JP2013026273A - Encoder device, optical device, and exposure device - Google Patents

Encoder device, optical device, and exposure device Download PDF

Info

Publication number
JP2013026273A
JP2013026273A JP2011156741A JP2011156741A JP2013026273A JP 2013026273 A JP2013026273 A JP 2013026273A JP 2011156741 A JP2011156741 A JP 2011156741A JP 2011156741 A JP2011156741 A JP 2011156741A JP 2013026273 A JP2013026273 A JP 2013026273A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
measurement
reflecting
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011156741A
Other languages
Japanese (ja)
Inventor
Zhigiang Liu
志強 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011156741A priority Critical patent/JP2013026273A/en
Publication of JP2013026273A publication Critical patent/JP2013026273A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to compactly arrange an interferometric optical system and suppress reduction of interference beam intensity against height variation of a diffraction grating pattern surface when a measurement is done using a diffraction grating.SOLUTION: An encoder 10X comprises: a diffraction grating 12X disposed in a first component 6; a laser source 16 which makes measurement beams MX1 and MX2 incident roughly perpendicularly on a diffraction grating pattern surface 12Xb of the diffraction grating 12X; a rectangular prism 26A which is disposed in a second component 7 and makes a diffraction beam DX1 generated from the diffraction grating 12X by the measurement beam MX1 incident on the diffraction grating 12X again ; and a photoelectronic sensor 40X which detects an interference beam between a diffraction beam DX2 generated by the diffraction beam DX1 and the other diffraction beam EX2.

Description

本発明は、相対移動する部材間の相対移動量を計測するエンコーダ装置、このエンコーダ装置を備えた光学装置及び露光装置、並びにこの露光装置を用いたデバイス製造方法に関する。   The present invention relates to an encoder apparatus that measures a relative movement amount between members that move relatively, an optical apparatus and an exposure apparatus that include the encoder apparatus, and a device manufacturing method that uses the exposure apparatus.

半導体素子等の電子デバイス(マイクロデバイス)を生産するためのフォトリソグラフィ工程で用いられる、いわゆるステッパー又はスキャニングステッパーなどの露光装置においては、従来より、露光対象の基板を移動するステージの位置計測はレーザ干渉計によって行われていた。ところが、レーザ干渉計では、計測用ビームの光路が長く、かつ変化するため、その光路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動が無視できなくなりつつある。   In an exposure apparatus such as a so-called stepper or scanning stepper used in a photolithography process for producing an electronic device (microdevice) such as a semiconductor element, the position measurement of a stage that moves a substrate to be exposed has conventionally been a laser. It was done by an interferometer. However, in the laser interferometer, since the optical path of the measurement beam is long and changes, short-term fluctuations in measured values due to temperature fluctuations in the atmosphere on the optical path are becoming difficult to ignore.

そこで、例えばステージに固定された回折格子にレーザ光よりなる計測光を照射し、回折格子から発生する回折光と他の回折光又は参照光との干渉光を光電変換して得られる検出信号から、その回折格子が設けられた部材(ステージ等)の相対移動量を計測する、いわゆるエンコーダ装置(干渉型エンコーダ)も使用されつつある(例えば特許文献1参照)。このエンコーダ装置は、レーザ干渉計に比べて計測値の短期的安定性に優れるとともに、レーザ干渉計に近い分解能が得られるようになっている。   Therefore, for example, from a detection signal obtained by irradiating the diffraction grating fixed to the stage with measurement light made of laser light and photoelectrically converting interference light between the diffracted light generated from the diffraction grating and other diffracted light or reference light A so-called encoder device (interference encoder) that measures the relative movement amount of a member (such as a stage) provided with the diffraction grating is also being used (see, for example, Patent Document 1). This encoder device is excellent in short-term stability of measurement values as compared with a laser interferometer, and can obtain a resolution close to that of a laser interferometer.

国際公開第2008/029757号パンフレットInternational Publication No. 2008/029757 Pamphlet

従来のエンコーダ装置は、回折格子から発生する回折光を平面ミラー等で反射しているため、回折格子の格子パターン面の高さが変化すると、その回折光が他の回折光又は参照光に対して相対的にシフトして、干渉光の強度が低下する恐れがあった。
また、従来のエンコーダ装置は、ほぼ計測光の入射面に沿って、回折光と他の回折光又は参照光とを干渉させるための複数の光学部材を配置していたため、光学系の高さが高くなり、その光学系を例えば狭い空間に組み込むことが困難であった。
Since the conventional encoder device reflects the diffracted light generated from the diffraction grating by a flat mirror or the like, when the height of the grating pattern surface of the diffraction grating changes, the diffracted light is compared with other diffracted light or reference light. There is a risk that the intensity of the interference light is lowered due to relative shift.
In addition, the conventional encoder device has a plurality of optical members for causing the diffracted light and other diffracted light or reference light to interfere with each other substantially along the incident surface of the measurement light. It has become high and it has been difficult to incorporate the optical system into, for example, a narrow space.

本発明の態様は、このような課題に鑑み、回折格子を用いて相対移動量を計測する際に、干渉用の光学系をコンパクトに配置可能として、かつ格子パターン面の高さ変化に対する干渉光強度の低下を抑制することを目的とする。   In view of such a problem, the aspect of the present invention makes it possible to arrange an interference optical system in a compact manner when measuring the amount of relative movement using a diffraction grating, and to provide interference light with respect to a change in the height of the grating pattern surface. It aims at suppressing the fall of intensity | strength.

本発明の第1の態様によれば、第1部材に対して少なくとも第1方向に相対移動する第2部材の相対移動量を計測するエンコーダ装置が提供される。このエンコーダ装置は、その第1部材及びその第2部材の一方に設けられ、その第1方向を周期方向とする格子パターンを有する反射型の回折格子と、第1計測光をその回折格子の格子パターン面にほぼ垂直に入射させる光源部と、その第1部材及びその第2部材の他方に設けられるとともに、互いに直交する第1及び第2の反射面を持ち、その回折格子からその第1計測光によって発生する第1回折光を、その2つの反射面を介してその第1方向に直交する第2方向へのシフト成分を含むようにその回折格子に再度入射させる第1の二面反射部材と、その回折格子からその第1回折光によってその格子パターン面にほぼ垂直に発生する第2回折光と他の回折光又は参照光との干渉光を検出する光電検出器と、その光電検出器の検出信号を用いてその第2部材の相対移動量を求める計測部と、を備えるものである。   According to the first aspect of the present invention, there is provided an encoder device that measures the relative movement amount of the second member that moves relative to the first member in at least the first direction. The encoder device is provided on one of the first member and the second member, and has a reflection type diffraction grating having a grating pattern having the first direction as a periodic direction, and the first measurement light is supplied to the grating of the diffraction grating. A light source unit that is substantially perpendicularly incident on the pattern surface, and provided on the other of the first member and the second member, and has first and second reflecting surfaces orthogonal to each other, and the first measurement from the diffraction grating. The first two-surface reflecting member that makes the first diffracted light generated by the light enter the diffraction grating again through the two reflecting surfaces so as to include a shift component in the second direction orthogonal to the first direction. A photoelectric detector for detecting interference light between the second diffracted light and other diffracted light or reference light generated from the diffraction grating by the first diffracted light approximately perpendicularly to the grating pattern surface, and the photoelectric detector Use the detection signal A measuring unit for determining the relative movement amount of the second member Te are those comprising a.

また、第2の態様によれば、本発明のエンコーダ装置と、対象物用の光学系と、を備える光学装置が提供される。
また、第3の態様によれば、パターンを被露光体に露光する露光装置が提供される。この露光装置は、フレームと、その被露光体を支持するとともにそのフレームに対して少なくとも第1方向に相対移動可能なステージと、その第1方向へのステージの相対移動量を計測するための本発明のエンコーダ装置と、を備えるものである。
Moreover, according to the 2nd aspect, an optical apparatus provided with the encoder apparatus of this invention and the optical system for objects is provided.
Moreover, according to the 3rd aspect, the exposure apparatus which exposes a pattern to a to-be-exposed body is provided. The exposure apparatus includes a frame, a stage that supports the object to be exposed and is relatively movable in at least a first direction with respect to the frame, and a book for measuring a relative movement amount of the stage in the first direction. And an encoder device according to the invention.

また、第4の様態によれば、リソグラフィ工程を含み、そのリソグラフィ工程では、上記露光装置を用いて物体を露光するデバイス製造方法が提供される。   According to the fourth aspect, there is provided a device manufacturing method that includes a lithography process, and in the lithography process, exposes an object using the exposure apparatus.

本発明によれば、回折格子から第1計測光によって発生する第1回折光を、2つの反射面を介してその回折格子に再度入射させる二面反射部材を設けているため、エンコーダ装置の干渉用の光学系をコンパクトに配置可能である。
また、二面反射部材を用いることによって、回折光と他の回折光又は参照光との相対的な横シフト量を小さくできるため、格子パターン面の高さの変化に対して干渉光の強度低下を抑制でき、計測精度を高く維持できる。
According to the present invention, since the two-surface reflecting member for allowing the first diffracted light generated by the first measurement light from the diffraction grating to enter the diffraction grating again through the two reflecting surfaces is provided, the interference of the encoder device is provided. The optical system can be arranged compactly.
In addition, by using a two-surface reflecting member, the relative lateral shift amount between the diffracted light and other diffracted light or reference light can be reduced, so that the intensity of interference light is reduced with respect to changes in the height of the grating pattern surface Can be suppressed, and high measurement accuracy can be maintained.

(A)は第1の実施形態に係るエンコーダを示す斜視図である。1A is a perspective view showing an encoder according to a first embodiment. FIG. (A)は図1のエンコーダにおける回折光の光路を示す図、(B)は格子パターン面の高さが変化したときの回折光の光路を示す図である。(A) is a figure which shows the optical path of the diffracted light in the encoder of FIG. 1, (B) is a figure which shows the optical path of the diffracted light when the height of a grating | lattice pattern surface changes. 図1のエンコーダにおけるノイズ光となる回折光の光路を示す図である。It is a figure which shows the optical path of the diffracted light used as noise light in the encoder of FIG. 実施形態の変形例に係るエンコーダを示す斜視図である。It is a perspective view showing an encoder concerning a modification of an embodiment. 第2の実施形態に係る露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus which concerns on 2nd Embodiment. 図5のウエハステージに設けられた回折格子及び複数の検出ヘッドの配置の一例を示す平面図である。FIG. 6 is a plan view showing an example of an arrangement of a diffraction grating and a plurality of detection heads provided on the wafer stage of FIG. 5. 図5の露光装置の制御系を示すブロック図である。6 is a block diagram showing a control system of the exposure apparatus of FIG. 電子デバイスの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of an electronic device.

