JP2016024049A - Measurement method and encoder device, as well as exposure method and device - Google Patents

Measurement method and encoder device, as well as exposure method and device Download PDF

Info

Publication number
JP2016024049A
JP2016024049A JP2014148330A JP2014148330A JP2016024049A JP 2016024049 A JP2016024049 A JP 2016024049A JP 2014148330 A JP2014148330 A JP 2014148330A JP 2014148330 A JP2014148330 A JP 2014148330A JP 2016024049 A JP2016024049 A JP 2016024049A
Authority
JP
Japan
Prior art keywords
light
optical member
diffracted
diffracted light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014148330A
Other languages
Japanese (ja)
Inventor
劉 志強
Zhiqiang Liu
志強 劉
勇輝 照井
Yuki Terui
勇輝 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014148330A priority Critical patent/JP2016024049A/en
Publication of JP2016024049A publication Critical patent/JP2016024049A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simplify an optical system of a device that measures an amount of relative movement using a diffraction grating.SOLUTION: An encoder 10 measuring an amount of relative movement of a second member 7 relatively movable in an X-direction relative a first member 6 comprises: a reflection type diffraction grating 12 that is provided in the first member 6, and has a grating pattern 12a with the X-direction as a periodical direction; a branching unit 32X that branches light from a laser light source 16 to measurement light MX and reference light RX1 and RX2 different in a polarization state from the measurement light MX; a PBS member 24X that is provided in the second member 7, and makes the measurement light MX incident upon the grating pattern 12a; and a diffraction light deflection member 25X that is provided in the second member 7, and makes diffraction light EX1 and EX2 from the grating pattern 12a by the measurement light MX incident upon the PBS member 24X. The reference light RX1 and RX2 to be incident upon the PBS member 24X and the diffraction light EX1 and EX2 to be incident upon the PBS member 24X from the diffraction light deflection member 25X are configured to be overlapped by the PBS member 24X.SELECTED DRAWING: Figure 1

Description

本発明は、相対移動する2つの部材間の相対移動量を計測する計測方法及びエンコーダ装置、この計測方法及びエンコーダ装置を用いる露光技術、並びにこの露光技術を用いるデバイス製造方法に関する。   The present invention relates to a measurement method and an encoder apparatus for measuring a relative movement amount between two members that move relative to each other, an exposure technique using the measurement method and the encoder apparatus, and a device manufacturing method using the exposure technique.

半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光対象の基板を移動するステージの位置計測はレーザ干渉計によって行われていた。ところが、レーザ干渉計では、計測用ビームの光路が長く、かつ変化するため、その光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。   In an exposure apparatus such as a so-called stepper or scanning stepper used in a photolithography process for producing an electronic device (microdevice) such as a semiconductor element, the position measurement of a stage that moves a substrate to be exposed has conventionally been a laser. It was done by an interferometer. However, in the laser interferometer, since the optical path of the measurement beam is long and changes, short-term fluctuations in measured values due to temperature fluctuations in the atmosphere on the optical path are becoming difficult to ignore.

そこで、例えばステージに固定された回折格子に、フレームに固定された検出部からレーザ光よりなる計測光を照射し、回折格子から発生する回折光と他の回折光又は参照光との干渉光を光電変換して得られる検出信号から、その回折格子が設けられた部材(ステージ等)の相対移動量を計測する、いわゆるエンコーダ装置(干渉型エンコーダ)も使用されつつある(例えば特許文献1参照)。このエンコーダ装置は、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能が得られるようになってきている。   Therefore, for example, the measurement light made of laser light is irradiated from the detection unit fixed to the frame to the diffraction grating fixed to the stage, and interference light between the diffracted light generated from the diffraction grating and other diffracted light or reference light is emitted. A so-called encoder device (interference encoder) that measures a relative movement amount of a member (stage or the like) provided with the diffraction grating from a detection signal obtained by photoelectric conversion is also being used (see, for example, Patent Document 1). . This encoder device is excellent in short-term stability of measurement values as compared with a laser interferometer, and has a resolution close to that of a laser interferometer.

米国特許第8,134,688号明細書US Pat. No. 8,134,688

従来のエンコーダ装置は、回折格子から発生する回折光と他の回折光又は参照光とを重ね合わせるための光学系の構成が複雑で、光学系の製造コストが高くなるとともに、光学系の調整に長い時間がかかっていた。
本発明の態様は、このような課題に鑑み、回折格子を用いて相対移動量を計測する装置の光学系を簡素化することを目的とする。
The conventional encoder device has a complicated optical system configuration for superimposing the diffracted light generated from the diffraction grating and other diffracted light or reference light, which increases the manufacturing cost of the optical system and allows adjustment of the optical system. It took a long time.
In view of such problems, an aspect of the present invention aims to simplify an optical system of an apparatus that measures a relative movement amount using a diffraction grating.

本発明の第1の態様によれば、第1方向に関して互いに相対移動可能な第1部材及び第2部材の相対移動量を計測するエンコーダ装置であって、その第1部材に設けられ、その第1方向を周期方向とする格子パターンを有する反射型の回折格子と、光源からの光を互いに偏光状態の異なる計測光と参照光とに分岐する分岐部と、その第2部材に設けられ、その計測光をその回折格子のその格子パターンに入射させる第1光学部材と、その第2部材に設けられ、その計測光によるその格子パターンからの回折光をその第1光学部材に入射させる第2光学部材と、を備え、その分岐部からその第1光学部材に入射するその参照光と、その第2光学部材からその第1光学部材に入射するその回折光とを、少なくとも一部重ね合わせた状態でその第1光学部材から射出するエンコーダ装置が提供される。   According to a first aspect of the present invention, there is provided an encoder device for measuring a relative movement amount of a first member and a second member that can move relative to each other with respect to a first direction, the encoder device being provided on the first member. A reflection type diffraction grating having a grating pattern with one direction as a periodic direction, a branching portion for branching light from a light source into measurement light and reference light having different polarization states, and a second member thereof. A first optical member that causes measurement light to be incident on the grating pattern of the diffraction grating, and a second optical member that is provided on the second member and that causes diffraction light from the grating pattern caused by the measurement light to be incident on the first optical member. The reference light that enters the first optical member from the branch portion and the diffracted light that enters the first optical member from the second optical member are at least partially overlapped with each other The first Encoder device for emitting undergraduate material is provided.

第2の態様によれば、第1方向に関して互いに相対移動可能な第1部材及び第2部材の相対移動量を計測するエンコーダ装置であって、その第1部材に設けられ、その第1方向を周期方向とする格子パターンを有する反射型の回折格子と、光源からの光を計測光と該計測光とは偏光状態が異なる第1及び第2参照光とに分岐する分岐部と、その第2部材に設けられ、その計測光をその回折格子のその格子パターンに入射させる第1光学部材と、その第2部材に設けられ、その計測光によるその格子パターンからの回折光のうち所定次数の第1回折光を偏向する第1偏向部と、その計測光によるその格子パターンからの回折光のうちその第1回折光とは次数の異なる第2回折光を偏向する第2偏向部と備える第2光学部材と、を備え、その第1回折光は、その第1偏向部を介してその格子パターンに再入射してその格子パターンで回折されてその第1偏向部に再入射し、その第2回折光は、その第2偏向部を介してその格子パターンに再入射してその格子パターンで回折されてその第2偏向部に再入射し、その分岐部からのその第1及び第2参照光はその第1光学部材に入射し、その第1偏向部に再入射したその第1回折光は、その第1光学部材でその第1参照光と重ね合わせられ、その第2偏向部に再入射したその第2回折光は、その第1光学部材でその第2参照光と重ね合わせられるエンコーダ装置が提供される。   According to the second aspect, the encoder device measures the relative movement amount of the first member and the second member that can move relative to each other with respect to the first direction, the encoder device being provided on the first member, A reflection type diffraction grating having a grating pattern with a periodic direction; a branching portion for splitting light from a light source into measurement light and first and second reference lights having different polarization states; A first optical member that is provided on the member and causes the measurement light to enter the grating pattern of the diffraction grating; and a second optical member that is provided on the second member and has a predetermined order of the diffracted light from the grating pattern by the measurement light. A second deflector provided with a first deflector for deflecting one diffracted light and a second deflector for deflecting second diffracted light having a different order from the first diffracted light among the diffracted light from the grating pattern by the measurement light. An optical member, the first of which The folded light re-enters the grating pattern through the first deflecting unit, is diffracted by the grating pattern, and re-enters the first deflecting unit, and the second diffracted light passes through the second deflecting unit. Re-enters the grating pattern, is diffracted by the grating pattern, re-enters the second deflecting unit, and the first and second reference beams from the branching unit enter the first optical member, and The first diffracted light re-entering the first deflecting portion is superposed on the first reference light by the first optical member, and the second diffracted light re-entering the second deflecting portion is the first diffracted light. An encoder device is provided that is superposed on the second reference light by an optical member.

第3の態様によれば、パターンを被露光体に露光する露光装置であって、フレームと、その被露光体を支持するとともにそのフレームに対して少なくとも第1方向に相対移動可能なステージと、少なくともその第1方向へのそのフレームとそのステージとの相対移動量を計測するための本発明の態様のエンコーダ装置と、を備える露光装置が提供される。
第4の態様によれば、第1方向に関して互いに相対移動可能な第1部材及び第2部材との相対移動量を計測する方法であって、計測光と該計測光とは偏光状態の異なる参照光とを射出することと、その第2部材に設けられた光学部材を介して、その第1部材に設けられた反射型の回折格子の格子パターンに、その計測光を入射させることと、その計測光によってその格子パターンから回折光を発生させることと、その格子パターンから発生するその回折光をその光学部材に入射させることと、その参照光をその光学部材に入射させることと、その参照光とその回折光とを少なくとも一部重ね合わせた状態でその光学部材から射出することと、を含む計測方法が提供される。
According to the third aspect, there is provided an exposure apparatus that exposes a pattern onto an object to be exposed, the frame, a stage that supports the object to be exposed and is relatively movable in at least a first direction with respect to the frame, An exposure apparatus is provided that includes at least an encoder apparatus according to an aspect of the present invention for measuring a relative movement amount between the frame and the stage in the first direction.
According to a fourth aspect, there is provided a method for measuring a relative movement amount between a first member and a second member that can move relative to each other with respect to a first direction, wherein the measurement light and the measurement light have different polarization states. Injecting the measurement light into the grating pattern of the reflective diffraction grating provided in the first member via the optical member provided in the second member, and Diffracted light is generated from the grating pattern by measurement light, the diffracted light generated from the grating pattern is incident on the optical member, the reference light is incident on the optical member, and the reference light And the diffracted light are emitted from the optical member in a state of being at least partially overlapped.

第5の態様によれば、フレームに対して少なくとも第1方向に相対移動可能なステージに支持された被露光体にパターンを露光する露光方法であって、少なくともその第1方向へのそのフレームとそのステージとの相対移動量を計測するために本発明の態様の計測方法を用いる露光方法が提供される。
第6の態様によれば、リソグラフィ工程を含み、そのリソグラフィ工程で本発明の態様の露光装置又は本発明の態様の露光方法を用いて物体を露光するデバイス製造方法が提供される。
According to a fifth aspect, there is provided an exposure method for exposing a pattern to an object to be exposed supported on a stage that is relatively movable in at least a first direction with respect to a frame, and at least the frame in the first direction; An exposure method using the measurement method of the aspect of the present invention to measure the relative movement amount with respect to the stage is provided.
According to a sixth aspect, there is provided a device manufacturing method including a lithography process, and exposing an object using the exposure apparatus according to the aspect of the present invention or the exposure method according to the aspect of the present invention in the lithography process.

本発明の態様によれば、計測光を回折格子の格子パターンに入射させる第1光学部材において、参照光と回折光とを重ね合わせるため、光学系が簡素化できる。   According to the aspect of the present invention, since the reference light and the diffracted light are superimposed on the first optical member that makes the measurement light incident on the grating pattern of the diffraction grating, the optical system can be simplified.

第1の実施形態に係るエンコーダを示す平面図である。It is a top view which shows the encoder which concerns on 1st Embodiment. (A)は図1中のX軸の干渉計部の要部を示す斜視図、(B)は図2(A)中の計測光及び回折光の照射位置を示す平面図、(C)は計測光及び参照光の開き角の説明図である。(A) is a perspective view showing the main part of the X-axis interferometer section in FIG. 1, (B) is a plan view showing the irradiation position of the measurement light and diffracted light in FIG. 2 (A), (C) is It is explanatory drawing of the opening angle of measurement light and reference light. (A)は図2(A)のX軸の干渉計部におけるX方向の±1次回折光の光路を示す図、(B)はY軸の干渉計部における±1次回折光の光路を示す図である。FIG. 2A is a diagram showing the optical path of ± first-order diffracted light in the X direction in the X-axis interferometer section of FIG. 2A, and FIG. 2B is a diagram showing optical paths of ± first-order diffracted light in the Y-axis interferometer section. It is. (A)は図2(A)のX軸の干渉計部において格子パターン面の相対的な高さが変化したときの回折光の光路の変化を示す図、(B)は格子パターン面が相対的に傾斜したときの回折光の光路の変化を示す図である。(A) is a figure which shows the change of the optical path of a diffracted light when the relative height of a grating | lattice pattern surface changes in the interferometer part of the X-axis of FIG. 2 (A), (B) is a relative grating | lattice pattern surface. It is a figure which shows the change of the optical path of the diffracted light when it inclines periodically. (A)は変形例に係るX軸の干渉計部の要部を示す図、(B)は図5(A)中のルーフミラーを示す斜視図である。(A) is a figure which shows the principal part of the interferometer part of the X-axis which concerns on a modification, (B) is a perspective view which shows the roof mirror in FIG. 5 (A). (A)は変形例に係るX軸の干渉計部の要部を示す図、(B)は図6(A)中の計測光及び回折光の照射位置を示す平面図である。(A) is a figure which shows the principal part of the interferometer part of the X-axis which concerns on a modification, (B) is a top view which shows the irradiation position of the measurement light and diffracted light in FIG. 6 (A). (A)は変形例に係るX軸の干渉計部を示す上面図、(B)はその側面図である。(A) is a top view showing an X-axis interferometer section according to a modification, and (B) is a side view thereof. 第2の実施形態に係る露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus which concerns on 2nd Embodiment. 図8のウエハステージに設けられた回折格子及び複数の検出ヘッドの配置の一例を示す平面図である。FIG. 9 is a plan view showing an example of the arrangement of diffraction gratings and a plurality of detection heads provided on the wafer stage of FIG. 8. 図8の露光装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the exposure apparatus of FIG. 計測方法の一例を示すフローチャートである。It is a flowchart which shows an example of the measuring method. 電子デバイスの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of an electronic device.

[第1の実施形態]
本発明の第1の実施形態につき図1〜図4(B)を参照して説明する。図1は本実施形態に係るエンコーダ10を示す平面図である。図1において、一例として、第1部材6に対して第2部材7は3次元的に相対移動可能に配置され、第2部材7の互いに直交する相対移動可能な2つの方向に平行にX軸及びY軸を取り、X軸及びY軸によって規定される平面(XY面)に直交する相対移動方向に沿ってZ軸を取って説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの角度をそれぞれθx、θy、及びθz方向の角度とも呼ぶこととする。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view showing an encoder 10 according to the present embodiment. In FIG. 1, as an example, the second member 7 is arranged so as to be relatively movable in three dimensions with respect to the first member 6, and the X axis is parallel to two directions of the second member 7 that are relatively movable relative to each other. The Z axis is taken along the relative movement direction perpendicular to the plane (XY plane) defined by the X axis and the Y axis. In addition, the angles around axes parallel to the X axis, the Y axis, and the Z axis are also referred to as angles in the θx, θy, and θz directions, respectively.

図1において、エンコーダ10は、第1部材6の上面に固定された、XY面にほぼ平行な平板状の2次元の回折格子12と、第2部材7に固定された検出ヘッド14と、検出ヘッド14に計測用のレーザ光を供給するレーザ光源16及び光ファイバ17と、検出ヘッド14で生成される複数の干渉光を伝送する光ファイバ39XA,39XB,39YA,39YB,39Cと、これら光ファイバ39XA〜39Cを介して供給される複数の干渉光を受光して検出信号を出力するフォトダイオード等の光電センサ40XA,40XB,40YA,40YB,40Cと、それらの検出信号を処理して第1部材6に対する第2部材7のX方向、Y方向、及びZ方向の3次元の相対移動量を求める計測演算部42(42X,42Y,42T)と、を有する。検出ヘッド14は、回折格子12に計測光を照射し、回折格子12からX方向に発生する複数の回折光と参照光との複数の干渉光を生成するX軸の干渉計部15Xと、回折格子12に計測光を照射し、回折格子12からY方向に発生する複数の回折光と参照光との複数の干渉光を生成するY軸の干渉計部15Yと、干渉計部15X及び15Yにそれぞれ計測光及び参照光を供給する分岐部32X及び32Yと、その他の光学部材と、複数の光学部材を支持するために第2部材7に固定される支持部材35と、を有する。   In FIG. 1, an encoder 10 includes a flat plate-like two-dimensional diffraction grating 12 fixed to the upper surface of a first member 6 and substantially parallel to the XY plane, a detection head 14 fixed to the second member 7, and a detection. A laser light source 16 and an optical fiber 17 for supplying measurement laser light to the head 14, optical fibers 39XA, 39XB, 39YA, 39YB, 39C for transmitting a plurality of interference lights generated by the detection head 14, and these optical fibers Photoelectric sensors 40XA, 40XB, 40YA, 40YB, 40C, such as photodiodes, which receive a plurality of interference lights supplied via 39XA to 39C and output detection signals, and process the detection signals to form a first member A measurement calculation unit 42 (42X, 42Y, 42T) for obtaining a three-dimensional relative movement amount of the second member 7 with respect to the X direction, the Y direction, and the Z direction. That. The detection head 14 irradiates the diffraction grating 12 with measurement light, generates an X-axis interferometer unit 15X that generates a plurality of interference lights of a plurality of diffraction lights generated in the X direction from the diffraction grating 12 and a reference light, and a diffraction The Y-axis interferometer unit 15Y that irradiates the grating 12 with measurement light and generates a plurality of interference lights of the plurality of diffracted lights generated in the Y direction from the diffraction grating 12 and the reference light, and the interferometer units 15X and 15Y. Branch portions 32X and 32Y for supplying measurement light and reference light, other optical members, and a support member 35 fixed to the second member 7 to support the plurality of optical members, respectively.

回折格子12のXY面にほぼ平行な格子パターン面12bには、X方向及びY方向に所定の周期(ピッチ)pを持ち、位相型でかつ反射型の2次元の格子パターン12aが形成されている。格子パターン12aのX方向、Y方向の周期pは、一例として100nm〜4μm程度(例えば1μm周期)である。なお、格子パターン12aのX方向、Y方向の周期が互いに異なっていてもよい。格子パターン12aは、例えばホログラム(例えば感光性樹脂に干渉縞を焼き付けたもの)として、又はガラス板等に機械的に溝等を形成して反射膜を被着することで作製可能である。さらに、格子パターン面12bは、保護用の平板ガラスで覆われていてもよい。   On the grating pattern surface 12b substantially parallel to the XY plane of the diffraction grating 12, a two-dimensional grating pattern 12a having a predetermined period (pitch) p in the X and Y directions and having a phase type and a reflection type is formed. Yes. The period p in the X direction and the Y direction of the lattice pattern 12a is, for example, about 100 nm to 4 μm (for example, 1 μm period). Note that the periods of the lattice pattern 12a in the X direction and the Y direction may be different from each other. The grating pattern 12a can be manufactured, for example, as a hologram (for example, a photosensitive resin baked with interference fringes) or by mechanically forming a groove or the like on a glass plate or the like and depositing a reflective film. Furthermore, the lattice pattern surface 12b may be covered with a protective flat glass.

