JP2016022010A - 画像処理装置、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理方法及びプログラム Download PDF

Info

Publication number
JP2016022010A
JP2016022010A JP2014146293A JP2014146293A JP2016022010A JP 2016022010 A JP2016022010 A JP 2016022010A JP 2014146293 A JP2014146293 A JP 2014146293A JP 2014146293 A JP2014146293 A JP 2014146293A JP 2016022010 A JP2016022010 A JP 2016022010A
Authority
JP
Japan
Prior art keywords
light
polarization
subject
model object
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014146293A
Other languages
English (en)
Other versions
JP2016022010A5 (ja
Inventor
住谷 利治
Toshiji Sumiya
利治 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014146293A priority Critical patent/JP2016022010A/ja
Priority to PCT/JP2015/003298 priority patent/WO2016009604A1/en
Publication of JP2016022010A publication Critical patent/JP2016022010A/ja
Publication of JP2016022010A5 publication Critical patent/JP2016022010A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging

Abstract

【課題】被検体に適した、偏光状態の校正を行うことを目的とする。【解決手段】参照光と、被写体に照射された測定光の反射光との干渉光に基づいて、被写体の偏光状態を示す画像を得る画像処理装置であって、参照光と、被写体に照射された測定光の反射光との干渉光を検出する検出手段と、偏光特性が既知の模型物に対して検出手段により検出された検出値と、模型物の既知の前記偏光特性と、に基づいて、校正量を算出する校正量算出手段と、校正量と、被検体に対して検出手段により検出された検出値と、に基づいて、被検体の偏光特性を算出する偏光特性算出手段とを有することを特徴とする。【選択図】図1

Description

本発明は、画像処理装置、画像処理方法及びプログラムに関する。
近年、眼科装置において、眼底組織の光学特性や動き等をイメージングすることが可能な光干渉断層計Optical Coherence Tomography(OCT)の開発が試みられている。このようなOCTの一つである偏光OCTは、眼底組織の光学特性の一つである偏光パラメータ(リタデーションとオリエンテーション)を用いてイメージングを行う。偏光OCTは、偏光パラメータを利用して、偏光OCT画像を構成し、眼底組織の区別やセグメンテーションを行うことができる。偏光OCTは、試料を観察する測定光として円偏光に変調した光を用い、干渉光を2つの直交する直線偏光として分割して検出し、偏光OCT画像を生成する(特許文献1参照)。
偏光OCTは、所定の偏光状態とするために、偏光コントローラや偏光子等の偏光状態を制御する手段により偏光を調整する。しかしながら、装置の使用に伴い偏光状態が変化してしまう場合がある。例えば、OCTの光路には、光ファイバ等の導光用の部材が用いられる。光ファイバは曲げ荷重がかかると複屈折が発生し、偏光状態が変化してしまう。光学素子の複屈折には温度依存性があるため、例えば、装置の温度等の変動があると、光路に使われている光ファイバの偏光特性が変化してしまうおそれがある。特許文献2には、偏光状態が変化した場合に校正を行う為に、測定光を反射又は散乱する制限手段と偏光制御手段とを備えた装置が提案されている。この装置では、制限手段に測定光を照射した時の偏光の強度に基づいて、偏光制御手段により測定光の偏光を制御する。
国際公開第2010/122118号 特開2013−212314号公報
しかしながら、特許文献2に記載の装置は、測定光を反射又は散乱させる制限手段は複屈折を有しておらず、リタデーションが0°の試料に対して校正がなされる。さらに、特許文献2に記載の装置は、被検体を測定する場合と、校正する場合とで偏光状態を変えて校正を行う。一方、被検体となる眼底組織は、例えば神経繊維層の場合、リタデーションは10〜50°程度の値をもつ。OCTの光路を構成する各部材の光学透過率は偏光成分によって異なる。このため、被検体に適した校正が行われているとは言い難く、より高精度な校正が求められている。
本発明はこのような問題点に鑑みなされたもので、被検体に適した、偏光状態の校正を行うことを目的とする。
そこで、本発明は、参照光と、被写体に照射された測定光の反射光との干渉光に基づいて、前記被写体の偏光状態を示す画像を得る画像処理装置であって、参照光と、前記被写体に照射された測定光の反射光との干渉光を検出する検出手段と、偏光特性が既知の模型物に対して前記検出手段により検出された検出値と、前記模型物の既知の前記偏光特性と、に基づいて、校正量を算出する校正量算出手段と、前記校正量と、被検体に対して前記検出手段により検出された検出値と、に基づいて、被検体の偏光特性を算出する偏光特性算出手段とを有することを特徴とする。
本発明によれば、被検体に適した、偏光状態の校正を行うことができる。
第1の実施形態に係る画像処理装置としての撮影装置を示す図である。 模型物200を示す図である。 断層画像を示す図である。 撮影装置による、校正処理を示すフローチャートである。 測定処理を示すフローチャートである。 第2の実施形態に係る撮影装置を示す図である。 第2の実施形態に係る、校正処理を示すフローチャートである。 第3の実施形態に係る撮影装置を示す図である。 第4の実施形態に係る撮影装置を示す図である。 第5の実施形態に係る撮影装置を示す図である。
以下、本発明の実施形態について図面に基づいて説明する。
(第1の実施形態)
図1は、第1の実施形態に係る画像処理装置としての撮影装置を示す図である。なお、本実施形態においては、被検眼を被検体とし、被検体の画像を得る撮影装置(眼科装置)について説明するが、被検体は、これに限定されるものではない。他の例としては、撮影装置は、皮膚、内臓等を被検体とし、これらの画像を得るものであってもよい。撮影装置はまた、内視鏡であってもよい。
図1に示すように、撮影装置は、偏光OCT(Polarization Sensitive OCT;以下、PS−OCT)である。撮影装置は、干渉光学計100、前眼部撮像部160、内部固視灯170及び制御装置180を有している。前眼部撮像部160により観察される被検体の前眼部の画像を用いて、装置のアライメントが行われ、アライメント完了後に、内部固視灯170を点灯し、被検眼に注視させた状態で、干渉光学計100による眼底の撮像が行われる。
次に、干渉光学計100の構成について説明する。光源101は、低コヒーレント光源であるSLD(Super Luminescent Diode)であり、中心波長850nm、バンド幅50nmの光を出射する。光源101としてSLDを用いたが、ASE(Amplified Spontaneous Emission)等、低コヒーレント光が出射できる光源であれば何れでも良い。光源101から出射された光は、偏光保持ファイバ102、偏光コントローラ103を介して、偏光保持ファイバカップラ104に導かれ、測定光と参照光に分岐される。
