JP2016017736A - Solar thermal power generation and water heater device - Google Patents

Solar thermal power generation and water heater device Download PDF

Info

Publication number
JP2016017736A
JP2016017736A JP2014153312A JP2014153312A JP2016017736A JP 2016017736 A JP2016017736 A JP 2016017736A JP 2014153312 A JP2014153312 A JP 2014153312A JP 2014153312 A JP2014153312 A JP 2014153312A JP 2016017736 A JP2016017736 A JP 2016017736A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat
way valve
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014153312A
Other languages
Japanese (ja)
Inventor
三村 建治
Kenji Mimura
建治 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIMURA YOKO
Original Assignee
MIMURA YOKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIMURA YOKO filed Critical MIMURA YOKO
Priority to JP2014153312A priority Critical patent/JP2016017736A/en
Publication of JP2016017736A publication Critical patent/JP2016017736A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means for further promoting utilization of natural energy.SOLUTION: A carnot cycle binary power generation device, a solar heat collection device and a water heater are combined to each other to perform an efficient power generation and hot water supply. In the case where only the binary power generation through solar heat, at first, the refrigerant whose temperature is increased by a solar heat collection device 2 is flowed into an evaporator 3 of the binary power generation device, a temperature of the refrigerant of the binary power generation device is increased through heat exchanging operation to perform the power generation by the driving force of an expander 1. The refrigerant of low pressure and low temperature is heat exchanged with cooling water from a hot water storage tank 26 at a condenser and condensed, pressure thereof is increased by a refrigerant pump and the refrigerant returns to the evaporator. In the case where the binary power generation is carried out by solar heat and hot water storage is also carried out by the solar heat, refrigerant flowed out of the evaporator of the binary power generation device and still keeping high temperature from the solar heat collection device is utilized in addition to the solar heat power generation and a temperature thereof is increased through heat exchanging of cold water got from the hot water storage tank and utilized.SELECTED DRAWING: Figure 1

Description

本発明は、カルノーサイクルのバイナリー発電装置と太陽熱集熱装置と給湯装置を組み合わせて活用し、発電と給湯を効率良く行う事を特徴とする太陽熱発電給湯装置である。
太陽熱発電給湯装置において、太陽熱によるバイナリー発電のみ場合は、まず太陽熱集熱装置により高温となった冷媒を、バイナリー発電装置の蒸発器に流入させ、熱交換によりバイナリー発電装置の冷媒を昇温し、膨張機の駆動力で発電を行う。そして低圧、低温となった冷媒は凝縮器において貯湯タンクからの冷却水と熱交換を行い凝縮し、冷媒ポンプにより昇圧されて蒸発器に戻る。
太陽熱によりバイナリー発電、及び貯湯も行う場合は、上記の太陽熱発電に加えて、バイナリー発電装置の蒸発器より流出した、まだ温度の高い太陽熱集熱装置の冷媒を利用して、貯湯タンクからの冷水を熱交換により昇温し活用する。また、太陽熱集熱装置による集熱が不足して給湯温度が低すぎる場合は、給湯装置を活用して給湯温度を適正に保つ。
現在、各戸別住宅においては、太陽光発電とヒートポンプ給湯機等の給湯装置により発電と給湯を別々に行っているが、バイナリー発電装置と太陽熱集熱装置を加えて連携して活用する事により、より一層の省エネルギーの向上と、消費電力を低減する事が出来る太陽熱発電給湯装置に関するものである。
The present invention is a solar thermal power generation and hot water supply apparatus that uses a Carnot cycle binary power generation apparatus, a solar heat collection apparatus, and a hot water supply apparatus in combination to efficiently generate power and hot water.
In the solar power generation hot water supply device, when only binary power generation by solar heat is performed, first, the refrigerant that has become high temperature by the solar heat collector is caused to flow into the evaporator of the binary power generation device, and the temperature of the refrigerant of the binary power generation device is increased by heat exchange. Power is generated by the drive force of the expander. The low-pressure and low-temperature refrigerant is condensed by exchanging heat with the cooling water from the hot water storage tank in the condenser, and is increased in pressure by the refrigerant pump and returned to the evaporator.
In the case of performing binary power generation and hot water storage by solar heat, in addition to the above-mentioned solar power generation, cold water from the hot water storage tank is used by using the refrigerant of the solar heat collector still flowing out of the binary power generator evaporator. The temperature is raised and utilized by heat exchange. Moreover, when the heat collection by the solar heat collector is insufficient and the hot water supply temperature is too low, the hot water supply device is utilized to keep the hot water supply temperature appropriate.
Currently, in each house, solar power generation and hot water supply such as heat pump water heaters are used to generate power and hot water separately, but by adding a binary power generator and a solar heat collector, The present invention relates to a solar power hot water supply apparatus that can further improve energy saving and reduce power consumption.

現在、各戸別住宅においては、太陽光発電とヒートポンプ給湯機等の給湯装置により発電と給湯を別々に行っている。また、日本における太陽光発電とヒートポンプ給湯機等の給湯装置の技術は順調に発展し、世界をリードするに至っている。こういった環境において、より一層の省エネルギーの向上と、消費電力を低減する事が出来る、太陽熱発電とバイナリー発電の有効利用が求められている。Currently, in each house, power generation and hot water are separately performed by a solar power generator and a hot water heater such as a heat pump water heater. Moreover, the technology of hot water supply devices such as solar power generation and heat pump water heaters in Japan has been steadily developed and has led to the world. In such an environment, there is a demand for effective use of solar thermal power generation and binary power generation that can further improve energy saving and reduce power consumption.

現在、太陽光発電とヒートポンプ給湯機、等の給湯装置により発電と給湯を行うシステムは、そのエネルギー効率の高さから、将来の低炭素社会への有力な切り札となっている。さらに、バイナリー発電装置と太陽熱集熱装置を加えて活用する事により、より一層の省エネルギーの向上と、消費電力を低減する事が出来き、これらを複合的に活用した発電、給湯装置の社会的な意義は計りしれない。
Currently, a system that generates power and hot water using a hot water supply device such as a solar power generator and a heat pump water heater is a powerful trump card for a future low-carbon society because of its high energy efficiency. In addition, by using a binary power generator and a solar heat collector, it is possible to further improve energy saving and reduce power consumption. The significance is immeasurable.