レーザ光源16は、例えばHe−Neレーザ又は半導体レーザ等よりなり、一例として偏光方向が互いに直交するとともに互いに周波数が所定量だけ異なる第1及び第2の直線偏光のレーザ光ML,RLよりなる2周波ヘテロダイン光を射出する。それらのレーザ光は互いに可干渉性を有し(偏光方向を平行にした場合)、それらの平均波長をλとする。レーザ光源16は、それらのレーザ光から分岐した2つの光束の干渉光を光電変換して得られる基準周波数の信号(基準信号)を計測演算部42に供給する。なお、ホモダイン干渉方式も使用可能である。   The laser light source 16 is made of, for example, a He—Ne laser, a semiconductor laser, or the like. Emits frequency heterodyne light. These laser beams are coherent with each other (when the polarization directions are parallel), and their average wavelength is λ. The laser light source 16 supplies a signal of a reference frequency (reference signal) obtained by photoelectric conversion of interference light of two light beams branched from the laser light to the measurement calculation unit 42. A homodyne interference method can also be used.

光ファイバ17は、レーザ光源16から射出されたレーザ光ML,RLをそれぞれ偏光方向を維持しながら伝送するダブルコア型で偏波面保持型の光ファイバである。本実施形態では、光ファイバ17から射出されるときに、第1のレーザ光MLはXY平面に平行なX方向に偏光した直線偏光であり、第2のレーザ光RLはZ方向に偏光した直線偏光である。他の光ファイバ39XA〜39YB,39Cはシングルコア型であるが、偏波面保持型又は通常のいずれのタイプでもよい。また、光ファイバ39XA〜39YB,39Cの入射口に集光レンズを設けてもよい。なお、光ファイバ17,39XA〜39YB等は、図1では中間部が図示省略されている。また、光ファイバ17の代わりに複数のミラーを組み合わせたビーム送光光学系を使用してもよく、光ファイバ39XA〜39YB,39Cを使用することなく、干渉光を直接に光電センサ40XA〜40YB,40Cで受光してもよい。   The optical fiber 17 is a double core type polarization maintaining optical fiber that transmits the laser beams ML and RL emitted from the laser light source 16 while maintaining the polarization direction. In the present embodiment, when emitted from the optical fiber 17, the first laser light ML is linearly polarized light polarized in the X direction parallel to the XY plane, and the second laser light RL is linearly polarized in the Z direction. Polarized light. The other optical fibers 39XA to 39YB and 39C are single-core types, but may be any polarization-maintaining type or normal type. Moreover, you may provide a condensing lens in the entrance of optical fiber 39XA-39YB, 39C. Note that the intermediate portions of the optical fibers 17, 39XA to 39YB, etc. are omitted in FIG. Further, instead of the optical fiber 17, a beam transmission optical system in which a plurality of mirrors are combined may be used. Without using the optical fibers 39XA to 39YB and 39C, the interference light is directly detected by the photoelectric sensors 40XA to 40YB, Light may be received at 40C.

検出ヘッド14は、光ファイバ17から射出されるレーザ光ML,RLを平行光束にするレンズ18と、レンズ18から射出されるレーザ光ML,RLをX軸用の計測光MX及び参照光RXと、Y軸用の計測光MY及び参照光RYとに分割するビームスプリッター面A1を有するハーフプリズム部20Aと、分岐部20Bと、干渉部20Cとを有する。ハーフプリズム部20AからX軸に平行に射出されるY軸用の計測光MY及び参照光RYは、Y軸の分岐部32Yに入射する。   The detection head 14 includes a lens 18 that converts the laser beams ML and RL emitted from the optical fiber 17 into parallel light beams, and the laser beams ML and RL emitted from the lens 18 as X-axis measurement light MX and reference light RX. , A half prism portion 20A having a beam splitter surface A1 that is divided into measurement light MY for Y-axis and reference light RY, a branching portion 20B, and an interference portion 20C. The Y-axis measurement light MY and the reference light RY emitted from the half prism portion 20A in parallel to the X-axis are incident on the Y-axis branch portion 32Y.

ハーフプリズム部20AからY軸に平行に射出されるX軸用の計測光MX及び参照光RXは、分岐部材20Bのビームスプリッター面A2においてY軸に平行な第1光束とX軸に平行な第2光束とに分岐され、第1光束はX軸の分岐部32Xに入射する。本実施形態において、ハーフプリズム部20Aから射出されるX軸の計測光MX及び参照光RXはそれぞれX方向及びZ方向に直線偏光したヘテロダインビームであり、ハーフプリズム20Aから射出されるY軸の計測光MY及び参照光RYはそれぞれY方向及びZ方向に直線偏光したヘテロダインビームである。計測光MX,MY及び参照光RX,RYは例えば直径が0.5〜数mm程度の円形(楕円又は矩形等でもよい)の断面を有する。   The X-axis measurement light MX and the reference light RX emitted from the half prism portion 20A parallel to the Y-axis are the first light beam parallel to the Y-axis and the first light beam parallel to the X-axis on the beam splitter surface A2 of the branching member 20B. The first light beam is incident on the X-axis branch portion 32X. In the present embodiment, the X-axis measurement light MX and the reference light RX emitted from the half prism unit 20A are heterodyne beams linearly polarized in the X direction and the Z direction, respectively, and the Y axis measurement emitted from the half prism 20A. The light MY and the reference light RY are heterodyne beams linearly polarized in the Y direction and the Z direction, respectively. The measurement beams MX and MY and the reference beams RX and RY have a circular (e.g., oval or rectangular) cross section with a diameter of about 0.5 to several mm, for example.

図2(C)に示すように、レーザ光ML,RLは光ファイバ17の隣接するコア部から射出されてレンズ18によって平行光束に変換されるため、平行光束に変換された後のレーザ光ML,RLは所定の小さい角度βで交差している。このため、ハーフプリズム部20Aから射出される計測光MX及び参照光RX、並びに計測光MY及び参照光RYはそれぞれ角度βで相対的に傾斜している。このように計測光MX及び参照光RX(計測光MY及び参照光RY)を相対的に傾斜させることによって、最終的に検出される干渉光に混入するノイズ光を低減させることができる。   As shown in FIG. 2C, since the laser beams ML and RL are emitted from the adjacent core portion of the optical fiber 17 and converted into a parallel beam by the lens 18, the laser beam ML after being converted into a parallel beam. , RL intersect at a predetermined small angle β. For this reason, the measurement light MX and the reference light RX emitted from the half prism portion 20A, and the measurement light MY and the reference light RY are relatively inclined at an angle β. As described above, by relatively tilting the measurement light MX and the reference light RX (measurement light MY and reference light RY), it is possible to reduce noise light mixed in interference light that is finally detected.

図1において、支持部材35の−X方向の端面に対向するように干渉部20Cが配置され、支持部材35の+X方向の端面の干渉部20Cに対向する位置に偏光板41Cが固定され、偏光板41CをY方向に挟むように偏光板41XA,41XB及び41YA,41YBが固定され、偏光板41XA,41XB,41YA,41YB,41Cにそれぞれ光ファイバ39XA,39XB,39YA,39YB,39Cの入射端が固定されている。   In FIG. 1, the interference part 20C is disposed so as to face the end face in the −X direction of the support member 35, and a polarizing plate 41C is fixed at a position facing the interference part 20C on the end face in the + X direction of the support member 35. The polarizing plates 41XA, 41XB and 41YA, 41YB are fixed so as to sandwich the plate 41C in the Y direction, and the incident ends of the optical fibers 39XA, 39XB, 39YA, 39YB, 39C are respectively attached to the polarizing plates 41XA, 41XB, 41YA, 41YB, 41C. It is fixed.

偏光板41XA〜41YB,41Cの結晶軸の方向は、後述のY方向に直線偏光した計測対象の回折光とZ方向に直線偏光した参照光とを合成して干渉光を生成するように斜め方向に設定されている。支持部材35中の偏光板41XA〜41YB,41Cの前面にはそれぞれ検出対象の光束を通すための開口が形成されている。
また、分岐部20Bにおいて、ビームスプリッター面A2から射出された第2光束のうち、Y方向に偏光した計測光MXCは、偏光ビームスプリッター面(以下、PBS面という)A3を透過し、反射面で反射されて干渉部20Cに入射する。また、その第2光束のうち、Z方向に偏光した参照光RXCは、PBS面A3で反射され、1対の楔形プリズム36Eを介して干渉部20Cに入射する。干渉部20Cにおいて、+X方向に反射された計測光MXCは、PBS面A4で参照光RXCと重ね合わされて、すなわち同軸に合成(合波)されて、+X方向に射出される。同軸に合成された計測光MXC及び参照光RXCは偏光板41Cを介して参照用の干渉光となり、光ファイバ39Cを介して光電センサ40Cで受光される。
The directions of the crystal axes of the polarizing plates 41XA to 41YB and 41C are oblique so as to generate interference light by combining diffracted light to be measured linearly polarized in the Y direction, which will be described later, and reference light linearly polarized in the Z direction. Is set to Openings are formed in front of the polarizing plates 41XA to 41YB and 41C in the support member 35 so as to pass the light fluxes to be detected.
Further, in the branching unit 20B, the measurement light MXC polarized in the Y direction out of the second light flux emitted from the beam splitter surface A2 is transmitted through the polarization beam splitter surface (hereinafter referred to as PBS surface) A3 and reflected by the reflecting surface. It is reflected and enters the interference part 20C. Of the second light flux, the reference light RXC polarized in the Z direction is reflected by the PBS surface A3 and enters the interference unit 20C via the pair of wedge-shaped prisms 36E. In the interference unit 20C, the measurement light MXC reflected in the + X direction is superimposed on the reference light RXC on the PBS surface A4, that is, coaxially synthesized (combined) and emitted in the + X direction. The measurement light MXC and the reference light RXC synthesized coaxially become reference interference light through the polarizing plate 41C, and are received by the photoelectric sensor 40C through the optical fiber 39C.

さらに、1対の楔形プリズム36Eは、入射する参照光RXCの進行方向を、計測光MX,MYと参照光RX,RYとの間の角度β(図2(C)参照)を相殺するように変化させて、参照光と計測対象の計測光(又は回折光)とを平行にする。これは後述の他の楔形プリズム36A等でも同様である。
また、X軸の分岐部32Xに入射した光束は−X方向に反射され、この反射された光束のうち、Y方向に偏光した計測光MXは、PBS面A5(分離面)を透過した後、反射されてY軸に平行に−Y方向に干渉計部15Xに入射する。一方、その反射された光束のうち、Z方向に偏光した参照光RXは、PBS面A5で反射された後、−X方向に反射されてビームスプリッター面A6に入射する。ビームスプリッター面A6で−Y方向に反射された第1の参照光RX1、及びビームスプリッター面A6を透過した後、−Y方向に反射された第2の参照光RX2は、それぞれ1対の楔形プリズム36A及び36Bを介して計測光MXを中央に挟む状態で平行に干渉計部15Xに入射する。
Furthermore, the pair of wedge-shaped prisms 36E cancels the traveling direction of the incident reference light RXC by an angle β (see FIG. 2C) between the measurement light MX, MY and the reference light RX, RY. By changing, the reference light and the measurement light (or diffracted light) to be measured are made parallel. The same applies to other wedge-shaped prisms 36A described later.
In addition, the light beam incident on the X-axis branch portion 32X is reflected in the −X direction, and among the reflected light beam, the measurement light MX polarized in the Y direction passes through the PBS surface A5 (separation surface). The light is reflected and enters the interferometer unit 15X in the −Y direction parallel to the Y axis. On the other hand, of the reflected light flux, the reference light RX polarized in the Z direction is reflected by the PBS surface A5, then reflected in the -X direction, and enters the beam splitter surface A6. The first reference light RX1 reflected in the −Y direction by the beam splitter surface A6 and the second reference light RX2 reflected in the −Y direction after passing through the beam splitter surface A6 are each a pair of wedge prisms. The measurement light MX is incident on the interferometer unit 15X in parallel with the measurement light MX sandwiched in the center via 36A and 36B.

また、Y軸の分岐部32Yは、X軸の分岐部32Xを90度回転した構成であり、Y軸の分岐部32Yに入射した光束から分岐されてY方向に偏光した計測光MYは、+X方向に向けて干渉計部15Yに入射する。そして、分岐部32Yに入射した光束から分岐されてそれぞれZ方向に偏光した第1参照光RY1及び第2参照光RY2は、それぞれ1対の楔形プリズム36AC及び36Dを介して計測光MYを中央に挟む状態で平行に+X方向に干渉計部15Yに入射する。   The Y-axis branch portion 32Y is configured by rotating the X-axis branch portion 32X by 90 degrees, and the measurement light MY branched from the light beam incident on the Y-axis branch portion 32Y and polarized in the Y direction is + X The light enters the interferometer unit 15Y in the direction. Then, the first reference light RY1 and the second reference light RY2 branched from the light beam incident on the branching portion 32Y and polarized in the Z direction respectively center the measurement light MY via the pair of wedge-shaped prisms 36AC and 36D. In the sandwiched state, the light enters the interferometer unit 15Y in the + X direction in parallel.

また、X軸の干渉計部15Xは、分岐部32Xから−Y方向に射出される計測光MX及び参照光RX1,RX2が入射する偏光ビームスプリッター面(以下、PBS面という)A11(図2(A)参照)を有する4角柱型のプリズム状の偏光ビームスプリッター部材(以下、PBS部材という)24Xと、PBS部材24XをX方向に挟むように対称に固定された1対のルーフプリズム26XA,26XBと、PBS部材24Xの上方に配置され、ルーフプリズム26XAに固定された1対のそれぞれ直交する2つの反射面を有する直角プリズム状の部材30XA,30XBよりなる反射部材30Xと、を有する。さらに、干渉計部15Xは、ルーフプリズム26XA,26XBの底面の−Y方向の半面を覆うように固定された平行平板状の付加部材28XA,28XB(図2(A)参照)と、PBS部材24Xと回折格子12との間に配置された平行平板状の位相板よりなる調整部材29X(図3(A)参照)とを有する。   Further, the X-axis interferometer unit 15X has a polarization beam splitter surface (hereinafter referred to as a PBS surface) A11 (FIG. 2 (FIG. 2)) on which the measurement light MX and the reference beams RX1 and RX2 emitted from the branching unit 32X in the −Y direction are incident. A) and a pair of roof prisms 26XA and 26XB which are fixed symmetrically so as to sandwich the PBS member 24X in the X direction. And a reflecting member 30X made of right-angle prism-like members 30XA and 30XB each having a pair of two reflecting surfaces orthogonal to each other and disposed above the PBS member 24X and fixed to the roof prism 26XA. Furthermore, the interferometer unit 15X includes parallel plate-shaped additional members 28XA and 28XB (see FIG. 2A) fixed so as to cover the −Y-direction half surfaces of the bottom surfaces of the roof prisms 26XA and 26XB, and a PBS member 24X. And an adjustment member 29 </ b> X (see FIG. 3A) made of a parallel plate phase plate disposed between the diffraction grating 12 and the diffraction grating 12.

ルーフプリズム26XA,26XB、反射部材30X、及び付加部材28XA,28XBから、回折格子12で発生する回折光の方向を変換する回折光偏向部材25Xが構成され、ルーフプリズム26XA、反射部材30X、及び付加部材28XAから、+X方向に発生する回折光の方向を変換する第1の偏向部材が構成され、ルーフプリズム26XB、反射部材30X、及び付加部材28XBから、−X方向に発生する回折光の方向を変換する第2の偏向部材が構成されている。ルーフプリズム26XA,26XB及び反射部材30Xの上面は同一平面上にあり、その上面が第2部材7の底面(回折格子12に対向する面)に固定されている(図3(A)参照)。   The roof prisms 26XA, 26XB, the reflecting member 30X, and the additional members 28XA, 28XB constitute the diffracted light deflecting member 25X that converts the direction of the diffracted light generated by the diffraction grating 12, and the roof prism 26XA, the reflecting member 30X, and the additional member A first deflecting member that converts the direction of the diffracted light generated in the + X direction is configured from the member 28XA, and the direction of the diffracted light generated in the −X direction from the roof prism 26XB, the reflecting member 30X, and the additional member 28XB is configured. A second deflecting member to be converted is configured. The upper surfaces of the roof prisms 26XA and 26XB and the reflecting member 30X are on the same plane, and the upper surfaces are fixed to the bottom surface (the surface facing the diffraction grating 12) of the second member 7 (see FIG. 3A).

図2(A)は、図1中の干渉計部15XのPBS部材24X及び回折光偏向部材25Xを示す。図2(A)において、PBS部材24Xは、反射部材30Xのうち−Y方向側の大型の部材30XAの底面側に配置され、PBS面A11は、XY面に対してX軸の回りに45°で傾斜している。PBS部材24Xは、XY面に平行な2面と、YZ面に平行な2面と、ZX面に平行な2面との6面で囲まれた直方体状であるが、別の形状にしてもよい。例えば、PBS部材24Xは、XY面に対してX軸の回りに45°で傾斜したPBS面A11と、XY面に平行な1面と、YZ面に平行な2面と、ZX面に平行な1面との5面で囲まれた三角柱状であってもよい。このとき、XY面に平行な面が+Z方向側に向けられていてもよく、−Z方向側に向けられていてもよい。回折光偏向部材25Xのルーフプリズム26XAは、PBS部材24Xの底面に対して反時計回りに角度α1(図3(A)参照)で傾斜した入射面A12と、XZ面に平行な稜線A19に関して対称に、かつ直交するように形成された1対の反射面A13,A14と、PBS部材24X及び部材30XA,30XBに密着した射出面A15とを有する。ルーフプリズム26XAの稜線A19は、ZY面に対して反時計回りに角度α2で傾斜している(図3(A)参照)。他方のルーフプリズム26XBはルーフプリズム26XAと対称な形状であり、ルーフプリズム26XBも直交する2つの反射面A23,A24及び稜線A29を有する。   FIG. 2A shows the PBS member 24X and the diffracted light deflection member 25X of the interferometer unit 15X in FIG. 2A, the PBS member 24X is disposed on the bottom surface side of the large member 30XA on the −Y direction side of the reflecting member 30X, and the PBS surface A11 is 45 ° around the X axis with respect to the XY surface. It is inclined at. The PBS member 24X has a rectangular parallelepiped shape surrounded by six planes, two planes parallel to the XY plane, two planes parallel to the YZ plane, and two planes parallel to the ZX plane. Good. For example, the PBS member 24X includes a PBS surface A11 inclined at 45 ° around the X axis with respect to the XY plane, one plane parallel to the XY plane, two planes parallel to the YZ plane, and parallel to the ZX plane. It may have a triangular prism shape surrounded by five surfaces. At this time, a plane parallel to the XY plane may be directed to the + Z direction side, or may be directed to the −Z direction side. The roof prism 26XA of the diffracted light deflection member 25X is symmetric with respect to an incident surface A12 inclined at an angle α1 (see FIG. 3A) counterclockwise with respect to the bottom surface of the PBS member 24X, and a ridge line A19 parallel to the XZ plane. And a pair of reflecting surfaces A13, A14 formed to be orthogonal to each other, and an exit surface A15 in close contact with the PBS member 24X and the members 30XA, 30XB. The ridge line A19 of the roof prism 26XA is inclined at an angle α2 counterclockwise with respect to the ZY plane (see FIG. 3A). The other roof prism 26XB has a symmetrical shape with the roof prism 26XA, and the roof prism 26XB also has two reflecting surfaces A23, A24 and a ridge line A29 that are orthogonal to each other.