偏光コントローラ103は、光源101から出射された光の偏光の状態を調整するものであり、光を直線偏光に調整する。本実施形態の場合、偏光コントローラ103は、後述するファイバカップラ123で分岐される偏光方向を基準にして、垂直方向に偏光調整する。本実施形態では、偏光コントローラ103は、インラインの偏光コントローラとするが、これに限定されるものではない。偏光コントローラ103は、例えば、複数のパドルを有するパドル型の偏光コントローラであってもよい。また例えば、偏光コントローラ103は、λ/4波長板とλ/2波長板とを組合せた偏光コントローラであってもよい。
偏光保持ファイバカップラ104の分岐比は、90(参照光):10(測定光)である。分岐された測定光は、偏光保持ファイバ105を介してコリメータ106から平行光として出射される。出射された測定光は、Xスキャナ107、レンズ108,109、Yスキャナ110を介し、ダイクロイックミラー111に到達する。ここで、Xスキャナ107は、眼底Erにおいて測定光を水平方向にスキャンするガルバノミラーから構成される。Yスキャナ110は、眼底Erにおいて測定光を垂直方向にスキャンするガルバノミラーから構成される。Xスキャナ107及びYスキャナ110は、駆動制御部181により制御され、眼底Erの領域を測定光により走査することができる。
ダイクロイックミラー111は、800nm〜900nmの光を反射し、それ以外の光を透過する特性を有する。ダイクロイックミラー111により反射された測定光は、レンズ112を介し、45°傾けて設置されたλ/4波長板113を通過する事で位相が90°ずれ、円偏光の光に偏光制御される。ここで、被検眼に入射される光は、λ/4波長板113を45°傾けて設置することで円偏光の光に偏光制御されるが、被検眼の特性により眼底Erにおいて円偏光とならない場合がある。そのため、駆動制御部181の制御により、λ/4波長板113の傾きを微調整できるように構成されている。
測定光の光路には、反射体としてのミラー210が挿脱自在、すなわち移動可能に配置されている。ミラー210は駆動制御部181により制御され、被検体を撮影する時には、測定光の光路から退避されている。本装置の校正を実施する時には、駆動制御部181は、ミラー210を測定光の光路に挿入し、測定光をミラー211に反射させる。ミラー211は、ミラー210により反射された測定光を、模型物200に反射する。模型物200の具体的な構成については、後述する。測定光は模型物200でミラー211に反射され、上述の光学経路を経由して偏光保持ファイバカップラ104に戻る。ミラー210が測定光の光路から退避されている時、円偏光に偏光制御された測定光は、ステージ116上に乗ったフォーカスレンズ114により、被検体である眼の前眼部Eaを介し、眼底Erの網膜層にフォーカスされる。眼底Erを照射した測定光は各網膜層で反射・散乱し、上述の光学経路を経由して偏光保持ファイバカップラ104に戻る。すなわち、駆動制御部181は、反射体としてのミラー210を移動させることにより、測定光の光路を模型物200又は被検体に導く光路制御処理を行う。
一方、偏光保持ファイバカップラ104で分岐された参照光は、偏光保持ファイバ117を介してコリメータ118から平行光として出射される。出射された参照光は22.5°傾けて設置されたλ/4波長板119で偏光制御される。参照光は分散補償ガラス120を介し、コヒーレンスゲートステージ121上のミラー122で反射され、偏光保持ファイバカップラ104に戻る。参照光は、λ/4波長板119を二度通過する事で直線偏光の光が偏光保持ファイバカップラ104に戻ることになる。本実施形態の場合、後述するファイバカップラ123で分岐される偏光方向を基準にして、45°直線偏光に偏光調整する。コヒーレンスゲートステージ121は、被検者の眼軸長の相違等に対応する為、駆動制御部181で制御されている。
偏光保持ファイバカップラ104に戻った測定光の反射光と参照光は合波されて干渉光となり、偏光ビームスプリッタを内蔵したファイバカップラ123に入射し、異なる偏光方向であるP偏光の光とS偏光の光に分割される(分割処理)。P偏光の光は、偏光保持ファイバ124、コリメータ130を介し、グレーティング131により分光されレンズ132、ラインカメラ133で受光される。同様に、S偏光の光は、偏光保持ファイバ125、コリメータ126を介し、グレーティング127により分光されレンズ128、ラインカメラ129で受光される。なお、グレーティング127,131、ラインカメラ129,133は、各偏光の方向に合わせて配置されている。ラインカメラ129,133でそれぞれ受光した光は、光の強度に応じた電気信号として出力され、信号処理部182で受ける。
<模型物200>
図2は、模型物200を示す図である。模型物200は、リターダー200a及び反射体200bを有している。リターダー200aと反射体200bは密着していても良いし、間に隙間があっても良い。また、集光や合焦目的で、模型物200の手前には、レンズ(不図示)が配置されていてもよい。
リターダー200aは、位相シフターとも呼ばれ、透過する光の位相を変化させる。リターダー200aは、リタデーション及び光軸の向きが既知の複屈折材、光学異方体である。リタデーションを所定の値とする観点からは、厚さや複屈折が規定しやすく、かつ変動しにくい材料が望ましい。例えば、リターダー200aとしては、石英や方解石やフッ化マグネシウム結晶、異方性を有する有機物、又は液晶を使用する事ができる。リターダー200aは一枚の複屈折材であってもよいし、2枚以上の材料を組合せてもよい。被検体が眼である場合、視神経繊維層のリタデーションは、10〜50°程度なので、リターダー200aのリタデーションも10〜50°の範囲で既知の値である事が望ましい。本実施形態に係る撮影装置においては、算出するリタデーションは90°毎に反転するので、リタデーションは90°の整数倍を加えた範囲であっても良い。リターダー200aのリタデーションや光軸の向きは、偏光顕微鏡等の既存の複屈折測定装置や、校正済みのPS−OCTで、事前に測定すればよい。
反射体200bは、リターダー200aを透過した測定光を反射する材料であればよい。例えば、金属コーティングされた光学ミラーが挙げられる。また、TiO2等の金属微粒子からなる散乱体であってもよい。反射体200bの反射面の位置で測定光の光路長が規定される。
模型物200は、所定の位置及び光軸の向きとなるように、撮影装置内で保持される。模型物200の位置は、参照光の光路長が調整可能な範囲内であればよい。コヒーレンスゲートステージ121の調整を最低限に済ませる観点からは、被検体を測定する時の測定光の光路長と、模型物200を測定する時の測定光の光路長とが略等しくなる位置に、模型物200を配置する事が望ましい。また、リターダー200aの表面に対する測定光の入射角は、所定のリタデーションが得られる入射角とすればよい。リターダー200aの光軸の向きは、既知の任意の角度となるように保持すればよい。既知の角度とすることで、オリエンテーションにズレが発生した場合でも校正を行う事が可能となる。
<前眼部撮像部160>
図1に戻り、前眼部撮像部160について説明する。前眼部撮像部160は、波長1000nmの照明光を発するLED115a,115bから成る照明光源115により前眼部Eaを照射する。前眼部Eaで反射された光は、フォーカスレンズ114、λ/4波長板113、レンズ112、ダイクロイックミラー111を介し、ダイクロイックミラー161に達する。ダイクロイックミラー161は、980nm〜1100nmの光を反射し、それ以外の光を透過する特性を有する。ダイクロイックミラー161で反射された光は、レンズ162,163,164を介し、前眼部カメラ165で受光される。前眼部カメラ165で受光された光は、電気信号に変換され、信号処理部182で受ける。
<内部固視灯170>