[第1の実施形態]
本発明の第1の実施形態につき図1〜図3を参照して説明する。図1は本実施形態に係るX軸のエンコーダ10Xの要部を示す斜視図である。図1において、一例として、第1部材6に対して第2部材7は2次元平面内で相対移動可能に配置され、第2部材7の互いに直交する相対移動可能な2つの方向に平行にX軸及びY軸を取り、X軸及びY軸によって規定される平面(XY面)に直交する軸をZ軸として説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの角度をそれぞれθx方向、θy方向、及びθz方向の角度とも呼ぶ。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing a main part of an X-axis encoder 10X according to the present embodiment. In FIG. 1, as an example, the second member 7 is disposed so as to be relatively movable in a two-dimensional plane with respect to the first member 6, and is parallel to two directions of the second member 7 that are relatively movable relative to each other. An axis and a Y axis are taken, and an axis orthogonal to a plane (XY plane) defined by the X axis and the Y axis will be described as a Z axis. In addition, the angles around axes parallel to the X axis, the Y axis, and the Z axis are also referred to as angles in the θx direction, the θy direction, and the θz direction, respectively.

図1において、エンコーダ10Xは、第1部材6の上面に固定された、XY面に平行な平板状のX軸の回折格子12Xと、第2部材7に固定されて回折格子12Xに計測光を照射するX軸の検出ヘッド14Xと、検出ヘッド14Xに計測用のレーザ光を供給するレーザ光源16と、検出ヘッド14Xから出力される検出信号を処理して第1部材6に対する第2部材7のX方向の相対移動量を求める計測演算部42Xと、を有する。   In FIG. 1, an encoder 10 </ b> X transmits measurement light to the diffraction grating 12 </ b> X, which is fixed to the upper surface of the first member 6, and is a flat plate-shaped X-axis diffraction grating 12 </ b> X parallel to the XY plane, and the second member 7. The X-axis detection head 14 </ b> X to be irradiated, the laser light source 16 that supplies the detection head 14 </ b> X with measurement laser light, and the detection signal output from the detection head 14 </ b> X are processed to process the second member 7 with respect to the first member 6. And a measurement calculation unit 42X for obtaining a relative movement amount in the X direction.

回折格子12XのXY面に平行な格子パターン面12Xbには、X方向に所定の周期(ピッチ)を持ち、位相型でかつ反射型の格子パターン12Xaが形成されている。格子パターン12Xaの周期は、一例として100nm〜4μm程度(例えば2μm周期)である。格子パターン12Xaは、例えばホログラム(例えば感光性樹脂に干渉縞を焼き付けたもの)として、又はガラス板等に機械的に溝等を形成して反射膜を被着することで作製可能である。さらに、格子パターン面12Xbは、保護用の平板ガラスで覆われていてもよい。なお、回折格子12Xの代わりに、X方向、Y方向に周期的に形成された格子パターンを持つ2次元の回折格子を使用してもよい。   On the grating pattern surface 12Xb parallel to the XY plane of the diffraction grating 12X, a phase-type and reflection-type grating pattern 12Xa having a predetermined period (pitch) in the X direction is formed. The period of the lattice pattern 12Xa is about 100 nm to 4 μm (for example, a period of 2 μm) as an example. The grating pattern 12Xa can be produced, for example, as a hologram (for example, an interference fringe baked on a photosensitive resin) or by mechanically forming a groove or the like on a glass plate or the like and applying a reflective film. Furthermore, the lattice pattern surface 12Xb may be covered with a protective flat glass. Instead of the diffraction grating 12X, a two-dimensional diffraction grating having a grating pattern periodically formed in the X direction and the Y direction may be used.

レーザ光源16は、例えばHe−Neレーザ又は半導体レーザ等よりなり、一例として偏光方向が互いに直交するとともに互いに周波数が異なる第1及び第2の直線偏光のレーザ光よりなる2周波ヘテロダイン光を射出する。それらのレーザ光は互いに可干渉であり、それらの平均波長をλとする。レーザ光源16は、それらのレーザ光から分岐した2つの光束の干渉光を光電変換して得られる基準周波数の信号(基準信号)を計測演算部42Xに供給する。なお、ホモダイン干渉方式も使用可能である。   The laser light source 16 is made of, for example, a He—Ne laser or a semiconductor laser, and emits a two-frequency heterodyne light made up of first and second linearly polarized laser beams whose polarization directions are orthogonal to each other and have different frequencies. . These laser beams are coherent with each other, and their average wavelength is λ. The laser light source 16 supplies a signal of a reference frequency (reference signal) obtained by photoelectric conversion of interference light of two light beams branched from the laser light to the measurement calculation unit 42X. A homodyne interference method can also be used.

検出ヘッド14Xは、第2部材7に固定されてXY面に平行な平板状のベース部材22と、レーザ光源16から供給されたヘテロダイン光を互いに同じ光量のS偏光の第1の計測光MX1及びP偏光の第2の計測光MX2(光路を点線で示している)に分割する偏光ビームスプリッタ(以下、PBSという。)18と、計測光MX1の光路長を計測光MX2の光路長に合わせるように計測光MX1を反射するミラー20A1,20A2,20A3及び20Bと、計測光MX2を反射するミラー20Cと、ミラー20Dと、偏光板30と、フォトダイオード等の光電センサ40Xとを有する。ミラー20A1〜20Dはベース部材22の上面側に配置されている。PBS18〜光電センサ40XAまでの部材は、ベース部材22に固定された支持部材(不図示)によって支持されている。ベース部材22には、X方向に沿って所定間隔で配置された2つの窓部22b,22c、及び窓部22b,22cの中間位置からY方向に離れた位置に配置された窓部22dが形成されている。計測光MX1,MX2はミラー20B,20Cで反射され、それぞれ窓部22b,22cを通過して回折格子12Xの格子パターン面12Xbにほぼ垂直に入射する。   The detection head 14X includes a flat base member 22 fixed to the second member 7 and parallel to the XY plane, and heterodyne light supplied from the laser light source 16 and S-polarized first measurement light MX1 having the same light amount. A polarization beam splitter (hereinafter referred to as PBS) 18 that divides the light into P-polarized second measurement light MX2 (the optical path is indicated by a dotted line), and the optical path length of the measurement light MX1 are matched with the optical path length of the measurement light MX2. The mirrors 20A1, 20A2, 20A3, and 20B that reflect the measurement light MX1, the mirror 20C that reflects the measurement light MX2, the mirror 20D, the polarizing plate 30, and a photoelectric sensor 40X such as a photodiode. The mirrors 20 </ b> A <b> 1 to 20 </ b> D are disposed on the upper surface side of the base member 22. The members from PBS 18 to photoelectric sensor 40XA are supported by a support member (not shown) fixed to base member 22. The base member 22 is formed with two window portions 22b and 22c arranged at a predetermined interval along the X direction, and a window portion 22d arranged at a position away from the intermediate position between the window portions 22b and 22c in the Y direction. Has been. The measurement beams MX1 and MX2 are reflected by the mirrors 20B and 20C, pass through the window portions 22b and 22c, respectively, and enter the grating pattern surface 12Xb of the diffraction grating 12X substantially perpendicularly.

また、検出ヘッド14Xは、ベース部材22の底面で、窓部22b〜22dの−X方向側にX方向に隣接して固定された段差ミラー24A及び支持部材28Aと、支持部材28Aに固定された直角プリズム26Aと、を有する。段差ミラー24Aは、XY平面に平行な第1の反射面24Aaと、この反射面24Aaに平行でかつ+Z方向にずれている第2の反射面24Abとを持つ。また、直角プリズム26Aは、互いに直交する第1及び第2の反射面26Aa,26Abを持ち、反射面26Aa,26Abの間の入射出面が、XY面に平行な状態からθy方向の時計回りに後述の角度(θd+α/2)だけ回転した状態で支持されている。また、検出ヘッド14Xは、窓部22b〜22dを挟んで、段差ミラー24A、支持部材28A、及び直角プリズム26Aと対称に配置された同じ形状の段差ミラー24B、支持部材28B、及び直角プリズム26Bを有する。   Further, the detection head 14X is fixed to the support member 28A on the bottom surface of the base member 22 and the step mirror 24A and the support member 28A fixed adjacent to the −X direction side of the windows 22b to 22d in the X direction. And a right angle prism 26A. The step mirror 24A has a first reflection surface 24Aa parallel to the XY plane and a second reflection surface 24Ab parallel to the reflection surface 24Aa and offset in the + Z direction. The right-angle prism 26A has first and second reflecting surfaces 26Aa and 26Ab orthogonal to each other, and an incident / exit surface between the reflecting surfaces 26Aa and 26Ab is described later in a clockwise direction in the θy direction from a state parallel to the XY plane. Is supported in a state rotated by an angle (θd + α / 2). The detection head 14X includes the step mirror 24B, the support member 28B, and the right-angle prism 26B having the same shape and symmetrically arranged with the step mirror 24A, the support member 28A, and the right-angle prism 26A across the windows 22b to 22d. Have.

図1において、第1の計測光MX1は、窓部22bを介して回折格子12Xの格子パターン面12Xbの第1の計測点PAにほぼ垂直に入射し、回折格子12Xから−X方向に+1次回折光DX1が発生する。回折光DX1は、段差ミラー24Aの第1の反射面24Aaで反射されて直角プリズム26Aに入射し、直角プリズム26Aの2つの反射面26Aa,26Abで反射されて段差ミラー24Aの第2の反射面24Abに入射する。そして、反射面24Abで反射された回折光DX1は、格子パターン面12Xbの第3の計測点PCに斜めに入射し、計測点PCから−1次回折光DX2が垂直に発生する。   In FIG. 1, the first measurement light MX1 enters the first measurement point PA of the grating pattern surface 12Xb of the diffraction grating 12X through the window portion 22b substantially perpendicularly, and is +1 next time from the diffraction grating 12X in the −X direction. The folding light DX1 is generated. The diffracted light DX1 is reflected by the first reflecting surface 24Aa of the step mirror 24A, enters the right-angle prism 26A, is reflected by the two reflecting surfaces 26Aa, 26Ab of the right-angle prism 26A, and is reflected by the second reflecting surface of the step mirror 24A. Incident on 24 Ab. Then, the diffracted light DX1 reflected by the reflecting surface 24Ab is obliquely incident on the third measurement point PC on the grating pattern surface 12Xb, and the −1st order diffracted light DX2 is vertically generated from the measurement point PC.

