JP2014029276A - Encoder device, optical device and exposure device - Google Patents

Encoder device, optical device and exposure device Download PDF

Info

Publication number
JP2014029276A
JP2014029276A JP2012169399A JP2012169399A JP2014029276A JP 2014029276 A JP2014029276 A JP 2014029276A JP 2012169399 A JP2012169399 A JP 2012169399A JP 2012169399 A JP2012169399 A JP 2012169399A JP 2014029276 A JP2014029276 A JP 2014029276A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
measurement
lights
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012169399A
Other languages
Japanese (ja)
Inventor
Zhiqiang Liu
志強 劉
Kiyoshi Uchikawa
清 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012169399A priority Critical patent/JP2014029276A/en
Publication of JP2014029276A publication Critical patent/JP2014029276A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress a light amount loss of reference light upon measurement of a relative movement amount using a diffraction grating.SOLUTION: An encoder 10 comprises: a diffraction grating 12 that is provided in a first member 6 and has an X direction as a periodical direction; a laser light source 16 that emits measurement light MX and reference light RX; a polarization beam splitting (PBS) member 24X that is provided in a second member 7, enters the measurement light MX almost vertically to the diffraction grating 12 and emits the reference light RX in a direction different from the measurement light MX; and a reference member 32X that is provided in the second member 7, deflects the reference light RX via reflection surfaces 32Xa and 32Xb by the almost same angles as mutually different two diffraction angles in the diffraction grating 12 and reflects the deflected reference light RX to the PBS member 24X as reference light RX1 and RX2.

Description

本発明は、相対移動する部材間の相対移動量を計測するエンコーダ装置、このエンコーダ装置を備える光学装置及び露光装置、並びにこの露光装置を用いたデバイス製造方法に関する。   The present invention relates to an encoder apparatus for measuring a relative movement amount between relatively moving members, an optical apparatus and an exposure apparatus including the encoder apparatus, and a device manufacturing method using the exposure apparatus.

半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光対象の基板を移動するステージの位置計測はレーザ干渉計によって行われていた。ところが、レーザ干渉計では、計測用ビームの光路が長く、かつ変化するため、その光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。   In an exposure apparatus such as a so-called stepper or scanning stepper used in a photolithography process for producing an electronic device (microdevice) such as a semiconductor element, the position measurement of a stage that moves a substrate to be exposed has conventionally been a laser. It was done by an interferometer. However, in the laser interferometer, since the optical path of the measurement beam is long and changes, short-term fluctuations in measured values due to temperature fluctuations in the atmosphere on the optical path are becoming difficult to ignore.

そこで、例えばステージに固定された回折格子にレーザ光よりなる計測光を照射し、回折格子から発生する回折光と他の回折光又は参照光との干渉光を光電変換して得られる検出信号から、その回折格子が設けられた部材(ステージ等)の相対移動量を計測する、いわゆるエンコーダ装置(干渉型エンコーダ)も使用されつつある(例えば特許文献1参照)。このエンコーダ装置は、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能が得られるようになってきている。   Therefore, for example, from a detection signal obtained by irradiating the diffraction grating fixed to the stage with measurement light made of laser light and photoelectrically converting interference light between the diffracted light generated from the diffraction grating and other diffracted light or reference light A so-called encoder device (interference encoder) that measures the relative movement amount of a member (such as a stage) provided with the diffraction grating is also being used (see, for example, Patent Document 1). This encoder device is excellent in short-term stability of measurement values as compared with a laser interferometer, and has a resolution close to that of a laser interferometer.

国際公開第2008/029757号パンフレットInternational Publication No. 2008/029757 Pamphlet

従来のエンコーダ装置において、例えばコヒーレント長が比較的短いレーザ光を使用する場合には、回折光と参照光との光路長の差を短縮することが好ましい。ところが、回折光と参照光との光路長の差を短縮するために、例えば回折光用の光学系と参照光用の光学系とをほぼ対称にして、参照光も例えば参照用の回折格子に入射させるものとすると、参照光の光量損失が大きくなるという問題がある。   In a conventional encoder device, for example, when laser light having a relatively short coherent length is used, it is preferable to reduce a difference in optical path length between diffracted light and reference light. However, in order to shorten the optical path length difference between the diffracted light and the reference light, for example, the optical system for the diffracted light and the optical system for the reference light are made almost symmetrical, and the reference light is also changed to the reference diffraction grating, for example. If it is made incident, there is a problem that the light amount loss of the reference light becomes large.

本発明の態様は、このような課題に鑑み、回折格子を用いて相対移動量を計測する際に、参照光の光量損失を抑制することを目的とする。   In view of such a problem, an aspect of the present invention aims to suppress a light amount loss of reference light when measuring a relative movement amount using a diffraction grating.

本発明の第1の態様によれば、第1部材と該第1部材に対して少なくとも第1方向に相対移動可能に支持された第2部材との相対移動量を計測するエンコーダ装置が提供される。このエンコーダ装置は、その第1部材に設けられ、少なくともその第1方向を周期方向とする格子パターンを有する反射型の回折格子と、計測光及び参照光を射出する光源部と、その第2部材に設けられ、その計測光をその回折格子の格子パターン面に概ね垂直に入射させて、その参照光をその計測光と異なる方向に射出する第1光学部材と、その第2部材に設けられ、その第1光学部材から入射するその参照光又はこの参照光から分岐された光束を反射する少なくとも一つの反射面を持ち、その参照光をその回折格子における互いに異なる2つの回折角と概ね同じ角度だけ偏向させて第1及び第2参照光としてその第1光学部材に向けて反射する第1参照部材と、その第2部材に設けられて、その計測光によってその回折格子からその第1方向に関して発生する互いに異なる次数の第1及び第2回折光がその第1光学部材を介して入射するとともに、その第1及び第2回折光と、その第1光学部材を介して入射するその第1及び第2参照光との第1及び第2干渉光を生成する第1及び第2反射部と、その第1及び第2干渉光をそれぞれ検出する第1及び第2光電検出器と、その第1及び第2光電検出器の検出信号を用いてその第1部材とその第2部材との相対移動量を求める計測部と、を備えるものである。   According to the first aspect of the present invention, there is provided an encoder apparatus for measuring a relative movement amount between a first member and a second member supported so as to be relatively movable in at least a first direction with respect to the first member. The The encoder device includes a reflective diffraction grating having a grating pattern having a periodic direction at least in the first direction, a light source unit that emits measurement light and reference light, and a second member. A first optical member that causes the measurement light to enter the grating pattern surface of the diffraction grating substantially perpendicularly and emits the reference light in a direction different from the measurement light, and the second member. It has at least one reflecting surface that reflects the reference light incident from the first optical member or a light beam branched from the reference light, and the reference light is approximately the same angle as two different diffraction angles in the diffraction grating. A first reference member that is deflected and reflected toward the first optical member as first and second reference light, and a first reference member that is provided on the second member and that is reflected from the diffraction grating by the measurement light. The first and second diffracted light beams of different orders generated with respect to the direction are incident through the first optical member, and the first and second diffracted light beams and the first diffracted light incident through the first optical member are incident on the first optical member. First and second reflection units that generate first and second interference lights with the first and second reference lights, first and second photoelectric detectors that respectively detect the first and second interference lights, and A measurement unit that obtains a relative movement amount between the first member and the second member using detection signals of the first and second photoelectric detectors.

また、第2の態様によれば、第1の態様のエンコーダ装置と、対象物用の光学系と、を備える光学装置が提供される。
また、第3の態様によれば、パターンを被露光体に露光する露光装置であって、フレームと、その被露光体を支持するとともにそのフレームに対して少なくとも第1方向に相対移動可能なステージと、少なくともその第1方向へのそのフレームとそのステージとの相対移動量を計測するための第1の態様のエンコーダ装置と、を備える露光装置が提供される。
Moreover, according to the 2nd aspect, an optical apparatus provided with the encoder apparatus of a 1st aspect and the optical system for objects is provided.
According to the third aspect, there is provided an exposure apparatus that exposes a pattern onto an object to be exposed, the stage supporting the frame and the object to be exposed and movable relative to the frame in at least the first direction. And an encoder apparatus according to a first aspect for measuring a relative movement amount of the frame and the stage in the first direction at least.

また、第4の様態によれば、リソグラフィ工程を含み、そのリソグラフィ工程で第3の態様の露光装置を用いて物体を露光するデバイス製造方法が提供される。   Moreover, according to the 4th aspect, the device manufacturing method which exposes an object using the exposure apparatus of a 3rd aspect in the lithography process including the lithography process is provided.

本発明の態様によれば、その参照光をその回折格子における互いに異なる2つの回折角と概ね同じ角度だけ偏向させて第1及び第2参照光としてその第1光学部材に向けて反射する第1参照部材は、少なくとも一つの反射面を持っている。従って、参照光の光量損失を抑制できる。   According to the aspect of the present invention, the reference light is deflected by approximately the same angle as two different diffraction angles in the diffraction grating and reflected toward the first optical member as first and second reference light. The reference member has at least one reflecting surface. Therefore, it is possible to suppress the light amount loss of the reference light.

第1の実施形態に係るエンコーダを示す平面図である。It is a top view which shows the encoder which concerns on 1st Embodiment. (A)は図1中のX軸の干渉計部及び回折格子を示す斜視図、(B)は図2(A)中の計測光及び回折光の照射位置を示す平面図である。(A) is a perspective view which shows the interferometer part and diffraction grating of the X-axis in FIG. 1, (B) is a top view which shows the irradiation position of the measurement light and diffraction light in FIG. 2 (A). (A)は図1中のX軸の干渉計部及び参照部材を示す斜視図、(B)は図3(A)中の参照部材を示す平面図である。(A) is a perspective view which shows the interferometer part and reference member of the X-axis in FIG. 1, (B) is a top view which shows the reference member in FIG. 3 (A). 図2(A)のX軸の干渉計部において格子パターン面の相対的な高さが変化したときの回折光の光路の変化を示す図である。It is a figure which shows the change of the optical path of diffracted light when the relative height of a grating | lattice pattern surface changes in the interferometer part of the X-axis of FIG. 2 (A). (A)は第1変形例に係るX軸の干渉計部を示す斜視図である。FIG. 8A is a perspective view showing an X-axis interferometer section according to a first modification. (A)は第2変形例に係るX軸の干渉計部を示す斜視図、(B)は図6(A)中の参照部材を示す平面図である。(A) is a perspective view which shows the interferometer part of the X-axis which concerns on a 2nd modification, (B) is a top view which shows the reference member in FIG. 6 (A). (A)は第3変形例に係るX軸の干渉計部を示す斜視図、(B)は図7(A)中の参照部材を示す平面図である。(A) is a perspective view which shows the interferometer part of the X-axis which concerns on a 3rd modification, (B) is a top view which shows the reference member in FIG. 7 (A). 第2の実施形態に係る露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus which concerns on 2nd Embodiment. 図8のウエハステージに設けられた回折格子及び複数の検出ヘッドの配置の一例を示す平面図である。FIG. 9 is a plan view showing an example of the arrangement of diffraction gratings and a plurality of detection heads provided on the wafer stage of FIG. 8. 図8の露光装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the exposure apparatus of FIG. 電子デバイスの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of an electronic device.

[第1の実施形態]
本発明の第1の実施形態につき図1〜図4を参照して説明する。図1は本実施形態に係るエンコーダ10を示す平面図である。図1において、一例として、第1部材6に対して第2部材7は3次元的に相対移動可能に配置され、第2部材7の互いに直交する相対移動可能な2つの方向に平行にX軸及びY軸を取り、X軸及びY軸によって規定される平面(XY面)に直交する相対移動方向に沿ってZ軸を取って説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの角度をそれぞれθx、θy、及びθz方向の角度とも呼ぶ。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a plan view showing an encoder 10 according to the present embodiment. In FIG. 1, as an example, the second member 7 is arranged so as to be relatively movable in three dimensions with respect to the first member 6, and the X axis is parallel to two directions of the second member 7 that are relatively movable relative to each other. The Z axis is taken along the relative movement direction perpendicular to the plane (XY plane) defined by the X axis and the Y axis. In addition, angles around axes parallel to the X axis, Y axis, and Z axis are also referred to as angles in the θx, θy, and θz directions, respectively.

図1において、エンコーダ10は、第1部材6の上面に固定された、XY面にほぼ平行な平板状の2次元の回折格子12と、第2部材7に固定された検出ヘッド14と、検出ヘッド14に計測用のレーザ光を供給するレーザ光源16及び光ファイバ17と、検出ヘッド14で生成される複数の干渉光を伝送する光ファイバ39XA,39XB,39YA,39YB,39Cと、光ファイバ39XA〜39Cを介して供給される複数の干渉光を受光して検出信号を出力するフォトダイオード等の光電センサ40XA,40XB,40YA,40YB,40Cと、それらの検出信号を処理して第1部材6に対する第2部材7のX方向、Y方向、及びZ方向の3次元の相対移動量を求める計測演算部42と、を有する。検出ヘッド14は、回折格子12に計測光を照射し、回折格子12からX方向に発生する複数の回折光と対応する参照光との複数の干渉光を生成するX軸の干渉計部15Xと、回折格子12に計測光を照射し、回折格子12からY方向に発生する複数の回折光と対応する参照光との複数の干渉光を生成するY軸の干渉計部15Yと、その他の光学部材と、を有する。   In FIG. 1, an encoder 10 includes a flat plate-like two-dimensional diffraction grating 12 fixed to the upper surface of a first member 6 and substantially parallel to the XY plane, a detection head 14 fixed to the second member 7, and a detection. Laser light source 16 and optical fiber 17 for supplying measurement laser light to head 14, optical fibers 39XA, 39XB, 39YA, 39YB, 39C for transmitting a plurality of interference lights generated by detection head 14, and optical fiber 39XA Photosensors 40XA, 40XB, 40YA, 40YB, 40C, such as photodiodes, which receive a plurality of interference lights supplied through -39C and output detection signals, and process these detection signals to process the first member 6 A measurement calculation unit 42 for obtaining a three-dimensional relative movement amount of the second member 7 in the X direction, the Y direction, and the Z direction. The detection head 14 irradiates the diffraction grating 12 with measurement light, and generates an X-axis interferometer unit 15X that generates a plurality of interference lights between the plurality of diffraction lights generated in the X direction from the diffraction grating 12 and the corresponding reference light. The Y-axis interferometer unit 15Y for irradiating the diffraction grating 12 with measurement light and generating a plurality of interference lights between the plurality of diffraction lights generated in the Y direction from the diffraction grating 12 and the corresponding reference light, and other optical elements And a member.

回折格子12のXY面にほぼ平行な格子パターン面12bには、X方向及びY方向に所定の周期(ピッチ)pを持ち、位相型でかつ反射型の2次元の格子パターン12aが形成されている。格子パターン12aの周期pは、一例として100nm〜4μm程度(例えば1μm程度)である。なお、格子パターン12aのX方向、Y方向の周期が互いに異なっていてもよい。格子パターン12aは、例えばホログラム(例えば感光性樹脂に干渉縞を焼き付けたもの)として、又はガラス板等に機械的に溝等を形成して反射膜を被着することで作製可能である。さらに、格子パターン面12bは、保護用の平板ガラスで覆われていてもよい。   On the grating pattern surface 12b substantially parallel to the XY plane of the diffraction grating 12, a two-dimensional grating pattern 12a having a predetermined period (pitch) p in the X and Y directions and having a phase type and a reflection type is formed. Yes. The period p of the lattice pattern 12a is, for example, about 100 nm to 4 μm (for example, about 1 μm). Note that the periods of the lattice pattern 12a in the X direction and the Y direction may be different from each other. The grating pattern 12a can be manufactured, for example, as a hologram (for example, a photosensitive resin baked with interference fringes) or by mechanically forming a groove or the like on a glass plate or the like and depositing a reflective film. Furthermore, the lattice pattern surface 12b may be covered with a protective flat glass.

