他の変温体(熱交換対象)として、例えば、エンジン2からの排気ガスをエキゾーストパイプ5aおよびマフラー5bを介して車外へ送る装置としてエンジン周辺に位置するエキゾーストマニホールド6aや触媒装置6b等(以下、単にマフラー接続部6ともいう)が採用されている。マフラー接続部6は、エンジン2から流れ込む高温の排気ガスにより、エンジン2の駆動中であってもその表面温度がエンジン2の表面温度よりも高くなる。熱電発電装置20bは、図12に示すように、各熱電変換部21がマフラー接続部6とエンジン2との間に介在し、各熱電変換部22がマフラー接続部6により覆われずエンジン2だけでなくマフラー接続部6からの熱をも受けるように配置されている。すなわち、各第1の熱電変換部21は、第2の熱電変換部22よりもマフラー接続部6からの熱を受けやすい位置に配置される。
特に、第1の熱電変換部21は、一方の支持部材25aがマフラー接続部6に向かうように配置され、他方の支持部材25bがエンジン2に向かうように配置されている。また、第2の熱電変換部22は、他方の支持部材26bがエンジン2に向かうように配置され、一方の支持部材26aがマフラー接続部6に覆われないように配置されている。
このため、エンジン2が駆動している車両走行中では、一方の支持部材25a,26aが高温側、他方の支持部材25b,26bが低温側となり、マフラー接続部6からの熱をより受けやすい各第1の熱電変換部21から出力される電圧V1が高くなる。一方、エンジン2が停止すると、各第1の熱電変換部21では、マフラー接続部6とエンジン2とにより囲まれていることから熱がこもるために、両支持部材25a,25bでの温度差ΔT1の絶対値が小さくなる。また、各第2の熱電変換部22では、一方の支持部材26aがマフラー接続部6により覆われていないため、一方の支持部材26aに伝わった熱が放射されやすいので、温度差ΔT2の絶対値が温度差ΔT1の絶対値よりも大きくなる。この結果、各第2の熱電変換部22から出力される電圧V2が高くなる。
このように、熱電発電装置20bは、各熱電変換部21,22が、エンジン2とマフラー接続部6との間に配置されており、その発電量が出力電圧(V1,V2)に応じて高く維持されるため、エンジン2の駆動中だけでなく、エンジン2の停止中であっても、2次電池12を利用する電子装置13に対して確実に電力を安定供給することができる。
なお、本発明は上記各実施形態および変形例に限定されるものではなく、例えば、以下のように具体化してもよい。
(1)本発明に係る熱電発電装置は、各熱電変換部21,22が、エンジン2とボンネット3との間(第1実施形態参照)やエンジン2とマフラー接続部6との間(第4実施形態参照)に配置されることに限らず、駆動中に発熱して停止中にその発熱した温度が低下する変温体と熱交換対象との間に配置されても、上記停止中に熱交換対象の温度が変温体よりも高くなる構成であれば、上記効果を奏する。
(2)また、熱電発電装置は、各熱電変換部21,22が、駆動中に吸熱して低温になり停止中に温度が上昇する変温体(例えば、カーエアコンに使用するエバポレータ)と熱交換対象との間に配置されても、上記停止中に変温体の温度が熱交換対象よりも高くなる構成であれば、上記効果を奏する。
(3)電子装置13は、排気温度を測定する温度センサ装置として構成されることに限らず、例えば、排気ガスの圧力等の物理量やエンジン2への吸気に関する物理量等、エンジン2および他の車載機器の少なくとも1つに関する状態を測定する装置であって、エンジン2の停止中でも2次電池12からの電力を受けて作動する装置に適用することができる。また、電子装置13として、室内の照度を計測する照度センサや雨滴の有無を検知するレインセンサを採用することもできる。
(4)また、電子装置13が無線通信対象とする外部機器4は、エンジン2を制御する制御装置に限らず、例えば、車外の通信機器であってもよい。また、電子装置13から無線送信される情報は、センシング部14にて計測された計測情報に限らず、例えば、センシング部14等が正常に機能しているか否かを示す信号であってもよい。
2…エンジン(変温体) 3…ボンネット
10,10a,10b…熱電発電システム
11…電力抽出部
12,12a,12b…2次電池
13,13a〜13c…電子装置
20,20a,20b…熱電発電装置
21…第1の熱電変換部
22…第2の熱電変換部
24a…P型熱電素子 24b…N型熱電素子
25a,26a…一方の支持部材 25b,26b…他方の支持部材

Claims (8)