一方、第2の計測光MX2は、窓部22cを介して格子パターン面12Xbの第2の計測点PBにほぼ垂直に入射し、回折格子12Xから+X方向に−1次回折光EX1が発生する。回折光EX1は、段差ミラー24Bの第1の反射面24Baで反射されて直角プリズム26Bに入射し、直角プリズム26Bの2つの反射面26Ba,26Bbで反射されて段差ミラー24Bの第2の反射面24Bbに入射する。そして、反射面24Bbで反射された回折光EX1は、格子パターン面12Xbの回折光DX1が入射した第3の計測点PCに斜めに入射し、計測点PCから+1次回折光EX2が垂直に発生する。計測点PCで垂直に発生した−1次回折光DX2及び+1次回折光EX2は同軸に合成されて、ベース部材22の窓部22d、ミラー20D、及び偏光板30を介して光電センサ40Xで受光される。光電センサ40Xの検出信号が計測演算部42Xに供給される。この実施形態では、PBS18で分岐されてから光電センサ40Xに入射するまでの計測光MX1,MX2(回折光)の光路長は互いにほぼ等しく設定されているため、計測光MX1,MX2として比較的波長幅の広いレーザ光を使用可能である。なお、計測光MX1,MX2の波長幅が狭い場合には、計測光MX1,MX2(回折光)の光路長差を大きくしてもよい。   On the other hand, the second measurement light MX2 is incident substantially perpendicularly to the second measurement point PB of the grating pattern surface 12Xb through the window portion 22c, and −1st order diffracted light EX1 is generated in the + X direction from the diffraction grating 12X. The diffracted light EX1 is reflected by the first reflecting surface 24Ba of the step mirror 24B, enters the right-angle prism 26B, is reflected by the two reflecting surfaces 26Ba, 26Bb of the right-angle prism 26B, and is reflected by the second reflecting surface of the step mirror 24B. Incident on 24Bb. Then, the diffracted light EX1 reflected by the reflecting surface 24Bb is obliquely incident on the third measurement point PC where the diffracted light DX1 of the grating pattern surface 12Xb is incident, and the + 1st order diffracted light EX2 is vertically generated from the measurement point PC. . The −1st order diffracted light DX2 and the + 1st order diffracted light EX2 generated vertically at the measurement point PC are coaxially combined and received by the photoelectric sensor 40X via the window portion 22d of the base member 22, the mirror 20D, and the polarizing plate 30. . A detection signal of the photoelectric sensor 40X is supplied to the measurement calculation unit 42X. In this embodiment, since the optical path lengths of the measurement lights MX1 and MX2 (diffracted light) from being branched by the PBS 18 to being incident on the photoelectric sensor 40X are set to be substantially equal to each other, the measurement lights MX1 and MX2 are relatively wavelengths. A wide laser beam can be used. In addition, when the wavelength width of measurement light MX1, MX2 is narrow, you may enlarge the optical path length difference of measurement light MX1, MX2 (diffracted light).

一例として、計測演算部42Xは、その検出信号とレーザ光源16から供給される基準信号とから、第1部材6に対する第2部材7のX方向への相対移動量を求める。X方向の相対移動量の検出分解能は例えば0.5〜0.1nm程度である。本実施形態では、最終的に2回目の−1次回折光DX2と2回目の+1次回折光EX2との干渉光を検出しているため、相対移動量の検出分解能(検出精度)を1/2に向上(微細化)できる。また、±1次回折光を用いることによって、第1部材6と第2部材7とのθz方向の相対回転角による計測誤差を低減できる。   As an example, the measurement calculation unit 42 </ b> X obtains the relative movement amount in the X direction of the second member 7 relative to the first member 6 from the detection signal and the reference signal supplied from the laser light source 16. The detection resolution of the relative movement amount in the X direction is, for example, about 0.5 to 0.1 nm. In this embodiment, since the interference light between the second −1st order diffracted light DX2 and the second + 1st order diffracted light EX2 is finally detected, the detection resolution (detection accuracy) of the relative movement amount is halved. It can be improved (miniaturized). In addition, by using ± first-order diffracted light, measurement errors due to the relative rotation angles of the first member 6 and the second member 7 in the θz direction can be reduced.

次に、本実施形態の計測光MX1,MX2の格子パターン面12Xbに対するθy方向(X方向)の入射角は、ノイズ光の影響を低減するために、図2(A)に示すように、対称に角度αだけずれている。以下では、計測光MX1の入射角αは、時計回りにずれているものとする。角度αは、例えば0.5°〜数度程度であり、例えば0.5°〜1.5°(目標値で1°程度)に設定することが好ましい。   Next, the incident angles in the θy direction (X direction) of the measurement light MX1 and MX2 of the present embodiment with respect to the lattice pattern surface 12Xb are symmetrical as shown in FIG. 2A in order to reduce the influence of noise light. Is shifted by an angle α. In the following, it is assumed that the incident angle α of the measurement light MX1 is shifted clockwise. The angle α is, for example, about 0.5 ° to several degrees, and is preferably set to, for example, 0.5 ° to 1.5 ° (target value is about 1 °).

この場合、計測光MX1が格子パターン面12Xbに垂直に入射した場合の+1次回折光DX1の回折角をφd(反時計回りの角度)とすると、計測光MX1,MX2の平均波長λを用いて回折角φdは次の関係を満たす。
sin φd=λ …(1)
本実施形態では、計測光MX1は入射角αで回折格子12Xに入射するため、入射した計測光MX1による回折格子12Xからの+1次回折光DX1の回折角φ1は、次のようにほぼ回折角φdよりも角度αだけ大きくなる。
In this case, assuming that the diffraction angle of the + 1st order diffracted light DX1 when the measurement light MX1 is perpendicularly incident on the grating pattern surface 12Xb is φd (counterclockwise angle), the measurement light MX1 is rotated using the average wavelength λ of the measurement lights MX1 and MX2. The folding angle φd satisfies the following relationship.
sin φd = λ (1)
In this embodiment, since the measurement light MX1 is incident on the diffraction grating 12X at an incident angle α, the diffraction angle φ1 of the + 1st order diffracted light DX1 from the diffraction grating 12X by the incident measurement light MX1 is approximately the diffraction angle φd as follows. Than the angle α.

φ1≒φd+α …(2)
また、回折光DX1は、段差ミラー24Aの第1の反射面24Aaで反射されて直角プリズム26Aに入射する。本実施形態では、支持部材28Aの直角プリズム26Aの取り付け面のZY面に対するθy方向の傾斜角は(θd+α/2)に設定されている。この結果、直角プリズム26Aの反射面26Aa,26Abの間の入射出面は、XY面に平行な状態からθy方向の時計回りに角度(θd+α/2)だけ回転した状態となっている。従って、直角プリズム26Aの直交する2つの反射面26Aa,26Abで反射された回折光DX1は、段差ミラー24Aの第2の反射面24Abで反射された後、格子パターン面12Xbに対して反時計回りに入射角φd(+1次回折光の回折角と同じ角度)で入射する。従って、回折光DX1の入射によって回折格子12Xからは垂直上方(回折角0)に−1次回折光DX2が発生する。
φ1 ≒ φd + α (2)
The diffracted light DX1 is reflected by the first reflecting surface 24Aa of the step mirror 24A and enters the right-angle prism 26A. In the present embodiment, the inclination angle in the θy direction with respect to the ZY plane of the mounting surface of the right-angle prism 26A of the support member 28A is set to (θd + α / 2). As a result, the incident / exit surface between the reflecting surfaces 26Aa and 26Ab of the right-angle prism 26A is rotated from the state parallel to the XY plane by an angle (θd + α / 2) clockwise in the θy direction. Accordingly, the diffracted light DX1 reflected by the two orthogonal reflecting surfaces 26Aa and 26Ab of the right-angle prism 26A is reflected by the second reflecting surface 24Ab of the step mirror 24A and then counterclockwise with respect to the grating pattern surface 12Xb. At an incident angle φd (the same angle as the diffraction angle of the + 1st order diffracted light). Accordingly, the −1st order diffracted light DX2 is generated vertically upward (diffraction angle 0) from the diffraction grating 12X by the incidence of the diffracted light DX1.

これと対称に、第2の計測光MX2によって発生した−1次回折光EX1は、段差ミラー24Bの第1の反射面24Baで反射されて直角プリズム26Bの、XY面に平行な状態からθy方向の反時計回りに角度(θd+α/2)だけ回転した面に入射し、直角プリズム26Bの直交する2つの反射面26Ba,26Bbで反射される。そして、回折光EX1は、段差ミラー24Bの第2の反射面24Bbで反射された後、格子パターン面12Xbに対して時計回りに入射角φdで入射する。従って、回折光EX1の入射によって回折格子12Xからは垂直上方(回折角0)に、すなわち−1次回折光DX2に平行に+1次回折光EX2が発生する。従って、回折光DX2,EX2の干渉光は強度変化のコントラストが高いため、高精度に位置検出が可能である。   In contrast to this, the first-order diffracted light EX1 generated by the second measurement light MX2 is reflected by the first reflecting surface 24Ba of the step mirror 24B, and is parallel to the XY plane of the right-angle prism 26B in the θy direction. The light is incident on a surface rotated counterclockwise by an angle (θd + α / 2) and reflected by two orthogonal reflecting surfaces 26Ba and 26Bb of the right-angle prism 26B. The diffracted light EX1 is reflected by the second reflecting surface 24Bb of the step mirror 24B, and then enters the grating pattern surface 12Xb clockwise with an incident angle φd. Accordingly, the + 1st order diffracted light EX2 is generated vertically upward (diffraction angle 0) from the diffraction grating 12X by the incidence of the diffracted light EX1, that is, parallel to the -1st order diffracted light DX2. Therefore, since the interference light of the diffracted light DX2 and EX2 has a high intensity change contrast, the position can be detected with high accuracy.

本実施形態において、図2(B)に示すように、回折格子12Xの格子パターン面12Xbの高さ(Z方向の位置)が位置PDに変化した場合には、回折格子12Xの計測点PAから発生した回折光DX1は、段差ミラー24A、直角プリズム26A、及び段差ミラー24Aを介して光路PEで示すようにほぼ回折格子12Xのもとの計測点PCに入射する。同様に、回折格子12Xの計測点PBから発生した回折光EX1は、段差ミラー24B、直角プリズム26B、及び段差ミラー24Bを介して光路PFで示すようにほぼ回折格子12Xのもとの計測点PCに入射する。従って、回折光DX2,EX2間の相対的な横シフトがほとんど発生しないため、常に高精度に位置検出が可能である。   In the present embodiment, as shown in FIG. 2B, when the height (the position in the Z direction) of the grating pattern surface 12Xb of the diffraction grating 12X changes to the position PD, the measurement point PA of the diffraction grating 12X starts. The generated diffracted light DX1 is incident on the original measurement point PC of the diffraction grating 12X as indicated by the optical path PE through the step mirror 24A, the right-angle prism 26A, and the step mirror 24A. Similarly, the diffracted light EX1 generated from the measurement point PB of the diffraction grating 12X is substantially measured at the original measurement point PC of the diffraction grating 12X as indicated by the optical path PF via the step mirror 24B, the right-angle prism 26B, and the step mirror 24B. Is incident on. Accordingly, since the relative lateral shift between the diffracted beams DX2 and EX2 hardly occurs, the position can always be detected with high accuracy.