レーザ光源16は、例えばHe−Neレーザ又は半導体レーザ等よりなり、一例として偏光方向が互いに直交するとともに互いに周波数が所定量だけ異なる第1及び第2の直線偏光のレーザ光ML,RLよりなる2周波ヘテロダイン光を射出する。それらのレーザ光は互いに可干渉(偏光方向を平行にした場合)であり、それらの平均波長をλとする。レーザ光源16は、それらのレーザ光から分岐した2つの光束の干渉光を光電変換して得られる基準周波数の信号(基準信号)を計測演算部42に供給する。なお、ホモダイン干渉方式も使用可能である。   The laser light source 16 is made of, for example, a He—Ne laser, a semiconductor laser, or the like. Emits frequency heterodyne light. These laser beams are coherent with each other (when the polarization directions are parallel), and their average wavelength is λ. The laser light source 16 supplies a signal of a reference frequency (reference signal) obtained by photoelectric conversion of interference light of two light beams branched from the laser light to the measurement calculation unit 42. A homodyne interference method can also be used.

光ファイバ17は、レーザ光源16から射出されたレーザ光ML,RLをそれぞれ偏光方向を維持しながら伝送する例えばダブルコア型で偏波面保持型の光ファイバである。本実施形態では、光ファイバ17から射出されるときに、第1のレーザ光MLはXY平面に平行なX方向に偏光した直線偏光であり、第2のレーザ光RLはZ方向に偏光した直線偏光である。他の光ファイバ39XA〜39YB,39Cはシングルコア型であるが、偏波面保持型又は通常のいずれのタイプでもよい。また、光ファイバ39XA〜39YB,39Cの入射口に集光レンズを設けてもよい。なお、光ファイバ17,39XA〜39YB等は、図1では中間部が図示省略されている。また、光ファイバ17の代わりに複数のミラーを組み合わせたビーム送光光学系を使用してもよく、光ファイバ39XA〜39YB,39Cを使用することなく、干渉光を直接に光電センサ40XA〜40YB,40Cで受光してもよい。本実施形態では計測光と参照光との光路長差が短いため(詳細後述)、光ファイバ17から射出されるレーザ光ML,RL間の可干渉距離は比較的短くともよい。   The optical fiber 17 is, for example, a double-core polarization plane maintaining optical fiber that transmits the laser beams ML and RL emitted from the laser light source 16 while maintaining the polarization direction. In the present embodiment, when emitted from the optical fiber 17, the first laser light ML is linearly polarized light polarized in the X direction parallel to the XY plane, and the second laser light RL is linearly polarized in the Z direction. Polarized light. The other optical fibers 39XA to 39YB and 39C are single-core types, but may be any polarization-maintaining type or normal type. Moreover, you may provide a condensing lens in the entrance of optical fiber 39XA-39YB, 39C. Note that the intermediate portions of the optical fibers 17, 39XA to 39YB, etc. are omitted in FIG. Further, instead of the optical fiber 17, a beam transmission optical system in which a plurality of mirrors are combined may be used. Without using the optical fibers 39XA to 39YB and 39C, the interference light is directly detected by the photoelectric sensors 40XA to 40YB, Light may be received at 40C. In this embodiment, since the optical path length difference between the measurement light and the reference light is short (details will be described later), the coherence distance between the laser beams ML and RL emitted from the optical fiber 17 may be relatively short.

検出ヘッド14は、光ファイバ17から射出されるレーザ光ML,RLを平行光束にするレンズ(不図示)を含む連結部18と、連結部18から射出されるレーザ光ML,RLを1対のレーザ光とY軸用の計測光MY及び参照光RYとに分割する透過率が反射率よりもわずかに大きいビームスプリッター20Aと、その1対のレーザ光をX軸用の計測光MX及び参照光RXと、基準信号生成用のレーザ光ML3及びRL3とに分割する透過率が大きく反射率が小さいビームスプリッター20Bと、X軸の計測光MX及び参照光RXをほぼ−Y方向に向けてX軸の干渉計部15Xに入射させる2つのミラー22A,22Bと、を有する。計測光MX,MY及びレーザ光ML3はレーザ光MLから分岐されたレーザ光であり、参照光RX,RY及びレーザ光RL3はレーザ光RLから分岐されたレーザ光である。レーザ光ML,RLは、それぞれ例えば直径が0.5〜数mm程度の円形の断面を有する。なお、その断面は楕円又は矩形等でもよい。Y軸の計測光MY及び参照光RYはほぼ−X方向に向けてY軸の干渉計部15Yに入射し、互いに偏光方向が直交するレーザ光ML3及びRL3は偏光板41Cを介して参照信号用の干渉光として光ファイバ39Cに入射する。光ファイバ39Cで伝送された干渉光は光電センサ40Cで受光される。なお、レーザ光ML,RLが所定角度で交差している場合には、ビームスプリッター20Bと偏光板41Cとの間に、レーザ光ML3,RL3の相対角度を補正して互いに平行にするための光学系を設けてもよい。   The detection head 14 includes a connecting portion 18 including a lens (not shown) that converts the laser beams ML and RL emitted from the optical fiber 17 into parallel light beams, and a pair of laser beams ML and RL emitted from the connecting portion 18. A beam splitter 20A having a transmittance that is slightly larger than the reflectance for splitting the laser beam into the Y-axis measurement beam MY and the reference beam RY, and the pair of laser beams as the X-axis measurement beam MX and the reference beam. A beam splitter 20B having a high transmittance and a low reflectance that is split into RX and laser beams ML3 and RL3 for generating a reference signal, and the X-axis measurement light MX and the reference light RX are directed substantially in the −Y direction to the X-axis. Two mirrors 22A and 22B that are incident on the interferometer unit 15X. The measurement beams MX and MY and the laser beam ML3 are laser beams branched from the laser beam ML, and the reference beams RX and RY and the laser beam RL3 are laser beams branched from the laser beam RL. Each of the laser beams ML and RL has a circular cross section with a diameter of about 0.5 to several mm, for example. The cross section may be oval or rectangular. The Y-axis measurement light MY and the reference light RY enter the Y-axis interferometer unit 15Y substantially in the −X direction, and the laser beams ML3 and RL3 whose polarization directions are orthogonal to each other pass through the polarizing plate 41C. Is incident on the optical fiber 39C as interference light. The interference light transmitted through the optical fiber 39C is received by the photoelectric sensor 40C. When the laser beams ML and RL intersect at a predetermined angle, an optical for correcting the relative angles of the laser beams ML3 and RL3 between the beam splitter 20B and the polarizing plate 41C so as to be parallel to each other. A system may be provided.

本実施形態において、干渉計部15Xに入射するX軸の計測光MX及び参照光RXはそれぞれX方向及びZ方向に直線偏光したヘテロダインビームであり、干渉計部15Yに入射するY軸の計測光MY及び参照光RYはそれぞれY方向及びZ方向に直線偏光したヘテロダインビームである。
また、X軸の干渉計部15Xは、ミラー22Bでほぼ−Y方向に反射された計測光MX及び参照光RXが入射する偏光ビームスプリッター面(以下、PBS面という)A11(図2(A)参照)を有する偏光ビームスプリッター部材(以下、PBS部材という)24Xと、PBS部材24Xの+Y方向の側面にX方向に対称に固定された1対のルーフプリズム26XA,26XBと、ルーフプリズム26XA,26XBの間の−Z方向の半面側に、反射面が−Y方向でかつ±X方向を向いて固定された大型の直角プリズム型の1対の反射部材28XA,28XBと、ルーフプリズム26XA,26XBの間で反射部材28XA,28XBの+Z方向の側面に、反射面が+Y方向でかつ±X方向を向いて固定された1対の小型の直角プリズム型の反射部材30XA,30XBと、を有する。さらに、干渉計部15Xは、PBS部材24Xに対向するように配置された参照部材32Xを有する。
In the present embodiment, the X-axis measurement light MX and the reference light RX incident on the interferometer unit 15X are heterodyne beams linearly polarized in the X direction and the Z direction, respectively, and the Y-axis measurement light incident on the interferometer unit 15Y. MY and reference light RY are heterodyne beams linearly polarized in the Y direction and the Z direction, respectively.
Further, the X-axis interferometer unit 15X has a polarization beam splitter surface (hereinafter referred to as a PBS surface) A11 on which the measurement light MX and the reference light RX reflected by the mirror 22B substantially in the −Y direction are incident (FIG. 2A). A polarizing beam splitter member (hereinafter referred to as a PBS member) 24X, a pair of roof prisms 26XA and 26XB fixed symmetrically in the X direction on the side surface in the + Y direction of the PBS member 24X, and roof prisms 26XA and 26XB A pair of large right-angle prism type reflecting members 28XA and 28XB having a reflecting surface fixed in the -Y direction and facing the ± X direction, and the roof prisms 26XA and 26XB A pair of small right-angle prism type fixed on the side surface in the + Z direction of the reflecting members 28XA and 28XB with the reflecting surface fixed in the + Y direction and the ± X direction. Reflective members 30XA and 30XB. Furthermore, the interferometer unit 15X includes a reference member 32X disposed so as to face the PBS member 24X.

+X方向側のルーフプリズム26XA及び反射部材28XA,30XAより第1の反射部25XAが構成され、−X方向側のルーフプリズム26XB及び反射部材28XB,30XBより第2の反射部25XBが構成されている。第2部材7には、計測光MX及び回折格子12から射出される回折光を通す開口(不図示)が形成されており、PBS部材24Xはその開口を覆うように第2部材7に固定されている。参照部材32Xは、連結部材(不図示)を介してPBS部材24X(ひいては第2部材7)に固定されている。   The first reflecting portion 25XA is constituted by the roof prism 26XA and the reflecting members 28XA and 30XA on the + X direction side, and the second reflecting portion 25XB is constituted by the roof prism 26XB and the reflecting members 28XB and 30XB on the -X direction side. . The second member 7 has an opening (not shown) through which the measurement light MX and the diffracted light emitted from the diffraction grating 12 pass. The PBS member 24X is fixed to the second member 7 so as to cover the opening. ing. The reference member 32X is fixed to the PBS member 24X (and thus the second member 7) via a connecting member (not shown).

図2(A)は、図1中の干渉計部15XのPBS部材24X及び反射部25XA,25XBを示す。図2(A)には図面の錯綜を避けるため参照部材32Xが2点鎖線で示されている。図2(A)において、PBS部材24Xは、Y軸に平行な2辺とZ軸に平行な2辺とで囲まれた正方形の断面を持ち、X方向に細長い角柱状であり、その内部に斜めに(XY面に対してX軸の回りに45°の角度で傾斜して)PBS面A11が形成されている。反射部25XAのルーフプリズム26XAは、PBS部材24Xの底面に密着して固定された底面と、XY面に平行でY軸に対して所定角度で傾斜した稜線A16に関して対称に、かつ直交するように形成された1対の反射面A13,A14と、YZ面に平行で反射部材28XA,30XBに密着した射出面A15とを有する。他方のルーフプリズム26XBはルーフプリズム26XAと対称な形状であり、ルーフプリズム26XBも直交する2つの反射面A23,A24を有する。   FIG. 2A shows the PBS member 24X and the reflecting portions 25XA and 25XB of the interferometer portion 15X in FIG. In FIG. 2A, the reference member 32X is indicated by a two-dot chain line in order to avoid complication of the drawing. In FIG. 2 (A), the PBS member 24X has a square cross section surrounded by two sides parallel to the Y axis and two sides parallel to the Z axis, and has a rectangular column shape elongated in the X direction. A PBS surface A11 is formed obliquely (inclined at an angle of 45 ° around the X axis with respect to the XY surface). The roof prism 26XA of the reflecting portion 25XA is symmetrical and orthogonal to the bottom surface fixed in close contact with the bottom surface of the PBS member 24X and the ridge line A16 that is parallel to the XY plane and inclined at a predetermined angle with respect to the Y axis. It has a pair of formed reflection surfaces A13 and A14 and an emission surface A15 that is parallel to the YZ surface and is in close contact with the reflection members 28XA and 30XB. The other roof prism 26XB has a symmetrical shape with the roof prism 26XA, and the roof prism 26XB also has two reflecting surfaces A23 and A24 that are orthogonal to each other.

図1のミラー22Bで反射された計測光MXはS偏光として、参照光RXはP偏光としてほぼ−Y方向に図2(A)のPBS部材24XのPBS面A11に入射し、参照光RXはPBS面A11を透過して−Y方向の参照部材32Xに向けて射出される。一方、S偏光の計測光MXはPBS面A11で反射されて、回折格子12Xの格子パターン面12b(格子パターン12a)に垂直に(Z軸に平行に)入射する。垂直に入射するとは、計測光MXを格子パターン面12bに正確に垂直に入射させる場合の外に、0次光(正反射光)の影響を軽減するために、計測光MXをZ軸に平行な軸に対してX方向(θy方向)及び/又はY方向(θx方向)に例えば0.5〜1.5°程度傾斜させて格子パターン面12bに入射させる場合も含まれている。本実施形態では、このように計測光又は参照光がある程度の角度で傾斜してある面に入射する場合を含めるときに、その計測光又は参照光はその面に概ね垂直に入射するものとしている。   The measurement light MX reflected by the mirror 22B in FIG. 1 is incident on the PBS surface A11 of the PBS member 24X in FIG. 2A in the −Y direction as S-polarized light and the reference light RX as P-polarized light. The light passes through the PBS surface A11 and is ejected toward the reference member 32X in the -Y direction. On the other hand, the S-polarized measurement light MX is reflected by the PBS surface A11 and is incident perpendicularly (parallel to the Z axis) to the grating pattern surface 12b (grating pattern 12a) of the diffraction grating 12X. The term “perpendicularly incident” means that the measurement light MX is parallel to the Z-axis in order to reduce the influence of zero-order light (regular reflection light) in addition to the case where the measurement light MX is made to enter the grating pattern surface 12b exactly perpendicularly. This includes a case where the light is incident on the grating pattern surface 12b with an inclination of, for example, about 0.5 to 1.5 ° in the X direction (θy direction) and / or the Y direction (θx direction) with respect to a simple axis. In this embodiment, when including the case where the measurement light or the reference light is incident on the surface inclined at a certain angle as described above, the measurement light or the reference light is incident on the surface substantially perpendicularly. .

本実施形態において、概ね垂直に回折格子12の格子パターン面12bに入射する計測光MXによって、X方向に対称に±1次回折光DX1,DX2が発生し、発生した回折光DX1,DX2はPBS部材24XのPBS面A11で反射されてルーフプリズム26XA,26XBに入射する。この際に、Y方向に対称に±1次回折光も発生するが、Y方向の回折光はX軸の干渉計部15Xでは使用されない。+1次回折光DX1は、ルーフプリズム26XAの反射面A13,A14で順に反射され−Z方向にシフトして、かつX軸に平行に−X方向に向けて反射部材28XAに入射する。そして、反射部材28XAで反射された回折光DX1は、PBS部材24XのPBS面A11で反射されて回折格子12の格子パターン面12bに概ね垂直に入射する。同様に、−1次回折光DX2は、PBS面A11及びルーフプリズム26XBの反射面A23,A24等を介して−Z方向にシフトして、かつX軸に平行に+X方向に向けて反射部材28XBに入射し、反射部材28XBで反射された回折光DX2は、PBS面A11で反射されて回折格子12の格子パターン12aに概ね垂直に入射する。   In the present embodiment, ± 1st order diffracted beams DX1 and DX2 are generated symmetrically in the X direction by the measuring beam MX incident on the grating pattern surface 12b of the diffraction grating 12 substantially vertically, and the generated diffracted beams DX1 and DX2 are PBS members. The light is reflected by the PBS surface A11 of 24X and enters the roof prisms 26XA and 26XB. At this time, ± first-order diffracted light is also generated symmetrically in the Y direction, but the diffracted light in the Y direction is not used in the X-axis interferometer unit 15X. The + 1st order diffracted light DX1 is sequentially reflected by the reflecting surfaces A13 and A14 of the roof prism 26XA, shifted in the −Z direction, and incident on the reflecting member 28XA in the −X direction parallel to the X axis. The diffracted light DX1 reflected by the reflecting member 28XA is reflected by the PBS surface A11 of the PBS member 24X and enters the grating pattern surface 12b of the diffraction grating 12 substantially perpendicularly. Similarly, the −1st order diffracted light DX2 is shifted in the −Z direction via the PBS surface A11 and the reflective surfaces A23 and A24 of the roof prism 26XB, and is directed to the reflective member 28XB in the + X direction parallel to the X axis. The diffracted light DX2 that is incident and reflected by the reflecting member 28XB is reflected by the PBS surface A11 and enters the grating pattern 12a of the diffraction grating 12 substantially perpendicularly.

