JP2016017718A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2016017718A
JP2016017718A JP2014142462A JP2014142462A JP2016017718A JP 2016017718 A JP2016017718 A JP 2016017718A JP 2014142462 A JP2014142462 A JP 2014142462A JP 2014142462 A JP2014142462 A JP 2014142462A JP 2016017718 A JP2016017718 A JP 2016017718A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
expansion valve
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014142462A
Other languages
Japanese (ja)
Inventor
允煥 李
Inkan Ri
允煥 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014142462A priority Critical patent/JP2016017718A/en
Publication of JP2016017718A publication Critical patent/JP2016017718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration device that suppresses evaporation of a refrigerant flowing into a heat absorber.SOLUTION: The refrigeration device where a refrigeration cycle 1 includes a compressor 2, a radiator 3 and the heat absorber 4 through which the refrigerant circulates includes: a first flow passage through which the refrigerant flows after passing through the radiator 3; a second flow passage branching from the first flow passage, through which the refrigerant flows; and a heat exchanger 6 exchanging heat between the refrigerant flowing through the first flow passage and the refrigerant flowing through the second flow passage. The refrigeration device causes the refrigerant that has flowed through the first flow passage and passing through the heat exchanger 6 to flow into the heat absorber 4.SELECTED DRAWING: Figure 1

Description

本発明は冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus.

放熱器と吸熱器との間に第1膨張弁、及び第2膨張弁を設け、さらに第1膨張弁と第2膨張弁との間に気液分離器を設けた冷凍装置が特許文献1に開示されている。   Patent Document 1 discloses a refrigeration apparatus in which a first expansion valve and a second expansion valve are provided between a radiator and a heat absorber, and a gas-liquid separator is further provided between the first expansion valve and the second expansion valve. It is disclosed.

特開2001−56157号公報JP 2001-56157 A

しかし、上記の技術では、複数の膨張弁を通過し、冷媒が減圧された場合に、液相状態の冷媒の一部が配管の中で気化し、吸熱器に気相状態の冷媒が流入するおそれがあり、吸熱器における吸熱性能が低下するおそれがある。特に、上記の技術では、ある程度の容積を持つ気液分離器が設けられており、冷媒が気液分離器に流入することで冷媒の圧力がさらに低下し、冷媒が気化し易くなり、上記問題が発生し易くなる。   However, in the above technique, when the refrigerant passes through a plurality of expansion valves and the refrigerant is decompressed, a part of the liquid phase refrigerant is vaporized in the pipe, and the gas phase refrigerant flows into the heat absorber. There is a possibility that the endothermic performance of the heat absorber may be reduced. In particular, in the above-described technology, a gas-liquid separator having a certain volume is provided, and when the refrigerant flows into the gas-liquid separator, the pressure of the refrigerant is further reduced, and the refrigerant is easily vaporized. Is likely to occur.

本発明はこのような問題点を解決するために発明されたもので、冷媒が吸熱器に流入する前に気化することを抑止し、吸熱器の吸熱性能を向上することを目的とする。   The present invention has been invented to solve such problems, and it is an object of the present invention to prevent the refrigerant from evaporating before flowing into the heat absorber and to improve the heat absorption performance of the heat absorber.

本発明のある態様に係る冷凍装置は、圧縮機と、放熱器と、吸熱器とを有する冷凍サイクル内を冷媒が循環する冷凍装置であって、放熱器を通過した冷媒が流れる第1流路と、第1流路から分岐し冷媒が流れる第2流路と、第1流路を流れる冷媒と、第2流路を流れる冷媒との間で熱交換を行う熱交換器とを備え、第1流路を流れ、熱交換器を通過した冷媒を吸熱器に流入させる。   A refrigeration apparatus according to an aspect of the present invention is a refrigeration apparatus in which a refrigerant circulates in a refrigeration cycle having a compressor, a radiator, and a heat absorber, and the first flow path through which the refrigerant that has passed through the radiator flows. And a second flow path that branches from the first flow path and through which the refrigerant flows, a refrigerant that flows through the first flow path, and a heat exchanger that performs heat exchange between the refrigerant that flows through the second flow path, The refrigerant that has flowed through one flow path and passed through the heat exchanger is caused to flow into the heat absorber.