図1の分岐部32Xから射出された計測光MXは、PBS面A11に対するS偏光として−Y方向に向けてPBS面A11に入射してPBS面A11でほぼ−Z方向に反射されて、回折格子12Xの格子パターン面12b(格子パターン12a)に垂直に(Z軸に平行に)入射する。一方、分岐部32Xから射出された参照光RX1,RX2はPBS面A11に対するP偏光としてほぼ−Y方向に向けてPBS面A11に入射してPBS面A11を透過する。ここで、計測光MXが垂直に入射する場合には、計測光MXを格子パターン面12bに垂直に入射させる場合の外に、0次光(正反射光)の影響を軽減するために、計測光MXをZ軸に平行な軸に対してX方向(θy方向)及び/又はY方向(θx方向)に例えば0.5〜1.5°程度傾斜させて格子パターン面12bに概ね垂直に入射させる場合も含まれる。   1 is incident on the PBS surface A11 in the -Y direction as S-polarized light with respect to the PBS surface A11, and is reflected in the -Z direction by the PBS surface A11. It enters perpendicularly (parallel to the Z axis) to the 12X lattice pattern surface 12b (lattice pattern 12a). On the other hand, the reference beams RX1 and RX2 emitted from the branching section 32X are incident on the PBS surface A11 in the approximately −Y direction as P-polarized light with respect to the PBS surface A11 and are transmitted through the PBS surface A11. Here, when the measurement light MX is incident vertically, in addition to the case where the measurement light MX is incident perpendicularly to the lattice pattern surface 12b, the measurement light MX is measured in order to reduce the influence of zero-order light (regular reflection light). The light MX is inclined approximately 0.5 to 1.5 °, for example, in the X direction (θy direction) and / or the Y direction (θx direction) with respect to an axis parallel to the Z axis, and enters the grating pattern surface 12b substantially perpendicularly. The case of making it include is also included.

本実施形態において、垂直に回折格子12の格子パターン面12bに入射する計測光MXによって、X方向に対称に±1次回折光DX1,DX2が発生する。発生した回折光DX1はルーフプリズム26XAの入射面に入射し、回折光DX2はルーフプリズム26XBの入射面に入射する。この際に、Y方向に対称に±1次回折光も発生するが、Y方向の回折光はX軸の干渉計部15Xでは使用されない。+1次回折光DX1は、ルーフプリズム26XAの入射面A12及び反射面A13,A14を介して+Y方向にシフトして、かつX軸に平行に−X方向に向けて射出面A15を介して、反射部材30Xのうちの小型の部材30XBの反射面A18に入射する。そして、反射面A18で反射された回折光DX1は、回折格子12の格子パターン面12bに垂直に入射する。これと対称に、−1次回折光DX2は、ルーフプリズム26XBの反射面A23,A24等を介して+Y方向にシフトして、かつX軸に平行に+X方向に向けて部材30XBの反射面A28に入射し、反射面A28で反射された回折光DX2は、回折格子12の格子パターン12aに垂直に入射する。   In the present embodiment, ± first-order diffracted lights DX1 and DX2 are generated symmetrically in the X direction by the measurement light MX that is perpendicularly incident on the grating pattern surface 12b of the diffraction grating 12. The generated diffracted light DX1 enters the incident surface of the roof prism 26XA, and the diffracted light DX2 enters the incident surface of the roof prism 26XB. At this time, ± first-order diffracted light is also generated symmetrically in the Y direction, but the diffracted light in the Y direction is not used in the X-axis interferometer unit 15X. The + 1st-order diffracted light DX1 is shifted in the + Y direction via the incident surface A12 and the reflective surfaces A13 and A14 of the roof prism 26XA, and is directed to the -X direction parallel to the X axis via the exit surface A15 and the reflecting member. The light enters the reflecting surface A18 of the small member 30XB of 30X. Then, the diffracted light DX1 reflected by the reflecting surface A18 is perpendicularly incident on the grating pattern surface 12b of the diffraction grating 12. In contrast to this, the −1st order diffracted light DX2 is shifted in the + Y direction via the reflecting surfaces A23, A24, etc. of the roof prism 26XB, and is directed to the reflecting surface A28 of the member 30XB in the + X direction parallel to the X axis. The diffracted light DX2 that is incident and reflected by the reflecting surface A28 enters the grating pattern 12a of the diffraction grating 12 perpendicularly.

図2(B)に示すように、格子パターン12aにおいて計測光MXが入射する位置に対して、回折光DX1,DX2が入射する位置は、Y方向に間隔a1だけシフトしているとともに、X方向に対称に距離a2だけシフトしている。距離a1は、PBS部材24XのY方向の幅のほぼ1/2であり、距離a2は、PBS部材24XのX方向の幅のほぼ1/3である。言い換えると、格子パターン12aにおいて計測光MXが入射する位置は、回折光DX1,DX2が入射する位置を結ぶ線分の中点を通り、XY平面内において当該線分に垂直な直線上に位置する。このような配置で計測光MX及び回折光DX1,DX2を回折格子12に入射させることで、干渉計部15Xの構成を小型化できる。ただし、距離a1及びa2は任意である。また、計測光MX及び回折光DX1,DX2の入射位置の配置は任意である。   As shown in FIG. 2B, the position where the diffracted light DX1, DX2 is incident on the position where the measurement light MX is incident on the grating pattern 12a is shifted by the interval a1 in the Y direction and the X direction. Symmetrically shifted by a distance a2. The distance a1 is approximately ½ of the width of the PBS member 24X in the Y direction, and the distance a2 is approximately 3 of the width of the PBS member 24X in the X direction. In other words, the position where the measurement light MX is incident on the grating pattern 12a passes through the midpoint of the line connecting the positions where the diffracted lights DX1 and DX2 are incident, and is located on a straight line perpendicular to the line segment in the XY plane. . By making the measurement light MX and the diffracted lights DX1 and DX2 enter the diffraction grating 12 with such an arrangement, the configuration of the interferometer unit 15X can be reduced in size. However, the distances a1 and a2 are arbitrary. In addition, the arrangement of the incident positions of the measurement light MX and the diffracted lights DX1 and DX2 is arbitrary.

部材30XBで反射された回折光DX1,DX2によって回折格子12からX方向に対称に+1次回折光EX1及び−1次回折光EX2(再回折光)が発生する。回折光EX1は、付加部材28XAの入射面A17を経てルーフプリズム26XAの反射面A14,A13で順に反射されることで−Y方向にシフトして、かつX軸に平行に−X方向に向けて小型の部材30XAの反射面A16に入射する。そして、反射面A16で−Z方向に反射されたS偏光の回折光EX1は、PBS部材24XのPBS面A11で反射され、第1参照光RX1と重ね合わせられて(同軸に合成又は合波されて)−Y方向にPBS部材24Xから射出される。これと対称に、回折光EX2は、付加部材28XBの入射面を経てルーフプリズム26XBの反射面A24,A23で順に反射されることで−Y方向にシフトして、かつX軸に平行に+X方向に向けて部材30XAの反射面A26に入射する。そして、反射面A26で反射されたS偏光の回折光EX2は、PBS面A11で反射されて、第2参照光RX2と重ね合わせられて(同軸に合成又は合波されて)−Y方向にPBS部材24Xから射出される。ここで、回折光EX1と参照光RX1とは、それらの断面(XZ面)において完全に重なっている必要はなく、一部が重なっていれば良い。言い換えると、回折光EX1と参照光RX1とは、PBS部材24Xから射出される際に完全に同軸である必要はなく、それらの一部同士が重なり且つ互いに平行となるように進行していればよい。さらに、PBS部材24Xから射出される回折光EX1と参照光RX1とは、完全に平行である必要はなく、これら回折光EX1と参照光RX1とが偏光板41XAの位置で少なくとも一部重なる状態であれば、平行から若干ずれていてもよい。なお、回折光EX2と参照光RX2とについても同様であるため、ここでは説明を省略する。   The diffracted lights DX1 and DX2 reflected by the member 30XB generate + 1st order diffracted light EX1 and −1st order diffracted light EX2 (rediffracted light) from the diffraction grating 12 symmetrically in the X direction. The diffracted light EX1 is sequentially reflected by the reflecting surfaces A14 and A13 of the roof prism 26XA through the incident surface A17 of the additional member 28XA, thereby shifting in the -Y direction and parallel to the X axis toward the -X direction. The light enters the reflecting surface A16 of the small member 30XA. Then, the S-polarized diffracted light EX1 reflected in the −Z direction by the reflecting surface A16 is reflected by the PBS surface A11 of the PBS member 24X and superimposed on the first reference light RX1 (coaxially synthesized or combined). E) ejected from the PBS member 24X in the -Y direction. In contrast to this, the diffracted light EX2 is sequentially reflected by the reflecting surfaces A24 and A23 of the roof prism 26XB through the incident surface of the additional member 28XB, thereby shifting in the −Y direction and parallel to the X axis in the + X direction. Toward the reflecting surface A26 of the member 30XA. Then, the S-polarized diffracted light EX2 reflected by the reflecting surface A26 is reflected by the PBS surface A11 and superimposed on the second reference light RX2 (combined or combined coaxially) in the −Y direction. Injected from the member 24X. Here, the diffracted light EX1 and the reference light RX1 do not need to overlap completely in their cross section (XZ plane), and only need to partially overlap. In other words, the diffracted light EX1 and the reference light RX1 do not have to be completely coaxial when emitted from the PBS member 24X, and as long as some of them are overlapped and are parallel to each other. Good. Further, the diffracted light EX1 and the reference light RX1 emitted from the PBS member 24X do not have to be completely parallel, and the diffracted light EX1 and the reference light RX1 are at least partially overlapped at the position of the polarizing plate 41XA. If there is, it may be slightly deviated from parallel. Since the same applies to the diffracted light EX2 and the reference light RX2, the description thereof is omitted here.

なお、付加部材28XA,28XBは、付加部材に入射する回折光EX1,EX2を±X方向に移送した状態で射出して、回折光EX1,EX2のPBS面A11に対する入射位置を調整するために設けられている。付加部材28XA,28XBは省略することができる。
また、一例として、図3(A)の調整部材29Xは、最終的に回折光EX1,EX2がPBS部材24Xに対して正確にS偏光状態で入射するように、回折光DX1,DX2,EX1,EX2の偏光方向(偏光状態)を個別に調整する。なお、調整部材29Xは省略することが可能である。また、調整部材29Xに代えて、平行平面板状の光透過部材からなるカバーガラスを設けてもよい。
The additional members 28XA and 28XB are provided for adjusting the incident positions of the diffracted lights EX1 and EX2 with respect to the PBS surface A11 by emitting the diffracted lights EX1 and EX2 incident on the additional member in a state of being transferred in the ± X direction. It has been. The additional members 28XA and 28XB can be omitted.
Further, as an example, the adjustment member 29X in FIG. 3A finally allows the diffracted light DX1, DX2, EX1, and the diffracted light EX1, EX2, so that the diffracted light EX1, EX2 enters the PBS member 24X accurately in the S-polarized state. The polarization direction (polarization state) of EX2 is individually adjusted. The adjusting member 29X can be omitted. Moreover, it may replace with the adjustment member 29X and you may provide the cover glass which consists of a parallel plane plate-shaped light transmissive member.

図1において、PBS部材24Xから射出された回折光EX1及び参照光RX1を含む光束、及び回折光EX2及び参照光RX2を含む光束は、反射部材22で反射された後、それぞれ偏光板41XA,41XBを経て第1干渉光及び第2干渉光となり、光ファイバ39XA,39XBを介して光電センサ40XA,40XBに受光される。なお、偏光板41XA,41XBは、PBS部材24Xの射出面(PBS部材24Xの−Y方向側に位置するXZ面と平行な平面)に設けられていてもよい。   In FIG. 1, the light beam including the diffracted light EX1 and the reference light RX1 emitted from the PBS member 24X and the light beam including the diffracted light EX2 and the reference light RX2 are reflected by the reflecting member 22, and then are polarizing plates 41XA and 41XB, respectively. Then, the first interference light and the second interference light are received by the photoelectric sensors 40XA and 40XB via the optical fibers 39XA and 39XB. The polarizing plates 41XA and 41XB may be provided on the exit surface of the PBS member 24X (a plane parallel to the XZ plane located on the −Y direction side of the PBS member 24X).

また、Y軸の干渉計部15Yは、X軸の干渉計部15XのPBS部材24X及び回折光偏向部材25Xを一体的に90°回転した構成のPBS部材24Y及び回折光偏向部材25Yを有する(図3(B)参照)。すなわち、回折光偏向部材25Yもそれぞれルーフプリズム26YA,26YB、大型の部材30YA及び小型の部材30YBよりなる反射部材30Yを有し、ルーフプリズム26YA,26YBに付加部材28YA,28YBが固定され、PBS部材24Yと回折格子12との間に調整部材29Yが設けられている。そして、反射部材30Yがルーフプリズム26YAに固定され、反射部材30Y及びルーフプリズム26YA,26YBの上面が第2部材7に固定されている。ここで、干渉計部15Xの上面が第2部材7に固定されているため、干渉計部15Xの下面側の構造部材を無くすか、或いは薄くできるため、干渉計部の作動距離を長くすることができる。   The Y-axis interferometer section 15Y includes a PBS member 24Y and a diffracted light deflection member 25Y that are configured by integrally rotating the PBS member 24X and the diffracted light deflection member 25X of the X-axis interferometer section 15X by 90 ° (see FIG. (See FIG. 3B). That is, the diffracted light deflecting member 25Y also has a reflecting member 30Y composed of a roof prism 26YA, 26YB, a large member 30YA, and a small member 30YB. The additional members 28YA, 28YB are fixed to the roof prisms 26YA, 26YB, and the PBS member. An adjustment member 29Y is provided between 24Y and the diffraction grating 12. The reflecting member 30Y is fixed to the roof prism 26YA, and the upper surfaces of the reflecting member 30Y and the roof prisms 26YA and 26YB are fixed to the second member 7. Here, since the upper surface of the interferometer unit 15X is fixed to the second member 7, the structural member on the lower surface side of the interferometer unit 15X can be eliminated or thinned, so that the working distance of the interferometer unit is increased. Can do.

分岐部32Yから射出される計測光MY及び参照光RY1,RY2は、干渉計部15YのPBS部材24Yに入射し、P偏光の参照光RY1,RY2はPBS部材24YのPBS面を透過して+X方向に射出される。そして、S偏光の計測光MYはPBS部材24YのPBS面で反射されて回折格子12の格子パターン12aに垂直に入射し、格子パターン12aからY方向に対称に±1次回折光DY1,DY2(図3(B)参照)が発生する。X方向に発生する±1次回折光は干渉計部15Yでは使用されない。これらの回折光DY1(DY2)はルーフプリズム26YA(26YB)及び反射部材30Yを介して回折格子12の格子パターン12aに垂直に入射する。そして、回折光DY1によるY方向の+1次回折光EY1及び回折光DY2によるY方向の−1次回折光EY2が、回折格子12から発生する。回折光EY1は、付加部材28YA、ルーフプリズム26YA、及び反射部材30Yを介してPBS部材24YのPBS面で反射されて、第1参照光RY1と重ね合わされて+X方向に射出される。回折光EY2は、付加部材28YB、ルーフプリズム26YB、及び反射部材30Yを介してPBS部材24YのPBS面で反射されて、第2参照光RY2と重ね合わされて+X方向に射出される。   The measurement light MY and the reference lights RY1 and RY2 emitted from the branching section 32Y enter the PBS member 24Y of the interferometer section 15Y, and the P-polarized reference lights RY1 and RY2 pass through the PBS surface of the PBS member 24Y and + X Injected in the direction. Then, the S-polarized measurement light MY is reflected by the PBS surface of the PBS member 24Y and enters the grating pattern 12a of the diffraction grating 12 perpendicularly, and ± 1st-order diffracted lights DY1, DY2 (symmetrical in the Y direction) from the grating pattern 12a (FIG. 3 (B)) occurs. The ± first-order diffracted light generated in the X direction is not used in the interferometer unit 15Y. These diffracted lights DY1 (DY2) are perpendicularly incident on the grating pattern 12a of the diffraction grating 12 through the roof prism 26YA (26YB) and the reflecting member 30Y. Then, a + 1st order diffracted light EY1 in the Y direction by the diffracted light DY1 and a −1st order diffracted light EY2 in the Y direction by the diffracted light DY2 are generated from the diffraction grating 12. The diffracted light EY1 is reflected by the PBS surface of the PBS member 24Y via the additional member 28YA, the roof prism 26YA, and the reflecting member 30Y, is superimposed on the first reference light RY1, and is emitted in the + X direction. The diffracted light EY2 is reflected by the PBS surface of the PBS member 24Y via the additional member 28YB, the roof prism 26YB, and the reflecting member 30Y, is superimposed on the second reference light RY2, and is emitted in the + X direction.

そして、PBS部材24Yから射出された回折光EY1及び参照光RY1を含む光束、及び回折光EY2及び参照光RY2を含む光束は、それぞれ偏光板41YA,41YBを経て第3干渉光及び第4干渉光となり、光ファイバ39YA,39YBを介して光電センサ40YA,40YBに受光される。
図1において、計測演算部42は、第1演算部42X、第2演算部42Y、及び第3演算部42Tを有する。そして、X軸の光電センサ40XAは、回折光EX1及び参照光RX1よりなる干渉光の検出信号(光電変換信号)を第1演算部42Xに供給し、光電センサ40XBは、回折光EX2及び参照光RX2よりなる干渉光の検出信号を第1演算部42Xに供給する。また、Y軸の光電センサ40YAは、回折光EY1及び参照光RY1よりなる干渉光の検出信号を第2演算部42Yに供給し、光電センサ40YBは、回折光EY2及び参照光RY2よりなる干渉光の検出信号を第2演算部42Yに供給する。第1演算部42X及び第2演算部42Yには、レーザ光源16からの基準周波数の信号(基準信号)、及び光電センサ40Cで検出された参照用の干渉光のほぼその基準周波数の信号(参照信号)も供給されている。
Then, the light beam including the diffracted light EY1 and the reference light RY1 and the light beam including the diffracted light EY2 and the reference light RY2 emitted from the PBS member 24Y pass through the polarizing plates 41YA and 41YB, respectively. Thus, the light is received by the photoelectric sensors 40YA and 40YB via the optical fibers 39YA and 39YB.
In FIG. 1, the measurement calculation unit 42 includes a first calculation unit 42X, a second calculation unit 42Y, and a third calculation unit 42T. Then, the X-axis photoelectric sensor 40XA supplies an interference light detection signal (photoelectric conversion signal) composed of the diffracted light EX1 and the reference light RX1 to the first calculation unit 42X, and the photoelectric sensor 40XB includes the diffracted light EX2 and the reference light. The detection signal of the interference light composed of RX2 is supplied to the first calculation unit 42X. Further, the Y-axis photoelectric sensor 40YA supplies an interference light detection signal made up of the diffracted light EY1 and the reference light RY1 to the second arithmetic unit 42Y, and the photoelectric sensor 40YB makes an interference light made up of the diffracted light EY2 and the reference light RY2. The detection signal is supplied to the second calculation unit 42Y. The first calculation unit 42X and the second calculation unit 42Y include a reference frequency signal (reference signal) from the laser light source 16 and a reference frequency signal (reference) of the reference interference light detected by the photoelectric sensor 40C. Signal) is also provided.