ただし、図3に示すように、本実施形態では、回折格子12Xの計測点PCに入射した回折光DX1によって同じ方向に−2次回折光DX21が発生する。図3において、この回折光DX21は、第2の反射面24Ab、直角プリズム26A、第1の反射面24Aaを介して回折格子12Xの計測点PAに戻り、計測点PAから回折角がほぼ(θd−α)の+2次回折光DX22が発生する。この回折光DX22は、第1の反射面24Aa、直角プリズム26A、第2の反射面24Abを介して回折格子12Xの計測点PCに戻り、計測点PCからほぼ回折角2・αで−1次回折光DX23が発生する。この回折光DX23と他の回折光DX2,EX2との干渉光がノイズ光となる。   However, as shown in FIG. 3, in the present embodiment, the -second-order diffracted light DX21 is generated in the same direction by the diffracted light DX1 incident on the measurement point PC of the diffraction grating 12X. In FIG. 3, the diffracted light DX21 returns to the measurement point PA of the diffraction grating 12X via the second reflection surface 24Ab, the right-angle prism 26A, and the first reflection surface 24Aa, and the diffraction angle from the measurement point PA is substantially (θd -Α) + 2nd order diffracted light DX22 is generated. The diffracted light DX22 returns to the measurement point PC of the diffraction grating 12X via the first reflection surface 24Aa, the right-angle prism 26A, and the second reflection surface 24Ab, and is approximately −1 next time from the measurement point PC at a diffraction angle 2 · α. The folded light DX23 is generated. Interference light between the diffracted light DX23 and the other diffracted lights DX2 and EX2 becomes noise light.

しかしながら、回折光DX23と他の回折光DX2,EX2とのθy方向の角度(交差角)はほぼ2・αであり、周期の小さい干渉縞が形成されるのみで、計測誤差は極めて小さくなる。ここで、計測光MX1,MX2(平均波長λ)のビーム径をdとして、回折光DX23と回折光DX2,EX2とが合流して形成される干渉縞の周期がそのビーム径dの1/100以下程度であれば(干渉縞が100本以上形成される程度であれば)、得られる干渉縞を光電変換して得られる検出信号の0次光に起因する変動成分(ノイズ成分)はほぼ1%以下になり、計測誤差は極めて小さくなる。この際の条件は以下のようになる。ただし、角度αをradで表している。   However, the angle (crossing angle) in the θy direction between the diffracted light DX23 and the other diffracted lights DX2 and EX2 is approximately 2 · α, and an interference fringe with a small period is formed, and the measurement error becomes extremely small. Here, assuming that the beam diameters of the measurement lights MX1 and MX2 (average wavelength λ) are d, the period of the interference fringes formed by the combination of the diffracted light DX23 and the diffracted lights DX2 and EX2 is 1/100 of the beam diameter d. If it is less than or equal to the extent (if more than 100 interference fringes are formed), the fluctuation component (noise component) due to the 0th order light of the detection signal obtained by photoelectrically converting the obtained interference fringes is approximately 1. %, The measurement error is extremely small. The conditions at this time are as follows. However, the angle α is represented by rad.

d・2・α≧100λ …(3)
ここで、一例としてビーム径dを2mm、波長λを0.633μmとすると、式(3)を満たす角度αは以下のようになる。
α≧0.0158(rad)=0.91° …(4)
従って、計測光MX1,MX2のビーム径が2mm程度であれば、計測光MX1,MX2のX方向の入射角αは、0.91°以上、例えば1°程度であることが好ましい。なお、計測光MX1,MX2の入射角αが大きくなると、格子パターン面12XaのZ方向の位置の変化に対して、回折光DX2,EX2の横シフト量が大きくなり、相対位置情報を含む干渉光の強度が小さくなるため、式(4)を満たす範囲内で角度αはあまり大きくしない方がよい。
d · 2 · α ≧ 100λ (3)
Here, as an example, when the beam diameter d is 2 mm and the wavelength λ is 0.633 μm, the angle α satisfying the expression (3) is as follows.
α ≧ 0.0158 (rad) = 0.91 ° (4)
Therefore, when the beam diameters of the measuring beams MX1 and MX2 are about 2 mm, the incident angle α in the X direction of the measuring beams MX1 and MX2 is preferably 0.91 ° or more, for example, about 1 °. When the incident angle α of the measurement beams MX1 and MX2 increases, the amount of lateral shift of the diffracted beams DX2 and EX2 increases with respect to the change in the position of the grating pattern surface 12Xa in the Z direction, and the interference light includes relative position information. Therefore, it is better not to increase the angle α within a range satisfying the equation (4).

なお、例えば+2次回折光の回折効率が低い場合には、角度αは0でもよい。
本実施形態の効果等は以下の通りである。本実施形態のX軸のエンコーダ10Xは、第1部材6と第2部材7とのX方向の相対移動量を計測するエンコーダである。そして、エンコーダ10Xは、第1部材6に設けられ、X方向を周期方向とする回折格子12Xと、可干渉性のある計測光MX1及びMX2を発生するレーザ光源16よ、計測光MX1,MX2を回折格子12Xの格子パターン面12Xbにほぼ垂直に入射させるミラー20B,20Cと、第2部材7に設けられるとともに、互いに直交する反射面26Aa,26Abを持ち、回折格子12Xから計測光MX1によって発生する+1次回折光DX1を、反射面26Aa,26Abを介してY方向にシフトさせて回折格子12Xに再度入射させる直角プリズム26Aと、回折格子12Xから回折光DX1によって格子パターン面12Xbにほぼ垂直に発生する−1次回折光DX2と他の回折光EX2との干渉光を検出する光電センサ40Xと、光電センサ40Xの検出信号を用いて第2部材7の相対移動量を求める計測演算部42Xと、を備えている。
For example, when the diffraction efficiency of the + 2nd order diffracted light is low, the angle α may be zero.
The effects and the like of this embodiment are as follows. The X-axis encoder 10 </ b> X of the present embodiment is an encoder that measures the relative movement amount of the first member 6 and the second member 7 in the X direction. The encoder 10X is provided on the first member 6 and receives the measurement lights MX1 and MX2 from the diffraction grating 12X whose periodic direction is the X direction and the laser light source 16 that generates coherent measurement lights MX1 and MX2. Mirrors 20B and 20C that enter the grating pattern surface 12Xb of the diffraction grating 12X substantially perpendicularly and the second member 7 have reflection surfaces 26Aa and 26Ab that are orthogonal to each other, and are generated from the diffraction grating 12X by the measurement light MX1. The + 1st-order diffracted light DX1 is generated substantially perpendicularly to the grating pattern surface 12Xb by the diffracted light DX1 from the diffraction grating 12X and the right-angle prism 26A that is shifted in the Y direction via the reflecting surfaces 26Aa and 26Ab and re-entered on the diffraction grating 12X. A photoelectric sensor 40X that detects interference light between the -1st order diffracted light DX2 and the other diffracted light EX2, And a, a measurement calculation unit 42X to determine the relative amount of movement of the second member 7 by using the detection signal of the photoelectric sensor 40X.

本実施形態によれば、回折格子12Xから計測光MX1によって発生する回折光DX1を、2つの反射面を介して回折格子12XにY方向にシフトさせて再度入射させる直角プリズム26A(二面反射部材)を設けているため、エンコーダ10Xの干渉用の光学系を第2部材7の例えば底面にコンパクトに配置可能である。
また、直角プリズム26Aを用いることによって、回折光DX2と他の回折光EX2との相対的な横シフト量を小さくできるため、格子パターン面12Xbの高さ変化に対して干渉光の強度低下を抑制でき、計測精度を高く維持できる。
According to the present embodiment, the right-angle prism 26A (two-surface reflecting member) that makes the diffraction light DX1 generated by the measurement light MX1 from the diffraction grating 12X shift to the diffraction grating 12X in the Y direction via the two reflection surfaces and enter again. ) Is provided, the optical system for interference of the encoder 10X can be compactly arranged on the bottom surface of the second member 7, for example.
Further, since the relative lateral shift amount between the diffracted light DX2 and the other diffracted light EX2 can be reduced by using the right-angle prism 26A, the decrease in the intensity of the interference light is suppressed with respect to the height change of the grating pattern surface 12Xb. And high measurement accuracy can be maintained.

なお、直角プリズム26A,26Bの代わりに例えば直交する2つの反射面を持つダハプリズム等も使用可能である。
本実施形態では、第2の計測光MX2によって回折格子12Xから発生する回折光EX2と回折光DX2との干渉光を検出している。しかしながら、例えば回折光DX2と他の参照光との干渉光を検出してもよい。
Instead of the right-angle prisms 26A and 26B, for example, a roof prism having two orthogonal reflecting surfaces can be used.
In the present embodiment, the interference light between the diffracted light EX2 and the diffracted light DX2 generated from the diffraction grating 12X is detected by the second measurement light MX2. However, for example, interference light between the diffracted light DX2 and other reference light may be detected.

次に、本実施形態の変形例につき図4を参照して説明する。なお、図4において図1に対応する部分には同一の符号を付してその詳細な説明を省略する。
図4は、Y軸のエンコーダ10Yを示す。エンコーダ10Yは、第1部材6に固定された回折格子12Xを90°回転した構成のY軸の回折格子12Yと、第2部材7に固定されてY軸の検出ヘッド14Yと、検出ヘッド14Yにレーザ光を供給するレーザ光源16と、検出ヘッド14Yから出力される検出信号を処理して第1部材6に対する第2部材7のY方向の相対移動量を求める計測演算部42Yと、を有する。なお、回折格子12Yの代わりに2次元の回折格子を使用してもよい。
Next, a modification of the present embodiment will be described with reference to FIG. In FIG. 4, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
FIG. 4 shows a Y-axis encoder 10Y. The encoder 10Y includes a Y-axis diffraction grating 12Y configured by rotating the diffraction grating 12X fixed to the first member 6 by 90 °, a Y-axis detection head 14Y fixed to the second member 7, and a detection head 14Y. A laser light source 16 that supplies laser light, and a measurement calculation unit 42Y that processes a detection signal output from the detection head 14Y to obtain a relative movement amount of the second member 7 in the Y direction with respect to the first member 6 are included. Note that a two-dimensional diffraction grating may be used instead of the diffraction grating 12Y.