図2(B)に示すように、格子パターン12aにおいて計測光MXが入射する位置に対して、回折光DX1,DX2が入射する位置は、−Y方向に間隔a1だけシフトするとともに、±X方向に対称に間隔a2だけシフトしている。間隔a1は、PBS部材24XのY方向の幅のほぼ1/2であり、間隔a2は、PBS部材24XのX方向の長さのほぼ1/4である。このような配置で計測光MX及び回折光DX1,DX2を回折格子12に入射させることで、干渉計部15Xの構成を小型化できる。ただし、間隔a1,a2は任意である。また、計測光MX及び回折光DX1,DX2の入射位置の配置は任意であり、回折光DX1,DX2の入射位置は例えば計測光MXの入射位置をY方向に挟むように配置されていてもよい。   As shown in FIG. 2B, the positions where the diffracted lights DX1 and DX2 are incident on the position where the measurement light MX is incident on the grating pattern 12a are shifted by the interval a1 in the −Y direction and ± X directions. Symmetrically shifted by an interval a2. The interval a1 is approximately ½ of the width of the PBS member 24X in the Y direction, and the interval a2 is approximately ¼ of the length of the PBS member 24X in the X direction. By making the measurement light MX and the diffracted lights DX1 and DX2 enter the diffraction grating 12 with such an arrangement, the configuration of the interferometer unit 15X can be reduced in size. However, the intervals a1 and a2 are arbitrary. The incident positions of the measurement light MX and the diffracted lights DX1 and DX2 are arbitrary, and the incident positions of the diffracted lights DX1 and DX2 may be arranged so as to sandwich the incident position of the measurement light MX in the Y direction, for example. .

反射部材28XA,28XBで反射されてPBS面A11で反射された回折光DX1,DX2によって回折格子12からX方向に対称に+1次回折光EX1及び−1次回折光EX2(再回折光)が発生し、発生した回折光EX1は、PBS面A11、ルーフプリズム26XAの反射面A14,A13の順に反射されて、+Z方向にシフトして、かつX軸に平行に−X方向に向けて反射部材30XAに入射する。そして、反射部材30XAで+Y方向に反射されたS偏光の回折光EX1は、偏光板41XAを介して光ファイバ39XAに入射する。   The diffracted lights DX1 and DX2 reflected by the reflecting members 28XA and 28XB and reflected by the PBS surface A11 generate + 1st order diffracted light EX1 and −1st order diffracted light EX2 (rediffracted light) symmetrically in the X direction from the diffraction grating 12. The generated diffracted light EX1 is reflected in the order of the PBS surface A11 and the reflecting surfaces A14 and A13 of the roof prism 26XA, shifted in the + Z direction, and incident on the reflecting member 30XA in the -X direction parallel to the X axis. To do. Then, the S-polarized diffracted light EX1 reflected in the + Y direction by the reflecting member 30XA enters the optical fiber 39XA via the polarizing plate 41XA.

そして、回折光EX2は、PBS面A11、及びルーフプリズム26XBの反射面A24,A23の順に反射されて+X方向にシフトして、かつX軸に平行に+X方向に向けて反射部材30XBに入射する。反射部材30XBで+Y方向に反射されたS偏光の回折光EX2は、偏光板41XBを介して光ファイバ39XBに入射する
図2(A)において、計測光MXが回折格子12の格子パターン12aに垂直に(Z軸に平行に)入射するとき、計測光MXによるX方向の+1次回折光DX1の回折角φx(図4参照)は、格子パターン12aの周期p及び計測光MXの波長λを用いて次の関係を満たす。このとき、−1次回折光DX2の回折角は−φxとなる。
The diffracted light EX2 is reflected in the order of the PBS surface A11 and the reflecting surfaces A24 and A23 of the roof prism 26XB, shifted in the + X direction, and incident on the reflecting member 30XB in the + X direction parallel to the X axis. . The S-polarized diffracted light EX2 reflected in the + Y direction by the reflecting member 30XB enters the optical fiber 39XB through the polarizing plate 41XB. In FIG. 2A, the measurement light MX is perpendicular to the grating pattern 12a of the diffraction grating 12. , The diffraction angle φx (see FIG. 4) of the + 1st order diffracted light DX1 in the X direction by the measurement light MX is obtained using the period p of the grating pattern 12a and the wavelength λ of the measurement light MX. Satisfies the following relationship: At this time, the diffraction angle of the −1st order diffracted light DX2 is −φx.

p・sin(φx)=λ …(1)
一例として、周期pを1000nm(1μm)、計測光MXの波長λを633nmとすると、回折角φxはほぼ39°となる。
図3(A)は、図1中の干渉計部15XのPBS部材24X及び参照部材32Xを示し、図3(B)は、図3(A)中の参照部材32Xを示す。図3(A)において、参照部材32Xは、X方向に回折格子12の周期と同じ周期p(図3(B)参照)の1次元の格子パターン32Xgが形成されたXZ面にほぼ平行な平坦部、及び格子パターン32Xgに対して−Z方向に設けられた1対の平面の反射面32Xa,32Xbを有する。1次元の格子パターン32Xgは、回折格子12の格子パターン12aと同様に製造できる。格子パターン32Xgは1次元であるため、±1次の回折効率は回折格子12のほぼ2倍である。
p · sin (φx) = λ (1)
As an example, if the period p is 1000 nm (1 μm) and the wavelength λ of the measurement light MX is 633 nm, the diffraction angle φx is approximately 39 °.
3A shows the PBS member 24X and the reference member 32X of the interferometer unit 15X in FIG. 1, and FIG. 3B shows the reference member 32X in FIG. 3A. In FIG. 3A, the reference member 32X is a flat surface substantially parallel to the XZ plane on which the one-dimensional grating pattern 32Xg having the same period p (see FIG. 3B) as the period of the diffraction grating 12 is formed in the X direction. And a pair of planar reflecting surfaces 32Xa and 32Xb provided in the −Z direction with respect to the lattice pattern 32Xg. The one-dimensional grating pattern 32Xg can be manufactured in the same manner as the grating pattern 12a of the diffraction grating 12. Since the grating pattern 32Xg is one-dimensional, the ± first-order diffraction efficiency is almost twice that of the diffraction grating 12.

図3(B)に示すように、反射面32Xa及び32XbはそれぞれXZ面に対してZ軸に平行な軸の回りに時計回り及び反時計回りにほぼ角度φx/2で傾斜している。角度φxは、回折格子12からの1次回折光の回折角(式(1))と同じである。反射面32Xa,32Xbは例えばガラスの平面に高反射率の金属膜を形成したものであり、参照光RXに対してかなり大きい反射率を持つ。格子パターン32Xg及び反射面32Xa,32XbはPBS部材24Xに対向しており、格子パターン32XgとPBS部材24XのPBS面A11との距離は、図2(A)の回折格子12の格子パターン12aとPBS面A11との距離とほぼ同じ(第1部材6と第2部材7とのZ方向の相対移動量分だけ異なっている)である。   As shown in FIG. 3B, the reflecting surfaces 32Xa and 32Xb are inclined with respect to the XZ plane clockwise and counterclockwise at an angle φx / 2 around an axis parallel to the Z axis. The angle φx is the same as the diffraction angle (formula (1)) of the first-order diffracted light from the diffraction grating 12. The reflecting surfaces 32Xa and 32Xb are formed by, for example, forming a highly reflective metal film on a glass plane, and have a considerably large reflectance with respect to the reference light RX. The grating pattern 32Xg and the reflecting surfaces 32Xa and 32Xb are opposed to the PBS member 24X, and the distance between the grating pattern 32Xg and the PBS surface A11 of the PBS member 24X is the same as the grating pattern 12a of the diffraction grating 12 in FIG. It is substantially the same as the distance from the surface A11 (differs by the amount of relative movement between the first member 6 and the second member 7 in the Z direction).

図1のミラー22Bで反射された参照光RXは、P偏光としてほぼ−Y方向に図3(A)のPBS部材24XのPBS面A11に入射し、参照光RXはPBS面A11を透過して参照部材32Xの格子パターン32Xgに概ね垂直に入射する。格子パターン32Xgに入射する参照光RXによって、X方向に対称に±1次回折光RX1,RX2が発生する。格子パターン32Xgの周期pは格子パターン12aと同じであるため、±1次回折光RX1,RX2(以下、第1及び第2の参照光RX1,RX2と呼ぶ。)の回折角φxは図2(A)の回折光DX1,DX2の回折角と同じである(図3(B)参照)。   The reference light RX reflected by the mirror 22B of FIG. 1 is incident on the PBS surface A11 of the PBS member 24X of FIG. 3A in the approximately −Y direction as P-polarized light, and the reference light RX is transmitted through the PBS surface A11. Incidently perpendicularly to the lattice pattern 32Xg of the reference member 32X. ± first-order diffracted light RX1 and RX2 are generated symmetrically in the X direction by the reference light RX incident on the grating pattern 32Xg. Since the period p of the grating pattern 32Xg is the same as that of the grating pattern 12a, the diffraction angle φx of the ± first-order diffracted lights RX1 and RX2 (hereinafter referred to as first and second reference lights RX1 and RX2) is as shown in FIG. ) Is the same as the diffraction angle of the diffracted light DX1, DX2 (see FIG. 3B).

発生した参照光RX1,RX2(ほぼP偏光)はPBS部材24XのPBS面A11を透過してルーフプリズム26XA,26XB(反射部25XA,25XB)に入射する。反射部25XA,25XBにおける参照光RX1,RX2の光路は、図2(A)の計測光MXの回折光DX1,DX2の光路と同じである。参照光RX1,RX2は、それぞれルーフプリズム26XA,26XBの1対の反射面及び反射部材28XA,28XBで反射された後、PBS部材24XのPBS面A11を透過してY軸にほぼ平行に参照部材32Xの反射面32Xa,32Xbに入射する。参照光RX1,RX2が参照部材32X上で入射する位置は、参照光RXが入射する位置に対して−Z方向に、かつ±X方向にシフトしている。参照光RX1,RX2の参照部材32Xに対する入射位置とPBS面A11との距離は、図2(A)の回折光DX1,DX2の格子パターン12aに対する入射位置とPBS面A11との距離とほぼ同じ(第1部材6と第2部材7とのZ方向の相対移動量分だけ異なっている)である。   The generated reference beams RX1 and RX2 (substantially P-polarized light) pass through the PBS surface A11 of the PBS member 24X and enter the roof prisms 26XA and 26XB (reflecting portions 25XA and 25XB). The optical paths of the reference beams RX1 and RX2 in the reflectors 25XA and 25XB are the same as the optical paths of the diffracted beams DX1 and DX2 of the measurement beam MX in FIG. The reference beams RX1 and RX2 are reflected by the pair of reflecting surfaces of the roof prisms 26XA and 26XB and the reflecting members 28XA and 28XB, respectively, and then pass through the PBS surface A11 of the PBS member 24X to be substantially parallel to the Y axis. The light enters the 32X reflecting surfaces 32Xa and 32Xb. The positions where the reference beams RX1 and RX2 are incident on the reference member 32X are shifted in the −Z direction and the ± X direction with respect to the position where the reference beam RX is incident. The distance between the incident positions of the reference beams RX1 and RX2 with respect to the reference member 32X and the PBS surface A11 is substantially the same as the distance between the incident positions of the diffracted beams DX1 and DX2 with respect to the grating pattern 12a in FIG. The first member 6 and the second member 7 are different by the amount of relative movement in the Z direction).

本実施形態では、参照部材32Xの反射面32Xa,32XbはXZ面に対して角度±φx/2で傾斜している。このため、反射面32Xa,32Xbに入射する参照光RX1,RX2は、それぞれX方向に角度φx及び−φxだけ傾斜するように反射面32Xa,32Xbで反射される。角度φxは、格子パターン32Xg(格子パターン12a)における1次回折光の回折角と同じである。従って、反射された参照光RX1,RX2(ほぼP偏光)は、格子パターン32Xgで回折されたときと同じ方向に対称にPBS部材24XのPBS面A11に入射し、PBS面A11を透過してルーフプリズム26XA,26XB(反射部25XA,25XB)に入射する。   In the present embodiment, the reflecting surfaces 32Xa and 32Xb of the reference member 32X are inclined at an angle ± φx / 2 with respect to the XZ plane. For this reason, the reference beams RX1 and RX2 incident on the reflecting surfaces 32Xa and 32Xb are reflected by the reflecting surfaces 32Xa and 32Xb so as to be inclined by the angles φx and −φx, respectively, in the X direction. The angle φx is the same as the diffraction angle of the first-order diffracted light in the grating pattern 32Xg (grating pattern 12a). Accordingly, the reflected reference beams RX1 and RX2 (substantially P-polarized light) are incident on the PBS surface A11 of the PBS member 24X symmetrically in the same direction as diffracted by the grating pattern 32Xg, and are transmitted through the PBS surface A11 and roofed. The light enters the prisms 26XA and 26XB (reflecting portions 25XA and 25XB).

反射面32Xa,32Xbで反射された参照光RX1,RX2の反射部25XA,25XB内での光路は、図2(A)の計測光MXの回折光EX1,EX2の光路と同じである。そして、参照光RX1は、ルーフプリズム26XAの1対の反射面及び反射部材30XAで反射された後、回折光EX1と同軸に合成されて、図1の偏光板41XAを介して干渉光となる。この干渉光は光ファイバ39XAを介して光電センサ40XAで受光される。同様に、参照光RX2は、ルーフプリズム26XBの1対の反射面及び反射部材30XBで反射された後、回折光EX2と同軸に合成されて、図1の偏光板41XBを介して干渉光となる。この干渉光は光ファイバ39XBを介して光電センサ40XBで受光される。   The optical paths in the reflecting portions 25XA and 25XB of the reference beams RX1 and RX2 reflected by the reflecting surfaces 32Xa and 32Xb are the same as the optical paths of the diffracted beams EX1 and EX2 of the measurement beam MX in FIG. Then, the reference light RX1 is reflected by the pair of reflecting surfaces of the roof prism 26XA and the reflecting member 30XA, and then is coaxially combined with the diffracted light EX1 and becomes interference light via the polarizing plate 41XA in FIG. This interference light is received by the photoelectric sensor 40XA through the optical fiber 39XA. Similarly, the reference light RX2 is reflected by the pair of reflecting surfaces of the roof prism 26XB and the reflecting member 30XB, and then is coaxially combined with the diffracted light EX2 to become interference light via the polarizing plate 41XB in FIG. . This interference light is received by the photoelectric sensor 40XB through the optical fiber 39XB.

この場合、PBS面A11に入射した計測光MXが回折光EX1,EX2として偏光板41XA,41XBに入射するまでの光路長と、PBS面A11に入射した参照光RXが参照光RX1,RX2として偏光板41XA,41XBに入射するまでの光路長とはほぼ等しいため、回折光EX1,EX2と参照光RX1,RX2との光路長差はかなり小さく、高いSN比の干渉光が得られる。なお、本実施形態では、第1部材6と第2部材7とのZ方向の相対移動量は、計測光MXと参照光RXとの可干渉距離に比べて小さくなる範囲に設定されている。さらに、回折光EX1,EX2は回折格子12による2回の回折で光量が低下しているのに対して、参照光RX1,RX2は参照部材32Xによって1回だけ回折されているため、参照光RX1,RX2の光量低下が大幅に抑制されている。なお、図1の連結部18から射出されるレーザ光ML,RLが所定角度で傾斜している場合には、その傾斜角を相殺するように、図3(B)の参照部材32Xの反射面32Xa,32Xbの傾斜角をφx/2からずらしておいてもよい。   In this case, the optical path length until the measurement light MX incident on the PBS surface A11 enters the polarizing plates 41XA and 41XB as diffracted light EX1 and EX2, and the reference light RX incident on the PBS surface A11 is polarized as the reference light RX1 and RX2. Since the optical path lengths until they enter the plates 41XA and 41XB are substantially equal, the optical path length difference between the diffracted lights EX1 and EX2 and the reference lights RX1 and RX2 is considerably small, and interference light with a high S / N ratio can be obtained. In the present embodiment, the relative movement amount in the Z direction between the first member 6 and the second member 7 is set to a range that is smaller than the coherence distance between the measurement light MX and the reference light RX. Further, the light amounts of the diffracted beams EX1 and EX2 are reduced by two diffractions by the diffraction grating 12, whereas the reference beams RX1 and RX2 are diffracted only once by the reference member 32X. , RX2 is significantly reduced in light quantity. In addition, when the laser beams ML and RL emitted from the connecting portion 18 in FIG. 1 are inclined at a predetermined angle, the reflecting surface of the reference member 32X in FIG. The inclination angles of 32Xa and 32Xb may be shifted from φx / 2.