この態様によると、吸熱器に流入する冷媒を熱交換器によって冷却することで、冷媒が気化することを抑制することができ、吸熱器の吸熱性能を向上することができる。   According to this aspect, the refrigerant flowing into the heat absorber is cooled by the heat exchanger, whereby the refrigerant can be prevented from being vaporized, and the heat absorption performance of the heat absorber can be improved.

第1実施形態の冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle of 1st Embodiment. 冷凍サイクルの比エンタルピと冷媒の圧力との関係を示す図である。It is a figure which shows the relationship between the specific enthalpy of a refrigerating cycle, and the pressure of a refrigerant | coolant. 第2実施形態の冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle of 2nd Embodiment.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の第1実施形態の冷凍装置の冷凍サイクル1について図1を用いて説明する。図1は、冷凍サイクル1の概略構成図である。   A refrigeration cycle 1 of a refrigeration apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a refrigeration cycle 1.

冷凍サイクル1は、圧縮機2と、放熱器3と、吸熱器4と、気液分離器5と、過冷却器6と、第1膨張弁7と、第2膨張弁8と、第3膨張弁9とを備える。冷凍サイクル1では、吸熱器4の出口と放熱器3の入口とが第1冷媒流路20によって接続され、第1冷媒流路20に、圧縮機2が配置される。また、冷凍サイクル1では、放熱器3の出口と吸熱器4の入口とが第2冷媒流路21によって接続され、第2冷媒流路21に、第1膨張弁7、気液分離器5、過冷却器6、及び第3膨張弁9が、放熱器3側から順に配置される。また、冷凍サイクル1では、放熱器3と第1膨張弁7との間の第2冷媒流路21から第3冷媒流路22が分岐しており、第3冷媒流路22に、第2膨張弁8、及び過冷却器6が、放熱器3側から順に配置される。   The refrigeration cycle 1 includes a compressor 2, a radiator 3, a heat absorber 4, a gas-liquid separator 5, a supercooler 6, a first expansion valve 7, a second expansion valve 8, and a third expansion. And a valve 9. In the refrigeration cycle 1, the outlet of the heat absorber 4 and the inlet of the radiator 3 are connected by a first refrigerant channel 20, and the compressor 2 is disposed in the first refrigerant channel 20. In the refrigeration cycle 1, the outlet of the radiator 3 and the inlet of the heat absorber 4 are connected by the second refrigerant channel 21, and the first expansion valve 7, the gas-liquid separator 5, The supercooler 6 and the third expansion valve 9 are arranged in order from the radiator 3 side. Further, in the refrigeration cycle 1, the third refrigerant flow path 22 is branched from the second refrigerant flow path 21 between the radiator 3 and the first expansion valve 7, and the second expansion is performed in the third refrigerant flow path 22. The valve 8 and the supercooler 6 are arranged in order from the radiator 3 side.

圧縮機2は、第1冷媒流路20上に、第1圧縮機2aと第2圧縮機2bとを直列に配置して構成される。第1圧縮機2aは冷媒を圧縮し、第2圧縮機2bは第1圧縮機2aによって圧縮された冷媒を更に圧縮する。   The compressor 2 is configured by arranging a first compressor 2 a and a second compressor 2 b in series on the first refrigerant flow path 20. The first compressor 2a compresses the refrigerant, and the second compressor 2b further compresses the refrigerant compressed by the first compressor 2a.

放熱器3は、第1圧縮機2a、及び第2圧縮機2bによって圧縮されて温度が高くなった冷媒を、例えば空気との熱交換によって冷却し、冷媒を液化する。   The radiator 3 cools the refrigerant whose temperature has been increased by being compressed by the first compressor 2a and the second compressor 2b by, for example, heat exchange with air, and liquefies the refrigerant.

第1膨張弁7は、放熱器3で液化され、第2冷媒流路21を流れる冷媒を減圧する。第2膨張弁8は、放熱器3で液化され、第3冷媒流路22を流れる冷媒を減圧する。   The first expansion valve 7 is liquefied by the radiator 3 and depressurizes the refrigerant flowing through the second refrigerant flow path 21. The second expansion valve 8 is liquefied by the radiator 3 and depressurizes the refrigerant flowing through the third refrigerant flow path 22.