ここで、第1部材6と第2部材7とのX方向、Y方向、Z方向の相対移動量(相対変位)をX,Y,Zとして、第1演算部42X及び第2演算部42Yで求められるZ方向の相対移動量をそれぞれZX,ZYとする。このとき、一例として、第1演算部42Xは、光電センサ40XAの検出信号及び基準信号(又は参照信号)から、既知の係数a,bを用いてX方向及びZ方向の第1の相対移動量(a・X+b・ZX)を求め、光電センサ40XBの検出信号及び基準信号(又は参照信号)から、X方向及びZ方向の第2の相対移動量(−a・X+b・ZX)を求め、その第1及び第2の相対移動量からX方向の相対移動量(X)及びZ方向の相対移動量(ZX)を求め、求めた結果を第3演算部42Tに供給する。第2演算部42Yは、光電センサ40YAの検出信号及び基準信号(又は参照信号)から、Y方向及びZ方向の第1の相対移動量(a・Y+b・ZY)を求め、光電センサ40YBの検出信号及び基準信号(又は参照信号)から、Y方向及びZ方向の第2の相対移動量(−a・Y+b・ZY)を求め、その第1及び第2の相対移動量からY方向の相対移動量(Y)及びZ方向の相対移動量(ZY)を求め、求めた結果を第3演算部42Tに供給する。   Here, the X, Y, and Z direction relative movement amounts (relative displacements) between the first member 6 and the second member 7 are X, Y, Z, and the first calculation unit 42X and the second calculation unit 42Y. Assume that the obtained relative movement amounts in the Z direction are ZX and ZY, respectively. At this time, as an example, the first calculation unit 42X uses the detection coefficient and the reference signal (or reference signal) of the photoelectric sensor 40XA and the first relative movement amount in the X direction and the Z direction using the known coefficients a and b. (A · X + b · ZX) is obtained, and the second relative movement amount (−a · X + b · ZX) in the X direction and the Z direction is obtained from the detection signal and the reference signal (or reference signal) of the photoelectric sensor 40XB. A relative movement amount (X) in the X direction and a relative movement amount (ZX) in the Z direction are obtained from the first and second relative movement amounts, and the obtained results are supplied to the third calculation unit 42T. The second calculation unit 42Y obtains the first relative movement amount (a · Y + b · ZY) in the Y direction and the Z direction from the detection signal and the reference signal (or reference signal) of the photoelectric sensor 40YA, and detects the photoelectric sensor 40YB. The second relative movement amount (−a · Y + b · ZY) in the Y direction and the Z direction is obtained from the signal and the reference signal (or reference signal), and the relative movement in the Y direction is obtained from the first and second relative movement amounts. The amount (Y) and the relative movement amount (ZY) in the Z direction are obtained, and the obtained result is supplied to the third calculation unit 42T.

第3演算部42Tは、演算部42X,42Yから供給される相対移動量(X)及び(Y)を所定のオフセットで補正した値を第1部材6と第2部材7とのX方向、Y方向の相対移動量として出力する。また、第3演算部42Tは、一例として、演算部42X,42Yから供給されるZ方向の相対移動量(ZX)及び(ZY)の平均値(=(ZX+ZY)/2)を所定のオフセットで補正した値を第1部材6と第2部材7とのZ方向の相対移動量として出力する。X方向、Y方向、Z方向の相対移動量の検出分解能は例えば0.5〜0.1nm程度である。エンコーダ10では、計測光MX,MY等の光路が短いため、その光路上の気体の温度揺らぎに起因する計測値の短期的な変動を低減できる。さらに、最終的に2回目の+1次回折光EX1,EY1及び−1次回折光EX2,EY2と対応する参照光RX1〜RY2との干渉光を検出しているため、相対移動量の検出分解能(検出精度)を1/2に向上(微細化)できる。また、±1次回折光を用いることによって、第1部材6と第2部材7とのθz方向の相対回転角による計測誤差を低減できる。   The third calculation unit 42T calculates a value obtained by correcting the relative movement amounts (X) and (Y) supplied from the calculation units 42X and 42Y with a predetermined offset in the X direction of the first member 6 and the second member 7, Y Output as the amount of relative movement in the direction. In addition, as an example, the third calculation unit 42T calculates an average value (= (ZX + ZY) / 2) of the relative movement amounts (ZX) and (ZY) in the Z direction supplied from the calculation units 42X and 42Y with a predetermined offset. The corrected value is output as the relative movement amount in the Z direction between the first member 6 and the second member 7. The detection resolution of the relative movement amount in the X direction, the Y direction, and the Z direction is, for example, about 0.5 to 0.1 nm. In the encoder 10, since the optical paths of the measurement light MX, MY, etc. are short, short-term fluctuations in the measurement value due to the temperature fluctuation of the gas on the optical path can be reduced. Furthermore, since the interference light of the reference lights RX1 to RY2 corresponding to the + 1st order diffracted beams EX1 and EY1 and the −1st order diffracted beams EX2 and EY2 for the second time is finally detected, the detection resolution of the relative movement amount (detection accuracy) ) Can be improved to 1/2 (miniaturized). In addition, by using ± first-order diffracted light, measurement errors due to the relative rotation angles of the first member 6 and the second member 7 in the θz direction can be reduced.

次に、本実施形態の検出ヘッド14の回折光の光路につき詳細に説明する。
図3(A)はX軸の干渉計部15Xの要部及び回折格子12を示す。図3(A)において、計測光MXが回折格子12の格子パターン12aに垂直に(Z軸に平行に)入射するとき、計測光MXによるX方向の+1次回折光DX1の回折角φxは、格子パターン12aの周期p及び計測光MXの波長λを用いて次の関係を満たす。このとき、計測光MXによるX方向の−1次回折光DX2の回折角は−φxとなる。
Next, the optical path of the diffracted light of the detection head 14 of this embodiment will be described in detail.
FIG. 3A shows the main part of the X-axis interferometer unit 15X and the diffraction grating 12. FIG. In FIG. 3A, when the measurement light MX is incident on the grating pattern 12a of the diffraction grating 12 perpendicularly (parallel to the Z axis), the diffraction angle φx of the + 1st order diffracted light DX1 in the X direction by the measurement light MX is The following relationship is satisfied using the period p of the pattern 12a and the wavelength λ of the measurement light MX. At this time, the diffraction angle of the −1st order diffracted light DX2 in the X direction by the measurement light MX is −φx.

p・sin(φx)=λ …(1)
一例として、周期pを1000nm(1μm)、計測光MXの波長λを633nmとすると、回折角φxはほぼ39°となる。
また、回折光DX1は、ルーフプリズム26XA(入射面A12及び反射面A13,A14)及び反射部材30Xによって、計測光MX(ここではZ軸に平行)に平行になるように折り曲げられて回折格子12に再入射する。従って、ルーフプリズム26XAの入射面A12の角度α1、稜線A16の角度α2、屈折率ng、及び回折光DX1の入射面A12に対する入射角i(角度α1と回折角φxとの関数)は、反射部材28XAで反射された回折光DX1がZ軸に概ね平行になるように定められることが好ましい。
p · sin (φx) = λ (1)
As an example, if the period p is 1000 nm (1 μm) and the wavelength λ of the measurement light MX is 633 nm, the diffraction angle φx is approximately 39 °.
The diffracted light DX1 is bent by the roof prism 26XA (incident surface A12 and reflecting surfaces A13, A14) and the reflecting member 30X so as to be parallel to the measuring light MX (here, parallel to the Z axis). Re-incident on. Accordingly, the angle α1 of the incident surface A12 of the roof prism 26XA, the angle α2 of the ridge line A16, the refractive index ng, and the incident angle i (a function of the angle α1 and the diffraction angle φx) of the diffracted light DX1 with respect to the incident surface A12 are reflected members. It is preferable that the diffracted light DX1 reflected by 28XA is determined so as to be substantially parallel to the Z axis.

さらに、本実施形態では、ルーフプリズム26XAの入射面A12に入射する回折光DX1の振れ角δの入射角iに関する変化率(dδ/di)は、次のようにcos(φx)に設定されることが好ましい。
dδ/di=cos(φx)=cos{arcsin(λ/p)} …(3)
この式(3)の条件は、入射面A12における振れ角δの変化率(dδ/di)は、回折格子12に対する計測光MXの入射角が0から変化したときの回折光DX1の回折角の変化率を、入射面A12で相殺することを意味している(詳細後述)。
Furthermore, in the present embodiment, the rate of change (dδ / di) regarding the incident angle i of the deflection angle δ of the diffracted light DX1 incident on the incident surface A12 of the roof prism 26XA is set to cos (φx) as follows. It is preferable.
dδ / di = cos (φx) = cos {arcsin (λ / p)} (3)
The condition of this equation (3) is that the rate of change (dδ / di) of the deflection angle δ at the incident surface A12 is the diffraction angle of the diffracted light DX1 when the incident angle of the measuring light MX with respect to the diffraction grating 12 changes from zero. This means that the rate of change is canceled by the incident surface A12 (details will be described later).

計測光MXが格子パターン12aに垂直に(Z軸に平行に)入射する場合、ルーフプリズム26XA等で反射される回折光DX1は、計測光MXが入射した位置から+X方向及び+Y方向にずれた位置で格子パターン12aに垂直に入射する(図2(B)参照)。そして、回折光DX1によって回折格子12から発生する+1次回折光EX1の回折角は式(1)のφxと同じであり、回折光EX1はルーフプリズム26XA等によって光路をZ軸に平行に折り曲げられてPBS部材24XのPBS面A11に向かう。このとき、計測光MXによる回折格子12からの−1次回折光DX2は、回折光DX1と対称にルーフプリズム26XB等を介して計測光MXが入射した位置から−X方向及び+Y方向にずれた位置で格子パターン12aに垂直に入射する(図2(B)参照)。そして、回折光DX2によって回折格子12から発生する−1次回折光EX2は、ルーフプリズム26XB等によって光路をZ軸に平行に折り曲げられてPBS面A11に向かう。   When the measurement light MX is incident on the grating pattern 12a perpendicularly (parallel to the Z axis), the diffracted light DX1 reflected by the roof prism 26XA and the like is shifted in the + X direction and the + Y direction from the position where the measurement light MX is incident. It enters the grating pattern 12a perpendicularly at the position (see FIG. 2B). The diffraction angle of the + 1st order diffracted light EX1 generated from the diffraction grating 12 by the diffracted light DX1 is the same as φx in the equation (1), and the diffracted light EX1 has its optical path bent parallel to the Z axis by the roof prism 26XA or the like. Heading toward the PBS surface A11 of the PBS member 24X. At this time, the −1st order diffracted light DX2 from the diffraction grating 12 by the measurement light MX is shifted in the −X direction and the + Y direction from the position where the measurement light MX is incident through the roof prism 26XB and the like symmetrically with the diffraction light DX1. Thus, the light is incident on the grating pattern 12a perpendicularly (see FIG. 2B). The −1st-order diffracted light EX2 generated from the diffraction grating 12 by the diffracted light DX2 is bent in the optical path parallel to the Z axis by the roof prism 26XB and the like, and travels toward the PBS surface A11.

また、図3(B)はY軸の干渉計部15Yの要部及び回折格子12を示す。図3(B)において、計測光MYが回折格子12の格子パターン12aに垂直に入射するとき、計測光MYによるY方向の+1次回折光DY1の回折角φyは、式(1)のX方向の回折角φxと同じである。ルーフプリズム26YA等で反射される回折光DY1は、計測光MYが入射した位置から−X方向及び+Y方向にずれた位置で格子パターン12aに垂直に入射する。一方、ルーフプリズム26YB等で反射される回折光DY2は、計測光MYが入射した位置から−X方向及び−Y方向にずれた位置で格子パターン12aに垂直に入射する。そして、回折光DY1によってルーフプリズム26YA等を介して回折格子12から発生する+1次回折光EY1、及び計測光MYによるY方向の−1次回折光DY2によって回折格子12から発生する−1次回折光EY2は、それぞれルーフプリズム26YA,26YB等によって光路をZ軸に平行に折り曲げられてPBS部材24YのPBS面に向かう。   FIG. 3B shows the main part of the Y-axis interferometer unit 15Y and the diffraction grating 12. FIG. In FIG. 3B, when the measurement light MY is perpendicularly incident on the grating pattern 12a of the diffraction grating 12, the diffraction angle φy of the + 1st order diffracted light DY1 in the Y direction by the measurement light MY is in the X direction of the equation (1). It is the same as the diffraction angle φx. The diffracted light DY1 reflected by the roof prism 26YA or the like is perpendicularly incident on the grating pattern 12a at a position shifted in the −X direction and the + Y direction from the position where the measurement light MY is incident. On the other hand, the diffracted light DY2 reflected by the roof prism 26YB or the like is perpendicularly incident on the grating pattern 12a at a position shifted in the −X direction and the −Y direction from the position where the measurement light MY is incident. The + 1st order diffracted light EY1 generated from the diffraction grating 12 by the diffracted light DY1 through the roof prism 26YA and the −1st order diffracted light EY2 generated from the diffraction grating 12 by the −1st order diffracted light DY2 in the Y direction by the measurement light MY are The optical path is bent parallel to the Z axis by the roof prisms 26YA, 26YB, etc., and heads toward the PBS surface of the PBS member 24Y.

そして、図3(A)の配置において、図4(A)に示すように(付加部材28XA,28XBが図示省略されている)、干渉計部15Xに対して回折格子12の格子パターン面12bのZ方向の相対位置が位置B11までδZだけ変化した場合を想定する。このとき、計測光MXによる+1次回折光DX1は、光路が位置B12に平行にシフトしてルーフプリズム26XAに入射する。ルーフプリズム26XAは、入射光に対して、射出光の光路を中心(稜線A19)に関して対称にシフトする。このため、ルーフプリズム26XAで反射された回折光DX1は、格子パターン面12bのZ方向の相対位置が変化していないときの+1次回折光EX1の光路と交差する位置で回折格子12に入射する。従って、格子パターン面12bが位置B11まで変化していても、回折光DX1によって回折格子12から発生する+1次回折光EX1の光路B13は、格子パターン面12bのZ方向の相対位置が変化していないときの光路と同じである。このため、回折光EX1と参照光RX1とをPBS面A11で同軸に合成したとき、回折光EX1と参照光RX1との相対的な横ずれ量がないため、その光束から得られる干渉光を光電変換したときに得られる検出信号のうちの交流信号(ビート信号又は信号成分)の割合が低下することがない。   In the arrangement of FIG. 3A, as shown in FIG. 4A (additional members 28XA and 28XB are not shown), the grating pattern surface 12b of the diffraction grating 12 with respect to the interferometer unit 15X. Assume that the relative position in the Z direction changes by δZ up to position B11. At this time, the + 1st order diffracted light DX1 by the measurement light MX is incident on the roof prism 26XA with the optical path shifted parallel to the position B12. The roof prism 26XA shifts the optical path of the emitted light symmetrically with respect to the incident light with respect to the center (ridge line A19). Therefore, the diffracted light DX1 reflected by the roof prism 26XA enters the diffraction grating 12 at a position that intersects the optical path of the + 1st order diffracted light EX1 when the relative position in the Z direction of the grating pattern surface 12b is not changed. Therefore, even if the grating pattern surface 12b is changed to the position B11, the relative position in the Z direction of the grating pattern surface 12b of the optical path B13 of the + 1st order diffracted light EX1 generated from the diffraction grating 12 by the diffracted light DX1 is not changed. It is the same as the optical path of time. For this reason, when the diffracted light EX1 and the reference light RX1 are coaxially combined at the PBS surface A11, there is no relative lateral shift between the diffracted light EX1 and the reference light RX1, and therefore the interference light obtained from the light beam is photoelectrically converted. The ratio of the AC signal (beat signal or signal component) in the detection signal obtained at the time does not decrease.

これは、X軸の−1次回折光DX2及びY軸の±1次回折光DY1,DY2でも同様であり、格子パターン面12bのZ方向の相対位置が変化しても、図1の光電センサ40XA〜40YBの検出信号のうちのビート信号の割合は低下しない。従って、それらの検出信号を用いて高いSN比で高精度に第1部材6と第2部材7との相対移動量を計測できる。   The same applies to the X-order −1st-order diffracted light DX2 and the Y-axis ± 1st-order diffracted lights DY1 and DY2, and even if the relative position in the Z direction of the grating pattern surface 12b changes, the photoelectric sensors 40XA to 40XA of FIG. The ratio of the beat signal in the 40YB detection signal does not decrease. Therefore, the relative movement amount between the first member 6 and the second member 7 can be measured with high accuracy at a high S / N ratio using these detection signals.

次に、図3(A)の配置において、図4(B)に示すように、干渉計部15Xに対して回折格子12の格子パターン面12bがY軸に平行な軸の回りに角度εだけ反時計回りに変化した場合を想定する。このとき、計測光MXの格子パターン面12bに対する入射角はεであり、+1次回折光DX1の回折角を(φx+δφx)とすると、以下の関係が成立する。   Next, in the arrangement of FIG. 3A, as shown in FIG. 4B, the grating pattern surface 12b of the diffraction grating 12 with respect to the interferometer portion 15X is an angle ε around an axis parallel to the Y axis. Assume the case of changing counterclockwise. At this time, when the incident angle of the measurement light MX with respect to the grating pattern surface 12b is ε, and the diffraction angle of the + 1st order diffracted light DX1 is (φx + δφx), the following relationship is established.

sin(φx+δφx)−sinε=λ/p …(4)
ここで、ε及びδφxが微少量であるとすると、sin(φx)の微分はcos(φx)であるため、式(4)は次のようになる。
sin(φx)+cos(φx)・δφx−ε=λ/p …(5)
式(5)において、式(1)よりsin(φx)がλ/pであることを考慮すると、次式が得られる。
sin (φx + δφx) −sinε = λ / p (4)
Here, assuming that ε and δφx are very small, the derivative of sin (φx) is cos (φx), and therefore equation (4) is as follows.
sin (φx) + cos (φx) · δφx−ε = λ / p (5)
In equation (5), considering that sin (φx) is λ / p from equation (1), the following equation is obtained.

δφx=ε/cos(φx) …(6)
また、格子パターン面12bが角度εだけ傾斜したときの回折格子12からの+1次回折光DX1の光路B22の角度の変化量δφは、次のようになる。
δφ={1+1/cos(φx)}ε …(7)
また、ルーフプリズム26XAの入射面A12における振れ角δの入射角iに関する変化率(dδ/di)は、式(3)で示したようにcos(φx)であるため、ルーフプリズム26XAを通過した回折光DX1の光路B23の角度の変化量δε1は、次のようになる。
δφx = ε / cos (φx) (6)
Further, the change amount δφ of the angle of the optical path B22 of the + 1st order diffracted light DX1 from the diffraction grating 12 when the grating pattern surface 12b is inclined by the angle ε is as follows.
δφ = {1 + 1 / cos (φx)} ε (7)
Further, since the rate of change (dδ / di) of the deflection angle δ on the incident surface A12 of the roof prism 26XA with respect to the incident angle i is cos (φx) as shown in the expression (3), it passes through the roof prism 26XA. The change amount δε1 of the angle of the optical path B23 of the diffracted light DX1 is as follows.

δε1=δφ・cos(φx)={cos(φx)+1}ε …(8)
そして、格子パターン面12bは角度εだけ傾斜しているため、ルーフプリズム26XA等から格子パターン面12bに入射する回折光DX1の入射角δεは次のようになる。
δε=ε・cos(φx) …(9)
回折光DX1が再び回折格子12に入射角δεで入射すると、回折光DX1による回折格子12からの+1次回折光EX1(再回折光)の回折角の変化量δφ1は、式(6)から次のようになる。
δε1 = δφ · cos (φx) = {cos (φx) +1} ε (8)
Since the grating pattern surface 12b is inclined by the angle ε, the incident angle δε of the diffracted light DX1 incident on the grating pattern surface 12b from the roof prism 26XA or the like is as follows.
δε = ε · cos (φx) (9)
When the diffracted light DX1 is incident on the diffraction grating 12 again at an incident angle δε, the change amount δφ1 of the diffraction angle of the + 1st order diffracted light EX1 (re-diffracted light) from the diffraction grating 12 by the diffracted light DX1 is expressed by the following equation (6). It becomes like this.