検出ヘッド14Yは、第2部材7に固定されてXY面に平行な平板状のベース部材22と、レーザ光源16からのレーザ光を可干渉な計測光MY1,MY2に分割するPBS18Aと、ミラー20E〜20Hと、光電センサ40Yとを有する。ベース部材22には、Y方向に沿って所定間隔で配置された2つの窓部22e,22f、及び窓部22fからY方向に離れた位置に配置された窓部22gが形成されている。計測光MY1,MY2はミラー20E,20G及びミラー20Fで反射され、それぞれ窓部22e,22fを通過して回折格子12Xの格子パターン面12Xbの計測点PD,PEにY方向の入射角αで入射する。この変形例でも、PBS18Aで分岐されてから光電センサ40Yに入射するまでの計測光MY1,MY2の光路長は互いにほぼ等しく設定されている。   The detection head 14Y is a flat base member 22 fixed to the second member 7 and parallel to the XY plane, a PBS 18A for dividing the laser light from the laser light source 16 into coherent measurement light MY1 and MY2, and a mirror 20E. To 20H and the photoelectric sensor 40Y. The base member 22 is formed with two window portions 22e and 22f arranged at a predetermined interval along the Y direction, and a window portion 22g arranged at a position away from the window portion 22f in the Y direction. The measurement beams MY1 and MY2 are reflected by the mirrors 20E and 20G and the mirror 20F, pass through the windows 22e and 22f, respectively, and enter the measurement points PD and PE on the grating pattern surface 12Xb of the diffraction grating 12X at an incident angle α in the Y direction. To do. Also in this modified example, the optical path lengths of the measurement lights MY1 and MY2 from the time branched by the PBS 18A to the incident on the photoelectric sensor 40Y are set substantially equal to each other.

また、検出ヘッド14Yは、ベース部材22の底面に固定された段差ミラー24Aと同じ形状の段差ミラー24C及び支持部材28Cと、支持部材28Cに固定された直角プリズム26Cと、を有する。また、検出ヘッド14Yは、窓部22e〜22gを挟んで、段差ミラー24C、支持部材28C、及び直角プリズム26Cと対向するように配置された支持部材32、及び支持部材32に固定されて計測点PEの方向を向く直角プリズム26Dを有する。   The detection head 14Y includes a step mirror 24C and a support member 28C having the same shape as the step mirror 24A fixed to the bottom surface of the base member 22, and a right-angle prism 26C fixed to the support member 28C. The detection head 14Y is fixed to the step member 24C, the support member 28C, and the right angle prism 26C so as to face the stepped mirror 24C, the support member 32, and the support member 32 with the window portions 22e to 22g interposed therebetween. It has a right-angle prism 26D that faces the direction of PE.

図4において、第1の計測光MY1は、回折格子12Yの格子パターン面12Ybの第1の計測点PDにほぼ垂直に入射し、回折格子12Yからの+1次回折光DY1は、段差ミラー24Cの第1の反射面で反射されて直角プリズム26Cに入射し、直角プリズム26Cの2つの反射面で反射されて段差ミラー24Cの第2の反射面に入射する。そして、この反射面で反射された回折光DY1は、格子パターン面12Xbの第3の計測点PFに斜めに入射し、計測点PFから−1次回折光DY2が垂直に発生する。   In FIG. 4, the first measurement light MY1 is incident substantially perpendicularly to the first measurement point PD on the grating pattern surface 12Yb of the diffraction grating 12Y, and the + 1st order diffracted light DY1 from the diffraction grating 12Y is the second measurement light of the step mirror 24C. The light is reflected by one reflecting surface and enters the right-angle prism 26C, and is reflected by two reflecting surfaces of the right-angle prism 26C and enters the second reflecting surface of the step mirror 24C. The diffracted light DY1 reflected by this reflecting surface is incident obliquely on the third measurement point PF of the grating pattern surface 12Xb, and the −1st order diffracted light DY2 is generated vertically from the measurement point PF.

一方、第2の計測光MY2は、窓部22fを介して格子パターン面12Ybの第2の計測点PEにY方向の入射角αで入射し、回折格子12Yから+Y方向に−1次回折光EY1が発生する。回折光EY1は、直角プリズム26Cの2つの反射面26Da,26Dbで反射されて格子パターン面12Ybの回折光DY1が入射した第3の計測点PFに斜めに入射し、計測点PFから+1次回折光EY2が垂直に発生する。計測点PFで垂直に発生した−1次回折光DY2及び+1次回折光EY2は同軸に合成されて、ベース部材22の窓部22g、ミラー20H、及び偏光板30を介して光電センサ40Yで受光される。光電センサ40Yの検出信号が計測演算部42Yに供給され、計測演算部42Yはその検出信号を用いて第1部材6と第2部材7とのY方向の相対移動量を求める。この変形例のエンコーダ10Yにおいても、上記の実施形態と同様の効果が得られる。
なお、図1のエンコーダ10Xの検出ヘッド14Xと図4のエンコーダ10Yの検出ヘッド14Yとは交差するように配置することが可能である。
On the other hand, the second measurement light MY2 is incident on the second measurement point PE of the grating pattern surface 12Yb via the window portion 22f at the incident angle α in the Y direction, and the −1st order diffracted light EY1 in the + Y direction from the diffraction grating 12Y. Will occur. The diffracted light EY1 is reflected by the two reflecting surfaces 26Da and 26Db of the right-angle prism 26C and obliquely enters the third measurement point PF where the diffracted light DY1 on the grating pattern surface 12Yb is incident, and the + 1st order diffracted light from the measurement point PF. EY2 occurs vertically. The −1st order diffracted light DY2 and the + 1st order diffracted light EY2 generated vertically at the measurement point PF are combined coaxially and received by the photoelectric sensor 40Y through the window 22g of the base member 22, the mirror 20H, and the polarizing plate 30. . The detection signal of the photoelectric sensor 40Y is supplied to the measurement calculation unit 42Y, and the measurement calculation unit 42Y obtains the relative movement amount in the Y direction between the first member 6 and the second member 7 using the detection signal. Also in the encoder 10Y of this modified example, the same effect as the above embodiment can be obtained.
The detection head 14X of the encoder 10X in FIG. 1 and the detection head 14Y of the encoder 10Y in FIG. 4 can be arranged so as to intersect.

[第2の実施形態]
第2の実施形態につき図5〜図7を参照して説明する。図5は、この実施形態に係るエンコーダ装置を備えた露光装置EXの概略構成を示す。露光装置EXは、スキャニングステッパーよりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PL(投影ユニットPU)を備えており、以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(ほぼ水平面に平行な面)内でレチクルRとウエハWとが相対走査される方向にY軸を、Z軸及びY軸に直交する方向にX軸を取って説明する。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. FIG. 5 shows a schematic configuration of an exposure apparatus EX provided with the encoder apparatus according to this embodiment. The exposure apparatus EX is a scanning exposure type projection exposure apparatus composed of a scanning stepper. The exposure apparatus EX includes a projection optical system PL (projection unit PU). Hereinafter, the Z-axis is parallel to the optical axis AX of the projection optical system PL, and a plane orthogonal to the Z-axis (a plane substantially parallel to the horizontal plane). In the following description, the Y axis is taken in the direction in which the reticle R and the wafer W are relatively scanned, and the X axis is taken in the direction perpendicular to the Z axis and the Y axis.

露光装置EXは、例えば米国特許出願公開第2003/0025890号明細書などに開示される照明系110、及び照明系110からの露光用の照明光(露光光)IL(例えば波長193nmのArFエキシマレーザ光、固体レーザ(半導体レーザなど)の高調波など)により照明されるレチクルR(マスク)を保持するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILをウエハW(基板)に投射する投影光学系PLを含む投影ユニットPU、ウエハWを保持するウエハステージWSTを含むステージ装置195、及び制御系等(図7参照)を備えている。   The exposure apparatus EX includes an illumination system 110 disclosed in, for example, US Patent Application Publication No. 2003/0025890, and illumination light (exposure light) IL (for example, an ArF excimer laser having a wavelength of 193 nm) from the illumination system 110 A reticle stage RST that holds a reticle R (mask) illuminated by light, a harmonic of a solid-state laser (such as a semiconductor laser). Further, the exposure apparatus EX includes a projection unit PU including a projection optical system PL that projects the illumination light IL emitted from the reticle R onto the wafer W (substrate), a stage apparatus 195 including a wafer stage WST that holds the wafer W, and A control system or the like (see FIG. 7) is provided.

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面(下面)には、回路パターンなどが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図11のレチクルステージ駆動系111によって、XY平面内で微少駆動可能であると共に、走査方向(Y方向)に指定された走査速度で駆動可能である。   The reticle R is held on the upper surface of the reticle stage RST by vacuum suction or the like, and a circuit pattern or the like is formed on the pattern surface (lower surface) of the reticle R. The reticle stage RST can be driven minutely in the XY plane by the reticle stage drive system 111 of FIG. 11 including a linear motor, for example, and can be driven at a scanning speed specified in the scanning direction (Y direction).

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計116によって、移動鏡115(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、図7のコンピュータよりなる主制御装置120に送られる。主制御装置120は、その計測値に基づいてレチクルステージ駆動系111を制御することで、レチクルステージRSTの位置及び速度を制御する。   Position information in the moving plane of the reticle stage RST (including the position in the X direction, the Y direction, and the rotation angle in the θz direction) is transferred to the moving mirror 115 (or mirror-finished) by the reticle interferometer 116 including a laser interferometer. For example, it is always detected with a resolution of about 0.5 to 0.1 nm via the stage end face. The measurement value of the reticle interferometer 116 is sent to the main controller 120 formed of a computer shown in FIG. Main controller 120 controls reticle stage drive system 111 based on the measurement value, thereby controlling the position and speed of reticle stage RST.

図5において、レチクルステージRSTの下方に配置された投影ユニットPUは、鏡筒140と、鏡筒140内に所定の位置関係で保持された複数の光学素子を有する投影光学系PLとを含む。投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。照明系110からの照明光ILによってレチクルRの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のレチクルRの回路パターンの像が、ウエハ(半導体ウエハ)Wの一つのショット領域の露光領域IA(照明領域IARと共役な領域)に形成される。   In FIG. 5, the projection unit PU disposed below the reticle stage RST includes a lens barrel 140 and a projection optical system PL having a plurality of optical elements held in the lens barrel 140 in a predetermined positional relationship. The projection optical system PL is, for example, telecentric on both sides and has a predetermined projection magnification β (for example, a reduction magnification of 1/4 times, 1/5 times, etc.). When the illumination area IAR of the reticle R is illuminated by the illumination light IL from the illumination system 110, an image of the circuit pattern of the reticle R in the illumination area IAR via the projection optical system PL by the illumination light IL that has passed through the reticle R. Are formed in an exposure area IA (an area conjugate to the illumination area IAR) of one shot area of the wafer (semiconductor wafer) W.