内部固視灯170について説明する。内部固視灯170は、表示部171及びレンズ172を有する。表示部171には、複数の発光ダイオード(LD)がマトリックス状に配置されたものを用いる。発光ダイオードの点灯位置は、駆動制御部181の制御により撮像したい部位に合わせて変更される。表示部171からの光は、レンズ172を介し、被検眼に導かれる。表示部171から出射される光は520nmで、駆動制御部181により所望のパターンが表示される。
<制御装置180>
制御装置180について説明する。制御装置180は、駆動制御部181、信号処理部182、制御部183、表示部184から構成される。駆動制御部181は、上述の通り各部を制御する。本実施形態では、駆動制御部181により、ミラー210を制御することで、測定光を照射する対象を、被検体または模型物200に切り替える。信号処理部182は、ラインカメラ129,133及び前眼部カメラ165それぞれから出力される信号に基づき、画像を生成する。信号処理部182はまた、生成した画像の解析、解析結果の可視化情報の生成を行う。なお、画像の生成などの詳細については、後述する。制御部183は、撮影装置全体を制御すると共に、信号処理部182で生成された画像等を表示部184の表示画面に表示する。表示部184は、制御部183の制御の下、後述するように種々の情報を表示する。ここで、表示部184は、例えば、液晶等のディスプレイである。なお、信号処理部182で生成された画像データは、制御部183に有線で送信されても良いし、無線で送信されても良い。この場合、制御部183を画像処理装置とみなすことができる。なお、制御装置180は、CPU、ROM,RAM等で構成され、後述する制御装置180の機能や処理は、CPUがROM等に格納されているプログラムを読み出し、このプログラムを実行することにより実現されるものである。
<画像処理方法>
次に、信号処理部182における画像生成、画像解析について説明する。
<断層信号生成>
信号処理部182は、ラインカメラ129,133から入力した干渉信号に対して、Spectaral Domain(SD)−OCTに用いられる再構成処理を行うことで、断層信号を生成する。まず信号処理部182は、干渉信号から固定パターンノイズ除去を行う。固定パターンノイズ除去は検出した複数のAスキャンを平均することで固定パターンノイズを抽出し、これを入力した干渉信号から減算することで行われる。次に信号処理部182は、干渉信号を波長から波数に変換し、フーリエ変換を行うことによって断層信号を生成する。以上の処理を2つの偏光成分の干渉信号に対して行うことにより、各偏光成分に基づいた2つの断層信号が生成される。
<輝度画像生成>
信号処理部182は、前述した2つの断層信号から断層輝度画像を生成する。信号処理部182は、断層信号を、Xスキャナ107及びYスキャナ110の駆動に同期して整列させることにより、各偏光成分に基づいた2つの断層画像(第1の偏光に対応する断層画像、第2の偏光に対応する断層画像とも言う)を生成する。輝度画像は従来のOCTにおける断層画像と基本的に同じもので、その画素値rは各ラインカメラ129,133から得られた断層信号AH,AVから(式1)によって計算される。図3(a)に視神経乳頭部の輝度画像の例を示す。
Figure 2016022010
<リタデーション像生成>
信号処理部182は、互いに直行する偏光成分の断層信号からリタデーション像を生成する。リタデーション像の各画素の値δは、断層像を構成する各画素の位置において、垂直偏光成分と水平偏光成分の間の位相差(強度比から繊維層の有無:厚み)を数値化したものであり、各断層信号AH,AVから(式2)によって計算される。
δ=arctan[AV/AH] ・・・(式2)
図3(b)は、このように生成された視神経乳頭部のリタデーション画像(偏光の位相差を示す断層画像とも言う)の例を示したものであり、各Bスキャン画像に対して(式2)を計算することによって得ることができる。図3(b)は、断層画像において位相差が生じる箇所を表示しており、濃淡の濃い場所(図中の右下がり斜め線)は位相差が大きく、濃淡の淡い場所(図中のハッチング部)は位相差が小さいことを表している。そのため、リタデーション画像を生成することにより、複屈折性のある層を把握することが可能となる。
<DOPU画像生成>
信号処理部182は、取得した断層信号AH,AVとそれらの間の位相差ΔΦから、画素毎にストークスベクトルSを(式3)により計算する。
Figure 2016022010
ただし、ΔΦは2つの断層画像を計算する際に得られる各信号の位相ΦHとΦVからΔΦ=ΦV−ΦHとして計算される。次に、信号処理部182は、各Bスキャン画像を概ね計測光の主走査方向に70μm、深度方向に18μm程度の大きさのウィンドウを設定する。そして、信号処理部182は、各ウィンドウにおいて(式3)で画素毎に計算されたストークスベクトルの各要素を平均する。そして、信号処理部182は、当該ウィンドウ内の偏光の均一性DOPU(Degree Of Polarization Uniformity)を(式4)により計算する。
Figure 2016022010
ただし、Qm,Um,Vmは、各ウィンドウ内のストークスベクトルの要素Q,U,Vを平均した値である。信号処理部182は、この処理をBスキャン画像内の全てのウィンドウに対して行うことで、図3(c)に示す視神経乳頭部のDOPU画像(偏光の均一度を示す断層画像とも言う)を生成する。
DOPUは偏光の均一性を表す数値であり、偏光が保たれている個所においては1に近い数値となり、偏光が解消された箇所においては1よりも小さい数値となるものである。網膜内の構造においては、網膜色素上皮(RPE)が偏光状態を解消する性質があるため、DOPU画像においてRPEに対応する部分は、他の領域に対してその値が小さくなる。図3(c)において、濃淡が淡い場所(図中のハッチング部)がRPEを示している。DOPU画像は、RPE等の偏光を解消する層を画像化しているので、病気などによりRPEが変形している場合においても、輝度の変化よりも確実にRPEを画像化出来る。
<オリエンテーション像生成>
信号処理部182は、互いに直行する偏光成分の断層信号の位相ΦH,ΦVからオリエンテーション像を生成する。オリエンテーション像の各画素の値θは、断層像を構成する各画素の位置において、測定光に対する光軸の方向を表している。互いに直行する偏光成分の断層信号の位相差ΔΦから(式5)によって計算される。
θ=(π−ΔΦ)/2 ・・・(式5)
光軸の向きは、被検体の内部構造の異方性に起因する。例えば神経繊維の走行方向に沿って発生する。そのため、オリエンテーション像を生成する事により、複屈折がある層の異方性の向きを把握する事が可能となる。
<セグメンテーション>
信号処理部182は、前述した輝度画像を用いて断層画像のセグメンテーションを行う。まず、信号処理部182は、処理の対象とする断層画像に対して、メディアンフィルタとSobelフィルタをそれぞれ適用して画像を作成する(以下、メディアン画像、Sobel画像とする)。次に、信号処理部182は、作成したメディアン画像とSobel画像から、Aスキャン毎にプロファイルを作成する。メディアン画像では輝度値のプロファイル、Sobel画像では勾配のプロファイルとなる。そして、信号処理部182は、Sobel画像から作成したプロファイル内のピークを検出する。信号処理部182は、検出したピークの前後やピーク間に対応するメディアン画像のプロファイルを参照することで、網膜層の各領域の境界を抽出する。更に、信号処理部182は、Aスキャンラインの方向に各層厚をそれぞれ計測し、各層の層厚マップを作成する。
<リタデーションマップ生成>
信号処理部182は、複数のBスキャン像に対して得たリタデーション像からリタデーションマップを生成する。まず、信号処理部182は、各Bスキャン画像において、RPEを検出する。RPEは偏光を解消する性質を持っている。そこで、信号処理部182は、各Aスキャンを深度方向に沿って内境界膜(ILM)からRPEを含まない範囲でリタデーションの分布を調べ、その最大値を当該Aスキャンにおけるリタデーションの代表値とする。信号処理部182は、以上の処理を全てのリタデーション画像に対して行うことにより、リタデーションマップを生成する。