また、図1のY軸の干渉計部15Yは、X軸の干渉計部15XのPBS部材24X、反射部25XA,25XB、及び参照部材32Xを一体的に90°回転した構成のPBS部材24Y、反射部25YA,25YB、及び参照部材32Yを有する。PBS部材24Yは開口(不図示)を覆うように第2部材7に固定されている。
ビームスプリッター20Aで分岐された計測光MY及び参照光RYは、干渉計部15YのPBS部材24Yに入射し、P偏光の参照光RYはPBS部材24YのPBS面を透過して−X方向に射出されて参照部材32Yの格子パターンに入射する。そして、S偏光の計測光MYはPBS部材24YのPBS面で反射されて回折格子12の格子パターン12aに概ね垂直に入射し、格子パターン12aからY方向に対称に発生した±1次回折光は、反射部25YA,25YB及びPBS部材24YのPBS面で反射されて回折格子12の格子パターン12aに概ね垂直に入射する。そして、それらの1対の回折光によるY方向の+1次回折光EY1及び−1次回折光EY2が回折格子12から発生し、回折光EY1,EXY2はPBS部材24YのPBS面及び反射部25YA,25YBを介して+X方向に射出される。
Further, the Y-axis interferometer unit 15Y in FIG. 1 includes a PBS member 24Y having a configuration in which the PBS member 24X, the reflection units 25XA and 25XB, and the reference member 32X of the X-axis interferometer unit 15X are integrally rotated by 90 °. The reflectors 25YA and 25YB and the reference member 32Y are provided. The PBS member 24Y is fixed to the second member 7 so as to cover an opening (not shown).
The measurement light MY and the reference light RY branched by the beam splitter 20A enter the PBS member 24Y of the interferometer unit 15Y, and the P-polarized reference light RY passes through the PBS surface of the PBS member 24Y and exits in the −X direction. Then, the light enters the lattice pattern of the reference member 32Y. Then, the S-polarized measurement light MY is reflected by the PBS surface of the PBS member 24Y and enters the grating pattern 12a of the diffraction grating 12 substantially perpendicularly, and the ± first-order diffracted lights generated symmetrically in the Y direction from the grating pattern 12a are Reflected by the PBS surfaces of the reflecting portions 25YA and 25YB and the PBS member 24Y, the light enters the grating pattern 12a of the diffraction grating 12 substantially perpendicularly. Then, the + 1st order diffracted light EY1 and the −1st order diffracted light EY2 in the Y direction by the pair of diffracted lights are generated from the diffraction grating 12, and the diffracted lights EY1 and EXY2 pass through the PBS surface of the PBS member 24Y and the reflecting portions 25YA and 25YB. Through the + X direction.

また、PBS部材24Yを透過した参照光RYによって、参照部材32Yの格子パターンからY方向の±1次回折光よりなる第1及び第2の参照光RY1,RY2が発生する。参照光RY1,RY2は、PBS部材24YのPBS面を透過して反射部25YA,25YBで反射される。反射された参照光RY1,RY2は、PBS部材24YのPBS面を透過して参照部材32Yの傾斜した1対の反射面に入射する。その1対の反射面で反射された参照光RY1,RY2は、PBS部材24YのPBS面を透過して反射部25YA,25YBを介して+X方向に射出される。そして、一方の参照光RY1は回折光EY1と同軸に合成され、偏光板41YAを通過して干渉光となり、この干渉光は光ファイバ39YAを介して光電センサ40YBに受光される。他方の参照光RY2は回折光EY2と同軸に合成され、偏光板41YBを通過して干渉光となり、この干渉光は光ファイバ39YAを介して光電センサ40YBに受光される。   Further, the reference light RY transmitted through the PBS member 24Y generates first and second reference lights RY1 and RY2 made of ± first-order diffracted light in the Y direction from the lattice pattern of the reference member 32Y. The reference beams RY1 and RY2 are transmitted through the PBS surface of the PBS member 24Y and reflected by the reflecting portions 25YA and 25YB. The reflected reference lights RY1 and RY2 are transmitted through the PBS surface of the PBS member 24Y and are incident on a pair of inclined reflecting surfaces of the reference member 32Y. The reference beams RY1 and RY2 reflected by the pair of reflecting surfaces are transmitted through the PBS surface of the PBS member 24Y and emitted in the + X direction through the reflecting portions 25YA and 25YB. One reference light RY1 is synthesized coaxially with the diffracted light EY1, passes through the polarizing plate 41YA and becomes interference light, and this interference light is received by the photoelectric sensor 40YB via the optical fiber 39YA. The other reference light RY2 is synthesized coaxially with the diffracted light EY2, passes through the polarizing plate 41YB and becomes interference light, and this interference light is received by the photoelectric sensor 40YB via the optical fiber 39YA.

Y軸の干渉計部15Yにおいても、回折光EY1,EY2と参照光RY1,RY2との光路長差はかなり小さく、高いSN比の干渉光が得られる。さらに、回折光EY1,EY2は回折格子12による2回の回折で光量が低下しているのに対して、参照光RY1,RY2は参照部材32Yによって1回だけ回折されているため、参照光RY1,RY2の光量低下が大幅に抑制されている。   Also in the Y-axis interferometer unit 15Y, the optical path length difference between the diffracted beams EY1 and EY2 and the reference beams RY1 and RY2 is considerably small, and interference light with a high SN ratio can be obtained. Further, the amount of light of the diffracted beams EY1 and EY2 is reduced by two diffractions by the diffraction grating 12, whereas the reference beams RY1 and RY2 are diffracted only once by the reference member 32Y. , RY2 is significantly reduced in light quantity.

図1において、計測演算部42は、第1演算部42X、第2演算部42Y、及び第3演算部42Tを有する。そして、X軸の光電センサ40XAは、回折光EX1及び参照光RX1よりなる干渉光の検出信号(光電変換信号)を第1演算部42Xに供給し、X軸の光電センサ40XBは、回折光EX2及び参照光RX2よりなる干渉光の検出信号を第1演算部42Xに供給する。また、Y軸の光電センサ40YAは、回折光EY1及び参照光RY1よりなる干渉光の検出信号を第2演算部42Yに供給し、Y軸の光電センサ40YBは、回折光EY2及び参照光RY2よりなる干渉光の検出信号を第2演算部42Yに供給する。第1演算部42X及び第2演算部42Yには、レーザ光源16からの基準周波数の信号(基準信号)、及び光電センサ40Cで検出された参照用の干渉光のほぼその基準周波数の信号(参照信号)も供給されている。   In FIG. 1, the measurement calculation unit 42 includes a first calculation unit 42X, a second calculation unit 42Y, and a third calculation unit 42T. The X-axis photoelectric sensor 40XA supplies an interference light detection signal (photoelectric conversion signal) composed of the diffracted light EX1 and the reference light RX1 to the first calculation unit 42X, and the X-axis photoelectric sensor 40XB receives the diffracted light EX2. And the detection signal of the interference light which consists of reference light RX2 is supplied to the 1st calculating part 42X. The Y-axis photoelectric sensor 40YA supplies the interference light detection signal composed of the diffracted light EY1 and the reference light RY1 to the second calculation unit 42Y, and the Y-axis photoelectric sensor 40YB receives the diffracted light EY2 and the reference light RY2. The interference light detection signal is supplied to the second calculation unit 42Y. The first calculation unit 42X and the second calculation unit 42Y include a reference frequency signal (reference signal) from the laser light source 16 and a reference frequency signal (reference) of the reference interference light detected by the photoelectric sensor 40C. Signal) is also provided.

ここで、第1部材6と第2部材7とのX方向、Y方向、Z方向の相対移動量(相対変位)をX,Y,Zとして、第1演算部42X及び第2演算部42Yで求められるZ方向の相対移動量をそれぞれZX,ZYとする。このとき、一例として、第1演算部42Xは、光電センサ40XAの検出信号及び基準信号(又は参照信号)から、既知の係数a,bを用いてX方向及びZ方向の第1の相対移動量(a・X+b・ZX)を求め、光電センサ40XBの検出信号及び基準信号(又は参照信号)から、X方向及びZ方向の第2の相対移動量(−a・X+b・ZX)を求め、その第1及び第2の相対移動量からX方向の相対移動量(X)及びZ方向の相対移動量(ZX)を求め、求めた結果を第3演算部42Tに供給する。第2演算部42Yは、光電センサ40YAの検出信号及び基準信号(又は参照信号)から、Y方向及びZ方向の第1の相対移動量(a・Y+b・ZY)を求め、光電センサ40YBの検出信号及び基準信号(又は参照信号)から、Y方向及びZ方向の第2の相対移動量(−a・Y+b・ZY)を求め、その第1及び第2の相対移動量からY方向の相対移動量(Y)及びZ方向の相対移動量(ZY)を求め、求めた結果を第3演算部42Tに供給する。   Here, the X, Y, and Z direction relative movement amounts (relative displacements) between the first member 6 and the second member 7 are X, Y, Z, and the first calculation unit 42X and the second calculation unit 42Y. Assume that the obtained relative movement amounts in the Z direction are ZX and ZY, respectively. At this time, as an example, the first calculation unit 42X uses the detection coefficient and the reference signal (or reference signal) of the photoelectric sensor 40XA and the first relative movement amount in the X direction and the Z direction using the known coefficients a and b. (A · X + b · ZX) is obtained, and the second relative movement amount (−a · X + b · ZX) in the X direction and the Z direction is obtained from the detection signal and the reference signal (or reference signal) of the photoelectric sensor 40XB. A relative movement amount (X) in the X direction and a relative movement amount (ZX) in the Z direction are obtained from the first and second relative movement amounts, and the obtained results are supplied to the third calculation unit 42T. The second calculation unit 42Y obtains the first relative movement amount (a · Y + b · ZY) in the Y direction and the Z direction from the detection signal and the reference signal (or reference signal) of the photoelectric sensor 40YA, and detects the photoelectric sensor 40YB. The second relative movement amount (−a · Y + b · ZY) in the Y direction and the Z direction is obtained from the signal and the reference signal (or reference signal), and the relative movement in the Y direction is obtained from the first and second relative movement amounts. The amount (Y) and the relative movement amount (ZY) in the Z direction are obtained, and the obtained result is supplied to the third calculation unit 42T.

第3演算部42Tは、演算部42X,42Yから供給される相対移動量(X)及び(Y)を所定のオフセットで補正した値を第1部材6と第2部材7とのX方向、Y方向の相対移動量として出力する。また、第3演算部42Tは、一例として、演算部42X,42Yから供給されるZ方向の相対移動量(ZX)及び(ZY)の平均値(=(ZX+ZY)/2)を所定のオフセットで補正した値を第1部材6と第2部材7とのZ方向の相対移動量として出力する。X方向、Y方向、Z方向の相対移動量の検出分解能は例えば0.5〜0.1nm程度である。エンコーダ10では、計測光MX,MY等の光路が短いため、その光路上の気体の温度揺らぎに起因する計測値の短期的な変動を低減できる。さらに、最終的に2回目の+1次回折光EX1,EY1及び−1次回折光EX2,EY2と対応する参照光RX1〜RY2との干渉光を検出しているため、相対移動量の検出分解能(検出精度)を1/2に向上(微細化)できる。また、±1次回折光を用いることによって、第1部材6と第2部材7とのθz方向の相対回転角による計測誤差を低減できる。   The third calculation unit 42T calculates a value obtained by correcting the relative movement amounts (X) and (Y) supplied from the calculation units 42X and 42Y with a predetermined offset in the X direction of the first member 6 and the second member 7, Y Output as the amount of relative movement in the direction. In addition, as an example, the third calculation unit 42T calculates an average value (= (ZX + ZY) / 2) of the relative movement amounts (ZX) and (ZY) in the Z direction supplied from the calculation units 42X and 42Y with a predetermined offset. The corrected value is output as the relative movement amount in the Z direction between the first member 6 and the second member 7. The detection resolution of the relative movement amount in the X direction, the Y direction, and the Z direction is, for example, about 0.5 to 0.1 nm. In the encoder 10, since the optical paths of the measurement light MX, MY, etc. are short, short-term fluctuations in the measurement value due to the temperature fluctuation of the gas on the optical path can be reduced. Furthermore, since the interference light of the reference lights RX1 to RY2 corresponding to the + 1st order diffracted beams EX1 and EY1 and the −1st order diffracted beams EX2 and EY2 for the second time is finally detected, the detection resolution of the relative movement amount (detection accuracy) ) Can be improved to 1/2 (miniaturized). In addition, by using ± first-order diffracted light, measurement errors due to the relative rotation angles of the first member 6 and the second member 7 in the θz direction can be reduced.

次に、本実施形態の検出ヘッド14の計測光の回折光の光路につき詳細に説明する。
図4はX軸の干渉計部15Xの要部及び回折格子12を示す。図4において、計測光MXによって回折格子12から発生した+1次の回折光DX1は、PBS部材24XのPBS面A11及び反射部25XAによって、計測光MX(ここではZ軸に平行)に平行になるように折り曲げられて回折格子12に再入射する。
Next, the optical path of the diffracted light of the measurement light of the detection head 14 of this embodiment will be described in detail.
FIG. 4 shows the main part of the X-axis interferometer unit 15X and the diffraction grating 12. In FIG. 4, the + 1st order diffracted light DX1 generated from the diffraction grating 12 by the measurement light MX becomes parallel to the measurement light MX (here, parallel to the Z axis) by the PBS surface A11 and the reflection portion 25XA of the PBS member 24X. And is incident again on the diffraction grating 12.

このとき、干渉計部15Xに対して回折格子12の格子パターン12aのZ方向の相対位置が位置B11までδZだけ変化した場合を想定する。このとき、計測光MXによる+1次回折光DX1は、光路が位置B12に平行にシフトしてPBS面A11を介して反射部25XAに入射するが、反射部25XAでは入射光に対して射出光の光路は中心に関して対称にシフトする。このため、反射部25XA及びPBS面A11で反射された回折光DX1は、格子パターン面12bのZ方向の相対位置が変化していないときの+1次回折光EX1の光路と交差する位置で回折格子12に入射する。従って、格子パターン面12bが位置B11まで変化していても、回折光DX1によって回折格子12から発生する+1次回折光EX1の光路B13は、格子パターン面12bのZ方向の相対位置が変化していないときの光路と同じである。このため、回折光EX1と参照光RX1とをPBS面A2(図1参照)で同軸に合成して干渉光を生成したとき、回折光EX1と参照光RX1との相対的な横ずれ量がないため、その干渉光を光電変換したときに得られる検出信号のうちの交流信号(ビート信号又は信号成分)の割合が低下することがない。   At this time, it is assumed that the relative position in the Z direction of the grating pattern 12a of the diffraction grating 12 with respect to the interferometer unit 15X has changed by δZ to the position B11. At this time, the + 1st-order diffracted light DX1 by the measurement light MX is incident on the reflection part 25XA via the PBS surface A11 with the optical path shifted parallel to the position B12. However, in the reflection part 25XA, the optical path of the emitted light with respect to the incident light Shifts symmetrically about the center. For this reason, the diffracted light DX1 reflected by the reflecting portion 25XA and the PBS surface A11 has a diffraction grating 12 at a position that intersects the optical path of the + 1st order diffracted light EX1 when the relative position in the Z direction of the grating pattern surface 12b does not change. Is incident on. Therefore, even if the grating pattern surface 12b is changed to the position B11, the relative position in the Z direction of the grating pattern surface 12b of the optical path B13 of the + 1st order diffracted light EX1 generated from the diffraction grating 12 by the diffracted light DX1 is not changed. It is the same as the optical path of time. For this reason, when the interference light is generated by coaxially combining the diffracted light EX1 and the reference light RX1 on the PBS surface A2 (see FIG. 1), there is no relative lateral shift amount between the diffracted light EX1 and the reference light RX1. The ratio of the AC signal (beat signal or signal component) in the detection signal obtained when photoelectrically converting the interference light does not decrease.