特開2013−40597JP2013-40597 特開2013−122239JP2013-122239A

本発明は、カルノーサイクルのバイナリー発電装置と太陽熱集熱装置と給湯装置を組み合わせて活用し、発電と給湯を効率良く行う事を特徴とする太陽熱発電給湯装置である。
太陽熱発電給湯装置において、太陽熱によるバイナリー発電のみ場合は、まず太陽熱集熱装置により高温となった冷媒を、バイナリー発電装置の蒸発器に流入させ、熱交換によりバイナリー発電装置の冷媒を昇温し、膨張機の駆動力で発電を行う。そして低圧、低温となった冷媒は凝縮器において貯湯タンクからの冷却水と熱交換を行い凝縮し、冷媒ポンプにより昇圧されて蒸発器に戻る。
太陽熱によりバイナリー発電、及び貯湯も行う場合は、上記の太陽熱発電に加えて、バイナリー発電装置の蒸発器より流出した、まだ温度の高い太陽熱集熱装置の冷媒を利用して、貯湯タンクからの冷水を熱交換により昇温し活用する。また、太陽熱集熱装置による集熱が不足して給湯温度が低すぎる場合は、給湯装置を活用して給湯温度を適正に保つ。
現在、各戸別住宅においては、太陽光発電とヒートポンプ給湯機等の給湯装置により発電と給湯を別々に行っているが、バイナリー発電装置と太陽熱集熱装置を加えて連携して活用する事により、より一層の省エネルギーの向上と、消費電力を低減する事が出来る太陽熱発電給湯装置である。
The present invention is a solar thermal power generation and hot water supply apparatus that uses a Carnot cycle binary power generation apparatus, a solar heat collection apparatus, and a hot water supply apparatus in combination to efficiently generate power and hot water.
In the solar power generation hot water supply device, when only binary power generation by solar heat is performed, first, the refrigerant that has become high temperature by the solar heat collector is caused to flow into the evaporator of the binary power generation device, and the temperature of the refrigerant of the binary power generation device is increased by heat exchange. Power is generated by the drive force of the expander. The low-pressure and low-temperature refrigerant is condensed by exchanging heat with the cooling water from the hot water storage tank in the condenser, and is increased in pressure by the refrigerant pump and returned to the evaporator.
In the case of performing binary power generation and hot water storage by solar heat, in addition to the above-mentioned solar power generation, cold water from the hot water storage tank is used by using the refrigerant of the solar heat collector still flowing out of the binary power generator evaporator. The temperature is raised and utilized by heat exchange. Moreover, when the heat collection by the solar heat collector is insufficient and the hot water supply temperature is too low, the hot water supply device is utilized to keep the hot water supply temperature appropriate.
Currently, in each house, solar power generation and hot water supply such as heat pump water heaters are used to generate power and hot water separately, but by adding a binary power generator and a solar heat collector, This is a solar power hot water supply device that can further improve energy saving and reduce power consumption.

現在、電気は、大規模な発電施設で発電するか、工場等での自家発電、各家庭等での個別の小規模発電で作られているが、大規模発電である原子力は事故時の被害の甚大さや核燃料廃棄物処理の問題、火力や天然ガスはCO2を排出し、水力及び、地熱は規模や建設場所等の問題がある。各家庭での太陽熱、太陽光の再生可能エネルギー利用は省エネルギーの向上と、消費電力を低減する事が出来きる。この様な状況のなかで、これらを複合的に活用し、より一層、エネルギーの有効利用を促進する必要が有る。Currently, electricity is generated by large-scale power generation facilities, or by private power generation in factories, etc., and individual small-scale power generation in each home, but nuclear power, which is large-scale power generation, is damaged during an accident. There is a problem of disposal of nuclear fuel and nuclear fuel waste, thermal power and natural gas emit CO2, and hydropower and geothermal heat have problems such as scale and construction site. The use of solar heat and solar renewable energy in each home can improve energy savings and reduce power consumption. In such a situation, it is necessary to use these in a composite manner to further promote the effective use of energy.

本発明は、カルノーサイクルのバイナリー発電装置と太陽熱集熱装置と給湯装置を組み合わせて連携して活用し、発電と給湯を効率良く行う。
太陽熱によりバイナリー発電、及び貯湯も行う場合は、まず太陽熱集熱装置により高温となった冷媒を、バイナリー発電装置の蒸発器に流入させ、熱交換によりバイナリー発電装置の冷媒を昇温し、膨張機の駆動力で発電を行う。そして低圧、低温となった冷媒は凝縮器において貯湯タンクからの冷水と熱交換を行い凝縮し、冷媒ポンプにより昇圧されて蒸発器に戻る。さらに、バイナリー発電装置の蒸発器より流出した、まだ温度の高い冷媒を利用して、貯湯タンクからの冷水を熱交換により昇温し活用する。また、太陽熱集熱装置による集熱が不足して給湯温度が低すぎる場合は、給湯装置を活用して給湯温度を適正に保つ。
従来の太陽光発電にバイナリー発電と太陽熱集熱を加えて連携して活用する事により、より一層、省エネルギーの向上と、消費電力を低減する事が出来る。
The present invention combines and uses a Carnot cycle binary power generation device, a solar heat collecting device, and a hot water supply device, and efficiently performs power generation and hot water supply.
When binary power generation and hot water storage are also performed by solar heat, first, the refrigerant that has become high temperature by the solar heat collector flows into the evaporator of the binary power generation device, and the temperature of the refrigerant of the binary power generation device is increased by heat exchange. Power is generated with a driving force of. The low-pressure and low-temperature refrigerant is condensed by exchanging heat with cold water from the hot water storage tank in the condenser, and the pressure is increased by the refrigerant pump and returned to the evaporator. Furthermore, using the still high temperature refrigerant that has flowed out of the evaporator of the binary power generator, the temperature of the cold water from the hot water storage tank is raised by heat exchange and utilized. Moreover, when the heat collection by the solar heat collector is insufficient and the hot water supply temperature is too low, the hot water supply device is utilized to keep the hot water supply temperature appropriate.
By using binary power generation and solar heat collection in conjunction with conventional solar power generation, it is possible to further improve energy saving and reduce power consumption.

本発明は太陽の熱エネルギーを利用する太陽熱発電給湯装置であり、各戸別、及び大規模施設、工場等、どこにでも設置可能である。
また、従来の太陽光発電装置も活用して設置する事により、さらに省エネルギーの向上を計る事ができる。
The present invention is a solar-powered hot-water supply apparatus that uses solar thermal energy, and can be installed anywhere, such as each house, large-scale facility, factory, and the like.
In addition, energy savings can be further improved by using conventional solar power generation devices.

以下、本発明による太陽熱発電給湯装置を図1、図2、図3、図4、図5、に示す全体の構成図に基づいて説明する。Hereinafter, the solar power generation hot water supply apparatus according to the present invention will be described with reference to the entire configuration diagram shown in FIGS. 1, 2, 3, 4, and 5.