第1膨張弁7、及び第2膨張弁8は、過冷却器6において、第2冷媒流路21を流れる冷媒を第3冷媒流路22を流れる冷媒によって過冷却可能となるように、第2冷媒流路21を流れる冷媒、及び第3冷媒流路22を流れる冷媒を減圧させる。つまり、過冷却器6において、第2冷媒流路21の冷媒の温度よりも、第3冷媒流路22の冷媒の温度が低くなるように、各減圧比が設定されており、第2膨張弁8の減圧比は第1膨張弁7の減圧比よりも大きい。   In the supercooler 6, the first expansion valve 7 and the second expansion valve 8 are configured so that the refrigerant flowing in the second refrigerant channel 21 can be supercooled by the refrigerant flowing in the third refrigerant channel 22. The refrigerant flowing through the refrigerant flow path 21 and the refrigerant flowing through the third refrigerant flow path 22 are decompressed. That is, in the subcooler 6, each decompression ratio is set so that the temperature of the refrigerant in the third refrigerant flow path 22 is lower than the temperature of the refrigerant in the second refrigerant flow path 21, and the second expansion valve The pressure reduction ratio of 8 is larger than the pressure reduction ratio of the first expansion valve 7.

気液分離器5は、第1膨張弁7によって減圧された冷媒を、液相と気相とに分離する。気液分離器5には、第2冷媒流路21の他に、第4冷媒流路23が接続されており、分離された気相状態の冷媒は、第4冷媒流路23を介して第2圧縮機2bに流入する。   The gas-liquid separator 5 separates the refrigerant decompressed by the first expansion valve 7 into a liquid phase and a gas phase. In addition to the second refrigerant flow path 21, a fourth refrigerant flow path 23 is connected to the gas-liquid separator 5, and the separated refrigerant in the vapor phase state passes through the fourth refrigerant flow path 23. 2 flows into the compressor 2b.

過冷却器6では、第2冷媒流路21、及び第3冷媒流路22が近接するように配置されており、気液分離器5によって分離され、第2冷媒流路21を流れる液相状態の冷媒を、第3冷媒流路22を流れる冷媒によって過冷却する。   In the subcooler 6, the second refrigerant flow path 21 and the third refrigerant flow path 22 are arranged so as to be close to each other, separated by the gas-liquid separator 5, and in a liquid phase state flowing through the second refrigerant flow path 21. The refrigerant is supercooled by the refrigerant flowing through the third refrigerant flow path 22.

第3冷媒流路22は、過冷却器6の下流側で第4冷媒流路23と合流し、第3冷媒流路22を流れた冷媒は、第4冷媒流路23を介して第2圧縮機2bに流入する。   The third refrigerant flow path 22 merges with the fourth refrigerant flow path 23 on the downstream side of the subcooler 6, and the refrigerant that has flowed through the third refrigerant flow path 22 is compressed by the second refrigerant flow path 23 through the second refrigerant flow path 23. Flows into the machine 2b.

第3膨張弁9は、過冷却器6によって過冷却された冷媒が、吸熱器4において気化するように、第2冷媒流路21を流れる冷媒を減圧する。   The third expansion valve 9 decompresses the refrigerant flowing through the second refrigerant flow path 21 so that the refrigerant supercooled by the supercooler 6 is vaporized in the heat absorber 4.

吸熱器4は、第3膨張弁9によって減圧された冷媒を、例えば空気との熱交換によって気化する。吸熱器4で冷媒が気化する際に、吸熱器4の周囲の空気が冷却される。   The heat absorber 4 vaporizes the refrigerant decompressed by the third expansion valve 9 by, for example, heat exchange with air. When the refrigerant evaporates in the heat absorber 4, the air around the heat absorber 4 is cooled.

次に本実施形態の冷凍サイクル1の作用について図2を用いて説明する。図2は、冷凍サイクル1の比エンタルピと冷媒の圧力との関係を示す図である。   Next, the effect | action of the refrigerating cycle 1 of this embodiment is demonstrated using FIG. FIG. 2 is a graph showing the relationship between the specific enthalpy of the refrigeration cycle 1 and the refrigerant pressure.