また、露光装置EXは、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子である先端レンズ191を保持する鏡筒140の下端部の周囲を取り囲むように、局所液浸装置108の一部を構成するノズルユニット132が設けられている。ノズルユニット132は、露光用の液体Lq(例えば純水)を供給するための供給管131A及び回収管131Bを介して、液体供給装置186及び液体回収装置189(図11参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置108は設けなくともよい。   In addition, since the exposure apparatus EX performs exposure using the liquid immersion method, the lower end of the lens barrel 140 that holds the tip lens 191 that is an optical element on the most image plane side (wafer W side) constituting the projection optical system PL is used. A nozzle unit 132 constituting a part of the local liquid immersion device 108 is provided so as to surround the periphery of the part. The nozzle unit 132 is connected to a liquid supply device 186 and a liquid recovery device 189 (see FIG. 11) via a supply tube 131A and a recovery tube 131B for supplying an exposure liquid Lq (for example, pure water). . If the immersion type exposure apparatus is not used, the local immersion apparatus 108 may not be provided.

図5において、ウエハステージWSTは、不図示の複数の例えば真空予圧型空気静圧軸受(エアパッド)を介して、ベース盤112のXY面に平行な上面112aに非接触で支持されている。また、ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系124(図11参照)によってX方向及びY方向に駆動可能である。露光装置EXは、レチクルRのアライメントを行う空間像計測系(不図示)、ウエハWのアライメントを行うアライメント系AL(図11参照)、照射系90a及び受光系90bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点のオートファオーカスセンサ90(図7参照)、及びウエハステージWSTの位置情報を計測するためのエンコーダ装置8Bを備えている。   In FIG. 5, wafer stage WST is supported in a non-contact manner on upper surface 112a parallel to the XY plane of base board 112 via a plurality of vacuum preload type static air bearings (air pads) (not shown). Wafer stage WST can be driven in the X and Y directions by a stage drive system 124 (see FIG. 11) including, for example, a planar motor or two sets of orthogonal linear motors. The exposure apparatus EX includes an aerial image measurement system (not shown) for aligning the reticle R, an alignment system AL (see FIG. 11) for aligning the wafer W, an irradiation system 90a, and a light receiving system 90b. An oblique incidence type multipoint autofocus sensor 90 (see FIG. 7) for measuring the Z position of the location and an encoder device 8B for measuring position information of wafer stage WST are provided.

ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体191と、ステージ本体191上に搭載されたウエハテーブルWTBと、ステージ本体191内に設けられて、ステージ本体191に対するウエハテーブルWTB(ウエハW)のZ方向の位置、及びθx方向、θy方向のチルト角を相対的に微小駆動するZ・レベリング機構とを備えている。ウエハテーブルWTBの中央の上部には、ウエハWを真空吸着等によってほぼXY平面に平行な吸着面上に保持するウエハホルダ(不図示)が設けられている。   Wafer stage WST is provided in stage main body 191, stage main body 191 driven in X and Y directions, wafer table WTB mounted on stage main body 191, and wafer table WTB (wafer for stage main body 191). And a Z / leveling mechanism that relatively finely drives the position of W) in the Z direction and the tilt angle in the θx direction and the θy direction. A wafer holder (not shown) that holds the wafer W on a suction surface substantially parallel to the XY plane by vacuum suction or the like is provided at the upper center of the wafer table WTB.

また、ウエハテーブルWTBの上面には、ウエハホルダ上に載置されるウエハの表面とほぼ同一面となる、液体Lqに対して撥液化処理された表面(又は保護部材)を有し、かつ外形(輪郭)が矩形でその中央部にウエハホルダ(ウエハの載置領域)よりも一回り大きな円形の開口が形成された高平面度の平板状のプレート体128が設けられている。
なお、上述の局所液浸装置108を設けたいわゆる液浸型の露光装置の構成にあっては、さらにプレート体128は、図6のウエハテーブルWTB(ウエハステージWST)の平面図に示されるように、その円形の開口を囲む、外形(輪郭)が矩形の表面に撥液化処理が施されたプレート部(撥液板)128aと、プレート部128aを囲む周辺部128eとを有する。周辺部128eの上面に、プレート部128aをY方向に挟むようにX方向に細長い1対のY軸の第1及び第2の回折格子12Y1,12Y2が配置され、プレート部128aをX方向に挟むようにY方向に細長い1対のX軸の回折格子12X1,12X2が配置されている。X方向を周期方向とする反射型の回折格子12X1,12X2は図1の回折格子12Xと同じ構成であり、Y方向を周期方向とする回折格子12Y1,12Y2は回折格子12Xを90°回転した構成である。
In addition, the upper surface of wafer table WTB has a surface (or a protective member) that has been subjected to a liquid repellency treatment with respect to liquid Lq and is substantially flush with the surface of the wafer placed on the wafer holder. A flat plate member 128 having a high flatness is provided in which a circular opening is formed in the center of the rectangular shape and a circular opening that is slightly larger than the wafer holder (wafer mounting region).
In the configuration of the so-called immersion type exposure apparatus provided with the above-described local immersion apparatus 108, the plate body 128 is further shown in the plan view of wafer table WTB (wafer stage WST) in FIG. In addition, a plate portion (liquid repellent plate) 128a surrounding the circular opening and having a liquid repellent treatment on a surface having a rectangular outer shape (outline), and a peripheral portion 128e surrounding the plate portion 128a. A pair of Y-axis first and second diffraction gratings 12Y1 and 12Y2 elongated in the X direction are disposed on the upper surface of the peripheral portion 128e so as to sandwich the plate portion 128a in the Y direction, and the plate portion 128a is sandwiched in the X direction. In this way, a pair of X-axis diffraction gratings 12X1 and 12X2 elongated in the Y direction are arranged. The reflection type diffraction gratings 12X1 and 12X2 having the X direction as the periodic direction have the same configuration as the diffraction grating 12X in FIG. 1, and the diffraction gratings 12Y1 and 12Y2 having the Y direction as the periodic direction are configured by rotating the diffraction grating 12X by 90 °. It is.

また、図5において、投影ユニットPUを支持するフレーム(不図示)に連結部材(不図示)を介してXY面にほぼ平行な平板状の計測フレーム150が支持されている。計測フレーム150の底面に、投影光学系PLをX方向に挟むように、図1のX軸の検出ヘッド14Xと同じ構成の複数の検出ヘッド14Xが固定され、投影光学系PLをY方向に挟むように、図4のY軸の検出ヘッド14Yと同じ構成の複数の検出ヘッド14Yが固定されている(図6参照)。また、複数の検出ヘッド14X,14Yにレーザ光(計測光及び参照光)を供給するための複数のレーザ光源(不図示)も備えられている。なお、検出ヘッド14Yの代わりに図1の検出ヘッド14Xを90°回転した構成の検出ヘッドを使用してもよい。   In FIG. 5, a flat measurement frame 150 substantially parallel to the XY plane is supported by a frame (not shown) that supports the projection unit PU via a connecting member (not shown). A plurality of detection heads 14X having the same configuration as the X-axis detection head 14X in FIG. 1 are fixed to the bottom surface of the measurement frame 150 so as to sandwich the projection optical system PL in the X direction, and the projection optical system PL is sandwiched in the Y direction. As described above, a plurality of detection heads 14Y having the same configuration as the Y-axis detection head 14Y of FIG. 4 are fixed (see FIG. 6). In addition, a plurality of laser light sources (not shown) for supplying laser light (measurement light and reference light) to the plurality of detection heads 14X and 14Y are also provided. Instead of the detection head 14Y, a detection head having a configuration obtained by rotating the detection head 14X of FIG. 1 by 90 ° may be used.

図6において、投影光学系PLからの照明光でウエハWを露光している期間では、常に複数の検出ヘッド14Xのいずれか2つがX軸の回折格子12X1,12X2に対向し、複数の検出ヘッド14Yのいずれか2つがY軸の回折格子12Y1,12Y2に対向するように構成されている。各検出ヘッド14Xは、回折格子12X1又は12X2に計測光を照射し、回折格子12X1,12X2から発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42X(図7)に供給する。計測演算部42Xでは、図1の計測演算部42と同様に、ウエハステージWSTと計測フレーム150とのX方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Xに供給する。計測値切り替え部80Xでは、回折格子12X1,12X2に対向している検出ヘッド14Xに対応する計測演算部42Xから供給される相対位置の情報を主制御装置120に供給する。   In FIG. 6, during the period in which the wafer W is exposed with the illumination light from the projection optical system PL, any two of the plurality of detection heads 14X always face the X-axis diffraction gratings 12X1 and 12X2, and the plurality of detection heads. Any two of 14Y are configured to face Y-axis diffraction gratings 12Y1 and 12Y2. Each detection head 14X irradiates the diffraction grating 12X1 or 12X2 with measurement light, and outputs a detection signal of interference light between the diffraction light generated from the diffraction gratings 12X1 and 12X2 and the reference light to the corresponding measurement calculation unit 42X (FIG. 7). Supply. In the measurement calculation unit 42X, as in the measurement calculation unit 42 in FIG. 1, the relative position (relative movement amount) between the wafer stage WST and the measurement frame 150 in the X direction and Z direction is, for example, a resolution of 0.5 to 0.1 nm. And supplied to the measured value switching unit 80X. In the measurement value switching unit 80X, information on the relative position supplied from the measurement calculation unit 42X corresponding to the detection head 14X facing the diffraction gratings 12X1 and 12X2 is supplied to the main controller 120.

また、各検出ヘッド14Yは、回折格子12Y1又は12Y2に計測光を照射し、回折格子12Y1,12Y2から発生する回折光と参照光との干渉光の検出信号を対応する計測演算部42Y(図11)に供給する。計測演算部42Yでは、計測演算部42Xと同様に、ウエハステージWSTと計測フレーム150とのY方向、Z方向の相対位置(相対移動量)を例えば0.5〜0.1nmの分解能で求めて計測値切り替え部80Yに供給する。計測値切り替え部80Yでは、回折格子12Y1,12Y2に対向している検出ヘッド14Yに対応する計測演算部42Yから供給される相対位置の情報を主制御装置120に供給する。   In addition, each detection head 14Y irradiates the diffraction grating 12Y1 or 12Y2 with measurement light, and the measurement calculation unit 42Y corresponding to the detection signal of the interference light between the diffraction light generated from the diffraction gratings 12Y1 and 12Y2 and the reference light (FIG. 11). ). In the measurement calculation unit 42Y, as in the measurement calculation unit 42X, the relative positions (relative movement amounts) of the wafer stage WST and the measurement frame 150 in the Y direction and Z direction are obtained with a resolution of 0.5 to 0.1 nm, for example. The measured value switching unit 80Y is supplied. In the measurement value switching unit 80Y, information on the relative position supplied from the measurement calculation unit 42Y corresponding to the detection head 14Y facing the diffraction gratings 12Y1 and 12Y2 is supplied to the main controller 120.