図1、において、バイナリー発電装置と太陽熱集熱装置と温水貯湯が連携して機能しているときは、太陽熱集熱パネル2において、太陽熱サイクルの冷媒は太陽熱により昇温し高温、高圧となり、太陽熱冷媒配管12と3方弁21を経てバイナリー発電装置の蒸発器3に入り降温し3方弁21を通り熱交換器5に流入する。In FIG. 1, when the binary power generation device, the solar heat collecting device, and the hot water hot water storage function in cooperation, the solar heat collecting panel 2 raises the temperature of the solar heat cycle by the solar heat to become high temperature and high pressure. The refrigerant enters the evaporator 3 of the binary power generation device through the refrigerant pipe 12 and the three-way valve 21, cools down and flows into the heat exchanger 5 through the three-way valve 21.

図1、において、熱交換器5に流入した太陽熱サイクルの冷媒は、貯湯ポンプ23によって送られた冷却水と熱交換を行い降温し、3方弁21を介して第2冷媒ポンプ29により送られて太陽熱冷媒配管14を通り、太陽熱集熱パネル2に戻る事により循環する。In FIG. 1, the refrigerant of the solar thermal cycle that has flowed into the heat exchanger 5 performs heat exchange with the cooling water sent by the hot water storage pump 23, cools down, and is sent by the second refrigerant pump 29 through the three-way valve 21. Then, the refrigerant circulates by returning to the solar heat collecting panel 2 through the solar heat refrigerant pipe 14.

図1、において、高温、高圧となった太陽熱サイクルの冷媒により蒸発器3において昇温されたバイナリー発電装置の冷媒は膨張機1に流入して膨張し、発電機の19を駆動して発電を行う。In FIG. 1, the refrigerant of the binary power generator heated in the evaporator 3 by the refrigerant of the solar thermal cycle that has become high temperature and high pressure flows into the expander 1 and expands, and drives the generator 19 to generate power. Do.

図1、において、膨張機1より膨張し低温、低圧となったバイナリー発電装置の冷媒はバイナリーサイクルの冷媒配管9を経て、凝縮器4に流入し、貯湯タンク26から冷水ポンプ28により3方弁21を介して送られた冷却水と熱交換を行い凝縮して、冷媒配管10を経て第1冷媒ポンプ6に入る。In FIG. 1, the refrigerant of the binary power generation apparatus which has been expanded from the expander 1 and has become low temperature and low pressure flows into the condenser 4 through the refrigerant pipe 9 of the binary cycle, and from the hot water storage tank 26 to the three-way valve by the cold water pump 28. Heat is exchanged with the cooling water sent via 21 to condense and enter the first refrigerant pump 6 via the refrigerant pipe 10.

図1、において、冷媒ポンプ6により昇圧されたバイナリー発電装置の冷媒は、冷媒配管11を通り蒸発器3に戻る。In FIG. 1, the refrigerant of the binary power generation device whose pressure has been increased by the refrigerant pump 6 returns to the evaporator 3 through the refrigerant pipe 11.

図1、において、冷水ポンプ28によって送られ、凝縮器4においてバイナリー発電装置の冷媒冷却水と熱交換を行い昇温した冷却水は3方弁21を介して、給水配管16を経て貯湯タンク26に戻る。In FIG. 1, the cooling water which is sent by the cold water pump 28 and heat-exchanged with the refrigerant cooling water of the binary power generator in the condenser 4 is heated through the three-way valve 21 through the water supply pipe 16 and the hot water storage tank 26. Return to.

図1、において、貯湯タンク26から3方弁21を介して貯湯ポンプ23によって送られ、熱交換器5において太陽熱サイクルの冷媒と熱交換を行った冷却水は昇温し、3方弁21を経て貯湯タンク26に戻る。In FIG. 1, the temperature of the cooling water sent from the hot water storage tank 26 by the hot water storage pump 23 through the three-way valve 21 and exchanging heat with the refrigerant of the solar thermal cycle in the heat exchanger 5 is increased. After that, it returns to the hot water storage tank 26.

図2、において、バイナリー発電装置と太陽熱集熱装置と温水貯湯が連携して機能しているときは、太陽熱集熱パネル2において、太陽熱サイクルの冷媒は太陽熱により昇温し高温、高圧となり、太陽熱冷媒配管12と3方弁21を経てバイナリー発電装置の蒸発器3に入り降温し3方弁21を通り熱交換器5に流入する。In FIG. 2, when the binary power generation device, the solar heat collecting device, and the hot water hot water storage function in cooperation, the solar heat collecting panel 2 raises the temperature of the solar heat cycle by the solar heat to become high temperature and high pressure. The refrigerant enters the evaporator 3 of the binary power generation device through the refrigerant pipe 12 and the three-way valve 21, cools down and flows into the heat exchanger 5 through the three-way valve 21.

図2、において、熱交換器5に流入した太陽熱サイクルの冷媒は、貯湯ポンプ23によって送られた冷却水と熱交換を行い降温し、3方弁21を介して第2冷媒ポンプ29により送られて太陽熱冷媒配管14を通り、太陽熱集熱パネル2に戻る事により循環する。In FIG. 2, the refrigerant of the solar thermal cycle that has flowed into the heat exchanger 5 performs heat exchange with the cooling water sent by the hot water storage pump 23, cools down, and is sent by the second refrigerant pump 29 through the three-way valve 21. Then, the refrigerant circulates by returning to the solar heat collecting panel 2 through the solar heat refrigerant pipe 14.

図2、において、高温、高圧となった太陽熱サイクルの冷媒により蒸発器3において昇温されたバイナリー発電装置の冷媒は膨張機1に流入して膨張し、発電機の19を駆動して発電を行う。In FIG. 2, the refrigerant of the binary power generator heated in the evaporator 3 by the refrigerant of the solar thermal cycle that has become high temperature and high pressure flows into the expander 1 and expands, and drives the generator 19 to generate power. Do.

図2、において、膨張機1より膨張し低温、低圧となったバイナリー発電装置の冷媒はバイナリーサイクルの冷媒配管9を経て、凝縮器4に流入し、貯湯タンク26から冷水ポンプ28により3方弁21を介して送られた冷却水と熱交換を行い凝縮して、冷媒配管10を経て第1冷媒ポンプ6に入る。In FIG. 2, the refrigerant of the binary power generation apparatus which has expanded from the expander 1 and has become low temperature and low pressure flows into the condenser 4 through the refrigerant pipe 9 of the binary cycle, and is three-way valved from the hot water storage tank 26 by the cold water pump 28. Heat is exchanged with the cooling water sent via 21 to condense and enter the first refrigerant pump 6 via the refrigerant pipe 10.