視神経乳頭部のリタデーションマップの例を図3(d)に示す。図3(d)において、濃淡の濃い場所は位相差が小さく、濃淡の淡い場所(図中のハッチング部)は位相差が大きいことを表している。視神経乳頭部において、複屈折性を持つ層は網膜神経線維層(RNFL)であり、リタデーションマップは、RNFLの複屈折性とRNFLの厚みよって引き起こされる位相差を表している。そのため、RNFLが厚い個所では位相差が大きくなり、RNFLが薄い個所では位相差が小さくなる。したがって、リタデーションマップにより、眼底全体のRNFLの厚みを把握することができ、緑内障の診断に用いることができる。
<複屈折マップ生成>
信号処理部182は、先に生成されたリタデーション画像の各Aスキャン画像において、ILMからRNFLの範囲でリタデーションδの値を線形近似し、その傾きを当該Aスキャン画像の網膜上の位置における複屈折として決定する。信号処理部182は、この処理を取得した全てのリタデーション画像に対して行うことで、複屈折を表すマップを生成する。視神経乳頭部の複屈折マップの例を図3(e)に示す。複屈折マップは、複屈折の値を直接マップ化するため、RNFLの厚さが変化しない場合であっても、その繊維構造が変化した場合に、複屈折の変化として描出することができる。なお、本実施形態においては、上述した第1及び第2の偏光に対応する断層画像、リタデーション画像、DOPU画像等を、偏光状態を示す断層画像とも称する。また、本実施形態においては、上述したリタデーションマップや複屈折マップ等を、偏光状態を示す眼底画像とも称する。
次に、導光部材として使用している光ファイバの偏光状態の変動について説明する。撮影装置に、シングルモード光ファイバが用いられている場合、ファイバに曲げ荷重がかかるとファイバ内に複屈折が発生し、偏光状態が変動する。偏光状態の変動は、偏光コントローラで補正することが可能である。しかしながら、ファイバの複屈折には温度依存性がある為、ある温度下で補正を行っても、使用温度が変動すると偏光状態も変動し、再び偏光状態の補正が必要となってしまう。変動の大きさはファイバの特性にも依存する。例えば、20℃程度の温度変化により、ファイバを透過する光の偏光の方位角や楕円率が数°変動する。偏光カップラや偏光コントローラ等、光ファイバが含まれる素子においても、同様に変動が生じる。偏光状態が変動すると、リタデーションやオリエンテーションの算出値に誤差が生じてしまう。従って、校正を行う事で、より安定した画像が取得できる。
<校正および測定方法>
撮影装置は、安定した画像を得るべく、測定前に校正モードにおいて、偏光状態の校正を行い、その後、測定モードにおいて、被検体の測定を行う。図4は、撮影装置による、校正処理を示すフローチャートである。検者が、例えば表示部184に表示された校正開始ボタン(不図示)や物理的に本装置に設けられた校正開始ボタンを操作することで校正モードを選択したとする。すると、撮影装置の制御装置180は、校正開始指示を受け付け、動作モードを校正モードに設定し、図4に示す校正処理を開始する。
S100において、駆動制御部181は、測定光の光路にミラー210を挿入し(光路制御処理)、被写体としての模型物200に測定光を照射する。模型物200から反射された測定光は、ファイバカップラ123に入射し、異なる偏光方向であるP偏光の光とS偏光の光に分割され(分割処理)、その後、ラインカメラ129,133により受光される。ラインカメラ129,133は、受光量に応じた信号(断層信号)を出力する。そして、S101において、制御装置180は、ラインカメラ129,133から模型物200に対応する断層信号AH0,AV0を取得する。なお、断層信号AH0,AV0には、模型物200の偏光特性に、光源101から出射しラインカメラ129,133で受光するまでの光路中の偏光特性の変動が重畳されている。ここで、S101の処理は、ファイバカップラ123により分割された、干渉光の異なる偏光の光それぞれを検出し、検出値に応じた信号を出力する検出処理の一例である。
次に、S102において、制御装置180は、模型物200の既知のリタデーションδ0と断層信号AH0,AV0とを比較する事で、補正係数を算出する。光路中の偏光特性に変動があると、断層信号AH0と断層信号AV0の比が変動する。断層信号AH0と断層信号AV0の比の変動を補正する補正係数をαとおくと、リタデーションδ0と断層信号AH0,AV0には(式6)の関係がある。
δ0=arctan[α*AV0/AH0] ・・・(式6)
そこで、制御装置180は、(式6)の関係に基づいて、(式7)により補正係数αを算出する。ここで、補正計数αは、校正量の一例である。また、S102の処理は、校正量を算出する校正量算出処理の一例である。
α=AH0/AV0*tanδ0 ・・・(式7)
以上で、校正処理が終了する。なお、校正処理が終了すると、制御装置180は、校正モードを終了する。
図5は、撮影装置による、測定処理を示すフローチャートである。検者が、例えば表示部184に表示された測定開始ボタン(不図示)や物理的に本装置に設けられた測定開始ボタンを操作することで測定モードが選択されたとする。すると、制御装置180は、測定開始指示を受け付け、動作モードを測定モードに設定し、測定を開始する。S200において、駆動制御部181は、測定光の光路からミラー210を退避し、測定光を被検体に照射する。次に、S201において、制御装置180は、ラインカメラ129,133から被検体に対応する断層信号AH,AVを取得する。断層信号AH,AVには、被検体の偏光特性に、光源101から出射しラインカメラ129,133で受光するまでの光路中の偏光特性の変動が重畳されている。
次に、S202において、制御装置180は、断層信号AH,AVを用いて偏光特性の計算を行い、画像生成を行う。制御装置180は、断層信号AH,AVと、補正係数αと、を用いて、(式8)により、リタデーションδを算出する。
δ=arctan[α*AV/AH] ・・・(式8)
このように、断層信号AH,AVの強度比に補正係数αをかけることで、光路中の偏光特性の変動を除いた、リタデーションδを算出することができる。ここで、S202の処理は、校正量としての補正計数αと、検出値としての断層信号断層信号AH,AVに基づいて、被検体の偏光特性を算出する偏光特性算出処理の一例である。以上で、測定処理が終了する。なお、測定処理が終了すると、制御装置180は、測定モードを終了する。
以上のように、本実施形態に係る撮影装置は、模型物の測定結果から校正量としての補正係数を算出し、これを用いて、測定値を校正することにより、被検体に近い条件で校正を行うことができる。すなわち、撮影装置は、高精度な校正を行うことができ、安定した画像を得ることができる。
第1の実施形態に係る撮影装置の第1の変更例としては、校正を行うタイミングは、実施形態に限定されるものではない。他の例としては、検者等からのボタン操作に替えて、制御装置180が自動的に校正処理を開始してもよい。例えば、制御装置180は、撮影装置の電源を投入した時や、所定時間が経過した時に、校正処理を実行することとしてもよい。また、他の例としては、撮影装置は、不図示の温度計を内部に有し、制御装置180は、温度が所定量変動した場合に、校正処理を実行することとしてもよい。また、他の例としては、制御装置180は、測定ボタンが押される度に、校正処理を実行してもよい。また、他の例としては、制御装置180は、被検体の断層信号を取得後に、校正処理を実行してもよい。
また、第2の変更例としては、補正係数は、実施形態に限定されるものではない。制御装置180は、例えば、(式9)に示す補正係数Δδを算出してもよい。
Δδ=δ0−arctan[AV0/AH0]・・・(式9)
そして、制御装置180は、被検体の断層信号AH,AVと、補正係数Δδと、を用いて、(式10)により、被検体のリタデーションδを算出してもよい。
δ=arctan[AV/AH]+Δδ ・・・(式10)