第1圧縮機2a、及び第2圧縮機2bによって冷媒を圧縮することで、冷媒の圧力は高くなる(図2中a点、b点)。圧力が高くなった冷媒は、放熱器3による熱交換によって冷却され、液化する(図2中c点)。液化した冷媒は、第2冷媒流路21、及び第2冷媒流路21から分岐する第3冷媒流路22を流れる。   By compressing the refrigerant by the first compressor 2a and the second compressor 2b, the pressure of the refrigerant increases (points a and b in FIG. 2). The refrigerant having increased pressure is cooled and liquefied by heat exchange by the radiator 3 (point c in FIG. 2). The liquefied refrigerant flows through the second refrigerant channel 21 and the third refrigerant channel 22 branched from the second refrigerant channel 21.

第2冷媒流路21を流れる冷媒は、第1膨張弁7によって減圧され(図2中d点)、気液分離器5によって液相と気相とに分離される。分離された液相状態の冷媒は、過冷却器6において、第3冷媒流路22を流れる冷媒によって過冷却される(図2中e点)。過冷却された第2冷媒流路21を流れる冷媒は、第3膨張弁9によってさらに減圧され(図2中f点)、吸熱器4に流入する。第2冷媒流路21を流れる冷媒は、過冷却器6によって過冷却されるので、第3膨張弁9によって減圧された場合でも、気化し難く、液相の状態で吸熱器4に流入する。一方、分離された気相状態の冷媒は、第4冷媒流路23を介して第2圧縮機2bに流入する(図2中g点)。   The refrigerant flowing through the second refrigerant channel 21 is decompressed by the first expansion valve 7 (point d in FIG. 2), and separated into a liquid phase and a gas phase by the gas-liquid separator 5. The separated refrigerant in the liquid phase is supercooled by the refrigerant flowing through the third refrigerant flow path 22 in the supercooler 6 (point e in FIG. 2). The refrigerant flowing through the subcooled second refrigerant channel 21 is further decompressed by the third expansion valve 9 (point f in FIG. 2) and flows into the heat absorber 4. The refrigerant flowing through the second refrigerant flow path 21 is supercooled by the supercooler 6, so even when decompressed by the third expansion valve 9, it is difficult to vaporize and flows into the heat absorber 4 in a liquid phase state. On the other hand, the separated refrigerant in the gas phase state flows into the second compressor 2b via the fourth refrigerant flow path 23 (point g in FIG. 2).

第3冷媒流路22を流れる冷媒は、第2膨張弁8によって減圧され、第2冷媒流路21を流れる冷媒よりも温度が低くなり(図2中h点)、過冷却器6において、第2冷媒流路21を流れる冷媒を過冷却することで気化し、第4冷媒流路23を流れる気相状態の冷媒と共に、第2圧縮機2bに流入する(図2中g点)。なお、図2においては、c点とh点との間の比エンタルピと圧力との関係を説明のため破線で示す。また、c点とd点との間の比エンタルピ、及びc点とh点との間の比エンタルピは等しいが、図2においては説明のためにずらして記載している。   The refrigerant flowing through the third refrigerant flow path 22 is depressurized by the second expansion valve 8 and becomes lower in temperature than the refrigerant flowing through the second refrigerant flow path 21 (point h in FIG. 2). The refrigerant flowing through the two refrigerant channels 21 is vaporized by being supercooled, and flows into the second compressor 2b together with the refrigerant in the gas phase flowing through the fourth refrigerant channel 23 (point g in FIG. 2). In FIG. 2, the relationship between the specific enthalpy between the point c and the point h and the pressure is indicated by a broken line for explanation. Further, the specific enthalpy between the point c and the point d and the specific enthalpy between the point c and the point h are the same, but in FIG.

吸熱器4に流入した冷媒は、吸熱器4における熱交換によって気化し、気相状態の冷媒は第1圧縮機2aに流入する(図2中i点)。   The refrigerant that has flowed into the heat absorber 4 is vaporized by heat exchange in the heat absorber 4, and the gas-phase refrigerant flows into the first compressor 2a (point i in FIG. 2).