図2、において、冷媒ポンプ6により昇圧されたバイナリー発電装置の冷媒は、冷媒配管11を通り蒸発器3に戻る。In FIG. 2, the refrigerant of the binary power generation device whose pressure has been increased by the refrigerant pump 6 returns to the evaporator 3 through the refrigerant pipe 11.

図2、において、第2冷水ポンプ34によって送られ、凝縮器4においてバイナリー発電装置の冷媒冷却水と熱交換を行い昇温した冷却水は、3方弁21を介して、空冷熱交換器7を経て降温し、凝縮器4に戻り循環する。In FIG. 2, the cooling water sent by the second cold water pump 34 and heated in the condenser 4 by exchanging heat with the refrigerant cooling water of the binary power generation device is passed through the three-way valve 21 to the air cooling heat exchanger 7. Then, the temperature is lowered and returned to the condenser 4 for circulation.

図2、において、貯湯タンク26から3方弁21を介して貯湯ポンプ23によって送られ、熱交換器5において太陽熱サイクルの冷媒と熱交換を行った冷却水は昇温し、3方弁21を経て貯湯タンク26に戻る。In FIG. 2, the temperature of the cooling water sent from the hot water storage tank 26 by the hot water storage pump 23 through the three-way valve 21 and exchanging heat with the refrigerant of the solar heat cycle in the heat exchanger 5 is increased. After that, it returns to the hot water storage tank 26.

図3、において、バイナリー発電装置と太陽熱集熱装置が連携して機能し、温水貯湯が停止している場合は、太陽熱集熱パネル2において太陽熱サイクルの冷媒は、太陽熱により昇温し高温、高圧となり、太陽熱冷媒配管12と3方弁21を経てバイナリー発電装置の蒸発器3に入り降温し3方弁21を介してバイパスの太陽熱冷媒配管24を通り、3方弁21を経て第2冷媒ポンプ29により送られて、太陽熱冷媒配管14を通り太陽熱集熱パネル2に戻る事により循環する。In FIG. 3, when the binary power generator and the solar heat collector function in cooperation and the hot water hot water storage is stopped, the refrigerant of the solar thermal cycle in the solar heat collection panel 2 is heated by the solar heat and heated to high temperature and high pressure. The refrigerant enters the evaporator 3 of the binary power generator through the solar heat refrigerant pipe 12 and the three-way valve 21, falls through the three-way valve 21, passes through the bypass solar heat refrigerant pipe 24, passes through the three-way valve 21, and passes through the second refrigerant pump. 29 circulates by returning to the solar heat collecting panel 2 through the solar heat refrigerant pipe 14.

図3、において、高温、高圧となった太陽熱サイクルの冷媒により蒸発器3において昇温されたバイナリー発電装置の冷媒は膨張機1に流入して膨張し、発電機の19を駆動して発電を行う。In FIG. 3, the refrigerant of the binary power generator heated in the evaporator 3 by the refrigerant of the solar thermal cycle that has become high temperature and high pressure flows into the expander 1 and expands, and drives the generator 19 to generate power. Do.

図3、において、膨張機1より膨張し低温、低圧となったバイナリー発電装置の冷媒はバイナリーサイクルの冷媒配管9を経て、凝縮器4に流入し、貯湯タンク26から冷水ポンプ28と3方弁21を介して送られた冷却水と熱交換を行い凝縮して、冷媒配管10を経て第1冷媒ポンプ6に入る。In FIG. 3, the refrigerant of the binary power generation apparatus that has expanded from the expander 1 and has become low temperature and low pressure flows into the condenser 4 through the refrigerant pipe 9 of the binary cycle, and from the hot water storage tank 26 to the cold water pump 28 and the three-way valve. Heat is exchanged with the cooling water sent via 21 to condense and enter the first refrigerant pump 6 via the refrigerant pipe 10.

図3、において、冷媒ポンプ6により昇圧されたバイナリー発電装置の冷媒は、冷媒配管11を通り蒸発器3に戻る。In FIG. 3, the refrigerant of the binary power generation device whose pressure is increased by the refrigerant pump 6 returns to the evaporator 3 through the refrigerant pipe 11.

図3、において、冷水ポンプ28によって送られ、凝縮器4においてバイナリー発電装置の冷媒冷却水と熱交換を行い昇温した冷却水は3方弁21を介して、給水配管16を経て貯湯タンク26に戻る。In FIG. 3, the cooling water which is sent by the cold water pump 28 and heat-exchanged with the refrigerant cooling water of the binary power generation device in the condenser 4 is heated through the three-way valve 21 through the water supply pipe 16 and the hot water storage tank 26. Return to.

図4、において、バイナリー発電装置が停止し、太陽熱集熱装置と温水貯湯が連携して機能しているときは、太陽熱集熱パネル2において太陽熱サイクルの冷媒は、太陽熱により昇温し高温、高圧となり、太陽熱冷媒配管12と3方弁21を介して熱交換器5に流入する。In FIG. 4, when the binary power generation device is stopped and the solar heat collecting device and the hot water hot water storage function in cooperation, the refrigerant of the solar heat cycle in the solar heat collecting panel 2 is heated by the solar heat and heated to high temperature and high pressure. And flows into the heat exchanger 5 through the solar heat refrigerant pipe 12 and the three-way valve 21.

図4、において、熱交換器5に流入した太陽熱サイクルの冷媒は、貯湯ポンプ23によって送られた冷却水と熱交換を行い降温し、3方弁21を介して第2冷媒ポンプ29により送られて太陽熱冷媒配管14を通り、太陽熱集熱パネル2に戻る事により循環する。In FIG. 4, the refrigerant of the solar thermal cycle that has flowed into the heat exchanger 5 is cooled by the heat exchange with the cooling water sent by the hot water storage pump 23, and sent by the second refrigerant pump 29 via the three-way valve 21. Then, the refrigerant circulates by returning to the solar heat collecting panel 2 through the solar heat refrigerant pipe 14.

図4、において、貯湯タンク26から3方弁21を介して貯湯ポンプ23によって送られ、熱交換器5において太陽熱サイクルの冷媒と熱交換を行った冷却水は昇温し、3方弁21を経て貯湯タンク26に戻る。In FIG. 4, the temperature of the cooling water sent from the hot water storage tank 26 by the hot water storage pump 23 through the three-way valve 21 and exchanging heat with the refrigerant of the solar heat cycle in the heat exchanger 5 is increased. After that, it returns to the hot water storage tank 26.