さらに、制御装置180は、撮影装置の偏光特性の変動の傾向に基づいて、(式8)に示す第1の補正式と(式9)に示す第2の補正式とを選択的に利用することとしてもよい。例えば、制御装置180は、ファイバカップラ123の分岐以降における変動の影響が相対的に大きい場合は、第1の補正式を選択する。変動の要因として、例えば、ファイバカップラ123を透過する時の偏光状態の変動や分光器の感度の変動が挙げられる。制御装置180はまた、ファイバカップラ123よりも上流側の光路の変動の影響が大きい場合には、第2の補正式を選択する。なお、変動の影響度合いは、偏波計等で予め測定し、検者等が、測定結果に応じて、いずれかの補正式を選択し、これを撮影装置に設定しておくものとする。
また、第3の変更例としては、偏光特性は、リタデーションに限定されるものではない。撮影装置は、例えば、オリエンテーションを算出する際にも、(式9)に示す第2の補正式によるのと同様の校正を行うことができる。具体的には、制御装置180は、模型物200の既知のオリエンテーションθ0と模型物200の断層信号ΦH0,ΦV0の位相差ΔΦ0(=ΦV0−ΦH0)から、(式11)により、補正係数Δθを算出する。
Δθ=θ0−(π−ΔΦ0)/2 ・・・(式11)
さらに、制御装置180は、被検体のオリエンテーションθの算出では、被検体の断層信号AH,AVと、補正係数Δθとを用いて、(式12)により、被検体のオリエンテーションθを算出する。
θ=(π−ΔΦ0)/2+Δθ ・・・(式12)
このように、制御装置180は、オリエンテーションを校正することができる。
(第2の実施形態)
図6は、第2の実施形態に係る撮影装置を示す図である。ここでは、第2の実施形態に係る撮影装置について、第1の実施形態に係る撮影装置と異なる部分についてのみ説明する。第2の実施形態においては、撮影装置は、第1の偏光コントローラ220と、第2の偏光コントローラ221と、第3の偏光コントローラ222とを備えている。以下、第1の偏光コントローラ220と、第2の偏光コントローラ221と、第3の偏光コントローラ222とを適宜、偏光コントローラ220〜222と称する。なお、このうち、第1の偏光コントローラ220は、第1の実施形態に係る撮影装置の偏光コントローラ103と同様のものである。3つの偏光コントローラ220〜222は、駆動制御部181による制御により、偏光を制御する。
第1の偏光コントローラ220は、光源101から出射された光の光路上に設けられており、出射光を垂直偏光に偏光制御する。第2の偏光コントローラ221は、参照光の光路上に設けられており、参照光を垂直偏光に偏光制御する。第3の偏光コントローラ222は、測定光の光路上に設けられており、測定光を垂直偏光に偏光制御する。さらに、測定光の光路には、シャッター223が設けられおり、駆動制御部181からの制御により測定光を遮光する。第1の実施形態に係る撮影装置の偏光コントローラ103と同様に、偏光コントローラ220〜222は、インラインの偏光コントローラとするが、これに限定されるものではない。偏光コントローラ220〜222は、駆動制御部181により、偏光の制御ができる形態であればよい。偏光コントローラ220〜222は、例えば、パドル型の偏光コントローラ、又は、λ/4波長板とλ/2波長板とを組合せた偏光コントローラであってもよい。
図7は、第2の実施形態に係る、校正処理を示すフローチャートである。検者が、例えば表示部184に表示された校正開始ボタン(不図示)や物理的に本装置に設けられた校正開始ボタンを操作することで校正モードを選択したとする。すると、撮影装置の制御装置180は、校正開始指示を受け付け、動作モードを校正モードに設定し、図7に示す校正処理を開始する。S300において、駆動制御部181は、測定光の光路に、シャッター223を挿入する。これにより、測定光は遮光され、ラインカメラ129,133には、参照光のみが受光される。次に、S301において、制御装置180は、第1の偏光コントローラ220を制御し、所定の初期位置に移動する。ここで、所定の初期位置は、前回に校正した時の位置でも良いし、撮影装置を組立て調整した時に決定した位置でも良い。
次に、S302において、制御装置180は、ラインカメラ129,133により出力された、参照光の強度を表す参照光信号AHS,AVSを取得する。次に、S303において、制御装置180は、(式13)により、参照光信号AHS,AVSから参照光信号の強度、すなわち信号強度Asを算出する。
Figure 2016022010
そして、制御装置180は、信号強度Asと、予め設定した閾値と、を比較する。参照光信号の強度の閾値は、撮影装置を組立て調整した時に予め測定した参照光信号の強度を基に決定すればよい。少なくとも、被検体を測定する時に所望の画質の画像が得られる最小強度とする。
制御装置180は、信号強度Asが閾値以上の場合には(S303でYes)、処理をS304へ進める。制御装置180は、信号強度Asが閾値未満の場合には(S303でNo)、処理をS301へ進め、再び、第1の偏光コントローラ220を制御する。具体的には、制御装置180は、第1の偏光コントローラ220の制御により、信号強度が閾値を超えるように調整を行う。制御装置180は、信号強度を調整する際に、第1の偏光コントローラ220の全調整範囲内で変化させることとしてもよいし、勾配法等の既存の最適化アルゴリズムを用いることとしてもよい。
S304において、制御装置180は、第2の偏光コントローラ221を制御し、所定の初期位置に移動する。所定の初期位置は、前回に校正した時の位置でも良いし、装置を組立て調整した時に決定した位置でも良い。次に、S305において、制御装置180は、ラインカメラ129,133により出力された、参照光の強度を表す参照光信号AHS,AVSを取得する。次に、S306において、制御装置180は、参照光信号の強度比を算出する。そして、制御装置180は、参照光信号の強度比が第1の範囲に含まれるか否かを確認する。ここで、第1の範囲は、予め設定されているものとする。制御装置180は、参照光信号の強度比が第1の範囲に含まれる場合には(S306でYes)、処理をS307へ進める。制御装置180は、参照光信号の強度比が第1の範囲に含まれない場合には(S306でNo)、処理をS304へ進め、再び、第2の偏光コントローラ221を制御する。
本実施形態において、途中の光路に偏光特性の変動が無い場合、参照光は45°直線偏光としてファイバカップラ123に入射し、50:50の強度比で分割される。従って、理想的には参照光信号の強度比は1となる。これに対応し、撮影装置において必要とされる精度や第2の偏光コントローラ221の調整精度に応じて、略等しいとみなせる範囲を、第1の範囲として設定することとする。例えば、リタデーション換算で±1°以内の範囲とするのであれば、参照光信号AHS,AVSの強度比が0.97(=tan[44°])〜1.04(=tan[46°])の範囲を第1の範囲として設定すればよい。制御装置180は、信号強度を調整する際に、第2の偏光コントローラ221の全調整範囲内で変化させることとしてもよいし、勾配法等の既存の最適化アルゴリズムを用いることとしてもよい。
次に、S307において、駆動制御部181は、測定光の光路からシャッター223を退避する。駆動制御部181は、さらにミラー210を挿入し、模型物200に測定光を照射する。次に、S308において、駆動制御部181は、第3の偏光コントローラ222を所定の初期位置に移動する。所定の初期位置は、前回に校正した時の位置でも良いし、装置を組立て調整した時に決定した位置でも良い。次に、S309において、制御装置180は、ラインカメラ129,133により出力された、干渉光の強度を表す断層信号AH,AVを取得する。
次に、S310において、制御装置180は、断層信号の強度比を算出する。そして、制御装置180は、断層信号の強度比が第2の範囲に含まれるか否かを確認する。ここで、第2の範囲は、模型物200の既知のリタデーションδ0に基づいて定まる範囲である。制御装置180は、断層信号の強度比が第2の範囲に含まれる場合には(S310でYes)、測定光の光路からミラー210を退避し、測定光が被検体に照射されるように切り替えて、校正処理を終了する。一方、制御装置180は、断層信号の強度比が第2の範囲に含まれない場合には(S310でNo)、処理をS308へ進め、再び第3の偏光コントローラ222を制御する。ここで、S308の処理は、偏光を制御する偏光制御処理の一例である。