本発明の第1実施形態の効果について説明する。   The effect of 1st Embodiment of this invention is demonstrated.

第2冷媒流路21を流れる冷媒と、第2冷媒流路21から分岐した第3冷媒流路22を流れる冷媒との間で熱交換を行い、第2冷媒流路21を流れる冷媒を過冷却する過冷却器6を設ける。過冷却器6によって吸熱器4に流入する冷媒を過冷却することで、吸熱器4に流入するまでの間に冷媒が気化することを抑制し、吸熱器4における吸熱性能を向上することができる。また、第2冷媒流路21を流れる冷媒と、第2冷媒流路21から分岐した第3冷媒流路22を流れる冷媒との間で熱交換を行うことで、過冷却のために温度調整装置を別途設ける必要がなく、冷凍サイクル1が大型化することを抑制することができる。   Heat exchange is performed between the refrigerant flowing through the second refrigerant flow path 21 and the refrigerant flowing through the third refrigerant flow path 22 branched from the second refrigerant flow path 21, and the refrigerant flowing through the second refrigerant flow path 21 is supercooled. A supercooler 6 is provided. By supercooling the refrigerant flowing into the heat absorber 4 by the subcooler 6, it is possible to suppress the vaporization of the refrigerant before flowing into the heat absorber 4, and to improve the heat absorption performance in the heat absorber 4. . In addition, by performing heat exchange between the refrigerant flowing through the second refrigerant flow path 21 and the refrigerant flowing through the third refrigerant flow path 22 branched from the second refrigerant flow path 21, a temperature adjustment device is provided for overcooling. Need not be separately provided, and the refrigeration cycle 1 can be prevented from being enlarged.

第3冷媒流路22に設けた第2膨張弁8における減圧比を第2冷媒流路21に設けた第1膨張弁7における減圧比よりも大きくする。これにより、過冷却器6において第2冷媒流路21を流れる冷媒を、第3冷媒流路22を流れる冷媒によって過冷却することができ、簡易な構成で、過冷却器6において第2冷媒流路21を流れる冷媒を過冷却することができる。   The pressure reduction ratio in the second expansion valve 8 provided in the third refrigerant flow path 22 is made larger than the pressure reduction ratio in the first expansion valve 7 provided in the second refrigerant flow path 21. As a result, the refrigerant flowing through the second refrigerant flow path 21 in the supercooler 6 can be supercooled by the refrigerant flowing through the third refrigerant flow path 22, and the second refrigerant flow in the subcooler 6 can be achieved with a simple configuration. The refrigerant flowing through the passage 21 can be supercooled.

第3膨張弁9に気液混合状態で冷媒が流入すると、第3膨張弁9から吐出される冷媒の吐出量が安定せず、ハンチングが生じるおそれがある。本実施形態では、第1膨張弁7と第3膨張弁9との間に過冷却器6を設け、第3膨張弁9に流入する冷媒を過冷却器6で過冷却する。これにより、冷媒が気化することを抑制し、第3膨張弁9に気液混合状態の冷媒が流入することを抑制することができ、第3膨張弁9から吐出される冷媒にハンチングが生じることを抑制することができる。   If the refrigerant flows into the third expansion valve 9 in a gas-liquid mixed state, the discharge amount of the refrigerant discharged from the third expansion valve 9 is not stable, and hunting may occur. In the present embodiment, a supercooler 6 is provided between the first expansion valve 7 and the third expansion valve 9, and the refrigerant flowing into the third expansion valve 9 is supercooled by the supercooler 6. Thereby, it can suppress that a refrigerant | coolant vaporizes, it can suppress that the refrigerant | coolant of a gas-liquid mixed state flows into the 3rd expansion valve 9, and hunting arises in the refrigerant | coolant discharged from the 3rd expansion valve 9. Can be suppressed.