  1. 温度が変化する変温体(2)に対して配置される複数の熱電変換部により発電を行う熱電発電装置(20,20a,20b)であって、
    前記熱電変換部は、電気的に接続されるP型熱電素子(24a)およびN型熱電素子(24b)を一対の支持部材で挟み込んで支持することで形成され、
    前記複数の熱電変換部のうちの一部を構成する第1の熱電変換部(21)と残部を構成する第2の熱電変換部(22)とは、前記一対の支持部材のうちの一方の支持部材(25a,26a)が前記変温体に向かうようにそれぞれ配置され、
    前記第1の熱電変換部は、前記一方の支持部材の熱容量および熱抵抗が他方の支持部材(25b)の熱容量および熱抵抗よりも小さく形成され、
    前記第2の熱電変換部は、前記一方の支持部材の熱容量および熱抵抗が他方の支持部材(26b)の熱容量および熱抵抗よりも大きく形成されることを特徴とする熱電発電装置。
  2. 前記一方の支持部材と前記他方の支持部材とを異なる材料で構成することにより、前記一方の支持部材の熱容量および熱抵抗と前記他方の支持部材の熱容量および熱抵抗とを異ならせることを特徴とする請求項1に記載の熱電発電装置。
  3. 前記一方の支持部材と前記他方の支持部材とを厚さの異なる同一材料で構成することにより、前記一方の支持部材の熱容量および熱抵抗と前記他方の支持部材の熱容量および熱抵抗とを異ならせることを特徴とする請求項1に記載の熱電発電装置。
  4. 前記第1の熱電変換部と前記第2の熱電変換部との間に断熱部材(27)を設けることを特徴とする請求項1〜3のいずれか一項に記載の熱電発電装置。
  5. 請求項1〜4のいずれか一項に記載の熱電発電装置と、
    前記熱電発電装置の発電により得られた電力を抽出する電力抽出部(11)と、
    前記電力抽出部により抽出された電力が蓄電される2次電池(12,12a,12b)と、
    を備え、
    前記2次電池に蓄電される電力が電子装置(13,13a〜13c)に供給されることを特徴とする熱電発電システム。
  6. 前記変温体は、車両に搭載される車載機器であって、
    前記電子装置は、前記2次電池の近傍に配置されており、外部機器(4)と無線通信可能な無線通信手段(15)を有することを特徴とする請求項5に記載の熱電発電システム。
  7. 前記電子装置は、前記変温体および他の車載機器の少なくとも1つに関する状態を計測する計測手段(14)を備え、前記計測手段により計測された計測情報を前記無線通信手段により前記外部機器に送信することを特徴とする請求項6に記載の熱電発電システム。
  8. 前記2次電池を2つ以上備え、
    前記各2次電池のそれぞれの蓄電量を測定する蓄電量測定手段(11)と、
    前記各2次電池のうち前記電力抽出部により抽出された電力を蓄電する2次電池を、前記蓄電量測定手段による測定結果に応じて選択する選択手段(11)と、
    をさらに備えることを特徴とする請求項5〜7のいずれか一項に記載の熱電発電システム。
JP2014149549A 2014-07-23 2014-07-23 熱電発電装置および熱電発電システム Pending JP2016025786A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149549A JP2016025786A (ja) 2014-07-23 2014-07-23 熱電発電装置および熱電発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149549A JP2016025786A (ja) 2014-07-23 2014-07-23 熱電発電装置および熱電発電システム

Publications (1)

Publication Number Publication Date
JP2016025786A true JP2016025786A (ja) 2016-02-08

Family

ID=55272124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149549A Pending JP2016025786A (ja) 2014-07-23 2014-07-23 熱電発電装置および熱電発電システム

Country Status (1)

Country Link
JP (1) JP2016025786A (ja)

Similar Documents

Publication Publication Date Title
US10483515B2 (en) Power storage device, power storage system, electronic device, electric vehicle, and power system
CN103219927B (zh) 一种用于电气设备检测的无源供电电源
US9893539B2 (en) Power storage apparatus and control method for a power storage apparatus
CN102680125B (zh) 无线温度传感器
CN103017913A (zh) 以自采能供电为主的双电源传感器装置
CN104659893A (zh) 基于地热能-振动能的井下设备供电系统及其供电方法
CN105827154A (zh) 基于供暖设施的自供电传感系统
CN104717871A (zh) 终端散热系统及方法
CN200997576Y (zh) 利用汽车排气温度的温差发电装置
JP2016025786A (ja) 熱電発電装置および熱電発電システム
JP5301604B2 (ja) 車両用駆動電源装置
CN107171597B (zh) 一种热电压电装置控制系统
KR20110111051A (ko) 인체-환경간 온도차를 이용한 에너지 하베스팅 시스템
CN101065853B (zh) 热能传递电路系统
CN205622546U (zh) 基于供暖设施的自供电传感系统
CN200997575Y (zh) 利用汽车水箱的水温实现温差发电装置
KR20190106521A (ko) 열전소자를 이용한 전기자동차의 모터 냉각시스템
CN101313419A (zh) 多功能能量转换器
CN204271729U (zh) 一种二级转换的串联式汽车尾气温差发电装置
KR20120133452A (ko) 가정용 보일러의 연통에 설치되는 열전발전장치
CN208240813U (zh) 一种电池模组和动力电池系统
CN203759857U (zh) 利用环境余热供电的无线温度测量装置
CN111030273A (zh) 电器设备中功率器件的供电电源和电器设备
CN203261266U (zh) 现场仪表
CN103888061A (zh) 基于半导体测温和fm传输的远程监控型光伏接线盒