図5、において、バイナリー発電装置と太陽熱集熱装置が停止し、貯湯タンク26の温水の温度が低すぎる場合は、給水配管18から3方弁21を介して貯湯タンク26の温水を取り込み、給湯装置により適正な温度に昇温し、給水配管25を通り3方弁21を経て貯湯タンク26に戻す。In FIG. 5, when the binary power generator and the solar heat collector are stopped and the temperature of the hot water in the hot water storage tank 26 is too low, the hot water in the hot water storage tank 26 is taken in from the water supply pipe 18 through the three-way valve 21. The temperature is raised to an appropriate temperature by the apparatus, passes through the water supply pipe 25, returns to the hot water storage tank 26 through the three-way valve 21.

図1、図2、図3、図4において、太陽熱集熱パネル2において太陽熱サイクルの冷媒は、温度センサーA、30により冷媒の温度を検知され、第2冷媒ポンプ29により適正な循環量で循環される。1, 2, 3, and 4, in the solar heat collecting panel 2, the refrigerant of the solar thermal cycle is detected by the temperature sensors A and 30, and the refrigerant is circulated with an appropriate circulation amount by the second refrigerant pump 29. Is done.

図1、図2、図3において、バイナリー発電装置の冷媒は、温度センサーD、33により冷媒の温度を検知され、第1冷媒ポンプ6により適正な循環量で循環される。1, 2, and 3, the temperature of the refrigerant of the binary power generation apparatus is detected by the temperature sensors D and 33, and is circulated by the first refrigerant pump 6 with an appropriate circulation amount.

図1、図2において、バイナリー発電装置の冷却水は、温度センサーC、32により冷却水の温度を検知され、冷水ポンプ28により適正な循環量で循環されるか、または冷却水温度が昇温しすぎた場合には、3方弁21を制御して、空冷熱交換器7による独立した冷却水の循環を行う。In FIG. 1 and FIG. 2, the temperature of the cooling water of the binary power generator is detected by the temperature sensors C and 32 and is circulated with an appropriate amount of circulation by the chilled water pump 28 or the temperature of the cooling water is raised. If too much, the three-way valve 21 is controlled to circulate independent cooling water by the air-cooling heat exchanger 7.

図1、図2、図4において、貯湯タンク26における温水は、温度センサーB、31により温水の温度を検知され、貯湯ポンプ23により適正な循環量で循環される。1, 2, and 4, the hot water in the hot water storage tank 26 is detected by the temperature sensors B and 31, and is circulated by the hot water storage pump 23 with an appropriate circulation amount.

図5、において、貯湯タンク26における温水は、温度センサーB、31により温水の温度を検知され、給湯装置27により適正な循環量で循環される。In FIG. 5, the hot water in the hot water storage tank 26 is detected by the temperature sensors B and 31, and is circulated by the hot water supply device 27 with an appropriate circulation amount.

図1、図2、図3、図4、図5において、貯湯タンク26への給水は給水配管20により貯湯タンク26の底部から給水され、取水は給水配管22により貯湯タンク26の上部から取水される。1, 2, 3, 4, and 5, water is supplied to the hot water storage tank 26 from the bottom of the hot water storage tank 26 through the water supply pipe 20, and water is taken from the upper part of the hot water storage tank 26 through the water supply pipe 22. The

図1、図2、図3において、バイナリー発電装置により発電された電気は、売電されるか、または蓄電池に蓄電され利用される。In FIG. 1, FIG. 2, and FIG. 3, electricity generated by the binary power generator is sold or stored in a storage battery and used.

ここで、太陽熱発電給湯装置の発電サイクルの具体的な運転状態について、図6、のP−h(モリエル)線図により説明する。
カルノーサイクルの発電サイクルの第1サイクルにおける、点Eは膨張機1に供給される冷媒の状態(例えば圧力0.713MPa、78℃)を示し、膨張機1により膨張し、発電機19により発電を行い、低圧となった冷媒は、点Fにおいては(例えば圧力0.124MPa、30℃)となる。点Eから点Fへの状態変化は、等エントロピー変化となる。点Gは凝縮器4から流出した冷媒の状態を示し(例えば圧力0.124MPa、20℃)となる。点Hは第1冷媒ポンプ6により昇圧された、蒸発器3の入口における冷媒の状態を示し(例えば圧力0.713Pa、23℃)となる。点Gから点Hへの状態変化は、等エントロピー変化となる。蒸発器3により第1サイクルの冷媒は点Hの状態から、太陽熱サイクルの冷媒との熱交換により、点Eの状態に戻る。
Here, a specific operation state of the power generation cycle of the solar power generation hot water supply apparatus will be described with reference to a Ph (Mollier) diagram in FIG.
Point E in the first cycle of the Carnot cycle power generation cycle indicates the state of the refrigerant supplied to the expander 1 (for example, pressure 0.713 MPa, 78 ° C.), expands by the expander 1, and generates power by the generator 19. The refrigerant having been reduced to a low pressure is at point F (for example, pressure 0.124 MPa, 30 ° C.). The state change from the point E to the point F is an isentropic change. Point G indicates the state of the refrigerant that has flowed out of the condenser 4 (for example, pressure 0.124 MPa, 20 ° C.). Point H shows the state of the refrigerant at the inlet of the evaporator 3, which has been pressurized by the first refrigerant pump 6 (for example, pressure 0.713 Pa, 23 ° C.). A state change from the point G to the point H is an isentropic change. The refrigerant in the first cycle returns from the state at point H to the state at point E by the heat exchange with the refrigerant in the solar thermal cycle.

ここで、太陽熱発電給湯装置の発電量について、図6のP−h(モリエル)線図により説明する。
この図において、膨張機1、が単位量の冷媒の膨張力を100%動力に変換し、さらに、発電機19が電力を100%動力に変換し、第1冷媒ポンプ6の全断熱効率が1であり、配管、その他、機器等のいかなる損失も無い場合に得られる理論電力は、カルノーサイクルの第1サイクルより発生する比エンタルピーの値、膨張機1の発電力Δk、の値に、冷媒の循環流量を乗じた値となる。
Here, the power generation amount of the solar thermal power generation hot water supply apparatus will be described with reference to the Ph (Mollier) diagram of FIG.
In this figure, the expander 1 converts the expansion force of a unit amount of refrigerant into 100% power, and the generator 19 converts electric power into 100% power, so that the total heat insulation efficiency of the first refrigerant pump 6 is 1. The theoretical power obtained when there is no loss of piping, other equipment, etc., is the specific enthalpy value generated from the first cycle of the Carnot cycle, the generated power Δk of the expander 1, and the refrigerant power It is a value multiplied by the circulation flow rate.