これは、X軸の−1次回折光DX2及びY軸の±1次回折光DY1,DY2でも同様であり、格子パターン面12bのZ方向の相対位置が変化しても、図1の光電センサ40XA〜40YBの検出信号のうちのビート信号の割合は低下しない。従って、それらの検出信号を用いて高いSN比で高精度に第1部材6と第2部材7との相対移動量を計測できる。   This also applies to the X-order −1st-order diffracted light DX2 and the Y-axis ± 1st-order diffracted lights DY1 and DY2, and even if the relative position in the Z direction of the grating pattern surface 12b changes, the photoelectric sensors 40XA to 40XA to The ratio of the beat signal in the 40YB detection signal does not decrease. Therefore, the relative movement amount between the first member 6 and the second member 7 can be measured with high accuracy at a high S / N ratio using these detection signals.

本実施形態の効果等は以下の通りである。
本実施形態のエンコーダ10は、第1部材6に対してX方向、Y方向、Z方向に3次元的に相対移動可能な第2部材7の相対移動量を計測する3軸のエンコーダ装置である。そして、エンコーダ10は、第1部材6に設けられ、X方向及びY方向を周期方向とする格子パターン12aを有する反射型の回折格子12と、計測光MX及び参照光RXを射出するレーザ光源16と、第2部材7に設けられ、計測光MXを回折格子12の格子パターン面12bに概ね垂直に入射させて、参照光RXを計測光MXと異なる方向に射出するPBS部材24X(第1光学部材)と、第2部材7に設けられ、PBS部材24Xから入射する参照光RX1,RX2(参照光RXから分岐された光束)を反射する反射面32Xa,32Xbを持ち、参照光RXを回折格子12における±1次回折光の回折角と概ね同じ角度だけ偏向させて参照光RX1,RX2としてPBS部材24Xに向けて反射する参照部材32X(第1参照部材)と、を有する。さらに、エンコーダ10は、第2部材7に設けられて、計測光MXによる回折格子12での2回の回折によってX方向に関して発生する±1次の回折光EX1,EX2がPBS部材24Xを介して入射するとともに、回折光EX1,EX2と、PBS部材24Xを介して入射する参照光RX1,RX2との第1及び第2干渉光を生成する反射部25XA,25XBと、その第1及び第2干渉光を検出する光電センサ40XA,40XBと、光電センサ40XA,40XBの検出信号を用いて第1部材6と第2部材7とのX方向及びZ方向の相対移動量を求める計測演算部42(計測部)と、を有する。
The effects and the like of this embodiment are as follows.
The encoder 10 of the present embodiment is a three-axis encoder device that measures the relative movement amount of a second member 7 that can be three-dimensionally moved relative to the first member 6 in the X, Y, and Z directions. . The encoder 10 is provided on the first member 6 and has a reflection type diffraction grating 12 having a grating pattern 12a whose periodic directions are the X direction and the Y direction, and a laser light source 16 that emits the measurement light MX and the reference light RX. A PBS member 24X (first optical) that is provided on the second member 7 and makes the measurement light MX enter the grating pattern surface 12b of the diffraction grating 12 substantially perpendicularly and emits the reference light RX in a direction different from the measurement light MX. Member) and reflection surfaces 32Xa and 32Xb that are provided on the second member 7 and reflect the reference lights RX1 and RX2 (light beams branched from the reference light RX) incident from the PBS member 24X, and the reference light RX is a diffraction grating. Reference member 32X (first reference member) which is deflected by substantially the same angle as the diffraction angle of the ± first-order diffracted light at 12 and is reflected toward the PBS member 24X as reference light RX1, RX2. It has a. Furthermore, the encoder 10 is provided on the second member 7 and ± 1st-order diffracted lights EX1 and EX2 generated in the X direction by two diffractions at the diffraction grating 12 by the measurement light MX are passed through the PBS member 24X. Reflecting portions 25XA and 25XB that generate first and second interference lights of the diffracted lights EX1 and EX2 and the reference lights RX1 and RX2 that are incident through the PBS member 24X and the first and second interferences thereof. Photoelectric sensors 40XA and 40XB that detect light, and a measurement calculation unit 42 (measurement) that obtains relative movement amounts of the first member 6 and the second member 7 in the X direction and the Z direction using detection signals of the photoelectric sensors 40XA and 40XB. Part).

本実施形態によれば、回折光EX1,EX2と参照光RX1,RX2とはPBS部材24X及び反射部25XA,25XB内ではほぼ共通の光路を有するとともに、参照部材32Xは参照光RX1,RX2を回折格子12での±1次の回折光とほぼ同じ角度でPBS部材24Xに戻している。従って、回折光EX1,EX2と参照光RX1,RX2との光路長差を短くできるため、高いSN比の干渉光が得られて高い計測精度が得られるとともに、入射する計測光MXと参照光RXとして可干渉距離の短いレーザ光を使用できる。さらに、参照部材32Xは、参照光RX1,RX2を回折格子12での±1次の回折光とほぼ同じ角度で反射する反射面32Xa,32Xbを有するため、参照光RXの光量損失を抑制できる。   According to the present embodiment, the diffracted beams EX1 and EX2 and the reference beams RX1 and RX2 have a substantially common optical path in the PBS member 24X and the reflecting portions 25XA and 25XB, and the reference member 32X diffracts the reference beams RX1 and RX2. It is returned to the PBS member 24X at substantially the same angle as the ± 1st-order diffracted light at the grating 12. Accordingly, since the optical path length difference between the diffracted beams EX1 and EX2 and the reference beams RX1 and RX2 can be shortened, interference light with a high S / N ratio can be obtained and high measurement accuracy can be obtained, and the incident measurement beam MX and the reference beam RX can be obtained. A laser beam having a short coherent distance can be used. Furthermore, since the reference member 32X includes the reflecting surfaces 32Xa and 32Xb that reflect the reference beams RX1 and RX2 at substantially the same angle as the ± first-order diffracted beams from the diffraction grating 12, it is possible to suppress the light amount loss of the reference beam RX.

また、仮に第1部材6と第2部材7とのX方向、Y方向の相対位置が固定されている場合には、光電センサ40XAの検出信号から第1部材6と第2部材7とのZ方向の相対移動量を計測できる。
さらに、レーザ光源16は計測光MY及び参照光RYをも発生し、エンコーダ10は、計測光MYを回折格子12の格子パターン面12bに概ね垂直に入射させて、参照光RYを計測光MYと異なる方向に射出するPBS部材24Yと、第2部材7に設けられ、PBS部材24Yから入射する参照光RYを格子パターン及び反射面を介して参照光RY1,RY2としてPBS部材24Yに向けて反射する参照部材32Yと、を有する。さらに、エンコーダ10は、第2部材7に設けられて、計測光MYによる回折格子12での2回の回折によってY方向に関して発生する±1次の回折光EY1,EY2がPBS部材24Yを介して入射するとともに、それらの回折光と、PBS部材24Yを介して入射する参照光RY1,RY2との第3及び第4干渉光を生成する反射部25YA,25YBと、その第3及び第4干渉光を検出する光電センサ40YA,40YBと、を有する。そして、計測演算部42は、光電センサ40XA,40XB,40YA,40YBの検出信号を用いて第1部材6と第2部材7とのX方向、Y方向、及びZ方向の相対移動量を求めている。
Further, if the relative positions of the first member 6 and the second member 7 in the X direction and the Y direction are fixed, the Z of the first member 6 and the second member 7 is detected from the detection signal of the photoelectric sensor 40XA. The relative movement amount in the direction can be measured.
Further, the laser light source 16 also generates the measurement light MY and the reference light RY, and the encoder 10 causes the measurement light MY to enter the grating pattern surface 12b of the diffraction grating 12 substantially perpendicularly, and the reference light RY becomes the measurement light MY. The PBS member 24Y that emits in different directions and the second member 7 are provided to reflect the reference light RY incident from the PBS member 24Y as the reference light RY1 and RY2 toward the PBS member 24Y through the grating pattern and the reflecting surface. And a reference member 32Y. Further, the encoder 10 is provided on the second member 7, and ± 1st-order diffracted lights EY1, EY2 generated in the Y direction by two diffractions at the diffraction grating 12 by the measurement light MY are passed through the PBS member 24Y. Reflecting portions 25YA and 25YB that generate the third and fourth interference lights of the incident diffracted light and the reference lights RY1 and RY2 that enter through the PBS member 24Y, and the third and fourth interference lights. Photoelectric sensors 40YA and 40YB for detecting And the measurement calculating part 42 calculates | requires the relative movement amount of the X direction of the 1st member 6 and the 2nd member 7, the Y direction, and the Z direction using the detection signal of photoelectric sensor 40XA, 40XB, 40YA, 40YB. Yes.

従って、回折光EY1,EY2と参照光RY1,RY2との光路長差を短くできるため、高いSN比の干渉光が得られて高い計測精度が得られる。さらに、参照部材32Yは、参照光RY1,RY2を回折格子12での±1次の回折光とほぼ同じ角度で反射する反射面を有するため、参照光RYの光量損失を抑制できる。
なお、上記の実施形態では以下のような変形が可能である。
Accordingly, since the optical path length difference between the diffracted beams EY1 and EY2 and the reference beams RY1 and RY2 can be shortened, interference light with a high S / N ratio can be obtained and high measurement accuracy can be obtained. Furthermore, since the reference member 32Y has a reflecting surface that reflects the reference beams RY1 and RY2 at substantially the same angle as the ± first-order diffracted beams from the diffraction grating 12, it is possible to suppress the light amount loss of the reference beam RY.
In the above embodiment, the following modifications are possible.

上記の実施形態では2次元の回折格子12が使用されているが、回折格子12の代わりに例えばX方向にのみ周期性を持つ1次元の回折格子を使用してもよい。この場合、検出ヘッド14からは、Y軸の干渉計部15Y及び光電センサ40YA,40YB等を省略し、光電センサ40XA,40XBの検出信号を用いて第1部材6と第2部材7とのX方向及びZ方向の相対移動量を計測できる。   In the above-described embodiment, the two-dimensional diffraction grating 12 is used. However, a one-dimensional diffraction grating having periodicity only in the X direction may be used instead of the diffraction grating 12. In this case, the Y-axis interferometer unit 15Y and the photoelectric sensors 40YA and 40YB are omitted from the detection head 14, and the X of the first member 6 and the second member 7 is detected using the detection signals of the photoelectric sensors 40XA and 40XB. The relative movement amount in the direction and the Z direction can be measured.

また、上記の実施形態では、計測光MX,MYは偏光方向が同じ第1周波数の光束で、参照光RX,RYは偏光方向が同じ第2周波数の光束であるが、計測光MX及び参照光RYを偏光方向が同じ第1周波数の光束として、計測光MY及び参照光RXを偏光方向が同じ第2周波数の光束としてもよい。この場合には、計測光MXと参照光RYとの光量比を計測光MXが大きくなるように設定し、計測光MYと参照光RXとの光量比を計測光MYが大きくなるように設定しておき、最終的に干渉光の段階で計測光MX(回折光)と参照光RXとの光量比(計測光MY(回折光)と参照光RYとの光量比)をほぼ1:1にしてもよい。これによって、回折格子12から発生する回折光の光量を大きくでき、干渉光のSN比をさらに改善できる。   In the above embodiment, the measurement lights MX and MY are light beams having the same first polarization direction, and the reference lights RX and RY are light beams having the same second polarization direction, but the measurement light MX and the reference light. RY may be a light beam having the same first polarization direction, and measurement light MY and reference light RX may be a light beam having the second polarization direction having the same polarization direction. In this case, the light quantity ratio between the measurement light MX and the reference light RY is set so that the measurement light MX becomes large, and the light quantity ratio between the measurement light MY and the reference light RX is set so that the measurement light MY becomes large. In the final stage of interference light, the light quantity ratio between the measurement light MX (diffracted light) and the reference light RX (the light quantity ratio between the measurement light MY (diffracted light) and the reference light RY) is set to approximately 1: 1. Also good. As a result, the amount of diffracted light generated from the diffraction grating 12 can be increased, and the SN ratio of interference light can be further improved.

また、上記の実施形態では、X軸の干渉計部15Xにおいて回折格子12で2回の回折によって発生した回折光EX1,EX2と参照光RX1,RX2との干渉光を検出しているが、回折格子12で1回の回折によって発生した回折光DX1,DX2と参照光RX1,RX2との干渉光を検出してもよい。ただし、この場合には、参照部材32Xとしては、ビームスプリッター面及び反射面を持ち、入射する参照光RXを参照光RX1,RX2に分岐して回折光DX1,DX2と同じ角度で反射する光学部材が使用される。これはY軸の干渉計部15Yにおいても同様である。   In the above-described embodiment, the interference light between the diffracted beams EX1 and EX2 and the reference beams RX1 and RX2 generated by the diffraction grating 12 by the diffraction twice is detected in the X-axis interferometer unit 15X. You may detect the interference light of the diffracted light DX1, DX2 and the reference light RX1, RX2 which generate | occur | produced by 1 time of diffraction with the grating | lattice 12. FIG. However, in this case, as the reference member 32X, an optical member having a beam splitter surface and a reflection surface, which branches the incident reference light RX into the reference light RX1, RX2 and reflects it at the same angle as the diffracted light DX1, DX2. Is used. The same applies to the Y-axis interferometer unit 15Y.

また、上記の実施形態において、図2(A)に示すように、回折格子12から発生する回折光DX1,DX2及びEX1,EX2はPBS部材24XのPBS面A11に対して正確にS偏光になっておらず、光量損失が生じる恐れがある。そこで、回折格子12から発生する回折光DX1,DX2及びEX1,EX2の光路に、それぞれ偏光方向を調整するための例えば1/2波長板よりなる回転角が調整可能な波長板35XA,35XC,35XB,35XDを設置してもよい。この場合、波長板35XA〜35XDの回転角を例えば回折光DX1〜EX2のPBS面A11における反射率が最大になるように調整することで、回折光DX1〜EX2の光量損失を最小にできる。   In the above embodiment, as shown in FIG. 2A, the diffracted lights DX1, DX2 and EX1, EX2 generated from the diffraction grating 12 are accurately S-polarized with respect to the PBS surface A11 of the PBS member 24X. There is a risk of light loss. Accordingly, wave plates 35XA, 35XC, and 35XB that can adjust the rotation angle of, for example, a half-wave plate for adjusting the polarization direction in the optical paths of the diffracted beams DX1, DX2 and EX1, EX2 generated from the diffraction grating 12, respectively. 35XD may be installed. In this case, by adjusting the rotation angle of the wave plates 35XA to 35XD so that the reflectance of the diffracted light DX1 to EX2 on the PBS surface A11 is maximized, for example, the light loss of the diffracted lights DX1 to EX2 can be minimized.

同様に、図3(B)に示すように、参照部材32Xから発生する回折光又は反射光よりなる参照光RX1,RX2はPBS部材24XのPBS面A11に対して正確にP偏光になっておらず、光量損失が生じる恐れがある。そこで、参照部材32Xから発生する回折光(参照光RX1,RX2)及び反射光(参照光RX1,RX2)の光路に、それぞれ偏光方向を調整するための例えば1/2波長板よりなる回転角が調整可能な波長板35RA,35RC,35RB,35RDを設置してもよい。この場合、波長板35RA〜35RDの回転角を例えば回折光又は反射光のPBS面A11における透過率が最大になるように調整することで、回折光及び反射光の光量損失を最小にできる。   Similarly, as shown in FIG. 3B, the reference lights RX1 and RX2 made of diffracted light or reflected light generated from the reference member 32X are accurately P-polarized with respect to the PBS surface A11 of the PBS member 24X. Therefore, there is a risk of light loss. Therefore, the rotation angle formed by, for example, a half-wave plate for adjusting the polarization direction is respectively provided in the optical paths of the diffracted light (reference light RX1, RX2) and the reflected light (reference light RX1, RX2) generated from the reference member 32X. Adjustable wave plates 35RA, 35RC, 35RB, and 35RD may be installed. In this case, by adjusting the rotation angle of the wave plates 35RA to 35RD so that, for example, the transmittance of the diffracted light or reflected light through the PBS surface A11 is maximized, the light loss of the diffracted light and reflected light can be minimized.