本実施形態において、模型物200のリタデーションδ0は既知であり、途中の光路に偏光特性の変動が無い場合、断層信号の強度比は、(式14)で表される。
V/AH=tan[δ0] ・・・(式14)
したがって、撮影装置において必要とされる精度や第3の偏光コントローラ222の調整精度に応じて、略等しいとみなせる範囲を、第2の範囲として設定することとする。例えば、リタデーションで±1°以内の範囲とするのであれば、参照光信号AHS,AVSの強度比がtan[0.99*δ0]〜tan[1.01*δ0]となる範囲を第2の範囲として設定すればよい。制御装置180は、信号強度を調整する際に、第3の偏光コントローラ222の全調整範囲内で変化させることとしてもよいし、勾配法等の既存の最適化アルゴリズムを用いることとしてもよい。
以上のように、第2の実施形態に係る撮影装置は、第1の実施形態に係る撮影装置と同様に、模型物の測定結果を用いることにより、被検体に近い状態で、校正を行うことができる。
なお、第2の実施形態に係る撮影装置の第1の変更例としては、校正処理は、検者等からのボタン操作に応じて開始されるものとしたが、校正処理が開始されるタイミングは、被検体の測定前であればよく、実施形態に限定されるものではない。
第2の変更例としては、撮影装置は、図7を参照しつつ説明した、第2の実施形態に係る校正処理と、図5を参照しつつ説明した、第1の実施形態に係る校正処理の両方を実行してもよい。以下、第2の実施形態に係る校正処理を機械的校正処理、第1の実施形態に係る校正処理を数値的校正処理と称することとする。例えば、撮影装置は、機械的校正処理を実行した後に、数値的校正処理を実行する。すなわち、撮影装置は、機械的校正処理における偏光制御後に、数値的校正処理を実行する。この場合、制御装置180は、機械的校正処理において取得した断層信号AH,AVを数値的校正処理において用いてもよく、また、数値的校正処理において、改めて断層信号AH,AVを取得してもよい。また、撮影装置は、被検体の測定前に、機械的校正処理を1回実行し、その後、被検体の測定が行われる度に、その直前又は直後に数値的校正を行ってもよい。機械的な校正は、偏光コントローラを調整する必要がある為、時間を要する。一方、数値的な校正は、一回の測定で補正係数を得られる。そこで、このように、機械的校正処理と数値的校正処理とを組み合わせて実行することにより、効率的に校正を実行することができる。
以上のように、撮影装置は、機械的校正処理と数値的校正処理とを組み合わせることにより、機械的校正処理で校正しきれなかった変動や、校正後に生じた変動を数値的校正処理において校正することができる。これにより、撮影装置は、機械的校正処理又は数値的校正処理を単独で実行する場合に比べて高精度に校正を行うことができ、安定した画像を得ることができる。
(第3の実施形態)
図8は、第3の実施形態に係る撮影装置を示す図である。ここでは、第3の実施形態に係る撮影装置について、第1の実施形態に係る撮影装置と異なる部分についてのみ説明する。第3の実施形態に係る撮影装置は、Yスキャナ110の方向を制御する事で、測定光の照射方向を模型物200と被検体との間で切り替える。なお、図8に図示するYスキャナ110が模型物200に測定光を照射する方向は、実際の向きとは必ずしも一致しない。第3の実施形態において、模型物200は、所定の位置及び向きとなるように設けられている。また、Yスキャナ110と模型物200の間には、λ/4波長板230が配置されている。λ/4波長板230は、垂直偏光の測定光に対し、45°傾けて設置される。測定光は、λ/4波長板230を通過する事で位相が90°ずれ、円偏光の光に偏光制御されて、模型物200に照射される。また、集光や合焦目的で、模型物200の手前にレンズが配置されていてもよい。また、測定光の照射対象の切り替えは、Xスキャナ107で行っても良い。
以上のように、第3の実施形態に係る撮影装置は、スキャナで模型物200と被検体との照射を切り替えることができる。すなわち、第3の実施形態に係る撮影装置は、より少ない部品点数で校正することができる。さらに、撮影装置は、断層像毎に校正する事も可能となり、より安定した画像を取得する事ができる。
(第4の実施形態)
図9は、第4の実施形態に係る撮影装置を示す図である。ここでは、第4の実施形態に係る撮影装置について、第1の実施形態に係る撮影装置と異なる部分についてのみ説明する。第4の実施形態に係る撮影装置は、ミラー210,211を有さない。また、本実施形態に係る撮影装置においては、模型物240は、測定光の光路に挿脱可能に配置されている。模型物240は、リタデーション及び光軸の向きが既知なリターダー240aと、測定光を反射する反射体240bと、を有している。校正処理が開始されると、駆動制御部181は、模型物240を測定光の光路に挿入する。すなわち、校正処理は、模型物240が測定光の光路の配置された状態で実行される。模型物240は、さらに、測定光を遮光するシャッターの一部を兼ねてもよい。このように、第4の実施形態に係る撮影装置は、ミラー210,211を必要としないため、より少ない部品点数で校正することができる。
(第5の実施形態)
図10は、第5の実施形態に係る撮影装置を示す図である。ここでは、第5の実施形態に係る撮影装置について、第1の実施形態に係る撮影装置と異なる部分についてのみ説明する。第5の実施形態においては、検者等は、測定場所に被検体が位置しない時に校正モードを選択して、模型物250を被検体の位置に設置する。模型物250は、リタデーションが既知なリターダー250aと、測定光を反射する反射体250bと、を有している。模型物250は、検者が手動で設置してもよいし、撮影装置の制御装置180が自動的に配置することとしてもよい。この場合、模型物250を固定する工具や機構(不図示)を用いることで、模型物250の位置や傾きを規定することとする。校正処理時には、模型物250は、被検体に相当する位置に配置される。以上のように、第5の実施形態に係る撮影装置は、模型物250を撮影装置内に内蔵する必要がなくなり、より簡単な構成で校正が可能となる。
上記の説明においては、光源101から出射された出射光は偏光コントローラ103で垂直偏光に調整されたが、出射光は、水平偏光等の他の方位角の直線偏光に調整されてもよい。他の方位角とする場合、波長板の角度、及び算出式を対応した形にすればよい。また、上記実施形態の撮影装置は、SD−OCT以外にも、Time‐Domain(TD)−OCTやSwept−Source(SS)−OCTにも適用できる。また、撮影装置の被検体は、上記実施形態に限定されるものではない。撮影装置は、被検体の偏光特性を測定するOCTであればよく、例えば、皮膚、内臓、血管、歯等、眼以外の生体や、生体以外の試料等の偏光特性を測定するOCTであってもよい。
<その他の実施形態>
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給する。そして、そのシステム或いは装置のコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行する処理である。
以上、上述した各実施形態によれば、被検体に適した、偏光状態の校正を行うことができる。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
101 光源
103 偏光コントローラ
129,133 ラインカメラ
200 模型物
210,211 ミラー
220,221,222 偏光コントローラ
223 シャッター

Claims (13)

  1. 参照光と、被写体に照射された測定光の反射光との干渉光に基づいて、前記被写体の偏光状態を示す画像を得る画像処理装置であって、