δφ1=ε …(10)
これは、回折光EX1の回折角の変化量δφ1は格子パターン面12bの傾斜角εに等しいこと、すなわち回折光EX1の光路B24は、格子パターン面12bが傾斜する前の光路に平行であることを意味する。また、回折光EX1の光路B24の横シフトも生じていない。このため、回折光EX1と参照光RX1とをPBS面A2で同軸に合成して干渉光を生成したとき、回折光EX1と参照光RX1との相対的な傾きのずれ及び相対的な横ずれ量がないため、その干渉光を光電変換したときに得られる検出信号のうちの交流信号(ビート信号又は信号成分)の割合が低下することがない。これは、X軸の−1次回折光EX2でも同様である。
δφ1 = ε (10)
This is because the diffraction angle change amount δφ1 of the diffracted light EX1 is equal to the inclination angle ε of the grating pattern surface 12b, that is, the optical path B24 of the diffracted light EX1 is parallel to the optical path before the grating pattern surface 12b is inclined. Means. Further, no lateral shift of the optical path B24 of the diffracted light EX1 occurs. For this reason, when the interference light is generated by synthesizing the diffracted light EX1 and the reference light RX1 coaxially at the PBS surface A2, the relative tilt shift and the relative lateral shift amount between the diffracted light EX1 and the reference light RX1 are increased. Therefore, the ratio of the AC signal (beat signal or signal component) in the detection signal obtained when the interference light is photoelectrically converted does not decrease. The same applies to the -1st order diffracted light EX2 on the X axis.

また、回折格子12の格子パターン12bがX軸に平行な軸の回りに傾斜した場合にも、同様にY軸の±1次回折光EY1,EY2の光路の傾斜角のずれ及び横シフトは生じないため、図1の光電センサ40XA〜40YBの検出信号のうちのビート信号の割合は低下しない。従って、それらの検出信号を用いて高いSN比で高精度に第1部材6と第2部材7との相対移動量を計測できる。なお、回折格子12の格子パターン12bがX軸(又はY軸)に平行な軸の回りに傾斜した場合に、X軸の検出信号(又はY軸の検出信号)に対する影響は実質的にない。   Similarly, when the grating pattern 12b of the diffraction grating 12 is tilted about an axis parallel to the X axis, the deviation of the tilt angle and the lateral shift of the optical path of the ± 1st order diffracted beams EY1 and EY2 of the Y axis do not occur. Therefore, the ratio of the beat signal among the detection signals of the photoelectric sensors 40XA to 40YB in FIG. 1 does not decrease. Therefore, the relative movement amount between the first member 6 and the second member 7 can be measured with high accuracy at a high S / N ratio using these detection signals. Note that when the grating pattern 12b of the diffraction grating 12 is tilted around an axis parallel to the X axis (or Y axis), there is substantially no influence on the X axis detection signal (or Y axis detection signal).

なお、以上の説明では回折格子12側が検出ヘッド14(干渉計部15X,15Y)に対して傾斜するものとしたが、計測光MX,MYの回折格子12に対する入射角が0からX方向及び/又はY方向に微少量変化した場合にも、同様に回折光EX1〜EY2の光路の傾斜及び横シフトが生じないため、高いSN比で高精度に第1部材6と第2部材7との相対移動量を計測できる。   In the above description, the diffraction grating 12 side is inclined with respect to the detection head 14 (interferometer units 15X and 15Y). However, the incident angles of the measurement beams MX and MY with respect to the diffraction grating 12 are from 0 to the X direction and / or Alternatively, even when a slight change is made in the Y direction, the optical path of the diffracted beams EX1 to EY2 is not inclined and laterally shifted, so that the relative relationship between the first member 6 and the second member 7 with high SN ratio and high accuracy can be obtained. The amount of movement can be measured.

上述のように本実施形態のエンコーダ10(エンコーダ装置)は、第1部材6に対して少なくともX方向(第1方向)に相対移動可能な第2部材7の相対移動量を計測するエンコーダ装置である。そして、エンコーダ10は、第1部材6に設けられ、少なくともX方向を周期方向とする格子パターン12aを有する反射型の回折格子12と、レーザ光源16(光源)からの光を互いに偏光状態の異なる計測光MXと参照光RX1,RX2とに分岐する分岐部32Xと、第2部材7に設けられ、計測光MXを格子パターン12aに入射させるPBS部材24X(第1光学部材)と、第2部材7に設けられ、計測光MXによる格子パターン12aからの回折光EX1,EX2をPBS部材24Xに入射させる回折光偏向部材25X(第2光学部材)と、を備えている。そして、分岐部32XからPBS部材24Xに入射する参照光RX1,RX2と、回折光偏向部材25XからPBS部材24Xに入射する回折光EX1,EX2とは、PBS部材24Xで重ね合わされる、即ち同軸に合成(合波)されて検出される。   As described above, the encoder 10 (encoder device) of the present embodiment is an encoder device that measures the relative movement amount of the second member 7 that can move relative to the first member 6 in at least the X direction (first direction). is there. The encoder 10 is provided on the first member 6 and has a reflective diffraction grating 12 having a grating pattern 12a having at least the X direction as a periodic direction, and light from the laser light source 16 (light source) having different polarization states. A branch part 32X that branches into the measurement light MX and the reference lights RX1 and RX2, a PBS member 24X (first optical member) that is provided in the second member 7 and makes the measurement light MX enter the grating pattern 12a, and a second member. 7 and a diffracted light deflecting member 25X (second optical member) that causes the diffracted light EX1 and EX2 from the grating pattern 12a by the measurement light MX to enter the PBS member 24X. Then, the reference beams RX1 and RX2 that enter the PBS member 24X from the branch portion 32X and the diffracted beams EX1 and EX2 that enter the PBS member 24X from the diffracted beam deflecting member 25X are overlapped by the PBS member 24X, that is, coaxially. It is detected by combining (combining).

また、エンコーダ10を用いる計測方法は、図11のフローチャートに示すように、第1部材6と第2部材7との相対移動量を計測する方法であって、第1部材6に設けられ、少なくともX方向を周期方向とする格子パターン12aを有する反射型の回折格子12の格子パターン面12bに概ね垂直に、第2部材7に設けられたPBS部材24Xを介して計測光MXを入射させるとともに、参照光RX1,RX2を格子パターン面12bに概ね平行に射出するステップ302と、第2部材7に設けられたルーフプリズム26XA等の第1の偏向部により、計測光MXによって回折格子12からX方向に関して発生する+1次回折光DX1を回折格子12に入射させ、回折光DX1によって回折格子12から発生する+1次回折光EX1をPBS部材24Xに入射させるステップ304と、第2部材7に設けられたルーフプリズム26XB等の第2の偏向部により、計測光MXによって回折格子12からX方向に関して発生する−1次回折光DX2を回折格子12に入射させ、回折光DX2によって回折格子12から発生する−1次回折光EX2をPBS部材24Xに入射させるステップ306と、PBS部材24Xにおいて、回折光EX1,EX2と参照光RX1,RX2とを重ね合わせるステップ308と、回折光EX1,EX2と参照光RX1,RX2との干渉光をそれぞれ検出し、この検出結果より第1部材6と第2部材7との相対移動量を求めるステップ310と、を含んでいる。   Moreover, the measuring method using the encoder 10 is a method for measuring the relative movement amount between the first member 6 and the second member 7 as shown in the flowchart of FIG. The measurement light MX is incident through the PBS member 24X provided on the second member 7 substantially perpendicularly to the grating pattern surface 12b of the reflective diffraction grating 12 having the grating pattern 12a with the X direction as a periodic direction, The reference light RX1, RX2 is emitted from the diffraction grating 12 in the X direction by the measurement light MX by the step 302 for emitting the reference light RX1 substantially parallel to the grating pattern surface 12b and the first deflecting unit such as the roof prism 26XA provided on the second member 7. The + 1st order diffracted light DX1 generated with respect to is incident on the diffraction grating 12, and the + 1st order diffracted light EX1 generated from the diffraction grating 12 by the diffracted light DX1 is changed to PB The first-order diffracted light DX2 generated from the diffraction grating 12 in the X direction by the measurement light MX is caused by the step 304 to enter the member 24X and the second deflection unit such as the roof prism 26XB provided on the second member 7. 12, the step 306 in which the first-order diffracted light EX2 generated from the diffraction grating 12 by the diffracted light DX2 is incident on the PBS member 24X, and the diffracted light EX1 and EX2 and the reference light RX1 and RX2 are superimposed on the PBS member 24X. Step 308 for matching, and step 310 for detecting the interference light between the diffracted beams EX1 and EX2 and the reference beams RX1 and RX2 and determining the relative movement amount between the first member 6 and the second member 7 based on the detection result. Contains.

本実施形態によれば、計測光MXを回折格子12の格子パターン12aに入射させるPBS部材24Xが、参照光RX1,RX2と回折光EX1,EX2とを重ね合わせる部材を兼用しているため、光学系が簡素化できる。
さらに、エンコーダ10は、PBS部材24Xで重ね合わされた光(回折光EX1,EX2及び参照光RX1,RX2)を光電検出する光電センサ40XA,40XB(光電検出器)、及び光電センサ40XA,40XBの検出信号を用いて第1部材6と第2部材7との相対移動量を求める計測演算部42(計測部)を備えているため、第1部材6と第2部材7との相対移動量を高精度に求めることができる。
According to the present embodiment, the PBS member 24X that causes the measurement light MX to enter the grating pattern 12a of the diffraction grating 12 also serves as a member that superimposes the reference light RX1, RX2 and the diffracted light EX1, EX2. The system can be simplified.
Furthermore, the encoder 10 detects photoelectric sensors 40XA and 40XB (photoelectric detectors) that detect light (diffracted lights EX1 and EX2 and reference lights RX1 and RX2) superimposed by the PBS member 24X, and photoelectric sensors 40XA and 40XB. Since the measurement calculation unit 42 (measurement unit) for obtaining the relative movement amount between the first member 6 and the second member 7 using the signal is provided, the relative movement amount between the first member 6 and the second member 7 is increased. The accuracy can be obtained.

さらに、回折光偏向部材25Xによって、回折光DX1,DX2が回折格子12に入射するときの入射角をほぼ0にする場合には、第1部材6と第2部材7との相対位置が変化して、PBS部材24X(検出ヘッド14)に対する回折格子12の格子パターン面12bの相対的な高さ(Z方向の位置)が変化しても、回折光DX1,DX2による回折格子12からの回折光EX1,EX2(再回折光)の光路の変動がほとんどなくなり、回折光EX1,EX2と参照光RX1,RX2との横方向の相対的なシフト量がほぼ0になる。従って、回折格子12の格子パターン面12bの高さの変化に対して干渉光のビート信号(位置情報を含む信号)の強度の低下がなくなり、第1部材6と第2部材7との相対移動量の計測精度を高く維持できる。また、仮に第1部材6と第2部材7とのX方向、Y方向の相対位置が固定されている場合には、光電センサ40XAの検出信号から第1部材6と第2部材7とのZ方向の相対移動量を計測できる。   Further, when the incident angle when the diffracted light DX1 and DX2 are incident on the diffraction grating 12 is made substantially zero by the diffracted light deflecting member 25X, the relative position between the first member 6 and the second member 7 changes. Even if the relative height (position in the Z direction) of the grating pattern surface 12b of the diffraction grating 12 with respect to the PBS member 24X (detection head 14) changes, the diffracted light from the diffraction grating 12 by the diffracted lights DX1 and DX2 The optical path fluctuations of EX1 and EX2 (re-diffracted light) are almost eliminated, and the relative shift amount in the lateral direction between the diffracted lights EX1 and EX2 and the reference lights RX1 and RX2 becomes almost zero. Therefore, the intensity of the beat signal (signal including position information) of the interference light is not reduced with respect to the change in the height of the grating pattern surface 12b of the diffraction grating 12, and the relative movement between the first member 6 and the second member 7 is eliminated. High measurement accuracy of quantity can be maintained. Further, if the relative positions of the first member 6 and the second member 7 in the X direction and the Y direction are fixed, the Z of the first member 6 and the second member 7 is detected from the detection signal of the photoelectric sensor 40XA. The relative movement amount in the direction can be measured.

さらに、エンコーダ10は、PBS部材24Yにより回折格子12に垂直に(概ね垂直に)計測光MYを入射させ、回折格子12から計測光MYによってY方向に発生する±1次回折光DY1,DY2を入射角がほぼ0で回折格子12に入射させる反射部25YA,25YBと、回折格子12から回折光DY1,DY2によって発生する±1次回折光EY1,EX2と参照光RY1,RY2との干渉光を検出する光電センサ40YA,40YBと、を備えている。このため、回折格子12の格子パターン面12bの相対的な高さが変化しても、光電センサ40YA,40YBの検出信号から、第1部材6と第2部材7とのY方向の相対移動量を高精度に計測できる。   Further, the encoder 10 causes the measurement light MY to enter the diffraction grating 12 vertically (substantially perpendicularly) by the PBS member 24Y, and the ± first-order diffracted lights DY1 and DY2 generated in the Y direction by the measurement light MY from the diffraction grating 12 enter. Reflecting portions 25YA and 25YB incident on the diffraction grating 12 with an angle of approximately 0, and interference light between the ± first-order diffracted lights EY1 and EX2 and the reference lights RY1 and RY2 generated by the diffracted lights DY1 and DY2 from the diffraction grating 12 are detected. Photoelectric sensors 40YA and 40YB. Therefore, even if the relative height of the grating pattern surface 12b of the diffraction grating 12 changes, the relative movement amount in the Y direction between the first member 6 and the second member 7 from the detection signals of the photoelectric sensors 40YA and 40YB. Can be measured with high accuracy.

また、ルーフプリズム26XA(第1の偏向部)の回折光DX1及びEX1の入射面に付加部材28XAによって段差が設けられ、反射部材30Xの部材30XA,30XBの反射面に段差が設けられているため、回折光EX1のPBS面A11における入射位置を高精度に制御できる。
なお、上記の実施形態では以下のような変形が可能である。
Further, a step is provided by the additional member 28XA on the incident surface of the diffracted light DX1 and EX1 of the roof prism 26XA (first deflection unit), and a step is provided on the reflection surfaces of the members 30XA and 30XB of the reflection member 30X. The incident position of the diffracted light EX1 on the PBS surface A11 can be controlled with high accuracy.
In the above embodiment, the following modifications are possible.

上記の実施形態では2次元の回折格子12が使用されているが、回折格子12の代わりに例えばX方向にのみ周期性を持つ1次元の回折格子を使用してもよい。この場合、検出ヘッド14からは、Y軸の干渉計部15Y及び光電センサ40YA,40YB等を省略し、光電センサ40XA,40XBの検出信号を用いて第1部材6と第2部材7とのX方向及びZ方向の相対移動量を計測できる。また、回折格子の周期方向(ピッチ方向)は、X方向又はY方向と非平行であってもよい。例えば周期方向がX方向に対して45度をなす方向や、X方向又はY方向に対して数mrad程度傾いた方向であってもよい。
また、回折格子12から1回目の回折で発生する回折光DX1,DX2をそれぞれ参照光RX1,RX2と重ね合わせて検出してもよい。
In the above-described embodiment, the two-dimensional diffraction grating 12 is used. However, a one-dimensional diffraction grating having periodicity only in the X direction may be used instead of the diffraction grating 12. In this case, the Y-axis interferometer unit 15Y and the photoelectric sensors 40YA and 40YB are omitted from the detection head 14, and the X of the first member 6 and the second member 7 is detected using the detection signals of the photoelectric sensors 40XA and 40XB. The relative movement amount in the direction and the Z direction can be measured. Further, the periodic direction (pitch direction) of the diffraction grating may be non-parallel to the X direction or the Y direction. For example, the direction may be a direction in which the periodic direction forms 45 degrees with respect to the X direction, or a direction inclined by several mrad with respect to the X direction or the Y direction.
Further, the diffracted lights DX1 and DX2 generated by the first diffraction from the diffraction grating 12 may be detected by being superimposed on the reference lights RX1 and RX2, respectively.

また、上記の実施形態では、回折光EX1〜EY2と参照光RX1〜RY2との干渉光を検出しているが、例えばX軸の第1の周波数の計測光の+1次回折光EX1と第2の周波数の計測光(上記の実施形態では参照光として使用されていた光)の−1次回折光EX2との干渉光、及びY軸の第1の周波数の計測光の+1次回折光EY1と第2の周波数の計測光の−1次回折光EY2との干渉光を検出してもよい。この場合には、第1部材6と第2部材7とのX方向、Y方向の相対移動量を計測できるとともに、回折格子12の格子パターン面12bの相対的な高さが変動しても、2つの回折光の横ずれがないため、常に高いSN比で高精度に計測を行うことができる。   In the above embodiment, the interference light between the diffracted lights EX1 to EY2 and the reference lights RX1 to RY2 is detected. For example, the + first-order diffracted light EX1 and the second diffracted light EX1 of the measurement light having the first frequency on the X axis are detected. Interfering light of frequency measuring light (light used as reference light in the above embodiment) with −1st order diffracted light EX2, and + 1st order diffracted light EY1 and second light of measuring light having a first frequency on the Y axis You may detect the interference light with -1st order diffracted light EY2 of the frequency measurement light. In this case, the relative movement amount in the X direction and the Y direction between the first member 6 and the second member 7 can be measured, and even if the relative height of the grating pattern surface 12b of the diffraction grating 12 varies, Since there is no lateral shift of the two diffracted lights, measurement can be performed with high SN ratio and high accuracy at all times.

次に、上記の実施形態では、回折格子12から発生する回折光DX1,EX1はそれぞれルーフプリズム26XAを介して反射部材28XA,30XAに入射している。しかしながら、図5(A)の変形例のX軸の干渉計部15XAの要部で示すように、ルーフプリズム26XAの代わりに、直交する反射面A33,A34を有するルーフミラー44XA(図5(B)参照)及び頂角α3の楔形プリズム46XAを使用してもよい。この場合には、ルーフプリズム26XBの代わりに、ルーフミラー44XB及び楔形プリズム46XBを使用してもよい。さらに、反射部材30Xの代わりに、4個の直角プリズム側の反射部材47XA,47XB及び48XA,48XBを使用してもよい。ルーフミラー44XA,44XBを使用することによって、干渉計部15XAの回折光偏向部材25XAが軽量化できる場合がある。なお、楔形プリズム46XA,46XBは省略してもよい。同様に、反射部材28XA,30XA等として、平面ミラーを使用してもよい。   Next, in the above embodiment, the diffracted lights DX1 and EX1 generated from the diffraction grating 12 are incident on the reflecting members 28XA and 30XA via the roof prism 26XA, respectively. However, as shown in the main part of the X-axis interferometer 15XA in the modification of FIG. 5A, a roof mirror 44XA having orthogonal reflecting surfaces A33 and A34 instead of the roof prism 26XA (FIG. 5B )) And a wedge prism 46XA having an apex angle α3. In this case, a roof mirror 44XB and a wedge prism 46XB may be used instead of the roof prism 26XB. Further, instead of the reflecting member 30X, four right-angle prism side reflecting members 47XA, 47XB and 48XA, 48XB may be used. By using the roof mirrors 44XA and 44XB, the diffracted light deflection member 25XA of the interferometer unit 15XA may be reduced in weight. The wedge prisms 46XA and 46XB may be omitted. Similarly, a plane mirror may be used as the reflecting members 28XA and 30XA.