バイナリー発電装置と太陽熱集熱装置と温水貯湯が連携して機能している場合示す構成図。The block diagram shown when the binary power generator, the solar heat collecting device, and the hot water hot water function in cooperation. 冷却水配管が独立したサイクルのバイナリー発電装置と太陽熱集熱装置と温水貯湯が連携して機能している場合示す構成図。The block diagram which shows when the binary power generator of a cycle with which the cooling water piping became independent, the solar thermal collector, and the hot water hot water function in cooperation. 温水貯湯が停止し、バイナリー発電装置と太陽熱集熱装置が連携して機能している場合示す構成図。The block diagram which shows when warm water hot water storage stops and the binary power generation device and the solar heat collecting device function in cooperation. バイナリー発電装置が停止し、太陽熱集熱装置と温水貯湯が連携して機能している場合示す構成図。The block diagram which shows when a binary power generation device stops and the solar heat collecting device and warm water hot water are functioning in cooperation. バイナリー発電装置と太陽熱集熱装置が停止し、温水貯湯が給湯装置により機能している場合示す構成図。The block diagram which shows a case where a binary power generation device and a solar heat collecting device are stopped, and hot water hot water storage is functioning by a hot water supply device. バイナリー発電装置のP−h線図。The Ph diagram of a binary power generator.

1・・・膨張機、2・・・太陽熱集熱パネル、3・・・蒸発器、4・・・凝縮器、5・・・熱交換器、6・・・第1冷媒ポンプ、7・・・空冷熱交換器、8、9、10、11・・・バイナリーサイクルの冷媒配管、12、13、14、24・・・太陽熱冷媒配管、15、16、17、18、20、22、25・・・給水配管、19・・・発電機、21・・・3方弁、23・・・貯湯ポンプ、26・・・貯湯タンク、27・・・給湯装置、28・・・冷水ポンプ、29・・・第2冷媒ポンプ、30・・・温度センサーA、31・・・温度センサーB、32・・・温度センサーC、33・・・温度センサーD、34・・・第2冷水ポンプ、DESCRIPTION OF SYMBOLS 1 ... Expander, 2 ... Solar heat collecting panel, 3 ... Evaporator, 4 ... Condenser, 5 ... Heat exchanger, 6 ... 1st refrigerant | coolant pump, 7 ... Air-cooled heat exchanger, 8, 9, 10, 11 ... Binary cycle refrigerant piping, 12, 13, 14, 24 ... Solar thermal refrigerant piping, 15, 16, 17, 18, 20, 22, 25 ..Water supply piping, 19 ... generator, 21 ... 3-way valve, 23 ... hot water storage pump, 26 ... hot water storage tank, 27 ... hot water supply device, 28 ... cold water pump, 29 .. second refrigerant pump, 30 ... temperature sensor A, 31 ... temperature sensor B, 32 ... temperature sensor C, 33 ... temperature sensor D, 34 ... second cold water pump,

Claims (14)