複数の検出ヘッド14X、レーザ光源(不図示)、計測演算部42X、及びX軸の回折格子12X1,12X2からX軸のエンコーダ10XBが構成され、複数の検出ヘッド14Y、レーザ光源(不図示)、計測演算部42Y、及びY軸の回折格子12Y1,12Y2からY軸のエンコーダ10YBが構成されている。そして、X軸のエンコーダ10XB、Y軸のエンコーダ10YB、及び計測値切り替え部80X,80Yからエンコーダ装置8Bが構成されている。主制御装置120は、エンコーダ装置8Bから供給される相対位置の情報に基づいて、計測フレーム150(投影光学系PL)に対するウエハステージWSTのX方向、Y方向、Z方向の位置、及びθz方向の回転角等の情報を求め、この情報に基づいてステージ駆動系124を介してウエハステージWSTを駆動する。   A plurality of detection heads 14X, a laser light source (not shown), a measurement calculation unit 42X, and an X-axis diffraction grating 12X1, 12X2 constitute an X-axis encoder 10XB, and a plurality of detection heads 14Y, a laser light source (not shown), A Y-axis encoder 10YB is composed of the measurement calculation unit 42Y and the Y-axis diffraction gratings 12Y1 and 12Y2. An encoder device 8B is configured by the X-axis encoder 10XB, the Y-axis encoder 10YB, and the measurement value switching units 80X and 80Y. Based on the information on the relative position supplied from encoder device 8B, main controller 120 determines the position of wafer stage WST relative to measurement frame 150 (projection optical system PL) in the X, Y, and Z directions, and in the θz direction. Information such as the rotation angle is obtained, and wafer stage WST is driven via stage drive system 124 based on this information.

そして、露光装置EXの露光時には、先ずレチクルR及びウエハWのアライメントが行われる。その後、レチクルRへの照明光ILの照射を開始して、投影光学系PLを介してレチクルRのパターンの一部の像をウエハWの表面の一つのショット領域に投影しつつ、レチクルステージRSTとウエハステージWSTとを投影光学系PLの投影倍率βを速度比としてY方向に同期して移動(同期走査)する走査露光動作によって、そのショット領域にレチクルRのパターン像が転写される。その後、ウエハステージWSTを介してウエハWをX方向、Y方向にステップ移動する動作と、上記の走査露光動作とを繰り返すことによって、液浸法でかつステップ・アンド・スキャン方式でウエハWの全部のショット領域にレチクルRのパターン像が転写される。   Then, at the time of exposure by the exposure apparatus EX, alignment of the reticle R and the wafer W is first performed. Thereafter, irradiation of the reticle R with the illumination light IL is started, and an image of a part of the pattern of the reticle R is projected onto one shot area on the surface of the wafer W via the projection optical system PL, while the reticle stage RST. The pattern image of the reticle R is transferred to the shot area by a scanning exposure operation that moves the wafer stage WST in synchronization with the Y direction using the projection magnification β of the projection optical system PL as a speed ratio (synchronous scanning). Thereafter, by repeating the step movement of the wafer W in the X and Y directions via the wafer stage WST and the scanning exposure operation described above, the entire wafer W is immersed by the immersion method and the step-and-scan method. The pattern image of the reticle R is transferred to the shot area.

この際に、検出ヘッド14X,14Yにおいては、計測光及び回折光の光路長はレーザ干渉計に比べて短いため、検出ヘッド14X,14Yを用いた計測値に対する空気揺らぎの影響が非常に小さい。従って、本実施例のエンコーダ装置8Bは、レーザ干渉計と比較して、空気が揺らぐ程度の短い期間における計測安定性(短期安定性)が格段に優れているため、レチクルRのパターン像をウエハWに高精度に転写できる。さらに、検出ヘッド14X,14YはZ方向の高さを低くコンパクトに構成できるため、計測フレーム150の底面等に複数の検出ヘッド14X,14Yを容易に設置できる。   At this time, in the detection heads 14X and 14Y, since the optical path lengths of the measurement light and the diffracted light are shorter than those of the laser interferometer, the influence of air fluctuations on the measurement values using the detection heads 14X and 14Y is very small. Therefore, the encoder device 8B of the present embodiment has much better measurement stability (short-term stability) in a short period of time when the air fluctuates than the laser interferometer. Can be transferred to W with high accuracy. Furthermore, since the detection heads 14X and 14Y can be configured compactly with a low height in the Z direction, a plurality of detection heads 14X and 14Y can be easily installed on the bottom surface of the measurement frame 150 or the like.

なお、本実施例では、計測フレーム150側に検出ヘッド14X,14Y等を配置し、ウエハステージWST側に回折格子12X1,12Y1等を配置している。この他の構成として、計測フレーム150側に回折格子12X1,12Y1等を配置し、ウエハステージWST側に検出ヘッド14X,14Y等を配置してもよい。
また、上記の実施例の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(又はマイクロデバイス)を製造する場合、電子デバイスは、図8に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたレチクル(マスク)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造してレジストを塗布するステップ223、前述した実施形態の露光装置(露光方法)によりレチクルのパターンを基板(感光基板)に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
In this embodiment, the detection heads 14X and 14Y and the like are arranged on the measurement frame 150 side, and the diffraction gratings 12X1 and 12Y1 and the like are arranged on the wafer stage WST side. As another configuration, the diffraction gratings 12X1, 12Y1, etc. may be arranged on the measurement frame 150 side, and the detection heads 14X, 14Y, etc. may be arranged on the wafer stage WST side.
Further, when an electronic device (or microdevice) such as a semiconductor device is manufactured using the exposure apparatus EX or the exposure method of the above embodiment, the electronic device has a function / performance design of the electronic device as shown in FIG. Step 221 for performing a step, Step 222 for fabricating a reticle (mask) based on this design step, Step 223 for fabricating a substrate (wafer) as a base material of the device and applying a resist, and the exposure apparatus ( Substrate processing step 224 including a step of exposing a reticle pattern to a substrate (photosensitive substrate) by an exposure method), a step of developing the exposed substrate, a heating (curing) and etching step of the developed substrate, and a device assembly step (dicing) Process, bonding process, packaging process, etc.) And an inspection step 226, etc. each time.

言い換えると、このデバイスの製造方法は、上記の実施例の露光装置EX(露光方法)を用いてレチクルのパターンの像を基板(ウエハ)に転写し、その基板を現像するリソグラフィ工程と、そのパターンの像が転写されたその基板をそのパターンの像に基づいて加工する工程(ステップ224のエッチング等)とを含んでいる。この際に、上記の実施例によれば、露光装置のウエハステージWSTの位置を高精度に制御できるため、電子デバイスを高精度に製造できる。   In other words, this device manufacturing method includes a lithography process in which an image of a reticle pattern is transferred to a substrate (wafer) using the exposure apparatus EX (exposure method) of the above embodiment, and the pattern is developed. And a step (such as etching in step 224) of processing the substrate on which the image is transferred on the basis of the image of the pattern. At this time, according to the above-described embodiment, the position of wafer stage WST of the exposure apparatus can be controlled with high accuracy, so that an electronic device can be manufactured with high accuracy.

なお、本発明は、上述の走査露光型の投影露光装置(スキャナ)の他に、ステップ・アンド・リピート方式の投影露光装置(ステッパ等)にも適用できる。さらに、本発明は、液浸型露光装置以外のドライ露光型の露光装置にも同様に適用することができる。
また、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光装置にも適用することができる。
The present invention can be applied to a step-and-repeat type projection exposure apparatus (stepper or the like) in addition to the above-described scanning exposure type projection exposure apparatus (scanner). Furthermore, the present invention can be similarly applied to a dry exposure type exposure apparatus other than an immersion type exposure apparatus.
In addition, the present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device, for example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, It can also be widely applied to an exposure apparatus for manufacturing various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention can also be applied to an exposure apparatus when manufacturing a mask (photomask, reticle, etc.) on which a mask pattern of various devices is formed using a photolithography process.

また、上記の実施形態又は実施例のエンコーダ10X,10Yは、露光装置以外の検査装置又は計測装置等の検査又は加工対象の物体用の光学系を備えた光学装置において、その物体の相対移動量を計測するために適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
Further, the encoders 10X and 10Y of the above-described embodiment or example are the relative movement amounts of the objects in the optical apparatus having the optical system for the object to be inspected or processed such as the inspection apparatus or the measurement apparatus other than the exposure apparatus. Can be applied to measure.
In addition, this invention is not limited to the above-mentioned embodiment, Of course, a various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、R…レチクル、W…ウエハ、MX1,MX2…計測光、DX1,DX2…±1次回折光、EX2,EX…±1次回折光、10X…X軸のエンコーダ、12X…X軸の回折格子、14X…X軸の検出ヘッド、16…レーザ光源、24A,24B…段差ミラー、26A,26B…直角プリズム、40X,40Y…光電センサ、42X,42Y…計測演算部   EX ... exposure apparatus, R ... reticle, W ... wafer, MX1, MX2 ... measurement light, DX1, DX2 ... ± first order diffracted light, EX2, EX ... ± first order diffracted light, 10X ... X-axis encoder, 12X ... X-axis Diffraction grating, 14X: X axis detection head, 16: Laser light source, 24A, 24B ... Step mirror, 26A, 26B ... Right angle prism, 40X, 40Y ... Photoelectric sensor, 42X, 42Y ... Measurement calculation unit

この場合、格子パターン12XaのX方向の周期をp、計測光MX1が格子パターン面12Xbに垂直に入射した場合の+1次回折光DX1の回折角をφd(反時計回りの角度)とすると、計測光MX1,MX2の平均波長λを用いて回折角φdは次の関係を満たす。
p・sin φd=λ …(1)
本実施形態では、計測光MX1は入射角αで回折格子12Xに入射するため、入射した計測光MX1による回折格子12Xからの+1次回折光DX1の回折角φ1は、次のようにほぼ回折角φdよりも角度αだけ大きくなる。
In this case, if the period in the X direction of the grating pattern 12Xa is p, and the diffraction angle of the + 1st order diffracted light DX1 when the measurement light MX1 is perpendicularly incident on the grating pattern surface 12Xb is φd (counterclockwise angle), the measurement light The diffraction angle φd satisfies the following relationship using the average wavelength λ of MX1 and MX2.
p · sin φd = λ (1)
In this embodiment, since the measurement light MX1 is incident on the diffraction grating 12X at an incident angle α, the diffraction angle φ1 of the + 1st order diffracted light DX1 from the diffraction grating 12X by the incident measurement light MX1 is approximately the diffraction angle φd as follows. Than the angle α.