    参照光と、前記被写体に照射された測定光の反射光との干渉光を検出する検出手段と、
    偏光特性が既知の模型物に対して前記検出手段により検出された検出値と、前記模型物の既知の前記偏光特性と、に基づいて、校正量を算出する校正量算出手段と、
    前記校正量と、被検体に対して前記検出手段により検出された検出値と、に基づいて、前記被検体の前記偏光特性を算出する偏光特性算出手段と
    を有することを特徴とする画像処理装置。
  2. 前記校正量算出手段は、前記検出値と、前記模型物の既知の前記偏光特性としてのリタデーションの値と、に基づいて、前記校正量を算出することを特徴とする請求項1に記載の画像処理装置。
  3. 前記校正量算出手段は、前記検出値と、前記模型物の既知の前記偏光特性としてのオリエンテーションの値と、に基づいて、前記校正量を算出することを特徴とする請求項1に記載の画像処理装置。
  4. 前記模型物と、
    前記測定光の光路中に配置された反射体と、
    前記反射体を制御することにより、前記測定光の光路を前記模型物又は前記被検体に導く光路制御手段と
    をさらに有することを特徴とする請求項1乃至3何れか1項に記載の画像処理装置。
  5. 前記反射体は、移動可能に設けられ、
    前記光路制御手段は、前記反射体の位置を移動させることにより、前記測定光の光路を前記模型物又は前記被検体に導くことを特徴とする請求項4に記載の画像処理装置。
  6. 移動可能に設けられた前記模型物と、
    前記模型物を移動させることにより、前記測定光の光路を前記模型物又は前記被検体に導く光路制御手段と
    をさらに有することを特徴とする請求項1乃至3何れか1項に記載の画像処理装置。
  7. 前記干渉光を異なる偏光の光に分割する分割手段をさらに有し、
    前記検出手段は、前記分割手段により得られた偏光の光それぞれを検出し、検出値に応じた信号を出力し、
    前記校正量算出手段は、前記検出手段から出力された前記信号に基づいて、前記校正量を算出することを特徴とする請求項1乃至6何れか1項に記載の画像処理装置。
  8. 前記測定光の光路上に設けられ、前記模型物の前記検出値と、前記模型物の既知の前記偏光特性と、に基づいて、偏光を制御する偏光制御手段をさらに有し、
    前記校正量算出手段は、前記偏光制御手段による制御後に前記検出手段により検出された前記検出値と、前記模型物の既知の前記偏光特性と、に基づいて、前記校正量を算出することを特徴とする請求項1乃至7何れか1項に記載の画像処理装置。
  9. 前記模型物は、偏光特性が既知の光学異方体と、反射体とを有することを特徴とする請求項1乃至8何れか1項に記載の画像処理装置。
  10. 参照光と、被写体に照射された測定光の反射光との干渉光に基づいて、前記被写体の偏光状態を示す画像を得る画像処理装置であって、
    参照光と、前記被写体に照射された測定光の反射光との干渉光を検出する検出手段と、
    前記測定光の光路上に設けられ、偏光特性が既知の模型物に対して前記検出手段により検出された検出値と、前記模型物の既知の前記偏光特性とに基づいて、偏光を制御する偏光制御手段と
    を有することを特徴とする画像処理装置。
  11. 参照光と、被写体に照射された測定光の反射光との干渉光を検出手段により検出し、前記被写体の偏光状態を示す画像を得る画像処理装置が実行する画像処理方法であって、
    偏光特性が既知の模型物に対して前記検出手段により検出された検出値と、前記模型物の既知の前記偏光特性と、に基づいて、校正量を算出する校正量算出ステップと、
    参照光と、前記被写体に照射された測定光の反射光との干渉光を検出する検出ステップと、
    前記校正量と、被検体に対して前記検出ステップにおいて検出された検出値と、に基づいて、前記被検体の前記偏光特性を算出する偏光特性算出ステップと
    を含むことを特徴とする画像処理方法。
  12. 参照光と、被写体に照射された測定光の反射光との干渉光に基づいて、前記被写体の偏光状態を示す画像を得る画像処理装置が実行する画像処理方法であって、
    参照光と、前記被写体に照射された測定光の反射光との干渉光を検出する検出ステップと、
    前記測定光の光路上に設けられ、偏光特性が既知の模型物に対して前記検出ステップにおいて検出された検出値と、前記模型物の既知の前記偏光特性とに基づいて、偏光を制御する偏光制御ステップと
    を含むことを特徴とする画像処理方法。
  13. コンピュータに、請求項11又は12に記載の画像処理方法の各ステップを実行させるためのプログラム。
JP2014146293A 2014-07-16 2014-07-16 画像処理装置、画像処理方法及びプログラム Pending JP2016022010A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014146293A JP2016022010A (ja) 2014-07-16 2014-07-16 画像処理装置、画像処理方法及びプログラム
PCT/JP2015/003298 WO2016009604A1 (en) 2014-07-16 2015-06-30 Image processing apparatus, image processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146293A JP2016022010A (ja) 2014-07-16 2014-07-16 画像処理装置、画像処理方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2016022010A true JP2016022010A (ja) 2016-02-08
JP2016022010A5 JP2016022010A5 (ja) 2017-08-17

Family

ID=53776916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146293A Pending JP2016022010A (ja) 2014-07-16 2014-07-16 画像処理装置、画像処理方法及びプログラム

Country Status (2)

Country Link
JP (1) JP2016022010A (ja)
WO (1) WO2016009604A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140302A (ja) * 2016-02-12 2017-08-17 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
WO2019225716A1 (ja) * 2018-05-23 2019-11-28 株式会社ニコン 眼科装置
JP2020509908A (ja) * 2017-02-27 2020-04-02 ゼアビジョン・エルエルシー 黄斑色素を測定するための反射率測定機器及びその方法
CN110960186A (zh) * 2018-09-28 2020-04-07 株式会社多美 眼科装置
CN113557709A (zh) * 2019-04-19 2021-10-26 索尼集团公司 成像装置、图像处理装置和图像处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061672A1 (ja) * 2016-09-27 2018-04-05 テルモ株式会社 画像診断装置、画像診断装置の制御方法、コンピュータプログラム、コンピュータ読み取り可能な記憶媒体
JP2023174342A (ja) * 2022-05-27 2023-12-07 株式会社トーメーコーポレーション 眼科装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505657A (ja) * 2000-08-08 2004-02-26 トレイシィ テクノロジーズ、エルエルシー 目およびその屈折性成分の全屈折不均質性を同期マッピングする方法および装置