カルノーサイクルのバイナリー発電装置と太陽熱集熱装置と給湯装置を組み合わせて活用し、発電と給湯を効率良く行う事を特徴とする太陽熱発電給湯装置。A solar thermal water heater that efficiently uses the combination of a Carnot cycle binary power generator, a solar heat collector, and a hot water heater to efficiently generate and hot water. 凝縮器において、バイナリー発電装置の冷媒と熱交換を行い昇温した貯湯タンクからの冷却水により、ヒートポンプ給湯装置やガス給湯装置の昇温に必要な電力やガスの熱エネルギーを、低減する事が出来る事を特徴とする太陽熱発電給湯装置。In the condenser, the cooling water from the hot water storage tank heated by exchanging heat with the refrigerant of the binary power generation device can reduce the electric power and gas thermal energy required to raise the temperature of the heat pump hot water supply device and gas hot water supply device. A solar power hot water supply system characterized by what it can do. 熱交換器において、太陽熱集熱装置により高温となった冷媒と熱交換を行い昇温した貯湯タンクからの冷却水により、ヒートポンプ給湯装置やガス給湯装置の昇温に必要な電力やガスの熱エネルギーを、低減する事が出来る事を特徴とする太陽熱発電給湯装置。In the heat exchanger, the heat energy of the electric power and gas required for raising the temperature of the heat pump water heater and gas hot water heater by the cooling water from the hot water storage tank heated by the heat exchange with the refrigerant heated by the solar heat collector It is possible to reduce the solar power generation hot water supply device characterized by that. 太陽熱集熱装置による集熱が不足して給湯温度が低すぎる場合は、ヒートポンプ給湯装置及び、ガス給湯装置と3方弁と貯湯タンクを冷却水が循環する様に順番に給水配管で接続し、給湯装置を活用して、給湯温度を適正に保つ事を特徴とする太陽熱発電給湯装置。If the hot water supply temperature is too low due to insufficient heat collection by the solar heat collector, connect the heat pump hot water supply device, gas hot water supply device, three-way valve and hot water storage tank in turn so that the cooling water circulates, A solar power hot water supply device that uses a hot water supply device to maintain an appropriate hot water supply temperature. 太陽熱によるバイナリー発電のみの場合は、まず太陽熱集熱パネルと3方弁と蒸発器と3方弁と第2冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続し、太陽熱集熱装置により高温となった冷媒を、3方弁を介してバイナリー発電装置の蒸発器に流入させ、熱交換により降温した冷媒は、3方弁を介して、第2冷媒ポンプにより送られて太陽熱集熱パネルに戻る。凝縮器と膨張機と蒸発器と第1冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続されたバイナリー発電サイクルでは、蒸発器において太陽熱集熱装置により高温となった冷媒との熱交換により高温、高圧となった冷媒による膨張機の駆動力で発電を行い、低圧、低温となった冷媒は凝縮器において貯湯タンクからの冷水と熱交換を行い凝縮し、冷媒ポンプにより昇圧されて蒸発器に戻る。貯湯タンクと冷水ポンプと3方弁と凝縮器を3方弁を冷却水が循環する様に順番に給水配管で接続された貯湯冷水サイクルでは、貯湯タンクから冷水ポンプにより送られた冷却水は凝縮器においてバイナリー発電装置の膨張機により低圧、低温となった冷媒と熱交換を行い昇温し、3方弁を経て貯湯タンクに戻る事により、太陽熱の集熱、発電、を効率良く行う事を特徴とする太陽熱発電給湯装置。In the case of only binary power generation using solar heat, first connect the solar heat collecting panel, the three-way valve, the evaporator, the three-way valve, and the second refrigerant pump with refrigerant piping in order so that the refrigerant circulates. The high temperature refrigerant flows into the evaporator of the binary power generation device through the three-way valve, and the refrigerant cooled by heat exchange is sent by the second refrigerant pump through the three-way valve to be solar heat collecting panel. Return to. In the binary power generation cycle in which the refrigerant is circulated in order so that the refrigerant circulates through the condenser, the expander, the evaporator, and the first refrigerant pump, heat exchange with the refrigerant that has been heated by the solar heat collector in the evaporator Power is generated by the driving force of the expander using the high-temperature and high-pressure refrigerant, and the low-pressure and low-temperature refrigerant condenses by exchanging heat with cold water from the hot water storage tank in the condenser, and is pressurized and evaporated by the refrigerant pump. Return to the vessel. In a hot water storage chilled water cycle in which a hot water storage tank, a chilled water pump, a three-way valve, and a condenser are connected by a water supply pipe in order so that cooling water circulates through the three-way valve, the cooling water sent from the hot water storage tank by the chilled water pump is condensed. Heat exchange with a low-pressure and low-temperature refrigerant by the expander of the binary power generator in the chiller, raise the temperature, and return to the hot water storage tank through a three-way valve to efficiently collect solar heat and generate electricity A solar power hot water supply device that is characterized. 太陽熱集熱パネルにより貯湯のみ行う場合は、まず太陽熱集熱パネルと3方弁と熱交換器と3方弁と第2冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続し、太陽熱集熱装置により高温となった冷媒は、3方弁を介して、熱交換器に流入し、貯湯タンクからの冷水と熱交換を行い3方弁を経て、第2冷媒ポンプにより送られて太陽熱集熱パネルに戻る。貯湯タンクと3方弁と貯湯ポンプと熱交換器と3方弁を冷却水が循環する様に順番に給水配管で接続された貯湯温水サイクルでは、貯湯タンクから3方弁を介して貯湯ポンプにより送られた冷却水は熱交換器において太陽熱集熱装置により高温となった冷媒と熱交換を行い高温となり、3方弁を経て貯湯タンクに戻る事により、太陽熱の集熱、貯湯、を効率良く行う事を特徴とする太陽熱発電給湯装置。When only storing hot water using a solar heat collecting panel, first connect the solar heat collecting panel, the three-way valve, the heat exchanger, the three-way valve, and the second refrigerant pump with refrigerant piping in order so that the refrigerant circulates. The refrigerant that has become high temperature by the heat device flows into the heat exchanger through the three-way valve, exchanges heat with cold water from the hot water storage tank, passes through the three-way valve, and is sent by the second refrigerant pump to collect solar heat. Return to thermal panel. In a hot water hot water cycle in which a hot water storage tank, a three-way valve, a hot water pump, a heat exchanger, and a three-way valve are connected with water supply piping in order so that cooling water circulates, the hot water storage pump is connected to the hot water storage tank via the three-way valve. The sent cooling water exchanges heat with the refrigerant that has been heated by the solar heat collector in the heat exchanger, becomes high temperature, and returns to the hot water storage tank through a three-way valve, thereby efficiently collecting solar heat and hot water. A solar thermal power supply hot water supply device characterized in that it performs. 太陽熱によるバイナリー発電、及び貯湯も行う場合は、まず太陽熱集熱パネルと3方弁と蒸発器と3方弁と熱交換器と3方弁と第2冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続し、太陽熱集熱装置により高温となった冷媒を、3方弁を介してバイナリー発電装置の蒸発器に流入させ、熱交換により降温した冷媒は、3方弁を介して、熱交換器において、貯湯タンクからの冷水と熱交換を行い3方弁を経て、第2冷媒ポンプにより送られて太陽熱集熱パネルに戻る。凝縮器と膨張機と蒸発器と第1冷媒ポンプを冷媒が循環する様に順番に冷媒配管で接続されたバイナリー発電サイクルでは、蒸発器において太陽熱集熱装置により高温となった冷媒との熱交換により高温、高圧となった冷媒による膨張機の駆動力で発電を行い、低圧、低温となった冷媒は凝縮器において貯湯タンクからの冷水と熱交換を行い凝縮し、冷媒ポンプにより昇圧されて蒸発器に戻る。貯湯タンクと3方弁と貯湯ポンプと熱交換器と3方弁を冷却水が循環する様に順番に給水配管で接続された貯湯温水サイクルでは、貯湯タンクから3方弁を介して貯湯ポンプにより送られた冷却水は熱交換器において太陽熱集熱装置により高温となった冷媒と熱交換を行い高温となり、3方弁を経て貯湯タンクに戻る。貯湯タンクと冷水ポンプと3方弁と凝縮器と3方弁を冷却水が循環する様に順番に給水配管で接続された貯湯冷水サイクルでは、貯湯タンクから冷水ポンプにより送られた冷却水は凝縮器においてバイナリー発電装置の膨張機により低圧、低温となった冷媒と熱交換を行い昇温し、3方弁を経て貯湯タンクに戻る事により、太陽熱の集熱、貯湯、発電、を効率良く行う事を特徴とする太陽熱発電給湯装置。When performing binary power generation and hot water storage using solar heat, the solar heat collecting panel, the three-way valve, the evaporator, the three-way valve, the heat exchanger, the three-way valve, and the second refrigerant pump should be circulated in order. The refrigerant that is connected by the refrigerant pipe and is heated by the solar heat collector flows into the evaporator of the binary power generation device via the three-way valve, and the refrigerant that is cooled by heat exchange passes through the three-way valve. In the exchanger, heat is exchanged with the cold water from the hot water storage tank, the three-way valve is passed, and the heat is sent to the solar heat collecting panel by the second refrigerant pump. In the binary power generation cycle in which the refrigerant is circulated in order so that the refrigerant circulates through the condenser, the expander, the evaporator, and the first refrigerant pump, heat exchange with the refrigerant that has been heated by the solar heat collector in the evaporator Power is generated by the driving force of the expander using the high-temperature and high-pressure refrigerant, and the low-pressure and low-temperature refrigerant condenses by exchanging heat with cold water from the hot water storage tank in the condenser, and is pressurized and evaporated by the refrigerant pump. Return to the vessel. In a hot water hot water cycle in which a hot water storage tank, a three-way valve, a hot water pump, a heat exchanger, and a three-way valve are connected by water supply pipes in order so that cooling water circulates, The sent cooling water heat-exchanges with the refrigerant | coolant which became high temperature with the solar heat collecting device in the heat exchanger, becomes high temperature, returns to a hot water storage tank through a three-way valve. In the hot water storage chilled water cycle where the cooling water is circulated through the hot water storage tank, the chilled water pump, the three-way valve, the condenser, and the three-way valve in order, the cooling water sent from the hot water storage tank by the chilled water pump is condensed. In the condenser, heat is exchanged with the low-pressure and low-temperature refrigerant by the expander of the binary power generator, the temperature is raised, and the heat is returned to the hot water storage tank through a three-way valve, thereby efficiently collecting solar heat, storing hot water, and generating electricity. Solar power hot water supply system characterized by things. 太陽熱集熱パネルにおいて太陽熱サイクルの冷媒は、温度センサーにより冷媒の温度を検知され、第2冷媒ポンプにより適正な循環量で循環される事を特徴とする太陽熱発電給湯装置。In the solar heat collecting panel, the solar power cycle water heater is characterized in that the temperature of the refrigerant of the solar thermal cycle is detected by a temperature sensor and is circulated with an appropriate circulation amount by a second refrigerant pump. バイナリー発電装置の冷媒は、温度センサーにより冷媒の温度を検知され、第1冷媒ポンプにより適正な循環量で循環される事を特徴とする太陽熱発電給湯装置。The solar power generation hot water supply apparatus, wherein the refrigerant of the binary power generation apparatus is detected by the temperature sensor with the temperature of the refrigerant and is circulated with an appropriate circulation amount by the first refrigerant pump. 貯湯タンクにおける温水は、温度センサーにより温水の温度を検知され、貯湯ポンプにより適正な循環量で循環される事を特徴とする太陽熱発電給湯装置。The hot water in the hot water storage tank is a solar water heating hot water supply device characterized in that the temperature of the hot water is detected by a temperature sensor and is circulated with an appropriate circulation amount by a hot water storage pump. バイナリー発電装置の空冷熱交換器による冷却サイクルは第2冷水ポンプによって送られ、凝縮器においてバイナリー発電装置の冷媒冷却水と熱交換を行い昇温した冷却水は、3方弁を介して、空冷熱交換器を経て凝縮器に戻り循環する事を特徴とする太陽熱発電給湯装置。The cooling cycle by the air-cooled heat exchanger of the binary power generation device is sent by the second chilled water pump, and the cooling water heated by exchanging heat with the refrigerant cooling water of the binary power generation device in the condenser passes through the three-way valve. A solar power hot water supply system characterized by circulating through a cold heat exchanger and returning to the condenser. 太陽熱集熱装置による集熱が不足して給湯温度が低すぎる場合は、貯湯タンク26における温水は、温度センサーにより温水の温度を検知され、給湯装置により適正な循環量で循環される事を特徴とする太陽熱発電給湯装置。When the temperature of the hot water storage tank 26 is too low due to insufficient heat collection by the solar heat collector, the temperature of the hot water in the hot water storage tank 26 is detected by the temperature sensor, and is circulated with an appropriate circulation amount by the water heater. The solar thermal water heater. 貯湯タンクへの給水は給水配管により貯湯タンクの底部から給水され、取水は給水配管により貯湯タンク上部から行われる事を特徴とする太陽熱発電給湯装置。A solar power hot water supply system characterized in that water is supplied to the hot water storage tank from the bottom of the hot water storage tank through a water supply pipe, and water is taken from the upper part of the hot water storage tank through the water supply pipe. バイナリー発電装置により発電された電気は、売電されるか、または蓄電池に蓄電され利用される事を特徴とする太陽熱発電給湯装置。Electricity generated by a binary power generator is sold or stored in a storage battery and used.
JP2014153312A 2014-07-09 2014-07-09 Solar thermal power generation and water heater device Pending JP2016017736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014153312A JP2016017736A (en) 2014-07-09 2014-07-09 Solar thermal power generation and water heater device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014153312A JP2016017736A (en) 2014-07-09 2014-07-09 Solar thermal power generation and water heater device