Claims (11)

第1部材に対して少なくとも第1方向に相対移動する第2部材の相対移動量を計測するエンコーダ装置であって、
前記第1部材及び前記第2部材の一方に設けられ、前記第1方向を周期方向とする格子パターンを有する反射型の回折格子と、
第1計測光を前記回折格子の格子パターン面にほぼ垂直に入射させる光源部と、
前記第1部材及び前記第2部材の他方に設けられるとともに、互いに直交する第1及び第2の反射面を持ち、前記回折格子から前記第1計測光によって発生する第1回折光を、前記2つの反射面を介して前記第1方向に直交する第2方向へのシフト成分を含むように前記回折格子に再度入射させる第1の二面反射部材と、
前記回折格子から前記第1回折光によって前記格子パターン面にほぼ垂直に発生する第2回折光と他の回折光又は参照光との干渉光を検出する光電検出器と、
前記光電検出器の検出信号を用いて前記第2部材の相対移動量を求める計測部と、
を備えることを特徴とするエンコーダ装置。
An encoder device that measures a relative movement amount of a second member that moves relative to the first member in at least a first direction,
A reflective diffraction grating provided on one of the first member and the second member and having a grating pattern having the first direction as a periodic direction;
A light source unit for causing the first measurement light to enter the grating pattern surface of the diffraction grating substantially perpendicularly;
The first diffracted light that is provided on the other of the first member and the second member, has first and second reflecting surfaces orthogonal to each other, and is generated by the first measurement light from the diffraction grating, A first two-surface reflecting member that is incident again on the diffraction grating so as to include a shift component in a second direction orthogonal to the first direction through two reflecting surfaces;
A photoelectric detector for detecting interference light between the second diffracted light and other diffracted light or reference light generated from the diffraction grating by the first diffracted light substantially perpendicular to the grating pattern surface;
A measurement unit for obtaining a relative movement amount of the second member using a detection signal of the photoelectric detector;
An encoder device comprising:
前記光源部は前記第1計測光と可干渉性のある第2計測光をも前記回折格子の格子パターン面にほぼ垂直に入射させ、
前記第1部材及び前記第2部材の他方に設けられるとともに、互いに直交する第3及び第4の反射面を持ち、前記回折格子から前記第2計測光によって前記第1回折光とほぼ対称に発生する第3回折光を、前記2つの反射面を介して前記第2方向へのシフト成分を含むように前記回折格子に再度入射させる第2の二面反射部材と、を備え、
前記光電検出器は、前記第2回折光と、前記回折格子から前記第3回折光によって前記格子パターン面にほぼ垂直に発生する第4回折光との干渉光を検出することを特徴とする請求項1に記載のエンコーダ装置。
The light source unit also causes the second measurement light having coherence with the first measurement light to enter the grating pattern surface of the diffraction grating substantially perpendicularly,
It is provided on the other of the first member and the second member, and has third and fourth reflecting surfaces orthogonal to each other, and is generated almost symmetrically with the first diffracted light by the second measurement light from the diffraction grating. And a second two-surface reflecting member that re-enters the diffraction grating so as to include a shift component in the second direction through the two reflecting surfaces.
The photoelectric detector detects interference light between the second diffracted light and fourth diffracted light generated substantially perpendicularly to the grating pattern surface by the third diffracted light from the diffraction grating. Item 5. The encoder device according to Item 1.
前記格子パターン面に平行で互いに高さの異なる第5及び第6の反射面を持つ第1の平行反射部材を備え、
前記回折格子から発生する前記第1回折光を、前記第1の平行反射部材の前記第5の反射面、前記第1の二面反射部材の前記第1の反射面及び前記第2の反射面、並びに前記第1の平行反射部材の前記第6の反射面を介して前記回折格子に再度入射させることを特徴とする請求項2に記載のエンコーダ装置。
A first parallel reflecting member having fifth and sixth reflecting surfaces parallel to the lattice pattern surface and having different heights;
The first diffracted light generated from the diffraction grating is converted into the fifth reflecting surface of the first parallel reflecting member, the first reflecting surface and the second reflecting surface of the first two-surface reflecting member. The encoder device according to claim 2, wherein the diffraction grating is incident again on the diffraction grating through the sixth reflecting surface of the first parallel reflecting member.
前記第1計測光及び前記第2計測光の前記回折格子に対する第1及び第2の入射位置は前記第1方向にずれており、
前記格子パターン面に平行で互いに高さの異なる第7及び第8の反射面を持つ第2の平行反射部材を備え、
前記回折格子から発生する前記第2計測光の前記第3回折光を、前記第2の平行反射部材の前記第7の反射面、前記第2の二面反射部材の前記第3の反射面及び前記第4の反射面、並びに前記第2の平行反射部材の前記第8の反射面を介して前記回折格子の前記第3の入射位置に再度入射させることを特徴とする請求項3に記載のエンコーダ装置。
The first and second incident positions of the first measurement light and the second measurement light with respect to the diffraction grating are shifted in the first direction,
A second parallel reflecting member having seventh and eighth reflecting surfaces parallel to the lattice pattern surface and having different heights;
The third diffracted light of the second measurement light generated from the diffraction grating is converted into the seventh reflecting surface of the second parallel reflecting member, the third reflecting surface of the second two-surface reflecting member, and 4. The light is incident again on the third incident position of the diffraction grating through the fourth reflective surface and the eighth reflective surface of the second parallel reflective member. 5. Encoder device.
前記光源部から前記回折格子に対して出射される前記第1計測光及び前記第2計測光を、前記格子パターン面の法線方向に対して前記第1方向に所定角度傾斜させる角度調整部材を備えることを特徴とする請求項2に記載のエンコーダ装置。   An angle adjusting member for inclining the first measurement light and the second measurement light emitted from the light source unit to the diffraction grating by a predetermined angle in the first direction with respect to a normal direction of the grating pattern surface; The encoder apparatus according to claim 2, further comprising: 第1の二面反射部材の入射面の法線方向は、前記所定角度の1/2の角度で補正されていることを特徴とする請求項5に記載のエンコーダ装置。   The encoder apparatus according to claim 5, wherein the normal direction of the incident surface of the first two-surface reflecting member is corrected by an angle that is ½ of the predetermined angle. 前記第1計測光の前記第1回折光及び前記第2回折光は前記回折格子による1次回折光であることを特徴とする請求項1〜6のいずれか一項に記載のエンコーダ装置。   The encoder apparatus according to claim 1, wherein the first diffracted light and the second diffracted light of the first measurement light are first-order diffracted light by the diffraction grating. 前記第1及び第2の二面反射部材はそれぞれ直角プリズムであることを特徴とする請求項2又は5に記載のエンコーダ装置。   6. The encoder apparatus according to claim 2, wherein each of the first and second two-surface reflecting members is a right-angle prism. 請求項1〜8のいずれか一項に記載のエンコーダ装置と、
対象物用の光学系と、を備えることを特徴とする光学装置。
The encoder device according to any one of claims 1 to 8,
And an optical system for an object.
パターンを被露光体に露光する露光装置であって、
フレームと、
前記被露光体を支持するとともに前記フレームに対して少なくとも第1方向に相対移動可能なステージと、
前記第1方向への前記ステージの相対移動量を計測するための請求項1〜9のいずれか一項に記載のエンコーダ装置と、を備えることを特徴とする露光装置。
An exposure apparatus that exposes a pattern onto an object to be exposed,
Frame,
A stage that supports the object to be exposed and is relatively movable in at least a first direction with respect to the frame;
An exposure apparatus comprising: the encoder device according to any one of claims 1 to 9 for measuring a relative movement amount of the stage in the first direction.
リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程で、請求項10に記載の露光装置を用いて物体を露光することを特徴とするデバイス製造方法。
A device manufacturing method including a lithography process,
A device manufacturing method, comprising: exposing an object using the exposure apparatus according to claim 10 in the lithography process.
JP2011156741A 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device Withdrawn JP2013026273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156741A JP2013026273A (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156741A JP2013026273A (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Publications (1)

Publication Number Publication Date
JP2013026273A true JP2013026273A (en) 2013-02-04

Family

ID=47784307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156741A Withdrawn JP2013026273A (en) 2011-07-15 2011-07-15 Encoder device, optical device, and exposure device

Country Status (1)

Country Link
JP (1) JP2013026273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233548A (en) * 2019-06-25 2019-09-13 苏州汇川技术有限公司 A kind of calibrator (-ter) unit, method, encoder and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233548A (en) * 2019-06-25 2019-09-13 苏州汇川技术有限公司 A kind of calibrator (-ter) unit, method, encoder and motor

Similar Documents

Publication Publication Date Title
JP6156147B2 (en) Encoder apparatus, optical apparatus, exposure apparatus, and device manufacturing method
JP4948213B2 (en) Displacement measuring system and lithographic apparatus
JP4614929B2 (en) Position measuring unit, measuring system, and lithographic apparatus comprising the position measuring unit
JP5579793B2 (en) Exposure apparatus and device manufacturing method
JP6162137B2 (en) Low coherence interferometry using an encoder system
JP6767682B2 (en) Encoder device and exposure device
KR20110134856A (en) Position sensor and lithographic apparatus
JP6680997B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2014029276A (en) Encoder device, optical device and exposure device
JP2012049284A (en) Encoder, optical device, exposure device, exposure method, and method of manufacturing device
JP2013026273A (en) Encoder device, optical device, and exposure device
JP6607350B2 (en) Encoder apparatus and method of using the same, optical apparatus, exposure apparatus, and device manufacturing method
JP2013101084A (en) Position detection method and device, encoder device and exposure device
JP5862857B2 (en) Encoder device, optical device, and exposure device
JP2012008004A (en) Encoder device, optical device, exposing device, exposing method, and device manufacturing method
JP2011181850A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method
JP2013234997A (en) Encoder device, optical device and exposure device
JP2011117737A (en) Measuring device, stage device, and exposure device
JP2013102099A (en) Encoder device, optical device, and exposure device
JP2011181851A (en) Displacement detection unit, stage unit, exposure apparatus, and device manufacturing method
JP2016024049A (en) Measurement method and encoder device, as well as exposure method and device
JP2011151161A (en) Measuring method, exposing method, aligner, and device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007