また、上述の実施形態において、X方向(第1方向)と直交するY方向(第2方向)を含む面に関して、反射部材30Xの反射面A18(第3面)とルーフプリズム26XBの反射面A24(第5反射面)とを互いに逆側に配置してもよい。
さらに、反射部材30Xの反射面A16(第7反射面)及び反射面A26(第8反射面)をY方向に沿って配置してもよい。
また、図6(B)に示すように、格子パターン12aにおいて計測光MXが入射する位置と、回折光DX1,DX2が入射する位置とを、Y方向(非計測方向)に沿った直線上にしてもよい。
In the above-described embodiment, the reflection surface A18 (third surface) of the reflection member 30X and the reflection surface A24 of the roof prism 26XB with respect to the surface including the Y direction (second direction) orthogonal to the X direction (first direction). (5th reflective surface) may be arrange | positioned on the opposite side mutually.
Further, the reflecting surface A16 (seventh reflecting surface) and the reflecting surface A26 (eighth reflecting surface) of the reflecting member 30X may be arranged along the Y direction.
Further, as shown in FIG. 6B, the position where the measurement light MX is incident and the position where the diffracted lights DX1 and DX2 are incident on the lattice pattern 12a are on a straight line along the Y direction (non-measurement direction). May be.

以下、図6及び図7を参照して説明する。図6(A)は、図1中の干渉計部15XのPBS部材24XB及び回折光偏向部材25XBを示す図である。また、図6(B)は、格子パターン12aにおいて計測光MXが入射する位置と、回折光DX1,DX2が入射する位置とを示す図である。また、図7(A)は、図6(A)の上面図であり、図7(B)は、図6(A)の側面図である。なお、図6及び図7において、図1〜図5と同じ機能を有する部材には同じ符号を付してある。   Hereinafter, a description will be given with reference to FIGS. 6 and 7. FIG. 6A is a diagram showing the PBS member 24XB and the diffracted light deflection member 25XB of the interferometer unit 15X in FIG. FIG. 6B is a diagram showing a position where the measurement light MX is incident on the grating pattern 12a and a position where the diffracted lights DX1 and DX2 are incident. FIG. 7A is a top view of FIG. 6A, and FIG. 7B is a side view of FIG. 6A. 6 and 7, members having the same functions as those in FIGS. 1 to 5 are denoted by the same reference numerals.

図6(A)において、PBS部材24XBは、XY面に対してX軸の回りに45°で傾斜したPBS面A11と、XY面に平行な2面と、YZ面に平行な2面と、ZX面に平行な1面との5面で囲まれた四角柱形状である。回折光偏向部材25XBのルーフプリズム26XAおよび回折光偏向部材25XBのループプリズム26XBは、図1〜図5に示した第1実施形態と同様の構成であるため、説明を省略する。   6A, the PBS member 24XB includes a PBS surface A11 inclined at 45 ° around the X axis with respect to the XY plane, two surfaces parallel to the XY surface, and two surfaces parallel to the YZ surface, It is a quadrangular prism shape surrounded by five planes, one plane parallel to the ZX plane. The roof prism 26XA of the diffracted light deflecting member 25XB and the loop prism 26XB of the diffracted light deflecting member 25XB have the same configuration as that of the first embodiment shown in FIGS.

以下、図6(A)、図7(A)及び図7(B)を参照して光路を説明する。図1に示した分岐部32Xから射出された計測光MXは、PBS面A11に対するS偏光として−Y方向に向けてPBS面A11に入射してPBS面A11でほぼ−Z方向に反射されて、回折格子12Xの格子パターン面12b(格子パターン12a)に垂直に(Z軸に平行に)入射する。一方、分岐部32Xから射出された参照光RX1,RX2はPBS面A11に対するP偏光としてほぼ−Y方向に向けてPBS面A11に入射してPBS面A11を透過する。ここで、第1実施形態と同様に、計測光MXは、Z軸に平行な軸に対してX方向(θy方向)及び/又はY方向(θx方向)に例えば0.5〜1.5°程度傾斜させて格子パターン面12bに概ね垂直に入射させてもよい。   Hereinafter, the optical path will be described with reference to FIGS. 6 (A), 7 (A), and 7 (B). The measurement light MX emitted from the branch part 32X shown in FIG. 1 is incident on the PBS surface A11 in the -Y direction as S-polarized light with respect to the PBS surface A11, and is reflected in the -Z direction by the PBS surface A11. Incident perpendicularly (parallel to the Z axis) to the grating pattern surface 12b (grating pattern 12a) of the diffraction grating 12X. On the other hand, the reference beams RX1 and RX2 emitted from the branching section 32X are incident on the PBS surface A11 in the approximately −Y direction as P-polarized light with respect to the PBS surface A11 and are transmitted through the PBS surface A11. Here, as in the first embodiment, the measurement light MX is, for example, 0.5 to 1.5 ° in the X direction (θy direction) and / or the Y direction (θx direction) with respect to an axis parallel to the Z axis. It may be tilted to a certain extent and enter the grating pattern surface 12b substantially perpendicularly.

本例において、垂直に回折格子12の格子パターン面12bに入射する計測光MXによって、X方向に対称に±1次回折光DX1,DX2が発生する。発生した回折光DX1はルーフプリズム26XAの入射面に入射し、回折光DX2はルーフプリズム26XBの入射面に入射する。+1次回折光DX1は、ルーフプリズム26XAの入射面A12及び反射面A13,A14を介して+Y方向にシフトして、かつX軸に平行に−X方向に向けて射出面A15を介して、反射部材50Xに入射する。   In this example, ± first-order diffracted lights DX1 and DX2 are generated symmetrically in the X direction by the measurement light MX incident on the grating pattern surface 12b of the diffraction grating 12 vertically. The generated diffracted light DX1 enters the incident surface of the roof prism 26XA, and the diffracted light DX2 enters the incident surface of the roof prism 26XB. The + 1st-order diffracted light DX1 is shifted in the + Y direction via the incident surface A12 and the reflective surfaces A13 and A14 of the roof prism 26XA, and is directed to the -X direction parallel to the X axis via the exit surface A15 and the reflecting member. Incident on 50X.

この反射部材50Xは、互いに直交する反射面A31,A41を有するV字形状の反射部材51Xと、当該反射部材51Xの反射面A31の一部分に当接し且つ反射面A32を有する平行平面板状の反射部材51XAと、反射部材51Xの反射面A41の一部分に当接し且つ反射面A42を有する平行平面板状の反射部材51XBとを有している。ここで、反射部材50Xの2つの反射面A31,A41の稜線は−Z方向側に向けられており、各反射面A31,A41は、XY面に対して角度±45度で傾斜している。   The reflecting member 50X includes a V-shaped reflecting member 51X having reflecting surfaces A31 and A41 orthogonal to each other, and a parallel flat plate-like reflecting member that is in contact with a part of the reflecting surface A31 of the reflecting member 51X and has a reflecting surface A32. It has a member 51XA and a parallel flat plate-like reflecting member 51XB that abuts a part of the reflecting surface A41 of the reflecting member 51X and has a reflecting surface A42. Here, the ridge lines of the two reflection surfaces A31 and A41 of the reflection member 50X are directed to the −Z direction side, and each reflection surface A31 and A41 is inclined at an angle of ± 45 degrees with respect to the XY plane.

そして、反射部材51Xの反射面A31で反射された回折光DX1は、PBS部材24XBの+Y方向側を通過して回折格子12の格子パターン面12bに概ね垂直に入射する。また、−1次回折光DX2は、ルーフプリズム26XBの反射面A23,A24等を介して−Y方向にシフトして、かつX軸に平行に+X方向に向けて反射部材51Xに入射し、反射部材51Xの反射面A41で反射された回折光DX2は、PBS部材24XBにおけるPBS面A11の−Y方向側を通過して、回折格子12の格子パターン12aに概ね垂直に入射する。   The diffracted light DX1 reflected by the reflecting surface A31 of the reflecting member 51X passes through the + Y direction side of the PBS member 24XB and enters the grating pattern surface 12b of the diffraction grating 12 substantially perpendicularly. Further, the −1st order diffracted light DX2 is shifted in the −Y direction via the reflecting surfaces A23, A24, etc. of the roof prism 26XB, and is incident on the reflecting member 51X in the + X direction parallel to the X axis. The diffracted light DX2 reflected by the 51X reflecting surface A41 passes through the −Y direction side of the PBS surface A11 of the PBS member 24XB and is incident on the grating pattern 12a of the diffraction grating 12 substantially perpendicularly.

図2(B)に示すように、格子パターン12aにおいて計測光MXが入射する位置に対して、回折光DX1,DX2が入射する位置は、Y方向に対称に間隔b1だけシフトしている。間隔b1は、PBS部材24XのY方向の幅のほぼ1/3である。このような配置で計測光MX及び回折光DX1,DX2を回折格子12に入射させることで、干渉計部15Xの構成を小型化できる。ただし、間隔b1は任意である。また、回折光DX1,DX2の入射位置はほぼ計測光MXの入射位置をY方向に挟むように配置されていればよい。   As shown in FIG. 2B, the position where the diffracted lights DX1 and DX2 are incident is shifted symmetrically in the Y direction by the interval b1 with respect to the position where the measurement light MX is incident on the grating pattern 12a. The interval b1 is approximately 1/3 of the width of the PBS member 24X in the Y direction. By making the measurement light MX and the diffracted lights DX1 and DX2 enter the diffraction grating 12 with such an arrangement, the configuration of the interferometer unit 15X can be reduced in size. However, the interval b1 is arbitrary. The incident positions of the diffracted beams DX1 and DX2 may be arranged so that the incident position of the measuring beam MX is substantially sandwiched in the Y direction.

反射部材51Xで反射された回折光DX1,DX2によって回折格子12からX方向に対称に+1次回折光EX1及び−1次回折光EX2(再回折光)が発生し、発生した回折光EX1は、ルーフプリズム26XAの入射面A12及び反射面A14,A13を介して−Y方向にシフトして、かつX軸に平行に−X方向に向けて反射部材51XAに入射する。そして、反射部材51XAの反射面A32で反射されたS偏光の回折光EX1は、PBS部材24XBのPBS面A11で反射されてほぼ−Y方向にPBS部材24XBから射出される。そして、回折光EX2は、ルーフプリズム26XBの入射面及び反射面A23,A24を介して+Y方向にシフトして、かつX軸に平行に+X方向に向けて反射部材51XBに入射する。そして、反射部材51XBの反射面A42で反射されたS偏光の回折光EX2は、PBS面A11で反射されてほぼ−Y方向にPBS部材24Xから射出される。   The diffracted lights DX1 and DX2 reflected by the reflecting member 51X generate + 1st order diffracted light EX1 and −1st order diffracted light EX2 (rediffracted light) symmetrically in the X direction from the diffraction grating 12, and the generated diffracted light EX1 is the roof prism. The light beam is shifted in the −Y direction via the incident surface A12 of 26XA and the reflecting surfaces A14 and A13, and is incident on the reflecting member 51XA in the −X direction parallel to the X axis. Then, the S-polarized diffracted light EX1 reflected by the reflecting surface A32 of the reflecting member 51XA is reflected by the PBS surface A11 of the PBS member 24XB and is emitted from the PBS member 24XB substantially in the −Y direction. The diffracted light EX2 is shifted in the + Y direction via the incident surface of the roof prism 26XB and the reflecting surfaces A23 and A24, and is incident on the reflecting member 51XB in the + X direction parallel to the X axis. Then, the S-polarized diffracted light EX2 reflected by the reflecting surface A42 of the reflecting member 51XB is reflected by the PBS surface A11 and is emitted from the PBS member 24X substantially in the −Y direction.

ここで、回折光EX1は第1参照光RX1と重ね合わせられて(同軸に合成又は合波されて)−Y方向にPBS部材24XBから射出される。これと対称に、回折光EX2は、第2参照光RX2と重ね合わせられて(同軸に合成又は合波されて)−Y方向にPBS部材24XBから射出される。
PBS部材24XBから射出される回折光EX1,EX2並びに第1及び第2参照光WX1,RX2は、上述の第1実施形態と同様の光路を進行するため、ここでは説明を省略する。
Here, the diffracted light EX1 is superimposed on the first reference light RX1 (synthesized or combined coaxially) and emitted from the PBS member 24XB in the −Y direction. In contrast to this, the diffracted light EX2 is superimposed on the second reference light RX2 (synthesized or combined coaxially) and emitted from the PBS member 24XB in the −Y direction.
Since the diffracted beams EX1 and EX2 and the first and second reference beams WX1 and RX2 emitted from the PBS member 24XB travel on the same optical paths as those in the first embodiment, the description thereof is omitted here.

この図6及び図7の例においても、計測光MXを回折格子12の格子パターン12aに入射させるPBS部材24XBが、参照光RX1,RX2と回折光EX1,EX2とを重ね合わせる部材を兼用しているため、光学系が簡素化できる。
また、計測光MXが入射する位置と、回折光DX1,DX2が入射する位置とが計測方向(X方向)において同じ位置であるため、回折格子12の格子パターン面の面精度に起因する計測精度の劣化を低減できる。
In the example of FIGS. 6 and 7 as well, the PBS member 24XB that makes the measurement light MX enter the grating pattern 12a of the diffraction grating 12 also serves as a member that superimposes the reference light RX1, RX2 and the diffracted lights EX1, EX2. Therefore, the optical system can be simplified.
In addition, since the position where the measurement light MX is incident and the position where the diffracted lights DX1 and DX2 are incident are the same position in the measurement direction (X direction), the measurement accuracy due to the surface accuracy of the grating pattern surface of the diffraction grating 12 Can be reduced.

なお、この図6及び図7の例における反射部材50Xの代わりに、それぞれ直交する2つの表面反射面を有する3つのプリズム状の部材で反射部材を構成してもよい。この場合、3つのプリズム状の部材のうち最も大型のプリズム部材を挟んで、2つの小型のプリズム部材が配置される。
また、図6及び図7の例において、第1実施形態と同様に、ルーフプリズム26XA,26XBの底面の−Y方向の半面を覆うように固定された平行平板状の付加部材28XA,28XBを設ける構成としてもよい。
In addition, instead of the reflecting member 50X in the example of FIGS. 6 and 7, the reflecting member may be configured by three prism-shaped members each having two surface reflecting surfaces that are orthogonal to each other. In this case, two small prism members are arranged across the largest prism member among the three prism-shaped members.
6 and 7, similar to the first embodiment, parallel plate-shaped additional members 28XA and 28XB are provided that are fixed so as to cover the half surface in the −Y direction of the bottom surface of the roof prisms 26XA and 26XB. It is good also as a structure.

[第2の実施形態]
本発明の第2の実施形態につき図8〜図10を参照して説明する。図8は、この実施形態に係るエンコーダ装置を備えた露光装置EXの概略構成を示す。露光装置EXは、スキャニングステッパーよりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PL(投影ユニットPU)を備えており、以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルRとウエハWとが相対走査される方向にY軸を、Z軸及びY軸に直交する方向にX軸を取って説明する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 8 shows a schematic configuration of an exposure apparatus EX including the encoder apparatus according to this embodiment. The exposure apparatus EX is a scanning exposure type projection exposure apparatus composed of a scanning stepper. The exposure apparatus EX includes a projection optical system PL (projection unit PU). Hereinafter, the Z-axis is parallel to the optical axis AX of the projection optical system PL, and a plane orthogonal to the Z-axis (a plane substantially parallel to the horizontal plane). In the following description, the Y axis is taken in the direction in which the reticle R and the wafer W are relatively scanned, and the X axis is taken in the direction perpendicular to the Z axis and the Y axis.

露光装置EXは、例えば米国特許出願公開第2003/0025890号明細書などに開示される照明系110、及び照明系110からの露光用の照明光(露光光)IL(例えば波長193nmのArFエキシマレーザ光、固体レーザ(半導体レーザなど)の高調波など)により照明されるレチクルR(マスク)を保持するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWSTを含むステージ装置195、及び制御系等(図10参照)を備えている。   The exposure apparatus EX includes an illumination system 110 disclosed in, for example, US Patent Application Publication No. 2003/0025890, and illumination light (exposure light) IL (for example, an ArF excimer laser having a wavelength of 193 nm) from the illumination system 110 A reticle stage RST that holds a reticle R (mask) illuminated by light, a harmonic of a solid-state laser (such as a semiconductor laser). Further, the exposure apparatus EX includes a projection unit PU including a projection optical system PL that projects the illumination light IL emitted from the reticle R onto the wafer W (substrate), a stage apparatus 195 including a wafer stage WST that holds the wafer W, and A control system or the like (see FIG. 10) is provided.

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図10のレチクルステージ駆動系111によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能である。   The reticle R is held on the upper surface of the reticle stage RST by vacuum suction or the like, and a circuit pattern or the like is formed on the pattern surface (lower surface) of the reticle R. The reticle stage RST can be driven minutely in the XY plane by the reticle stage drive system 111 of FIG. 10 including, for example, a linear motor or the like, and can be driven at a scanning speed specified in the scanning direction (Y direction).

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計116によって、移動鏡115(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、図8のコンピュータよりなる主制御装置120に送られる。主制御装置120は、その計測値に基づいてレチクルステージ駆動系111を制御することで、レチクルステージRSTの位置及び速度を制御する。   Position information in the moving plane of the reticle stage RST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is transferred to the moving mirror 115 (or mirror-finished) by the reticle interferometer 116 including a laser interferometer. For example, it is always detected with a resolution of about 0.5 to 0.1 nm via the stage end face. The measurement value of reticle interferometer 116 is sent to main controller 120 formed of a computer shown in FIG. Main controller 120 controls reticle stage drive system 111 based on the measurement value, thereby controlling the position and speed of reticle stage RST.

図8において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒140と、鏡筒140内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系110からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のレチクルRの回路パターンの像が、ウエハ(半導体ウエハ)Wの一つのショット領域の露光領域IA(照明領域IARと共役な領域)に形成される。   In FIG. 8, the projection unit PU disposed below the reticle stage RST includes a lens barrel 140 and a projection optical system PL having a plurality of optical elements held in a predetermined positional relationship within the lens barrel 140. The projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification β (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). When the illumination area IAR of the reticle R is illuminated by the illumination light IL from the illumination system 110, an image of the circuit pattern of the reticle R in the illumination area IAR via the projection optical system PL by the illumination light IL that has passed through the reticle R. Are formed in an exposure area IA (an area conjugate to the illumination area IAR) of one shot area of the wafer (semiconductor wafer) W.

また、露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子である先端レンズ191を保持する鏡筒140の下端部の周囲を取り囲むように、局所液浸装置108の一部を構成するノズルユニット132が設けられている。ノズルユニット132は、露光用の液体Lq(例えば純水)を供給するための供給管131A及び回収管131Bを介して、液体供給装置186及び液体回収装置189(図10参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置108は設けなくともよい。   In addition, since the exposure apparatus EX performs exposure using the liquid immersion method, the lower end of the lens barrel 140 that holds the tip lens 191 that is an optical element on the most image plane side (wafer W side) constituting the projection optical system PL is used. A nozzle unit 132 constituting a part of the local liquid immersion device 108 is provided so as to surround the periphery of the part. The nozzle unit 132 is connected to a liquid supply device 186 and a liquid recovery device 189 (see FIG. 10) via a supply tube 131A and a recovery tube 131B for supplying an exposure liquid Lq (for example, pure water). . If the immersion type exposure apparatus is not used, the local immersion apparatus 108 may not be provided.