なお、波長板35XA〜35XD及び波長板35RA〜35RDは少なくとも1枚設けるだけでも光量損失を低減できる効果がある。
また、上記の実施形態では、PBS部材24XのPBS面A11に対して計測光MXをS偏光、参照光RXをP偏光としているが、PBS面A11に対して計測光MXをP偏光、参照光RXをS偏光としてもよい。この場合には、計測光MXはPBS面A11を透過して、参照光RXはPBS面A11で反射される。
It should be noted that there is an effect that it is possible to reduce the light amount loss by providing at least one wave plate 35XA to 35XD and one wave plate 35RA to 35RD.
In the above embodiment, the measurement light MX is S-polarized light and the reference light RX is P-polarized light with respect to the PBS surface A11 of the PBS member 24X. However, the measurement light MX is P-polarized light and reference light with respect to the PBS surface A11. RX may be S-polarized light. In this case, the measurement light MX is transmitted through the PBS surface A11, and the reference light RX is reflected by the PBS surface A11.

また、上記の実施形態では、反射部25XA,25XBはルーフプリズム26XA,26XBを有するが、ルーフプリズム26XA,26XBの代わりに直交する1対の反射面を持つルーフミラーを使用してもよい。同様に、反射部材28XA,30XA等として、平面ミラーを使用してもよい。これにより、干渉計部15Xを軽量化できる場合がある。
次に、図5の第1変形例の干渉計部15XAで示すように、参照部材として、周期pの格子パターン32Xg及びXZ面に平行な反射面32Xcを有する第1参照部材32XAと、反射面32XcとPBS部材24Xとの間に配置される1対の楔形プリズム33XA,33XBとを使用してもよい。図5において図3(A)に対応する部分には同一符号を付してその詳細な説明を省略する。
In the above embodiment, the reflecting portions 25XA and 25XB have the roof prisms 26XA and 26XB, but a roof mirror having a pair of orthogonal reflecting surfaces may be used instead of the roof prisms 26XA and 26XB. Similarly, a plane mirror may be used as the reflecting members 28XA and 30XA. Thereby, the interferometer part 15X may be reduced in weight.
Next, as shown by the interferometer unit 15XA of the first modified example of FIG. 5, as a reference member, a first reference member 32XA having a grating pattern 32Xg with a period p and a reflecting surface 32Xc parallel to the XZ plane, and a reflecting surface A pair of wedge prisms 33XA and 33XB disposed between 32Xc and the PBS member 24X may be used. 5, parts corresponding to those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof is omitted.

図5において、PBS部材24XのPBS面A11を透過した参照光RXは、第1参照部材32XAの格子パターン32Xgに概ね垂直に入射し、格子パターン32XgからX方向に±1次回折光よりなる参照光RX1,RX2が発生する。参照光RX1,RX2は、PBS部材24X及び反射部25XA,25XBを介して反射された後、PBS面A11を透過して楔形プリズム33XA,33XBによって回折角φxの1/2だけ光路が±X方向に偏向されて第1参照部材32XAの反射面32Xcに入射する。そして、反射面32Xcで反射された参照光RX1,RX2は、図3(A)の場合と同じ光路に沿ってPBS部材24Xに入射する。この他の構成及び効果は上記の実施形態と同様である。従って、この干渉計部15XAによっても、参照光RX1,RX2の光量損失を抑制できる。   In FIG. 5, the reference light RX transmitted through the PBS surface A11 of the PBS member 24X is incident substantially perpendicularly to the grating pattern 32Xg of the first reference member 32XA, and is composed of ± first-order diffracted light in the X direction from the grating pattern 32Xg. RX1 and RX2 are generated. The reference beams RX1 and RX2 are reflected through the PBS member 24X and the reflecting portions 25XA and 25XB, then pass through the PBS surface A11, and the optical path of the diffraction angle φx is halved by the wedge-shaped prisms 33XA and 33XB in the ± X direction. And is incident on the reflecting surface 32Xc of the first reference member 32XA. Then, the reference lights RX1 and RX2 reflected by the reflecting surface 32Xc enter the PBS member 24X along the same optical path as in the case of FIG. Other configurations and effects are the same as those in the above embodiment. Accordingly, the interferometer unit 15XA can also suppress the light amount loss of the reference beams RX1 and RX2.

次に、図6(A)の第2変形例の干渉計部15XBで示すように、参照部材として、周期pの格子パターン32Xg、凹面状の互いに傾斜した1対の屈折面33XBa,33XBc、及び屈折面33XBa,33XBcの底面側の1対の反射面33XBb,33XBdを有する参照部材32XBを使用してもよい。図6(A)において図3(A)に対応する部分には同一符号を付してその詳細な説明を省略する。   Next, as shown by an interferometer portion 15XB of the second modification of FIG. 6A, as a reference member, a grating pattern 32Xg having a period p, a pair of concave refracting surfaces 33XBa, 33XBc, and A reference member 32XB having a pair of reflecting surfaces 33XBb and 33XBd on the bottom surface side of the refracting surfaces 33XBa and 33XBc may be used. 6A, parts corresponding to those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof is omitted.

図6(A)において、PBS部材24XのPBS面A11を透過した参照光RXは、参照部材32XBの格子パターン32Xgに概ね垂直に入射し、格子パターン32XgからX方向に±1次回折光よりなる参照光RX1,RX2が発生する。参照光RX1,RX2は、PBS部材24X及び反射部25XA,25XBを介して反射された後、PBS面A11を透過して参照部材32XBの屈折面33XBa,33XBcに入射する。   In FIG. 6A, the reference light RX transmitted through the PBS surface A11 of the PBS member 24X is incident substantially perpendicularly to the grating pattern 32Xg of the reference member 32XB, and is composed of ± first-order diffracted light in the X direction from the grating pattern 32Xg. Lights RX1 and RX2 are generated. The reference beams RX1 and RX2 are reflected through the PBS member 24X and the reflecting portions 25XA and 25XB, and then pass through the PBS surface A11 and enter the refractive surfaces 33XBa and 33XBc of the reference member 32XB.

図6(B)に示すように、屈折面33XBa,33XBcに入射して屈折された参照光RX1,RX2は、光路B9A,B9Bに沿って底面にある反射面33XBb,33XBdで反射された後、再び屈折面33XBa,33XBcで屈折される。そして、屈折面33XBa,33XBcで屈折されて射出した参照光RX1,RX2は、図3(A)の場合と同じ光路に沿ってPBS部材24Xに入射する。従って、参照部材32XBの屈折率、屈折面33XBa,33XBcの位置及び角度、並びに反射面33XBb,33XBdの位置及び角度は、屈折面33XBa,33XBcで屈折されて射出した参照光RX1,RX2の位置及び方向が、図2(A)の回折格子12から発生する±1次回折光EX1,EX2の位置及び方向に対応するように設定されている。この他の構成及び効果は上記の実施形態と同様である。従って、この干渉計部15XBによっても、参照光RX1,RX2の光量損失を抑制できる。   As shown in FIG. 6B, the reference beams RX1 and RX2 that are refracted by being incident on the refracting surfaces 33XBa and 33XBc are reflected by the reflecting surfaces 33XBb and 33XBd on the bottom surface along the optical paths B9A and B9B. The light is again refracted by the refracting surfaces 33XBa and 33XBc. Then, the reference beams RX1 and RX2 refracted and emitted by the refracting surfaces 33XBa and 33XBc are incident on the PBS member 24X along the same optical path as in FIG. Therefore, the refractive index of the reference member 32XB, the positions and angles of the refracting surfaces 33XBa, 33XBc, and the positions and angles of the reflecting surfaces 33XBb, 33XBd The direction is set so as to correspond to the positions and directions of the ± first-order diffracted beams EX1 and EX2 generated from the diffraction grating 12 of FIG. Other configurations and effects are the same as those in the above embodiment. Accordingly, the interferometer unit 15XB can also suppress the light amount loss of the reference beams RX1 and RX2.

次に、図7(A)の第3変形例の干渉計部15XCで示すように、参照部材として、角度φx/2で傾斜した反射面32XCa、及び図3(A)と同じ傾斜角の1対の反射面32Xa,32Xbを有する第1参照部材32XCと、ハーフミラー面及び複数の反射面を持つ第2参照部材34Xと、を使用してもよい。図7(A)において図3(A)に対応する部分には同一符号を付してその詳細な説明を省略する。図7(A)において、PBS部材24XのPBS面A11を透過した参照光RXは、第2参照部材34Xに入射する。   Next, as shown in the interferometer section 15XC of the third modification of FIG. 7A, as a reference member, a reflective surface 32XCa inclined at an angle φx / 2, and 1 of the same inclination angle as that in FIG. A first reference member 32XC having a pair of reflection surfaces 32Xa and 32Xb and a second reference member 34X having a half mirror surface and a plurality of reflection surfaces may be used. In FIG. 7A, parts corresponding to those in FIG. 3A are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 7A, the reference light RX transmitted through the PBS surface A11 of the PBS member 24X is incident on the second reference member 34X.

図7(B)において、入射した参照光RXは、第2参照部材34Xのハーフミラー面34Xaでほぼ−Y方向に向かう第1参照光RX1と、角度−φxで反射された第2参照光RX2とに分割される。なお、図7(B)における2点鎖線の面B20は、図3(B)の格子パターン32Xgと同じ高さの面であり、角度φxは計測光MXが入射する回折格子12における回折角である。ハーフミラー面34Xaを透過した第1参照光RX1は、第1参照部材32XCの反射面32XCaで、入射する参照光RXに対して角度φxで交差する方向に反射されて、PBS部材24Xに入射する。第2参照部材34Xのハーフミラー面34Xaで反射された第2参照光RX2は、ハーフミラー面34Xaと平行な反射面34Xb,34Xcで反射された後、反射面34Xcで反射された参照光RX2に垂直な射出面34Xdを透過して、入射する参照光RXに対して角度−φxでPBS部材24Xに入射する。   In FIG. 7B, the incident reference light RX includes the first reference light RX1 directed substantially in the −Y direction on the half mirror surface 34Xa of the second reference member 34X, and the second reference light RX2 reflected at an angle −φx. And divided. 7B is a surface having the same height as the grating pattern 32Xg in FIG. 3B, and the angle φx is a diffraction angle in the diffraction grating 12 on which the measurement light MX is incident. is there. The first reference light RX1 transmitted through the half mirror surface 34Xa is reflected by the reflecting surface 32XCa of the first reference member 32XC in a direction crossing the incident reference light RX at an angle φx, and enters the PBS member 24X. . The second reference light RX2 reflected by the half mirror surface 34Xa of the second reference member 34X is reflected by the reflecting surfaces 34Xb and 34Xc parallel to the half mirror surface 34Xa, and then reflected by the reference light RX2 reflected by the reflecting surface 34Xc. The light passes through the vertical exit surface 34Xd and enters the PBS member 24X at an angle −φx with respect to the incident reference light RX.

そして、参照光RX1,RX2は、PBS部材24X及び反射部25XA,25XBを介して反射された後、PBS面A11を透過して第1参照部材32XCの反射面32Xa,32Xbに入射する。反射面32Xa,32Xbで反射された参照光RX1,RX2は、図3(A)の場合と同じ光路に沿ってPBS部材24Xに入射する。この他の構成及び効果は上記の実施形態と同様である。また、第2参照部材34Xの形状(この内部の参照光RX2の光路長)は、参照光RX1の光路長と同じになるように設定されている。従って、干渉計部15XCにおいても、回折光EX1,EX2と参照光RX1,RX2との光路長の差を短くでき、干渉光のSN比を高くできる。さらに、干渉計部15XCにおいては、参照光RX1,RX2は、格子パターンで回折されることなく、反射面のみを介してPBS部材24Xに戻されているため、参照光RX1,RX2の光量損失を最も小さくできる。   The reference lights RX1 and RX2 are reflected through the PBS member 24X and the reflecting portions 25XA and 25XB, and then pass through the PBS surface A11 and enter the reflecting surfaces 32Xa and 32Xb of the first reference member 32XC. The reference lights RX1 and RX2 reflected by the reflecting surfaces 32Xa and 32Xb are incident on the PBS member 24X along the same optical path as in FIG. Other configurations and effects are the same as those in the above embodiment. In addition, the shape of the second reference member 34X (the optical path length of the reference light RX2 therein) is set to be the same as the optical path length of the reference light RX1. Therefore, also in the interferometer unit 15XC, the difference in optical path length between the diffracted beams EX1 and EX2 and the reference beams RX1 and RX2 can be shortened, and the SN ratio of the interference beam can be increased. Further, in the interferometer unit 15XC, the reference beams RX1 and RX2 are not diffracted by the grating pattern, and are returned to the PBS member 24X only through the reflection surface, so that the light amount loss of the reference beams RX1 and RX2 is reduced. Can be the smallest.

[第2の実施形態]
本発明の第2の実施形態につき図8〜図10を参照して説明する。図8は、この実施形態に係るエンコーダ装置を備えた露光装置EXの概略構成を示す。露光装置EXは、スキャニングステッパーよりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PL(投影ユニットPU)を備えており、以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルRとウエハWとが相対走査される方向にY軸を、Z軸及びY軸に直交する方向にX軸を取って説明する。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 8 shows a schematic configuration of an exposure apparatus EX including the encoder apparatus according to this embodiment. The exposure apparatus EX is a scanning exposure type projection exposure apparatus composed of a scanning stepper. The exposure apparatus EX includes a projection optical system PL (projection unit PU). Hereinafter, the Z-axis is parallel to the optical axis AX of the projection optical system PL, and a plane orthogonal to the Z-axis (a plane substantially parallel to the horizontal plane). In the following description, the Y axis is taken in the direction in which the reticle R and the wafer W are relatively scanned, and the X axis is taken in the direction perpendicular to the Z axis and the Y axis.

露光装置EXは、例えば米国特許出願公開第2003/0025890号明細書などに開示される照明系110、及び照明系110からの露光用の照明光(露光光)IL(例えば波長193nmのArFエキシマレーザ光、固体レーザ(半導体レーザなど)の高調波など)により照明されるレチクルR(マスク)を保持するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWSTを含むステージ装置195、及び制御系等(図10参照)を備えている。   The exposure apparatus EX includes an illumination system 110 disclosed in, for example, US Patent Application Publication No. 2003/0025890, and illumination light (exposure light) IL (for example, an ArF excimer laser having a wavelength of 193 nm) from the illumination system 110 A reticle stage RST that holds a reticle R (mask) illuminated by light, a harmonic of a solid-state laser (such as a semiconductor laser). Further, the exposure apparatus EX includes a projection unit PU including a projection optical system PL that projects the illumination light IL emitted from the reticle R onto the wafer W (substrate), a stage apparatus 195 including a wafer stage WST that holds the wafer W, and A control system or the like (see FIG. 10) is provided.

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図9のレチクルステージ駆動系111によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能である。   The reticle R is held on the upper surface of the reticle stage RST by vacuum suction or the like, and a circuit pattern or the like is formed on the pattern surface (lower surface) of the reticle R. The reticle stage RST can be driven minutely in the XY plane by the reticle stage drive system 111 of FIG. 9 including a linear motor, for example, and can be driven at a scanning speed specified in the scanning direction (Y direction).

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計116によって、移動鏡115(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、図10のコンピュータよりなる主制御装置120に送られる。主制御装置120は、その計測値に基づいてレチクルステージ駆動系111を制御することで、レチクルステージRSTの位置及び速度を制御する。   Position information in the moving plane of the reticle stage RST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is transferred to the moving mirror 115 (or mirror-finished) by the reticle interferometer 116 including a laser interferometer. For example, it is always detected with a resolution of about 0.5 to 0.1 nm via the stage end face. The measurement value of reticle interferometer 116 is sent to main controller 120 formed of a computer shown in FIG. Main controller 120 controls reticle stage drive system 111 based on the measurement value, thereby controlling the position and speed of reticle stage RST.

図8において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒140と、鏡筒140内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系110からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のレチクルRの回路パターンの像が、ウエハ(半導体ウエハ)Wの一つのショット領域の露光領域IA(照明領域IARと共役な領域)に形成される。   In FIG. 8, the projection unit PU disposed below the reticle stage RST includes a lens barrel 140 and a projection optical system PL having a plurality of optical elements held in a predetermined positional relationship within the lens barrel 140. The projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification β (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). When the illumination area IAR of the reticle R is illuminated by the illumination light IL from the illumination system 110, an image of the circuit pattern of the reticle R in the illumination area IAR via the projection optical system PL by the illumination light IL that has passed through the reticle R. Are formed in an exposure area IA (an area conjugate to the illumination area IAR) of one shot area of the wafer (semiconductor wafer) W.