第1膨張弁7と過冷却器6との間に、気液分離器5を設け、第2冷媒流路21を流れる冷媒を気相と液相とに分離し、液相状態の冷媒のみを過冷却器6に流入させる。これにより、吸熱器4に気相状態の冷媒が流入することを抑制することができ、また、過冷却器6において冷媒をより過冷却することができ、冷媒の気化を抑制することができ、吸熱器4における吸熱性能を向上することができる。   A gas-liquid separator 5 is provided between the first expansion valve 7 and the supercooler 6 to separate the refrigerant flowing through the second refrigerant flow path 21 into a gas phase and a liquid phase, and only the refrigerant in the liquid phase state is separated. It flows into the subcooler 6. Thereby, it can suppress that the refrigerant | coolant of a gaseous-phase state flows into the heat absorber 4, and can supercool a refrigerant | coolant more in the supercooler 6, can suppress vaporization of a refrigerant | coolant, The endothermic performance in the heat absorber 4 can be improved.

気液分離器5によって分離された気相状態の冷媒を第4冷媒流路23を介して第2圧縮機2bに流入させる。また、過冷却器6を通過した気相状態の冷媒が流れる第2冷媒流路21を第4冷媒流路23に合流させ、過冷却器6を通過した気相状態の冷媒を第4冷媒流路23を介して第2圧縮機2bに流入させる。このように、気相状態の冷媒が第2圧縮機2bに戻されるので、冷凍サイクル1を循環する冷媒の流量が少なくなることを抑制することができる。   The refrigerant in the gas phase separated by the gas-liquid separator 5 is caused to flow into the second compressor 2b through the fourth refrigerant flow path 23. Further, the second refrigerant flow path 21 through which the refrigerant in the gas phase that has passed through the subcooler 6 flows is joined to the fourth refrigerant flow path 23, and the refrigerant in the gas phase that has passed through the subcooler 6 flows into the fourth refrigerant flow. It flows into the 2nd compressor 2b through the path | route 23. FIG. Thus, since the gas-phase state refrigerant is returned to the second compressor 2b, it is possible to suppress a decrease in the flow rate of the refrigerant circulating in the refrigeration cycle 1.

次に本発明の第2実施形態について図3を用いて説明する。図3は、第2実施形態の冷凍サイクル1の概略構成図である。第2実施形態については第1実施形態と異なる部分を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of the refrigeration cycle 1 of the second embodiment. The second embodiment will be described with respect to differences from the first embodiment.

第2実施形態の冷凍サイクル1は、気液分離器30、及び過冷却器31が一体となっている。具体的には、第3冷媒流路22の一部が気液分離器30の内部を通るように設けられており、第3冷媒流路22を流れる冷媒によって気液分離器30の液相状態の冷媒を過冷却する。つまり、気液分離器30の内部を通る第3冷媒流路22の一部が過冷却器31として機能する。なお、過冷却器31として機能する第3冷媒流路22の一部は、気液分離器30に貯留された液相状態の冷媒に浸るように設けられており、液相状態の冷媒は、第3冷媒流路22を流れる冷媒によって過冷却される。   In the refrigeration cycle 1 of the second embodiment, the gas-liquid separator 30 and the supercooler 31 are integrated. Specifically, a part of the third refrigerant flow path 22 is provided so as to pass through the inside of the gas-liquid separator 30, and the liquid-phase state of the gas-liquid separator 30 by the refrigerant flowing through the third refrigerant flow path 22. Overcool the refrigerant. That is, a part of the third refrigerant flow path 22 passing through the gas-liquid separator 30 functions as the supercooler 31. Note that a part of the third refrigerant flow path 22 that functions as the subcooler 31 is provided so as to be immersed in the liquid-phase refrigerant stored in the gas-liquid separator 30, and the liquid-phase refrigerant is Supercooled by the refrigerant flowing through the third refrigerant flow path 22.

本発明の第2実施形態の効果について説明する。   The effect of 2nd Embodiment of this invention is demonstrated.