また、ウエハステージWSTは、不図示の複数の例えば真空予圧型空気静圧軸受(エアパッド)を介して、ベース盤112のXY面に平行な上面112aに非接触で支持されている。ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系124(図10参照)によってX方向及びY方向に駆動可能である。露光装置EXは、レチクルRのアライメントを行う空間像計測系(不図示)、ウエハWのアライメントを行うアライメント系AL(図8参照)、照射系90a及び受光系90bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートフォーカスセンサ90(図10参照)、及びウエハステージWSTの位置情報を計測するためのエンコーダ装置8Bを備えている。   Wafer stage WST is supported in a non-contact manner on upper surface 112a parallel to the XY plane of base board 112 via a plurality of, for example, vacuum preload type static air bearings (air pads) (not shown). Wafer stage WST can be driven in the X and Y directions by a stage drive system 124 (see FIG. 10) including, for example, a planar motor or two sets of orthogonal linear motors. The exposure apparatus EX includes an aerial image measurement system (not shown) for aligning the reticle R, an alignment system AL (see FIG. 8) for aligning the wafer W, an irradiation system 90a, and a light receiving system 90b. An oblique incidence type multi-point autofocus sensor 90 (see FIG. 10) for measuring the Z position of the location, and an encoder device 8B for measuring position information of the wafer stage WST are provided.

ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体191と、ステージ本体191上に搭載されたウエハテーブルWTBと、ステージ本体191内に設けられて、ステージ本体191に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。   Wafer stage WST is provided in stage main body 191, stage main body 191 driven in X and Y directions, wafer table WTB mounted on stage main body 191, and wafer table WTB (wafer for stage main body 191). And a Z / leveling mechanism that relatively finely drives the position of W) in the Z direction and the tilt angle in the θx direction and the θy direction. A wafer holder (not shown) that holds the wafer W on a suction surface substantially parallel to the XY plane by vacuum suction or the like is provided at the upper center of the wafer table WTB.

また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きな円形の開口が形成された高平面度の平板状のプレート体128が設けられている。
なお、上述の局所液浸装置108を設けたいわゆる液浸型の露光装置の構成にあっては、さらにプレート体128は、図9のウエハテーブルWTB(ウエハステージWST)の平面図に示されるように、その円形の開口を囲む、外形(輪郭)が矩形の表面に撥液化処理が施されたプレート部(撥液板)128aと、プレート部128aを囲む周辺部128eとを有する。周辺部128eの上面に、プレート部128aをY方向に挟むようにX方向に細長い1対の2次元の回折格子12A,12Bが配置され、プレート部128aをX方向に挟むようにY方向に細長い1対の2次元の回折格子12C,12Dが配置されている。回折格子12A〜12Dは、図1の回折格子12と同様にX方向、Y方向を周期方向とする2次元の格子パターンが形成された反射型の回折格子である。
In addition, the upper surface of wafer table WTB has a surface (or a protective member) that has been subjected to a liquid repellency treatment with respect to liquid Lq and is substantially flush with the surface of the wafer placed on the wafer holder. A flat plate member 128 having a high flatness is provided in which a circular opening is formed in the center of the rectangular shape and a circular opening that is slightly larger than the wafer holder (wafer mounting region).
In the configuration of the so-called immersion type exposure apparatus provided with the above-mentioned local immersion apparatus 108, the plate body 128 is further shown in the plan view of the wafer table WTB (wafer stage WST) in FIG. In addition, a plate portion (liquid repellent plate) 128a surrounding the circular opening and having a liquid repellent treatment on a surface having a rectangular outer shape (outline), and a peripheral portion 128e surrounding the plate portion 128a. A pair of two-dimensional diffraction gratings 12A and 12B elongated in the X direction so as to sandwich the plate portion 128a in the Y direction is disposed on the upper surface of the peripheral portion 128e, and elongated in the Y direction so as to sandwich the plate portion 128a in the X direction. A pair of two-dimensional diffraction gratings 12C and 12D are arranged. The diffraction gratings 12 </ b> A to 12 </ b> D are reflection type diffraction gratings in which a two-dimensional grating pattern having a periodic direction in the X direction and the Y direction is formed as in the diffraction grating 12 of FIG. 1.

また、図8において、投影ユニットPUを支持するフレーム(不図示)に連結部材(不図示)を介してXY面にほぼ平行な平板状の計測フレーム150が支持されている。計測フレーム150の底面に、投影光学系PLをX方向に挟むように、図1の3軸の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定され、投影光学系PLをY方向に挟むように、図1の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定されている(図7参照)。また、複数の検出ヘッド14にレーザ光(計測光及び参照光)を供給するための図1のレーザ光源16と同様の一つ又は複数のレーザ光源(不図示)も備えられている。   In FIG. 8, a flat measurement frame 150 substantially parallel to the XY plane is supported on a frame (not shown) that supports the projection unit PU via a connecting member (not shown). A plurality of detection heads 14 having the same configuration as the triaxial detection head 14 in FIG. 1 are fixed to the bottom surface of the measurement frame 150 so as to sandwich the projection optical system PL in the X direction, and the projection optical system PL is sandwiched in the Y direction. As described above, a plurality of detection heads 14 having the same configuration as the detection head 14 of FIG. 1 are fixed (see FIG. 7). Further, one or a plurality of laser light sources (not shown) similar to the laser light source 16 of FIG. 1 for supplying laser light (measurement light and reference light) to the plurality of detection heads 14 are also provided.

図9において、投影光学系PLからの照明光でウエハWを露光している期間では、常にY方向の一列A1内の複数の検出ヘッド14のいずれか2つが回折格子12A,12Bに対向し、X方向の一行A2の複数の検出ヘッド14のいずれか2つが回折格子12C,12Dに対向するように構成されている。一列A1内の各検出ヘッド14は、回折格子12A又は12Bに計測光を照射し、回折格子12A,12Bから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図10参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めてそれぞれ計測値を切り替え部80Aに供給する。計測値切り替え部80Aでは、回折格子12A,12Bに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。   In FIG. 9, during the period in which the wafer W is exposed with the illumination light from the projection optical system PL, any two of the plurality of detection heads 14 in one row A1 in the Y direction always face the diffraction gratings 12A and 12B. Any two of the plurality of detection heads 14 in one row A2 in the X direction are configured to face the diffraction gratings 12C and 12D. Each of the detection heads 14 in the row A1 irradiates the diffraction grating 12A or 12B with measurement light, and a corresponding measurement calculation unit 42 ( (See FIG. 10). In these measurement calculation units 42, as in the measurement calculation unit 42 in FIG. 1, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the X direction, the Y direction, and the Z direction are set to 0.5 to, for example. Each measurement value is obtained with a resolution of 0.1 nm and supplied to the switching unit 80A. In the measurement value switching unit 80A, information on the relative position supplied from the measurement calculation unit 42 corresponding to the detection head 14 facing the diffraction gratings 12A and 12B is supplied to the main controller 120.

また、一行A2に対応する各検出ヘッド14は、回折格子12C又は12Dに計測光を照射し、回折格子12C,12Dから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図10参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Bに供給する。計測値切り替え部80Bでは、回折格子12C,12Dに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。   Each detection head 14 corresponding to one row A2 irradiates the diffraction grating 12C or 12D with measurement light, and performs a measurement calculation corresponding to a detection signal of interference light between the diffraction light generated from the diffraction gratings 12C and 12D and the reference light. It supplies to the part 42 (refer FIG. 10). In these measurement calculation units 42, as in the measurement calculation unit 42 in FIG. 1, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the X direction, the Y direction, and the Z direction are set to 0.5 to, for example. Obtained with a resolution of 0.1 nm and supplied to the measured value switching unit 80B. In the measurement value switching unit 80B, information on the relative position supplied from the measurement calculation unit 42 corresponding to the detection head 14 facing the diffraction gratings 12C and 12D is supplied to the main controller 120.

一列A1内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12A,12Bから3軸のエンコーダ10Aが構成され、一行A2内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12C,12Dから3軸のエンコーダ10Bが構成されている。そして、3軸のエンコーダ10A,10B、及び計測値切り替え部80A,80Bからエンコーダ装置8Bが構成されている。主制御装置120は、エンコーダ装置8Bから供給される相対位置の情報に基づいて、計測フレーム150(投影光学系PL)に対するウエハステージWSTのX方向、Y方向、Z方向の位置、及びθz方向の回転角等の情報を求め、この情報に基づいてステージ駆動系124を介してウエハステージWSTを駆動する。   A plurality of detection heads 14 in one row A1, a laser light source (not shown), a measurement calculation unit 42, and diffraction gratings 12A and 12B constitute a three-axis encoder 10A. The plurality of detection heads 14 in one row A2 and the laser light source (Not shown), the measurement calculation unit 42, and the diffraction gratings 12C and 12D constitute a three-axis encoder 10B. The encoder device 8B is composed of the three-axis encoders 10A and 10B and the measurement value switching units 80A and 80B. Based on the information on the relative position supplied from encoder device 8B, main controller 120 determines the position of wafer stage WST relative to measurement frame 150 (projection optical system PL) in the X, Y, and Z directions, and in the θz direction. Information such as the rotation angle is obtained, and wafer stage WST is driven via stage drive system 124 based on this information.

そして、露光装置EXの露光時には、先ずレチクルR及びウエハWのアライメントが行われる。その後、レチクルRへの照明光ILの照射を開始して、投影光学系PLを介してレチクルRのパターンの一部の像をウエハWの表面の一つのショット領域に投影しつつ、レチクルステージRSTとウエハステージWSTとを投影光学系PLの投影倍率βを速度比としてY方向に同期して移動(同期走査)する走査露光動作によって、そのショット領域にレチクルRのパターン像が転写される。その後、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作と、上記の走査露光動作とを繰り返すことによって、液浸法でかつステップ・アンド・スキャン方式でウエハWの全部のショット領域にレチクルRのパターン像が転写される。   Then, at the time of exposure by the exposure apparatus EX, alignment of the reticle R and the wafer W is first performed. Thereafter, irradiation of the reticle R with the illumination light IL is started, and an image of a part of the pattern of the reticle R is projected onto one shot area on the surface of the wafer W via the projection optical system PL, while the reticle stage RST. The pattern image of the reticle R is transferred to the shot area by a scanning exposure operation that moves the wafer stage WST in synchronization with the Y direction using the projection magnification β of the projection optical system PL as a speed ratio (synchronous scanning). Thereafter, by repeating the step movement of the wafer W in the X and Y directions via the wafer stage WST and the scanning exposure operation described above, the entire wafer W is immersed by the immersion method and the step-and-scan method. The pattern image of the reticle R is transferred to the shot area.

この際に、エンコーダ装置8Bの検出ヘッド14においては、計測光及び回折光の光路長はレーザ干渉計に比べて短いため、検出ヘッド14を用いた計測値に対する空気揺らぎの影響が非常に小さい。従って、本実施形態のエンコーダ装置8Bは、レーザ干渉計と比較して、空気が揺らぐ程度の短い期間における計測安定性(短期安定性)が格段に優れているため、レチクルRのパターン像をウエハWに高精度に転写できる。さらに、検出ヘッド14は回折格子12A〜12DのZ位置が変化しても常に高いSN比で相対移動量の上方を含む信号を検出できるため、常に高精度にウエハステージWSTを駆動できる。   At this time, in the detection head 14 of the encoder device 8B, since the optical path lengths of the measurement light and the diffracted light are shorter than those of the laser interferometer, the influence of the air fluctuation on the measurement value using the detection head 14 is very small. Accordingly, the encoder device 8B of the present embodiment has much better measurement stability (short-term stability) in a short period of time when the air fluctuates than the laser interferometer. Can be transferred to W with high accuracy. Furthermore, since the detection head 14 can always detect a signal including the upper portion of the relative movement amount with a high SN ratio even if the Z positions of the diffraction gratings 12A to 12D change, the wafer stage WST can always be driven with high accuracy.

なお、本実施形態では、計測フレーム150側に検出ヘッド14を配置し、ウエハステージWST側に回折格子12A〜12Dを配置している。この他の構成として、計測フレーム150側に回折格子12A〜12Dを配置し、ウエハステージWST側に検出ヘッド14を配置してもよい。また、ウエハステージWSTの裏面に回折格子12A〜12Dを配置し、ウエハステージWSTよりも定盤側に検出ヘッド14を配置してもよい。   In the present embodiment, the detection head 14 is arranged on the measurement frame 150 side, and the diffraction gratings 12A to 12D are arranged on the wafer stage WST side. As another configuration, the diffraction gratings 12A to 12D may be arranged on the measurement frame 150 side, and the detection head 14 may be arranged on the wafer stage WST side. Alternatively, diffraction gratings 12A to 12D may be arranged on the back surface of wafer stage WST, and detection head 14 may be arranged on the surface plate side of wafer stage WST.

また、レチクルステージRSTの位置情報を求める際に、レチクル干渉計116の代わりに、又はこれと併用して本実施形態で説明したエンコーダを用いるようにしてもよい。
また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図12に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
Further, when the position information of reticle stage RST is obtained, the encoder described in this embodiment may be used instead of or in combination with reticle interferometer 116.
Further, when an electronic device (or microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the electronic device as shown in FIG. Step 221 for performing a step, Step 222 for fabricating a reticle (mask) based on this design step, Step 223 for fabricating a substrate (wafer) as a base material of the device and applying a resist, and the exposure apparatus ( Substrate processing step 224 including a step of exposing a reticle pattern to a substrate (photosensitive substrate) by an exposure method), a step of developing the exposed substrate, a heating (curing) and etching step of the developed substrate, and a device assembly step (dicing) (Including processing processes such as processes, bonding processes, and packaging processes) 22 And an inspection step 226, and the like.

言い換えると、このデバイスの製造方法は、上記の実施例の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写し、その基板を現像するリソグラフィ工程と、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工する工程(ステップ224のエッチング等)とを含んでいる。この際に、上記の実施例によれば、露光装置のウエハステージWSTの位置を高精度に制御できるため、電子デバイスを高精度に製造できる。   In other words, this device manufacturing method includes a lithography process in which an image of a reticle pattern is transferred to a substrate (wafer) using the exposure apparatus EX (exposure method) of the above embodiment, and the pattern is developed. And a step (such as etching in step 224) of processing the substrate on which the image is transferred on the basis of the image of the pattern. At this time, according to the above-described embodiment, the position of wafer stage WST of the exposure apparatus can be controlled with high accuracy, so that an electronic device can be manufactured with high accuracy.

なお、上述した第1実施形態において、反射部材30Xを、互いに直交する反射面を有するV字形状の反射部材と、当該反射部材の反射面の一部分に当接し且つ表面反射面を有する2つの平行平面板状の反射部材で構成してもよい。
また、上記の実施形態のエンコーダ10は、露光装置以外の検査装置又は計測装置等の検査又は加工対象の物体用の光学系(レーザ光を集光する光学系等)と、その物体を移動する移動装置(ステージ等)とを備えた光学装置において、その移動装置(物体)の例えばその光学系に対する相対移動量を計測するために適用することができる。また、被加工物を移動させる移動装置(ステージ等)を備えたNC工作機械における被加工物の移動量を計測するために適用することもできる。
In the first embodiment described above, the reflecting member 30X is made of a V-shaped reflecting member having reflecting surfaces orthogonal to each other, and two parallel members that are in contact with a part of the reflecting surface of the reflecting member and have a surface reflecting surface. You may comprise with a flat plate-shaped reflective member.
In addition, the encoder 10 of the above-described embodiment moves an optical system for an object to be inspected or processed (such as an optical system for condensing laser light) such as an inspection apparatus or a measurement apparatus other than the exposure apparatus, and the object. In an optical device provided with a moving device (such as a stage), the present invention can be applied to measure the relative movement amount of the moving device (object) with respect to the optical system, for example. The present invention can also be applied to measure the amount of movement of a workpiece in an NC machine tool that includes a moving device (such as a stage) that moves the workpiece.

なお、上記の実施形態においては、ステップ・アンド・スキャン方式の投影露光装置を例に挙げて説明しているが、ステップ・アンド・リピート方式の投影露光装置のエンコーダにも本発明を適用することができる。
また、照明光ILは、ArFエキシマレーザ光(波長193nm)に限らず、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
In the above embodiment, a step-and-scan projection exposure apparatus is described as an example. However, the present invention is also applied to an encoder of a step-and-repeat projection exposure apparatus. Can do.
The illumination light IL is not limited to ArF excimer laser light (wavelength 193 nm), but may be ultraviolet light such as KrF excimer laser light (wavelength 248 nm) or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). good. For example, as disclosed in US Pat. No. 7,023,610, single-wavelength laser light in the infrared region or visible region oscillated from a DFB semiconductor laser or fiber laser is used as vacuum ultraviolet light, for example, erbium. A harmonic which is amplified by a fiber amplifier doped with (or both erbium and ytterbium) and wavelength-converted into ultraviolet light using a nonlinear optical crystal may be used.

また、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
The above-described embodiment can also be applied to an exposure apparatus that uses a charged particle beam such as an electron beam or an ion beam.
In the above-described embodiment, a light transmission mask (reticle) in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate is used. Instead of this reticle, For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable shaping mask, which forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, as disclosed in US Pat. No. 6,778,257. For example, a non-light emitting image display element (spatial light modulator) including a DMD (Digital Micro-mirror Device) may be used.

さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
Further, as disclosed in, for example, US Pat. No. 6,611,316, two reticle patterns are synthesized on a wafer via a projection optical system, and 1 on the wafer by one scan exposure. The above embodiment can also be applied to an exposure apparatus that performs double exposure of two shot areas almost simultaneously.
In the above embodiment, the object on which the pattern is to be formed (the object to be exposed to which the energy beam is irradiated) is not limited to the wafer, but may be another object such as a glass plate, a ceramic substrate, a film member, or a mask blank. good.

露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。   The use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, but for example, an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern to a square glass plate, an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses. Further, in order to manufacture reticles or masks used in not only microdevices such as semiconductor elements but also light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates or silicon wafers, etc. The above embodiment can also be applied to an exposure apparatus that transfers a circuit pattern.

なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。   In addition, this invention is not limited to the above-mentioned embodiment, Of course, a various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、R…レチクル、W…ウエハ、MX,MY…計測光、DX1,DY1,EX1,EY1…+1次回折光、DX2,DY2,EX2,EY2…−1次回折光、6…第1部材、7…第2部材、10…エンコーダ、12…2次元の回折格子、14…検出ヘッド、16…レーザ光源、24X,24Y…PBS(偏光ビームスプリッター)部材、25X,25Y…回折光偏向部材、26XA,26XB,26YA,26YB…ルーフプリズム、40XA,40XB,40YA,40YB,40C…光電センサ、42…計測演算部   EX ... exposure apparatus, R ... reticle, W ... wafer, MX, MY ... measurement light, DX1, DY1, EX1, EY1 ... + 1st order diffracted light, DX2, DY2, EX2, EY2 ... -1st order diffracted light, 6 ... first member 7 ... second member, 10 ... encoder, 12 ... two-dimensional diffraction grating, 14 ... detection head, 16 ... laser light source, 24X, 24Y ... PBS (polarization beam splitter) member, 25X, 25Y ... diffracted light deflecting member, 26XA, 26XB, 26YA, 26YB ... roof prism, 40XA, 40XB, 40YA, 40YB, 40C ... photoelectric sensor, 42 ... measurement calculation unit

Claims (22)

第1方向に関して互いに相対移動可能な第1部材及び第2部材の相対移動量を計測するエンコーダ装置であって、
前記第1部材に設けられ、前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
光源からの光を互いに偏光状態の異なる計測光と参照光とに分岐する分岐部と、
前記第2部材に設けられ、前記計測光を前記回折格子の格子パターンに入射させる第1光学部材と、
前記第2部材に設けられ、前記計測光による前記格子パターンからの回折光を前記第1光学部材に入射させる第2光学部材と、
を備え、
前記分岐部から前記第1光学部材に入射する前記参照光と、前記第2光学部材から前記第1光学部材に入射する前記回折光とを、少なくとも一部重ね合わせた状態で前記第1光学部材から射出することを特徴とするエンコーダ装置。
An encoder device for measuring a relative movement amount of a first member and a second member that can move relative to each other in a first direction,
A reflective diffraction grating provided on the first member and having a grating pattern in which the first direction is a periodic direction;
A branching unit that branches light from the light source into measurement light and reference light having different polarization states;
A first optical member provided on the second member for allowing the measurement light to enter the grating pattern of the diffraction grating;
A second optical member that is provided on the second member and causes the diffracted light from the grating pattern by the measurement light to be incident on the first optical member;
With
The first optical member in a state in which the reference light incident on the first optical member from the branch portion and the diffracted light incident on the first optical member from the second optical member are at least partially overlapped with each other. An encoder device characterized by being injected from
前記第2光学部材は、前記計測光による前記格子パターンからの回折光のうち所定次数の第1回折光を偏向して前記第1光学部材に入射させる第1偏向部と、前記計測光による前記格子パターンからの回折光のうち前記第1回折光とは次数の異なる第2回折光を偏向して前記第1光学部材に入射させる第2偏向部とを備えることを特徴とする請求項1に記載のエンコーダ装置。   The second optical member includes a first deflection unit configured to deflect a first-order diffracted light of a predetermined order out of the diffracted light from the grating pattern by the measurement light and to enter the first optical member; 2. The apparatus according to claim 1, further comprising: a second deflecting unit that deflects second diffracted light having a different order from the first diffracted light out of the diffracted light from the grating pattern and causes the second diffracted light to enter the first optical member. The encoder device described. 前記分岐部は、前記参照光から分岐される第1参照光と第2参照光とを前記第1光学部材に入射させ、
前記第1光学部材に入射した前記第1参照光は、前記第1偏向部からの前記第1回折光と重ね合わされ、
前記第1光学部材に入射した前記第2参照光は、前記第2偏向部からの前記第2回折光と重ね合わされることを特徴とする請求項2に記載のエンコーダ装置。
The branching unit causes the first reference light and the second reference light branched from the reference light to enter the first optical member,
The first reference light incident on the first optical member is superimposed on the first diffracted light from the first deflecting unit,
The encoder apparatus according to claim 2, wherein the second reference light incident on the first optical member is superimposed on the second diffracted light from the second deflecting unit.
前記光源は、互いに異なる偏光状態の前記計測光及び前記参照光を少なくとも互いに一部が重なった状態の光束として前記分岐部に供給し、
前記分岐部は、前記光束から前記計測光及び前記参照光を分離する分離面と、前記分離面で分離された前記参照光から前記第1参照光及び前記第2参照光を分岐する分岐面とを有することを特徴とする請求項2又は3に記載のエンコーダ装置。
The light source supplies the measurement light and the reference light in different polarization states to the branching unit as a light beam in a state where at least part of the measurement light and the reference light overlap each other.
The branch unit includes a separation surface that separates the measurement light and the reference light from the light beam, and a branch surface that branches the first reference light and the second reference light from the reference light separated by the separation surface. The encoder device according to claim 2, wherein the encoder device includes:
前記第1光学部材は、前記分岐部から前記第1光学部材に入射する前記参照光と、前記第2光学部材から前記第1光学部材に入射する前記回折光とが重ね合わせられる位置に設けられた第1面を備えることを特徴とする請求項1乃至4のいずれか一項に記載のエンコーダ装置。   The first optical member is provided at a position where the reference light incident on the first optical member from the branch portion and the diffracted light incident on the first optical member from the second optical member are overlapped. The encoder device according to any one of claims 1 to 4, further comprising a first surface. 前記第1光学部材から前記格子パターンに入射する前記計測光は、前記格子パターンで回折された後に再び前記格子パターンに入射し、
前記第2光学部材は、再び前記格子パターンに入射して前記格子パターンで回折された前記計測光を前記第1光学部材に入射させることを特徴とする請求項1乃至5のいずれか一項に記載のエンコーダ装置。
The measurement light incident on the grating pattern from the first optical member is incident on the grating pattern again after being diffracted by the grating pattern,
The said 2nd optical member injects into the said 1st optical member the said measurement light which entered into the said grating pattern again and was diffracted by the said grating pattern, The 1st to 5 characterized by the above-mentioned. The encoder device described.
前記第2光学部材は、前記計測光による前記格子パターンからの回折光のうち所定次数の第1回折光と、前記計測光による前記格子パターンからの回折光のうち前記第1回折光とは次数の異なる第2回折光とを、前記回折格子の前記格子パターン面に対する前記計測光の入射位置に対して、前記第1方向及び前記第1方向に直交する方向にずれた位置に入射させることを特徴とする請求項6に記載のエンコーダ装置。   The second optical member has an order of the first diffracted light of a predetermined order out of the diffracted light from the grating pattern by the measurement light and the order of the first diffracted light from the diffracted light from the grating pattern by the measurement light. Differently diffracted second diffracted light is incident on a position shifted in the first direction and in a direction perpendicular to the first direction with respect to the incident position of the measurement light with respect to the grating pattern surface of the diffraction grating. The encoder device according to claim 6, wherein 前記第1光学部材は、前記計測光を前記回折格子に垂直に入射させ、
前記第2光学部材は、前記第1及び第2回折光を前記回折格子に垂直に入射させることを特徴とする請求項7に記載のエンコーダ装置。
The first optical member causes the measurement light to enter the diffraction grating perpendicularly,
The encoder apparatus according to claim 7, wherein the second optical member causes the first and second diffracted beams to enter the diffraction grating perpendicularly.
前記第2光学部材は、前記計測光による前記格子パターンからの回折光のうち所定次数の第1回折光を偏向して前記第1光学部材に入射させる第1偏向部と、前記第1計測光による前記格子パターンからの回折光のうち前記第1回折光とは次数の異なる第2回折光を偏向して前記第1光学部材に入射させる第2偏向部とを備え、
前記第1偏向部は、互いに直交する第1及び第2反射面と、該第1及び第2反射面を介した前記第1回折光を前記回折格子に入射させる第3反射面とを有し、
前記第2偏向部は、互いに直交する第4及び第5反射面と、該第4及び第5反射面を介した前記第2回折光を前記回折格子に入射させる第6反射面とを有し、
前記回折格子で回折される前記第3反射面からの前記計測光は、前記第1及び第2反射面を介して前記第1光学部材に入射し、前記回折格子で回折される前記第6反射面からの前記計測光は、前記第4及び第5反射面を介して前記第1光学部材に入射することを特徴とする請求項1乃至8のいずれか一項に記載のエンコーダ装置。
The second optical member includes a first deflecting unit configured to deflect a first-order diffracted light of a predetermined order out of the diffracted light from the grating pattern by the measurement light and to enter the first optical member; and the first measurement light A second deflecting unit that deflects the second diffracted light having a different order from the first diffracted light out of the diffracted light from the grating pattern according to, and enters the first optical member;
The first deflecting unit includes first and second reflecting surfaces that are orthogonal to each other, and a third reflecting surface that causes the first diffracted light to enter the diffraction grating via the first and second reflecting surfaces. ,
The second deflecting unit includes fourth and fifth reflecting surfaces orthogonal to each other, and a sixth reflecting surface that causes the second diffracted light incident on the diffraction grating to enter the diffraction grating via the fourth and fifth reflecting surfaces. ,
The measurement light from the third reflecting surface diffracted by the diffraction grating is incident on the first optical member via the first and second reflecting surfaces and is diffracted by the diffraction grating. The encoder apparatus according to any one of claims 1 to 8, wherein the measurement light from a surface is incident on the first optical member via the fourth and fifth reflecting surfaces.
前記第1及び第2反射面の稜線と前記第4及び第5反射面の稜線とは、前記第1方向と直交する第2方向を含む平面内に位置することを特徴とする請求項1乃至9のいずれか一項に記載のエンコーダ装置。   2. The ridge line of the first and second reflection surfaces and the ridge line of the fourth and fifth reflection surfaces are located in a plane including a second direction orthogonal to the first direction. The encoder device according to any one of claims 9 to 9. 前記回折格子は、前記第1方向及び該第1方向に直交する第2方向を周期方向とする2次元の反射型の回折格子であり、
光源からの光を互いに偏光状態の異なる第2方向用の計測光と第2方向用の参照光とに分岐する第2方向用の分岐部と、
前記第2部材に設けられ、前記第2方向用の計測光を前記回折格子の前記格子パターンに入射させる第3光学部材と、
前記第2部材に設けられ、前記第2方向用の計測光による前記格子パターンからの回折光を前記第3光学部材に入射させる第4光学部材と、
をさらに備え、
前記第2方向用の分岐部から前記第3光学部材に入射する前記第2方向用の参照光と、前記第4光学部材から前記第3光学部材に入射する前記回折光とは、前記第3光学部材で重ね合わされることを特徴とする請求項1乃至9のいずれか一項に記載のエンコーダ装置。
The diffraction grating is a two-dimensional reflection type diffraction grating whose periodic direction is the first direction and a second direction orthogonal to the first direction;
A branching unit for the second direction that splits the light from the light source into the measurement light for the second direction and the reference light for the second direction having different polarization states;
A third optical member that is provided on the second member and makes the measurement light for the second direction incident on the grating pattern of the diffraction grating;
A fourth optical member that is provided on the second member and causes the diffracted light from the grating pattern by the measurement light for the second direction to enter the third optical member;
Further comprising
The reference light for the second direction that enters the third optical member from the branch portion for the second direction and the diffracted light that enters the third optical member from the fourth optical member are the third The encoder device according to any one of claims 1 to 9, wherein the encoder device is overlapped with an optical member.
第1方向に関して互いに相対移動可能な第1部材及び第2部材の相対移動量を計測するエンコーダ装置であって、
前記第1部材に設けられ、前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
光源からの光を計測光と該計測光とは偏光状態が異なる第1及び第2参照光とに分岐する分岐部と、
前記第2部材に設けられ、前記計測光を前記回折格子の前記格子パターンに入射させる第1光学部材と、
前記第2部材に設けられ、前記計測光による前記格子パターンからの回折光のうち所定次数の第1回折光を偏向する第1偏向部と、前記計測光による前記格子パターンからの回折光のうち前記第1回折光とは次数の異なる第2回折光を偏向する第2偏向部と備える第2光学部材と、
を備え、
前記第1回折光は、前記第1偏向部を介して前記格子パターンに再入射して前記格子パターンで回折されて前記第1偏向部に再入射し、
前記第2回折光は、前記第2偏向部を介して前記格子パターンに再入射して前記格子パターンで回折されて前記第2偏向部に再入射し、
前記分岐部からの前記第1及び第2参照光は前記第1光学部材に入射し、
前記第1偏向部に再入射した前記第1回折光は、前記第1光学部材で前記第1参照光と重ね合わせられ、
前記第2偏向部に再入射した前記第2回折光は、前記第1光学部材で前記第2参照光と重ね合わせられることを特徴とするエンコーダ装置。
An encoder device for measuring a relative movement amount of a first member and a second member that can move relative to each other in a first direction,
A reflective diffraction grating provided on the first member and having a grating pattern in which the first direction is a periodic direction;
A branching unit for branching light from a light source into first and second reference lights having different polarization states of the measurement light and the measurement light;
A first optical member provided on the second member for allowing the measurement light to enter the grating pattern of the diffraction grating;
A first deflecting portion provided on the second member for deflecting a first-order diffracted light of a predetermined order out of the diffracted light from the grating pattern by the measurement light; A second optical member provided with a second deflecting unit for deflecting second diffracted light having a different order from the first diffracted light;
With
The first diffracted light re-enters the grating pattern through the first deflecting unit, is diffracted by the grating pattern, and re-enters the first deflecting unit.
The second diffracted light re-enters the grating pattern through the second deflection unit, is diffracted by the grating pattern, and re-enters the second deflection unit.
The first and second reference lights from the branch part are incident on the first optical member,
The first diffracted light re-entering the first deflecting unit is superimposed on the first reference light by the first optical member,
The encoder apparatus according to claim 1, wherein the second diffracted light re-entering the second deflecting unit is superposed on the second reference light by the first optical member.
前記第1偏向部は、互いに直交する第1及び第2反射面と、該第1及び第2反射面を介した前記第1回折光を前記回折格子に入射させる第3反射面とを有し、
前記第2偏向部は、互いに直交する第4及び第5反射面と、該第4及び第5反射面を介した前記第2回折光を前記回折格子に入射させる第6反射面とを有し、
前記回折格子で回折される前記第3反射面からの計測光は、前記第1及び第2反射面を介して前記第1光学部材に入射し、前記回折格子で回折される前記第6反射面からの計測光は、前記第4及び第5反射面を介して前記第1光学部材に入射することを特徴とする請求項12に記載のエンコーダ装置。
The first deflecting unit includes first and second reflecting surfaces that are orthogonal to each other, and a third reflecting surface that causes the first diffracted light to enter the diffraction grating via the first and second reflecting surfaces. ,
The second deflecting unit includes fourth and fifth reflecting surfaces orthogonal to each other, and a sixth reflecting surface that causes the second diffracted light incident on the diffraction grating to enter the diffraction grating via the fourth and fifth reflecting surfaces. ,
Measurement light from the third reflecting surface diffracted by the diffraction grating is incident on the first optical member via the first and second reflecting surfaces, and is diffracted by the diffraction grating. The encoder device according to claim 12, wherein measurement light from the light enters the first optical member via the fourth and fifth reflecting surfaces.
前記第1偏向部は、前記第1及び第2反射面を介した第1回折光を前記第1光学部材に入射させる第7反射面を備え、
前記第2偏向部は、前記第4及び第5反射面を介した第2回折光を前記第1光学部材に入射させる第8反射面を備えることを特徴とする請求項13に記載のエンコーダ装置。
The first deflecting unit includes a seventh reflecting surface that makes the first diffracted light incident on the first optical member through the first and second reflecting surfaces,
The encoder device according to claim 13, wherein the second deflecting unit includes an eighth reflecting surface that causes the second diffracted light that has passed through the fourth and fifth reflecting surfaces to enter the first optical member. .
前記第1方向と直交する第2方向を含む面に関して、前記第3及び第6反射面と前記第7及び第8反射面とは互いに逆側に配置されていることを特徴とする請求項14に記載のエンコーダ装置。   The third and sixth reflecting surfaces and the seventh and eighth reflecting surfaces are arranged on opposite sides of a surface including a second direction orthogonal to the first direction. The encoder device described in 1. 前記第1方向と直交する第2方向を含む面に関して、前記第3反射面と前記第5反射面とは互いに逆側に配置されていることを特徴とする請求項14に記載のエンコーダ装置。   The encoder device according to claim 14, wherein the third reflection surface and the fifth reflection surface are arranged on opposite sides with respect to a surface including a second direction orthogonal to the first direction. 前記第7及び第8反射面は、前記第2方向に沿って配置されていることを特徴とする請求項16に記載のエンコーダ装置。   The encoder device according to claim 16, wherein the seventh and eighth reflecting surfaces are disposed along the second direction. パターンを被露光体に露光する露光装置であって、
フレームと、
前記被露光体を支持するとともに前記フレームに対して少なくとも第1方向に相対移動可能なステージと、
少なくとも前記第1方向への前記フレームと前記ステージとの相対移動量を計測するための請求項1乃至17のいずれか一項に記載のエンコーダ装置と、を備えることを特徴とする露光装置。
An exposure apparatus that exposes a pattern onto an object to be exposed,
Frame,
A stage that supports the object to be exposed and is relatively movable in at least a first direction with respect to the frame;
An exposure apparatus comprising: the encoder device according to any one of claims 1 to 17 for measuring a relative movement amount of at least the frame and the stage in the first direction.
第1方向に関して互いに相対移動可能な第1部材及び第2部材との相対移動量を計測する方法であって、
計測光と該計測光とは偏光状態の異なる参照光とを射出することと、
前記第2部材に設けられた光学部材を介して、前記第1部材に設けられた反射型の回折格子の格子パターンに、前記計測光を入射させることと、
前記計測光によって前記格子パターンから回折光を発生させることと、
前記格子パターンから発生する前記回折光を前記光学部材に入射させることと、
前記参照光を前記光学部材に入射させることと、
前記参照光と前記回折光とを少なくとも一部重ね合わせた状態で前記光学部材から射出することと、
を含むことを特徴とする計測方法。
A method for measuring a relative movement amount between a first member and a second member that can move relative to each other in a first direction,
Emitting measurement light and reference light having different polarization states; and
Making the measurement light incident on a grating pattern of a reflective diffraction grating provided on the first member via an optical member provided on the second member;
Generating diffracted light from the grating pattern by the measurement light;
Making the diffracted light generated from the grating pattern incident on the optical member;
Making the reference light incident on the optical member;
Emitting from the optical member in a state in which the reference light and the diffracted light are at least partially overlapped;
A measurement method comprising:
フレームに対して少なくとも第1方向に相対移動可能なステージに支持された被露光体にパターンを露光する露光方法であって、
少なくとも前記第1方向への前記フレームと前記ステージとの相対移動量を計測するために請求項19に記載の計測方法を用いることを特徴とする露光方法。
An exposure method for exposing a pattern to an object to be exposed supported on a stage that can move relative to a frame in at least a first direction,
An exposure method using the measurement method according to claim 19 in order to measure a relative movement amount of the frame and the stage at least in the first direction.
リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程で、請求項18に記載の露光装置を用いて物体を露光することを特徴とするデバイス製造方法。
A device manufacturing method including a lithography process,
19. A device manufacturing method comprising exposing an object using the exposure apparatus according to claim 18 in the lithography process.
リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程で、請求項20に記載の露光方法を用いて物体を露光することを特徴とするデバイス製造方法。
A device manufacturing method including a lithography process,
21. A device manufacturing method, comprising: exposing an object using the exposure method according to claim 20 in the lithography process.
JP2014148330A 2014-07-18 2014-07-18 Measurement method and encoder device, as well as exposure method and device Pending JP2016024049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148330A JP2016024049A (en) 2014-07-18 2014-07-18 Measurement method and encoder device, as well as exposure method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148330A JP2016024049A (en) 2014-07-18 2014-07-18 Measurement method and encoder device, as well as exposure method and device

Publications (1)

Publication Number Publication Date
JP2016024049A true JP2016024049A (en) 2016-02-08

Family

ID=55270917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148330A Pending JP2016024049A (en) 2014-07-18 2014-07-18 Measurement method and encoder device, as well as exposure method and device

Country Status (1)

Country Link
JP (1) JP2016024049A (en)

Similar Documents

Publication Publication Date Title
US10697805B2 (en) Encoder device, method for measuring moving amount, optical apparatus, exposure apparatus, exposure method and method for producing device
JP6767682B2 (en) Encoder device and exposure device
TWI748363B (en) Measurement device and measurement method, exposure apparatus and exposure method, and device manufacturing method
KR102294481B1 (en) Method for controlling moving body, exposure method, method for manufacturing device, moving body apparatus, and exposure apparatus
KR20140061499A (en) High contrast encoder head
JP6680997B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2014029276A (en) Encoder device, optical device and exposure device
JP6607350B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2016024049A (en) Measurement method and encoder device, as well as exposure method and device
JP2013234997A (en) Encoder device, optical device and exposure device
JP5862857B2 (en) Encoder device, optical device, and exposure device
JP2013101084A (en) Position detection method and device, encoder device and exposure device
JP2012008004A (en) Encoder device, optical device, exposing device, exposing method, and device manufacturing method
JP2011181850A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method
KR102658509B1 (en) Method for controlling moving body, exposure method, method for manufacturing device, moving body apparatus, and exposure apparatus
JP2013026273A (en) Encoder device, optical device, and exposure device
JP2011181851A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method