Publications (1)

Publication Number Publication Date
JP2016017736A true JP2016017736A (en) 2016-02-01

Family

ID=55233070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153312A Pending JP2016017736A (en) 2014-07-09 2014-07-09 Solar thermal power generation and water heater device

Country Status (1)

Country Link
JP (1) JP2016017736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112302751A (en) * 2019-08-02 2021-02-02 国家电投集团科学技术研究院有限公司 Energy storage power generation system of seasonal heat-retaining is striden in coupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112302751A (en) * 2019-08-02 2021-02-02 国家电投集团科学技术研究院有限公司 Energy storage power generation system of seasonal heat-retaining is striden in coupling
CN112302751B (en) * 2019-08-02 2022-07-08 国家电投集团科学技术研究院有限公司 Energy storage power generation system of seasonal heat-retaining is striden in coupling

Similar Documents

Publication Publication Date Title
US10598392B2 (en) Solar energy system
US10883728B2 (en) Broad band district heating and cooling system
CN103836700A (en) Heat supply unit combining compression heat pump with water heating device and heat supply method of heat supply unit
KR20140131793A (en) Hybrid heat pump system using geothermal, solar heat and air heat
CN102094772B (en) Solar energy-driven cogeneration device
CN102182655A (en) Low-temperature Rankine dual-cycle power generating unit
KR101469928B1 (en) heating and cooling apparatus using the heat pump
KR20150138661A (en) The Coolant Waste Heat Recovery of Coal Fired Power Plant and Control Method
KR100556267B1 (en) Hybrid heat-pump system using geotherm and air-heat
CN205297661U (en) Take waste heat power generation system of calorimeter back to
CN102705927A (en) Ice storage and heat storage ultralow temperature heat pump air conditioner
JP2014122576A (en) Solar heat utilization system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN211116438U (en) Power generation and refrigeration combined cycle system based on ocean temperature difference energy
KR100760520B1 (en) Compact co-generation arrangements using a waste heat
CN103615293B (en) Carbon dioxide heat pump and organic working medium combined power generation system
KR20100125830A (en) Exhaust heat power generation system by low temperature refrigerants vaporization activity
KR101603253B1 (en) Condenser Waste-heat Recovery System
JP2015068630A (en) Heat pump device and cogeneration device
JP2016017736A (en) Solar thermal power generation and water heater device
JP2015210070A (en) Complex air-conditioning refrigeration system
JP2016003849A (en) Combined air-conditioning water heater
CN211082000U (en) Organic Rankine and reverse Carnot cycle coupled waste heat recovery system
Pokhrel et al. A Sustainable Heating Solution for Multifamily Residential Buildings in Cold Climates
CN202579069U (en) Superconducting room temperature (RT) organic Rankine cycle solar integration power generation system