過冷却器31と気液分離器30とを一体化する。これにより、過冷却器を気液分離器と別体として設ける場合よりも、冷凍サイクル1を小型にすることができ、冷凍サイクル1のレイアウト性を向上することができる。   The supercooler 31 and the gas-liquid separator 30 are integrated. Thereby, the refrigeration cycle 1 can be made smaller than when the supercooler is provided separately from the gas-liquid separator, and the layout of the refrigeration cycle 1 can be improved.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

1 冷凍サイクル
2 圧縮機
2a 第1圧縮機
2b 第2圧縮機
3 放熱器
4 吸熱器
5 気液分離器
6 過冷却器(熱交換器)
7 第1膨張弁
8 第2膨張弁
9 第3膨張弁
21 第2冷媒流路(第1流路)
22 第3冷媒流路(第2流路)
23 第4冷媒流路(第3流路)
30 気液分離器
31 過冷却器
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 2a 1st compressor 2b 2nd compressor 3 Radiator 4 Heat absorber 5 Gas-liquid separator 6 Supercooler (heat exchanger)
7 First expansion valve 8 Second expansion valve 9 Third expansion valve 21 Second refrigerant flow path (first flow path)
22 3rd refrigerant | coolant flow path (2nd flow path)
23 Fourth refrigerant channel (third channel)
30 Gas-liquid separator 31 Supercooler

Claims (6)

圧縮機と、放熱器と、吸熱器とを有する冷凍サイクル内を冷媒が循環する冷凍装置であって、
前記放熱器を通過した前記冷媒が流れる第1流路と、
前記第1流路から分岐し前記冷媒が流れる第2流路と、
前記第1流路を流れる前記冷媒と、前記第2流路を流れる前記冷媒との間で熱交換を行う熱交換器とを備え、
前記第1流路を流れ、前記熱交換器を通過した前記冷媒を前記吸熱器に流入させることを特徴とする冷凍装置。
A refrigeration system in which a refrigerant circulates in a refrigeration cycle having a compressor, a radiator, and a heat absorber,
A first flow path through which the refrigerant that has passed through the radiator;
A second flow path branched from the first flow path and through which the refrigerant flows;
A heat exchanger for exchanging heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path;
A refrigerating apparatus, wherein the refrigerant that flows through the first flow path and passes through the heat exchanger is caused to flow into the heat absorber.
請求項1に記載の冷凍装置であって、
前記第1流路において前記熱交換器よりも上流側に設けられ、前記第1流路を流れる前記冷媒を減圧する第1膨張弁と、
前記第2流路において前記熱交換器よりも上流側に設けられ、前記第2流路を流れる前記冷媒を減圧する第2膨張弁とを備え、
前記第2膨張弁の減圧比は、前記第1膨張弁の減圧比よりも大きく設定され、
前記熱交換器は、前記第2流路を流れる前記冷媒によって前記第1流路を流れる前記冷媒を冷却する過冷却器である、
ことを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
A first expansion valve that is provided upstream of the heat exchanger in the first flow path and depressurizes the refrigerant flowing through the first flow path;
A second expansion valve provided on the upstream side of the heat exchanger in the second flow path and depressurizing the refrigerant flowing in the second flow path;
The pressure reduction ratio of the second expansion valve is set larger than the pressure reduction ratio of the first expansion valve,
The heat exchanger is a subcooler that cools the refrigerant flowing through the first flow path by the refrigerant flowing through the second flow path.
A refrigeration apparatus characterized by that.
請求項2に記載の冷凍装置であって、
前記第1流路において前記第1膨張弁よりも下流側に設けられ、前記第1流路を流れる前記冷媒を減圧する第3膨張弁を備え、
前記過冷却器は、前記第1膨張弁と前記第3膨張弁との間に設けられる、
ことを特徴とする冷凍装置。
The refrigeration apparatus according to claim 2,
A third expansion valve that is provided on the downstream side of the first expansion valve in the first flow path and depressurizes the refrigerant flowing in the first flow path;
The subcooler is provided between the first expansion valve and the third expansion valve.
A refrigeration apparatus characterized by that.
請求項2または3に記載の冷凍装置であって、
前記第1膨張弁と前記過冷却器との間の前記第1流路に設けられた気液分離器と、
前記気液分離器によって分離された気相状態の冷媒が流れ、前記気相状態の冷媒を前記圧縮機に流入させる第3流路とを備え、
前記過冷却器を通過した前記冷媒が流れる前記第2流路は、前記第3流路に合流する、
ことを特徴とする冷凍装置。
The refrigeration apparatus according to claim 2 or 3,
A gas-liquid separator provided in the first flow path between the first expansion valve and the supercooler;
A refrigerant in a gas phase separated by the gas-liquid separator flows, and a third flow path for allowing the refrigerant in the gas phase to flow into the compressor,
The second flow path through which the refrigerant that has passed through the subcooler merges with the third flow path;
A refrigeration apparatus characterized by that.
請求項3に記載の冷凍装置であって、
前記第1膨張弁と前記第3膨張弁との間の前記第1流路に設けられ、前記過冷却器を有する気液分離器と、
前記気液分離器によって分離された気相状態の冷媒が流れ、前記気相状態の冷媒を前記圧縮機に流入させる第3流路とを備え、
前記気液分離器内に貯留された液相状態の冷媒と熱交換した前記冷媒が流れる前記第2流路は、前記第3流路に合流する、
ことを特徴とする冷凍装置。
The refrigeration apparatus according to claim 3,
A gas-liquid separator provided in the first flow path between the first expansion valve and the third expansion valve and having the supercooler;
A refrigerant in a gas phase separated by the gas-liquid separator flows, and a third flow path for allowing the refrigerant in the gas phase to flow into the compressor,
The second flow path through which the refrigerant having exchanged heat with the liquid-phase refrigerant stored in the gas-liquid separator joins the third flow path;
A refrigeration apparatus characterized by that.
請求項4または5に記載の冷凍装置であって、
前記圧縮機は、第1圧縮機と、前記第1圧縮機よりも前記放熱器側に設けた第2圧縮機とを直列に配置して構成され、
前記第3流路は、前記第2流路を流れた前記冷媒、及び前記気液分離器の前記気相状態の冷媒を前記第2圧縮機に流入させる、
ことを特徴とする冷凍装置。
The refrigeration apparatus according to claim 4 or 5, wherein
The compressor is configured by arranging a first compressor and a second compressor provided on the radiator side of the first compressor in series,
The third flow path causes the refrigerant that has flowed through the second flow path and the gas phase refrigerant of the gas-liquid separator to flow into the second compressor.
A refrigeration apparatus characterized by that.
JP2014142462A 2014-07-10 2014-07-10 Refrigeration device Pending JP2016017718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142462A JP2016017718A (en) 2014-07-10 2014-07-10 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142462A JP2016017718A (en) 2014-07-10 2014-07-10 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2016017718A true JP2016017718A (en) 2016-02-01