また、露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子である先端レンズ191を保持する鏡筒140の下端部の周囲を取り囲むように、局所液浸装置108の一部を構成するノズルユニット132が設けられている。ノズルユニット132は、露光用の液体Lq(例えば純水)を供給するための供給管131A及び回収管131Bを介して、液体供給装置186及び液体回収装置189(図10参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置108は設けなくともよい。   In addition, since the exposure apparatus EX performs exposure using the liquid immersion method, the lower end of the lens barrel 140 that holds the tip lens 191 that is an optical element on the most image plane side (wafer W side) constituting the projection optical system PL is used. A nozzle unit 132 constituting a part of the local liquid immersion device 108 is provided so as to surround the periphery of the part. The nozzle unit 132 is connected to a liquid supply device 186 and a liquid recovery device 189 (see FIG. 10) via a supply tube 131A and a recovery tube 131B for supplying an exposure liquid Lq (for example, pure water). . If the immersion type exposure apparatus is not used, the local immersion apparatus 108 may not be provided.

また、ウエハステージWSTは、不図示の複数の例えば真空予圧型空気静圧軸受(エアパッド)を介して、ベース盤112のXY面に平行な上面112aに非接触で支持されている。ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系124(図10参照)によってX方向及びY方向に駆動可能である。露光装置EXは、レチクルRのアライメントを行う空間像計測系(不図示)、ウエハWのアライメントを行うアライメント系AL(図10参照)、照射系90a及び受光系90bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートフォーカスセンサ90(図10参照)、及びウエハステージWSTの位置情報を計測するためのエンコーダ装置8Bを備えている。   Wafer stage WST is supported in a non-contact manner on upper surface 112a parallel to the XY plane of base board 112 via a plurality of, for example, vacuum preload type static air bearings (air pads) (not shown). Wafer stage WST can be driven in the X and Y directions by a stage drive system 124 (see FIG. 10) including, for example, a planar motor or two sets of orthogonal linear motors. The exposure apparatus EX includes an aerial image measurement system (not shown) that aligns the reticle R, an alignment system AL (see FIG. 10) that aligns the wafer W, an irradiation system 90a, and a light receiving system 90b. An oblique incidence type multi-point autofocus sensor 90 (see FIG. 10) for measuring the Z position of the location, and an encoder device 8B for measuring position information of the wafer stage WST are provided.

ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体191と、ステージ本体191上に搭載されたウエハテーブルWTBと、ステージ本体191内に設けられて、ステージ本体191に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。   Wafer stage WST is provided in stage main body 191, stage main body 191 driven in X and Y directions, wafer table WTB mounted on stage main body 191, and wafer table WTB (wafer for stage main body 191). And a Z / leveling mechanism that relatively finely drives the position of W) in the Z direction and the tilt angle in the θx direction and the θy direction. A wafer holder (not shown) that holds the wafer W on a suction surface substantially parallel to the XY plane by vacuum suction or the like is provided at the upper center of the wafer table WTB.

また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きな円形の開口が形成された高平面度の平板状のプレート体128が設けられている。
なお、上述の局所液浸装置108を設けたいわゆる液浸型の露光装置の構成にあっては、さらにプレート体128は、図9のウエハテーブルWTB(ウエハステージWST)の平面図に示されるように、その円形の開口を囲む、外形(輪郭)が矩形の表面に撥液化処理が施されたプレート部(撥液板)128aと、プレート部128aを囲む周辺部128eとを有する。周辺部128eの上面に、プレート部128aをY方向に挟むようにX方向に細長い1対の2次元の回折格子12A,12Bが配置され、プレート部128aをX方向に挟むようにY方向に細長い1対の2次元の回折格子12C,12Dが配置されている。回折格子12A〜12Dは、図1の回折格子12と同様にX方向、Y方向を周期方向とする2次元の格子パターンが形成された反射型の回折格子である。
In addition, the upper surface of wafer table WTB has a surface (or a protective member) that has been subjected to a liquid repellency treatment with respect to liquid Lq and is substantially flush with the surface of the wafer placed on the wafer holder. A flat plate member 128 having a high flatness is provided in which a circular opening is formed in the center of the rectangular shape and a circular opening that is slightly larger than the wafer holder (wafer mounting region).
In the configuration of the so-called immersion type exposure apparatus provided with the above-mentioned local immersion apparatus 108, the plate body 128 is further shown in the plan view of the wafer table WTB (wafer stage WST) in FIG. In addition, a plate portion (liquid repellent plate) 128a surrounding the circular opening and having a liquid repellent treatment on a surface having a rectangular outer shape (outline), and a peripheral portion 128e surrounding the plate portion 128a. A pair of two-dimensional diffraction gratings 12A and 12B elongated in the X direction so as to sandwich the plate portion 128a in the Y direction is disposed on the upper surface of the peripheral portion 128e, and elongated in the Y direction so as to sandwich the plate portion 128a in the X direction. A pair of two-dimensional diffraction gratings 12C and 12D are arranged. The diffraction gratings 12 </ b> A to 12 </ b> D are reflection type diffraction gratings in which a two-dimensional grating pattern having a periodic direction in the X direction and the Y direction is formed as in the diffraction grating 12 of FIG. 1.

また、図8において、投影ユニットPUを支持するフレーム(不図示)に連結部材(不図示)を介してXY面にほぼ平行な平板状の計測フレーム150が支持されている。計測フレーム150の底面に、投影光学系PLをX方向に挟むように、図1の3軸の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定され、投影光学系PLをY方向に挟むように、図1の検出ヘッド14と同じ構成の複数の検出ヘッド14が固定されている(図9参照)。また、複数の検出ヘッド14にレーザ光(計測光及び参照光)を供給するための図1のレーザ光源16と同様の一つ又は複数のレーザ光源(不図示)も備えられている。   In FIG. 8, a flat measurement frame 150 substantially parallel to the XY plane is supported on a frame (not shown) that supports the projection unit PU via a connecting member (not shown). A plurality of detection heads 14 having the same configuration as the triaxial detection head 14 in FIG. 1 are fixed to the bottom surface of the measurement frame 150 so as to sandwich the projection optical system PL in the X direction, and the projection optical system PL is sandwiched in the Y direction. As described above, a plurality of detection heads 14 having the same configuration as the detection head 14 of FIG. 1 are fixed (see FIG. 9). Further, one or a plurality of laser light sources (not shown) similar to the laser light source 16 of FIG. 1 for supplying laser light (measurement light and reference light) to the plurality of detection heads 14 are also provided.

図9において、投影光学系PLからの照明光でウエハWを露光している期間では、常にY方向の一列A1内の複数の検出ヘッド14のいずれか2つが回折格子12A,12Bに対向し、X方向の一行A2の複数の検出ヘッド14のいずれか2つが回折格子12C,12Dに対向するように構成されている。一列A1内の各検出ヘッド14は、回折格子12A又は12Bに計測光を照射し、回折格子12A,12Bから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図10参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めてそれぞれ計測値を切り替え部80Aに供給する。計測値切り替え部80Aでは、回折格子12A,12Bに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。   In FIG. 9, during the period in which the wafer W is exposed with the illumination light from the projection optical system PL, any two of the plurality of detection heads 14 in one row A1 in the Y direction always face the diffraction gratings 12A and 12B. Any two of the plurality of detection heads 14 in one row A2 in the X direction are configured to face the diffraction gratings 12C and 12D. Each of the detection heads 14 in the row A1 irradiates the diffraction grating 12A or 12B with measurement light, and the corresponding measurement calculation unit 42 (corresponding to a detection signal of interference light between the diffraction light generated from the diffraction gratings 12A and 12B and the reference light (See FIG. 10). In these measurement calculation units 42, as in the measurement calculation unit 42 in FIG. 1, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the X direction, the Y direction, and the Z direction are set to 0.5 to, for example. Each measurement value is obtained with a resolution of 0.1 nm and supplied to the switching unit 80A. In the measurement value switching unit 80A, information on the relative position supplied from the measurement calculation unit 42 corresponding to the detection head 14 facing the diffraction gratings 12A and 12B is supplied to the main controller 120.

また、一行A2に対応する各検出ヘッド14は、回折格子12C又は12Dに計測光を照射し、回折格子12C,12Dから発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42(図10参照)に供給する。これらの計測演算部42では、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Y方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Bに供給する。計測値切り替え部80Bでは、回折格子12C,12Dに対向している検出ヘッド14に対応する計測演算部42から供給される相対位置の情報を主制御装置120に供給する。   Each detection head 14 corresponding to one row A2 irradiates the diffraction grating 12C or 12D with measurement light, and performs a measurement calculation corresponding to a detection signal of interference light between the diffraction light generated from the diffraction gratings 12C and 12D and the reference light. It supplies to the part 42 (refer FIG. 10). In these measurement calculation units 42, as in the measurement calculation unit 42 in FIG. 1, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the X direction, the Y direction, and the Z direction are set to 0.5 to, for example. Obtained with a resolution of 0.1 nm and supplied to the measured value switching unit 80B. In the measurement value switching unit 80B, information on the relative position supplied from the measurement calculation unit 42 corresponding to the detection head 14 facing the diffraction gratings 12C and 12D is supplied to the main controller 120.

一列A1内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12A,12Bから3軸のエンコーダ10Aが構成され、一行A2内の複数の検出ヘッド14、レーザ光源(不図示)、計測演算部42、及び回折格子12C,12Dから3軸のエンコーダ10Bが構成されている。そして、3軸のエンコーダ10A,10B、及び計測値切り替え部80A,80Bからエンコーダ装置8Bが構成されている。主制御装置120は、エンコーダ装置8Bから供給される相対位置の情報に基づいて、計測フレーム150(投影光学系PL)に対するウエハステージWSTのX方向、Y方向、Z方向の位置、及びθz方向の回転角等の情報を求め、この情報に基づいてステージ駆動系124を介してウエハステージWSTを駆動する。   A plurality of detection heads 14 in one row A1, a laser light source (not shown), a measurement calculation unit 42, and diffraction gratings 12A and 12B constitute a three-axis encoder 10A. The plurality of detection heads 14 in one row A2 and the laser light source (Not shown), the measurement calculation unit 42, and the diffraction gratings 12C and 12D constitute a three-axis encoder 10B. The encoder device 8B is composed of the three-axis encoders 10A and 10B and the measurement value switching units 80A and 80B. Based on the information on the relative position supplied from encoder device 8B, main controller 120 determines the position of wafer stage WST relative to measurement frame 150 (projection optical system PL) in the X, Y, and Z directions, and in the θz direction. Information such as the rotation angle is obtained, and wafer stage WST is driven via stage drive system 124 based on this information.

そして、露光装置EXの露光時には、先ずレチクルR及びウエハWのアライメントが行われる。その後、レチクルRへの照明光ILの照射を開始して、投影光学系PLを介してレチクルRのパターンの一部の像をウエハWの表面の一つのショット領域に投影しつつ、レチクルステージRSTとウエハステージWSTとを投影光学系PLの投影倍率βを速度比としてY方向に同期して移動(同期走査)する走査露光動作によって、そのショット領域にレチクルRのパターン像が転写される。その後、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作と、上記の走査露光動作とを繰り返すことによって、液浸法でかつステップ・アンド・スキャン方式でウエハWの全部のショット領域にレチクルRのパターン像が転写される。   Then, at the time of exposure by the exposure apparatus EX, alignment of the reticle R and the wafer W is first performed. Thereafter, irradiation of the reticle R with the illumination light IL is started, and an image of a part of the pattern of the reticle R is projected onto one shot area on the surface of the wafer W via the projection optical system PL, while the reticle stage RST. The pattern image of the reticle R is transferred to the shot area by a scanning exposure operation that moves the wafer stage WST in synchronization with the Y direction using the projection magnification β of the projection optical system PL as a speed ratio (synchronous scanning). Thereafter, by repeating the step movement of the wafer W in the X and Y directions via the wafer stage WST and the scanning exposure operation described above, the entire wafer W is immersed by the immersion method and the step-and-scan method. The pattern image of the reticle R is transferred to the shot area.

この際に、エンコーダ装置8Bの検出ヘッド14においては、計測光及び回折光の光路長はレーザ干渉計に比べて短いため、検出ヘッド14を用いた計測値に対する空気揺らぎの影響が非常に小さい。従って、本実施形態のエンコーダ装置8Bは、レーザ干渉計と比較して、空気が揺らぐ程度の短い期間における計測安定性(短期安定性)が格段に優れているため、レチクルRのパターン像をウエハWに高精度に転写できる。さらに、検出ヘッド14は回折格子12A〜12DのZ位置が変化しても常に高いSN比で相対移動量の上方を含む信号を検出できるため、常に高精度にウエハステージWSTを駆動できる。   At this time, in the detection head 14 of the encoder device 8B, since the optical path lengths of the measurement light and the diffracted light are shorter than those of the laser interferometer, the influence of the air fluctuation on the measurement value using the detection head 14 is very small. Accordingly, the encoder device 8B of the present embodiment has much better measurement stability (short-term stability) in a short period of time when the air fluctuates than the laser interferometer. Can be transferred to W with high accuracy. Furthermore, since the detection head 14 can always detect a signal including the upper portion of the relative movement amount with a high SN ratio even if the Z positions of the diffraction gratings 12A to 12D change, the wafer stage WST can always be driven with high accuracy.

なお、本実施形態では、計測フレーム150側に検出ヘッド14を配置し、ウエハステージWST側に回折格子12A〜12Dを配置している。この他の構成として、計測フレーム150側に回折格子12A〜12Dを配置し、ウエハステージWST側に検出ヘッド14を配置してもよい。
また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図11に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
In the present embodiment, the detection head 14 is arranged on the measurement frame 150 side, and the diffraction gratings 12A to 12D are arranged on the wafer stage WST side. As another configuration, the diffraction gratings 12A to 12D may be arranged on the measurement frame 150 side, and the detection head 14 may be arranged on the wafer stage WST side.
Further, when an electronic device (or a micro device) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the electronic device as shown in FIG. Step 221 for performing a step, Step 222 for fabricating a reticle (mask) based on this design step, Step 223 for fabricating a substrate (wafer) as a base material of the device and applying a resist, and the exposure apparatus ( Substrate processing step 224 including a step of exposing a reticle pattern to a substrate (photosensitive substrate) by an exposure method), a step of developing the exposed substrate, a heating (curing) and etching step of the developed substrate, and a device assembly step (dicing) (Including processing processes such as processes, bonding processes, and packaging processes) 22 And an inspection step 226, and the like.

言い換えると、このデバイスの製造方法は、上記の実施例の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写し、その基板を現像するリソグラフィ工程と、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工する工程(ステップ224のエッチング等)とを含んでいる。この際に、上記の実施例によれば、露光装置のウエハステージWSTの位置を高精度に制御できるため、電子デバイスを高精度に製造できる。   In other words, this device manufacturing method includes a lithography process in which an image of a reticle pattern is transferred to a substrate (wafer) using the exposure apparatus EX (exposure method) of the above embodiment, and the pattern is developed. And a step (such as etching in step 224) of processing the substrate on which the image is transferred on the basis of the image of the pattern. At this time, according to the above-described embodiment, the position of wafer stage WST of the exposure apparatus can be controlled with high accuracy, so that an electronic device can be manufactured with high accuracy.

なお、本発明は、上述の走査露光型の投影露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパ等)にも適用できる。さらに、本発明は、液浸型露光装置以外のドライ露光型の露光装置にも同様に適用することができる。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光装置にも適用することができる。
The present invention can be applied to a step-and-repeat type projection exposure apparatus (stepper or the like) in addition to the above-described scanning exposure type projection exposure apparatus (scanner). Furthermore, the present invention can be similarly applied to a dry exposure type exposure apparatus other than an immersion type exposure apparatus.
In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure apparatus when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithography process.