JP2007025504A (ja) * 2005-07-20 2007-02-01 Topcon Corp 可変形状ミラーの変形方法、光学装置の収差補償方法及び眼底観察装置の収差補償方法
GB2499435A (en) * 2012-02-17 2013-08-21 Univ Sheffield Production and analysis of depth-resolved electromagnetic signals
JP2013165961A (ja) * 2012-01-20 2013-08-29 Canon Inc 制御装置及び制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1358443A2 (en) * 2001-01-22 2003-11-05 Jonathan E. Roth Method and apparatus for polarization-sensitive optical coherence tomography
JP4969925B2 (ja) * 2006-06-28 2012-07-04 株式会社トプコン 眼底観察装置
WO2008151155A2 (en) * 2007-05-31 2008-12-11 Board Of Regents, The University Of Texas System Polarization-sensitive spectral interferometry
EP2243420A1 (en) 2009-04-24 2010-10-27 Schmidt-Erfurth, Ursula Method for determining exudates in the retina
JP5903903B2 (ja) * 2012-01-19 2016-04-13 株式会社ニデック 光コヒーレンストモグラフィー装置
JP5787255B2 (ja) * 2011-07-12 2015-09-30 国立大学法人 筑波大学 Ps−octの計測データを補正するプログラム及び該プログラムを搭載したps−octシステム
JP6045173B2 (ja) 2012-04-03 2016-12-14 キヤノン株式会社 光干渉断層撮影装置、制御方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505657A (ja) * 2000-08-08 2004-02-26 トレイシィ テクノロジーズ、エルエルシー 目およびその屈折性成分の全屈折不均質性を同期マッピングする方法および装置
JP2007025504A (ja) * 2005-07-20 2007-02-01 Topcon Corp 可変形状ミラーの変形方法、光学装置の収差補償方法及び眼底観察装置の収差補償方法
JP2013165961A (ja) * 2012-01-20 2013-08-29 Canon Inc 制御装置及び制御方法
GB2499435A (en) * 2012-02-17 2013-08-21 Univ Sheffield Production and analysis of depth-resolved electromagnetic signals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017140302A (ja) * 2016-02-12 2017-08-17 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2020509908A (ja) * 2017-02-27 2020-04-02 ゼアビジョン・エルエルシー 黄斑色素を測定するための反射率測定機器及びその方法
US11490810B2 (en) 2017-02-27 2022-11-08 Zeavision, Llc Reflectometry instrument and method for measuring macular pigment
JP7179778B2 (ja) 2017-02-27 2022-11-29 ゼアビジョン・エルエルシー 黄斑色素を測定するための反射率測定機器及びその方法
WO2019225716A1 (ja) * 2018-05-23 2019-11-28 株式会社ニコン 眼科装置
JPWO2019225716A1 (ja) * 2018-05-23 2021-05-13 株式会社ニコン 眼科装置
CN110960186A (zh) * 2018-09-28 2020-04-07 株式会社多美 眼科装置
CN113557709A (zh) * 2019-04-19 2021-10-26 索尼集团公司 成像装置、图像处理装置和图像处理方法

Also Published As

Publication number Publication date
WO2016009604A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP2016022010A (ja) 画像処理装置、画像処理方法及びプログラム
US9115972B2 (en) Optical tomographic imaging apparatus and imaging method therefor to acquire images indicating polarization information
JP6265600B2 (ja) 制御装置及び制御装置の作動方法
JP6184232B2 (ja) 画像処理装置及び画像処理方法
US10198814B2 (en) Image processing device and image processing method
US20160183785A1 (en) Photography apparatus and photography method
JP2014042649A (ja) 画像処理装置及び画像処理方法
JP2014155694A (ja) 眼科装置及び眼科方法
JP6221516B2 (ja) 眼科撮影装置及び眼科撮影プログラム
EP3430975A1 (en) Ophthalmic device
US8992015B2 (en) Ophthalmologic apparatus and control method thereof
EP2957218A1 (en) Imaging apparatus
JP6429464B2 (ja) 偏光oct装置及びその制御方法
US10646114B2 (en) Ophthalmic imaging apparatus and method of controlling the same
WO2013085042A1 (ja) 眼底観察装置
JP6146951B2 (ja) 画像処理装置、画像処理方法、撮影装置及び撮影方法
EP3127472B1 (en) Method and program for positioning an mage of an object on a tomogram and an optical coherence tomography apparatus therefor
JP6647013B2 (ja) 画像処理装置、画像処理方法及び光干渉断層撮影装置
US20180232914A1 (en) Image processing apparatus, image processing method, and optical interference tomographic apparatus
JP5919175B2 (ja) 光画像計測装置
JP7119286B2 (ja) Oct装置
JP2013076587A (ja) 光断層像撮影装置
JP5936368B2 (ja) 光干渉断層撮影装置及びその作動方法
JP6039185B2 (ja) 撮影装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204