Family

ID=55233058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142462A Pending JP2016017718A (en) 2014-07-10 2014-07-10 Refrigeration device

Country Status (1)

Country Link
JP (1) JP2016017718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128069A (en) * 2018-01-23 2019-08-01 株式会社Nttファシリティーズ Steam compression type refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128069A (en) * 2018-01-23 2019-08-01 株式会社Nttファシリティーズ Steam compression type refrigerator
JP6991866B2 (en) 2018-01-23 2022-01-13 株式会社Nttファシリティーズ Steam compression refrigerator

Similar Documents

Publication Publication Date Title
ES2784619T3 (en) Mixed refrigerant system and method
JP5197820B2 (en) Refrigeration cycle equipment
WO2010061624A1 (en) Refrigeration system
CN104520660A (en) System and method for natural gas liquefaction
US10174975B2 (en) Two-phase refrigeration system
JP2009150594A (en) Refrigeration device
JP2008249209A (en) Refrigerating device
KR20130050639A (en) Non-azeotropic mixed refrigerent cycle and refrigerator
JP2018017427A5 (en)
JP2012220162A (en) Refrigeration cycle method
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
TWI571606B (en) A refrigeration unit using a triple tube heat exchanger
JP2009300021A (en) Refrigerating cycle device
JP6064744B2 (en) Refrigeration cycle equipment
JP2015010816A (en) Refrigerant circuit and air conditioning equipment
JP2016017718A (en) Refrigeration device
JP2012163243A (en) Refrigerator
JP2006090563A (en) Refrigerating device
WO2017051532A1 (en) Cooling system and cooling method
JP2013108735A (en) Refrigeration cycle device
JP5792585B2 (en) Refrigerator, refrigerated showcase and vending machine
JP2017129320A (en) Freezer
KR20210014091A (en) Refrigeration unit and liquid temperature control unit
JP6787647B2 (en) Centrifugal chiller
JP6372778B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161221