また、上記の実施形態のエンコーダ10は、露光装置以外の検査装置又は計測装置等の検査又は加工対象の物体用の光学系(レーザ光を集光する光学系等)と、その物体を移動する移動装置(ステージ等)とを備えた光学装置において、その移動装置(物体)の例えばその光学系に対する相対移動量を計測するために適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
In addition, the encoder 10 of the above-described embodiment moves an optical system for an object to be inspected or processed (such as an optical system for condensing laser light) such as an inspection apparatus or a measurement apparatus other than the exposure apparatus, and the object. In an optical device provided with a moving device (such as a stage), the present invention can be applied to measure the relative movement amount of the moving device (object) with respect to the optical system, for example.
In addition, this invention is not limited to the above-mentioned embodiment, Of course, a various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、R…レチクル、W…ウエハ、MX,MY…計測光、RX,RY…参照光、DX1,EX1…+1次回折光、DX2,EX2…−1次回折光、RX1,RX2…参照光、6…第1部材、7…第2部材、10…エンコーダ、12…2次元の回折格子、14…検出ヘッド、15X,15Y…干渉計部、16…レーザ光源、24X,24Y…PBS(偏光ビームスプリッター)部材、25XA,25XB,25YA,25YB…反射部、32X,32Y…参照部材、40XA,40XB,40YA,40YB…光電センサ、42…計測演算部   EX ... exposure apparatus, R ... reticle, W ... wafer, MX, MY ... measurement light, RX, RY ... reference light, DX1, EX1 ... + 1st order diffracted light, DX2, EX2 ...- 1st order diffracted light, RX1, RX2 ... reference light , 6 ... 1st member, 7 ... 2nd member, 10 ... Encoder, 12 ... Two-dimensional diffraction grating, 14 ... Detection head, 15X, 15Y ... Interferometer section, 16 ... Laser light source, 24X, 24Y ... PBS (polarization) Beam splitter) member, 25XA, 25XB, 25YA, 25YB ... reflecting part, 32X, 32Y ... reference member, 40XA, 40XB, 40YA, 40YB ... photoelectric sensor, 42 ... measurement calculation part

Claims (14)

第1部材と該第1部材に対して少なくとも第1方向に相対移動可能に支持された第2部材との相対移動量を計測するエンコーダ装置であって、
前記第1部材に設けられ、少なくとも前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
計測光及び参照光を射出する光源部と、
前記第2部材に設けられ、前記計測光を前記回折格子の格子パターン面に概ね垂直に入射させて、前記参照光を前記計測光と異なる方向に射出する第1光学部材と、
前記第2部材に設けられ、前記第1光学部材から入射する前記参照光又はこの参照光から分岐された光束を反射する少なくとも一つの反射面を持ち、前記参照光を前記回折格子における互いに異なる2つの回折角と概ね同じ角度だけ偏向させて第1及び第2参照光として前記第1光学部材に向けて反射する第1参照部材と、
前記第2部材に設けられて、前記計測光によって前記回折格子から前記第1方向に関して発生する互いに異なる次数の第1及び第2回折光が前記第1光学部材を介して入射するとともに、前記第1及び第2回折光と、前記第1光学部材を介して入射する前記第1及び第2参照光との第1及び第2干渉光を生成する第1及び第2反射部と、
前記第1及び第2干渉光をそれぞれ検出する第1及び第2光電検出器と、
前記第1及び第2光電検出器の検出信号を用いて前記第1部材と前記第2部材との相対移動量を求める計測部と、
を備えることを特徴とするエンコーダ装置。
An encoder device for measuring a relative movement amount between a first member and a second member supported so as to be relatively movable in at least a first direction with respect to the first member,
A reflective diffraction grating provided on the first member and having a grating pattern having at least the first direction as a periodic direction;
A light source unit for emitting measurement light and reference light;
A first optical member that is provided on the second member, causes the measurement light to enter the grating pattern surface of the diffraction grating substantially perpendicularly, and emits the reference light in a direction different from the measurement light;
The second member has at least one reflecting surface that reflects the reference light incident from the first optical member or a light beam branched from the reference light, and the reference light is different from each other in the diffraction grating. A first reference member deflected by approximately the same angle as two diffraction angles and reflected toward the first optical member as first and second reference beams;
The first and second diffracted lights of different orders, which are provided on the second member and are generated from the diffraction grating with respect to the first direction by the measurement light, enter through the first optical member, and First and second reflecting portions that generate first and second interference lights of the first and second diffracted lights and the first and second reference lights incident via the first optical member;
First and second photoelectric detectors for detecting the first and second interference lights, respectively;
A measurement unit for obtaining a relative movement amount between the first member and the second member using detection signals of the first and second photoelectric detectors;
An encoder device comprising:
前記第1反射部は、前記回折格子から発生する前記第1及び第2回折光を前記第1光学部材を介して前記回折格子に入射させ、前記第1及び第2参照光を前記第1光学部材を介して前記第1参照部材に入射させ、前記第1及び第2回折光によって前記回折格子から前記第1方向に関して発生する回折光と、前記第1参照部材から戻される前記第1及び第2参照光との干渉光を生成することを特徴とする請求項1に記載のエンコーダ装置。   The first reflection unit causes the first and second diffracted light generated from the diffraction grating to enter the diffraction grating via the first optical member, and causes the first and second reference lights to enter the first optical element. Diffracted light that is incident on the first reference member through a member and is generated from the diffraction grating with respect to the first direction by the first and second diffracted light, and the first and second diffracted light returned from the first reference member. The encoder apparatus according to claim 1, wherein interference light with two reference lights is generated. 前記第1参照部材は、前記第1方向に対応する方向の周期が前記回折格子の前記格子パターンの前記第1方向の周期と同じ参照格子パターンと、少なくとも一つの反射面を持つ参照反射部とを有し、
前記第1光学部材から入射する前記参照光によって前記参照格子パターンから前記第1方向に対応する方向に発生する互いに次数の異なる2つの回折光が前記第1及び第2参照光となり、
前記第1及び第2参照光が、前記第1光学部材と前記第1及び第2反射部とを介して前記参照反射部に入射し、前記参照反射部に入射した前記第1及び第2参照光が前記第1光学部材に戻されことを特徴とする請求項2に記載のエンコーダ装置。
The first reference member includes a reference grating pattern having a period in a direction corresponding to the first direction that is the same as a period in the first direction of the grating pattern of the diffraction grating, and a reference reflector having at least one reflecting surface. Have
Two diffracted lights of different orders generated from the reference grating pattern in a direction corresponding to the first direction by the reference light incident from the first optical member become the first and second reference lights,
The first and second reference lights that are incident on the reference reflector through the first optical member and the first and second reflectors, and that are incident on the reference reflector. The encoder device according to claim 2, wherein light is returned to the first optical member.
前記参照反射部は、前記第1及び第2参照光を前記参照格子パターンからの前記2つの回折光と平行に前記第1光学部材に反射する第1及び第2反射面を有することを特徴とする請求項3に記載のエンコーダ装置。   The reference reflection unit includes first and second reflection surfaces that reflect the first and second reference lights to the first optical member in parallel with the two diffracted lights from the reference grating pattern. The encoder device according to claim 3. 前記参照反射部は一つの反射面を有し、
前記第1参照部材は、前記第1光学部材から前記参照反射部の反射面に入射する前記第1及び第2参照光の入射角を変化させる第1及び第2偏向部を有することを特徴とする請求項3に記載のエンコーダ装置。
The reference reflecting portion has one reflecting surface,
The first reference member includes first and second deflecting units that change incident angles of the first and second reference lights that are incident on the reflecting surface of the reference reflecting unit from the first optical member. The encoder device according to claim 3.
前記第1参照部材は、前記第1光学部材から入射する前記参照光並びに前記第1光学部材から入射する前記第1及び第2参照光をそれぞれ前記第1光学部材側に反射する第1、第2、及び第3反射面と、前記参照光の一部を分岐する少なくとも一つの分岐面とを有することを特徴とする請求項2に記載のエンコーダ装置。   The first reference member reflects the reference light incident from the first optical member and the first and second reference light incident from the first optical member to the first optical member side, respectively. The encoder apparatus according to claim 2, further comprising: 2 and a third reflecting surface, and at least one branch surface that branches a part of the reference light. 前記第1反射部は、前記第1回折光を反射する直交する2つの反射面を持つ第1光束反射部材を有し、
前記第2反射部は、前記第2回折光を反射する直交する2つの反射面を持つ第2光束反射部材を有することを特徴とする請求項1〜6のいずれか一項に記載のエンコーダ装置。
The first reflecting portion includes a first light flux reflecting member having two orthogonal reflecting surfaces that reflect the first diffracted light,
The encoder device according to claim 1, wherein the second reflecting unit includes a second light flux reflecting member having two orthogonal reflecting surfaces that reflect the second diffracted light. .
前記光源部は、前記計測光及び前記参照光を互いに偏光状態の異なる光として射出し、
前記第1光学部材は、前記計測光及び前記参照光を分離する偏光ビームスプリッター面を含むことを特徴とすることを特徴とする請求項1〜7のいずれか一項に記載のエンコーダ装置。
The light source unit emits the measurement light and the reference light as light having different polarization states,
The encoder device according to claim 1, wherein the first optical member includes a polarization beam splitter surface that separates the measurement light and the reference light.
前記第1光学部材に入射する前記第1及び第2回折光、並びに前記第1及び第2参照光のうち少なくとも一つの光束の偏光方向を調整する少なくとも一つの波長板を備えることを特徴とする請求項8に記載のエンコーダ装置。   It comprises at least one wave plate for adjusting a polarization direction of at least one light beam of the first and second diffracted lights and the first and second reference lights incident on the first optical member. The encoder device according to claim 8. 前記回折格子は、前記第1方向及び該第1方向に直交する第2方向を周期方向とする2次元の反射型の回折格子であり、
前記第2部材に設けられ、前記計測光を前記回折格子の格子パターン面に概ね垂直に入射させて、前記参照光を前記計測光と異なる方向に射出する第2光学部材と、
前記第2部材に設けられ、少なくとも一つの反射面を持ち、前記第2光学部材から入射する前記参照光を前記回折格子における互いに異なる2つの回折角と概ね同じ角度だけ偏向させて第3及び第4参照光として前記第2光学部材に向けて反射する第2参照部材と、
前記第2部材に設けられて、前記計測光によって前記回折格子から前記第2方向に関して発生する互いに異なる次数の第3及び第4回折光が前記第2光学部材を介して入射するとともに、前記第3及び第4回折光と、前記第2光学部材を介して入射する前記第3及び第4参照光との第3及び第4干渉光を生成する第3及び第4反射部と、
前記第3及び第4干渉光をそれぞれ検出する第3及び第4光電検出器と、を備え、
前記計測部は、前記第1、第2、第3、及び第4光電検出器の検出信号を用いて前記第1部材と前記第2部材との相対移動量を求めることを特徴とする請求項1〜9のいずれか一項に記載のエンコーダ装置。
The diffraction grating is a two-dimensional reflection type diffraction grating whose periodic direction is the first direction and a second direction orthogonal to the first direction;
A second optical member that is provided on the second member, causes the measurement light to enter the grating pattern surface of the diffraction grating substantially perpendicularly, and emits the reference light in a direction different from the measurement light;
The third member is provided on the second member, has at least one reflecting surface, and deflects the reference light incident from the second optical member by approximately the same angle as two different diffraction angles in the diffraction grating. A second reference member that reflects toward the second optical member as four reference light;
Third and fourth diffracted lights of different orders, which are provided on the second member and are generated from the diffraction grating in the second direction by the measurement light, enter through the second optical member, and 3rd and 4th refracting parts which generate the 3rd and 4th interference light of the 3rd and 4th diffracted light, and the 3rd and 4th reference lights which enter via the 2nd optical member,
A third and a fourth photoelectric detector for detecting the third and fourth interference light, respectively,
The measurement unit obtains a relative movement amount between the first member and the second member using detection signals of the first, second, third, and fourth photoelectric detectors. The encoder apparatus as described in any one of 1-9.
前記計測部は、前記第1部材と前記第2部材との前記第1方向、前記第2方向、及び前記回折格子の格子パターン面に垂直な第3方向の相対移動量を求めることを特徴とする請求項10に記載のエンコーダ装置。   The measurement unit obtains a relative movement amount between the first member and the second member in the first direction, the second direction, and a third direction perpendicular to a grating pattern surface of the diffraction grating. The encoder device according to claim 10. 請求項1〜11のいずれか一項に記載のエンコーダ装置と、
対象物用の光学系と、を備えることを特徴とする光学装置。
The encoder device according to any one of claims 1 to 11,
And an optical system for an object.
パターンを被露光体に露光する露光装置であって、
フレームと、
前記被露光体を支持するとともに前記フレームに対して少なくとも第1方向に相対移動可能なステージと、
少なくとも前記第1方向への前記ステージの相対移動量を計測するための請求項1〜11のいずれか一項に記載のエンコーダ装置と、を備えることを特徴とする露光装置。
An exposure apparatus that exposes a pattern onto an object to be exposed,
Frame,
A stage that supports the object to be exposed and is relatively movable in at least a first direction with respect to the frame;
An exposure apparatus comprising: the encoder device according to any one of claims 1 to 11 for measuring at least a relative movement amount of the stage in the first direction.
リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程で、請求項13に記載の露光装置を用いて物体を露光することを特徴とするデバイス製造方法。
A device manufacturing method including a lithography process,
14. A device manufacturing method, comprising: exposing an object using the exposure apparatus according to claim 13 in the lithography process.
JP2012169399A 2012-07-31 2012-07-31 Encoder device, optical device and exposure device Pending JP2014029276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169399A JP2014029276A (en) 2012-07-31 2012-07-31 Encoder device, optical device and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169399A JP2014029276A (en) 2012-07-31 2012-07-31 Encoder device, optical device and exposure device

Publications (1)

Publication Number Publication Date
JP2014029276A true JP2014029276A (en) 2014-02-13

Family

ID=50201946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169399A Pending JP2014029276A (en) 2012-07-31 2012-07-31 Encoder device, optical device and exposure device

Country Status (1)

Country Link
JP (1) JP2014029276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897064A (en) * 2015-06-09 2015-09-09 张白 Novel light-arm-amplification type high-precision length sensor and measurement method thereof
JP2017083510A (en) * 2015-10-23 2017-05-18 株式会社ニコン Encoder device and use method thereof, optical device, exposure device and device manufacturing method
CN114364948A (en) * 2019-09-13 2022-04-15 应用材料公司 Measurement system and grating pattern array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897064A (en) * 2015-06-09 2015-09-09 张白 Novel light-arm-amplification type high-precision length sensor and measurement method thereof
CN104897064B (en) * 2015-06-09 2018-06-01 张白 A kind of new smooth arm amplifying type high precision length sensor and measuring method
JP2017083510A (en) * 2015-10-23 2017-05-18 株式会社ニコン Encoder device and use method thereof, optical device, exposure device and device manufacturing method
CN114364948A (en) * 2019-09-13 2022-04-15 应用材料公司 Measurement system and grating pattern array

Similar Documents

Publication Publication Date Title
US10697805B2 (en) Encoder device, method for measuring moving amount, optical apparatus, exposure apparatus, exposure method and method for producing device
TWI568991B (en) Encoder interferometry system, lithography system, and encoder interferometry method
JP6767682B2 (en) Encoder device and exposure device
TWI489081B (en) Low coherence interferometry using encoder systems
TWI748363B (en) Measurement device and measurement method, exposure apparatus and exposure method, and device manufacturing method
JP2007292735A (en) Displacement measuring system, lithographic apparatus, and device manufacturing method
KR102294481B1 (en) Method for controlling moving body, exposure method, method for manufacturing device, moving body apparatus, and exposure apparatus
US20140183345A1 (en) High resolution encoder head
JP6680997B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2014029276A (en) Encoder device, optical device and exposure device
JP2012049284A (en) Encoder, optical device, exposure device, exposure method, and method of manufacturing device
JP6607350B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP5862857B2 (en) Encoder device, optical device, and exposure device
JP2013234997A (en) Encoder device, optical device and exposure device
JP2013101084A (en) Position detection method and device, encoder device and exposure device
JP2012008004A (en) Encoder device, optical device, exposing device, exposing method, and device manufacturing method
JP2013026273A (en) Encoder device, optical device, and exposure device
TWI479125B (en) Compact encoder head for interferometric encoder system
JP2016024049A (en) Measurement method and encoder device, as well as exposure method and device
JP2013102099A (en) Encoder device, optical device, and exposure device
JP2011181851A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method