JP2016017208A - Press die material - Google Patents
Press die material Download PDFInfo
- Publication number
- JP2016017208A JP2016017208A JP2014140940A JP2014140940A JP2016017208A JP 2016017208 A JP2016017208 A JP 2016017208A JP 2014140940 A JP2014140940 A JP 2014140940A JP 2014140940 A JP2014140940 A JP 2014140940A JP 2016017208 A JP2016017208 A JP 2016017208A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- press
- graphite
- press die
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 58
- 229910001018 Cast iron Inorganic materials 0.000 claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 42
- 229910002804 graphite Inorganic materials 0.000 claims description 42
- 239000010439 graphite Substances 0.000 claims description 42
- 150000004767 nitrides Chemical class 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 abstract 2
- 229910001141 Ductile iron Inorganic materials 0.000 description 14
- 238000005121 nitriding Methods 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 229910052804 chromium Inorganic materials 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は、窒化処理したCV鋳鉄からなるプレス金型材に関する。 The present invention relates to a press mold material made of nitrided CV cast iron.
プレス金型材として合金工具鋼鋼材が広く使用されており、特に成分にCr、MoさらにはWなどを含有するもの、例えばSKD材はプレス金型材として好適に使用されている。この一方、鋳造により目的とする金型形状に近い形状のものを成形することができ、必要な機械加工が少なくかつ被削性が良い鋳鉄をプレス金型材として使用する提案がなされている。この鋳鉄を基材とする金型は、合金工具鋼鋼材を基材とする金型よりもプレス成形にかかるトータルコストを低減することができる可能性がある。このため、鋳鉄を基材とする金型について、自動車軽量化の要請により使用量が増大している高張力鋼板を含めたプレス加工が可能な鋳鉄を基材とするプレス金型材の開発が進められている。 Alloy tool steel materials are widely used as press mold materials, and particularly those containing components such as Cr, Mo, and W, such as SKD materials, are suitably used as press mold materials. On the other hand, it has been proposed that cast iron having a shape close to the target mold shape can be formed by casting, and that cast iron having less machining and good machinability is used as a press mold material. This mold using cast iron as a base material may be able to reduce the total cost required for press forming as compared with a mold using alloy tool steel as a base material. For this reason, with regard to molds based on cast iron, the development of press mold materials based on cast iron that can be pressed, including high-strength steel sheets that are increasing in usage due to demand for automobile weight reduction, has been promoted. It has been.
例えば、特許文献1に、窒化処理された球状化黒鉛鋳鉄の表面にチタン系硬質被膜が形成されており、前記表面における球状黒鉛の平均粒子径が30μm以下であることを特徴とする硬質被膜を有する球状化黒鉛鋳鉄材が提案されている。この球状化黒鉛鋳鉄材は、黒鉛が球状化された鋳鉄であれば特に限定されないが、FCD540、FCD600、FCD700等が好ましく、球状黒鉛の平均粒子径は好ましくは、20〜30μmであるとされる。平均粒子径が30μmを超える場合には、チタン系硬質被膜の密着力が著しく低下し、球状黒鉛の平均粒子径が20μm以下のものは生産が困難になる傾向があるとされる。そして、窒化層の厚みは、球状化黒鉛鋳鉄の表面からの深さが100〜200μmであることが好ましく、チタン系硬質被膜は、窒化チタン、炭化チタン、炭窒化チタン等からなり、厚みは2〜4μm程度が好ましいとされる。この球状化黒鉛鋳鉄材は、高い密着力を有する硬質皮膜が表面に形成された硬質皮膜を有するので高張力鋼板のプレス加工に好適に使用することができるとされる。 For example, Patent Document 1 discloses a hard coating characterized in that a titanium-based hard coating is formed on the surface of nitrided spheroidal graphite cast iron, and the average particle diameter of the spherical graphite on the surface is 30 μm or less. A spheroidal graphite cast iron material has been proposed. The spheroidized graphite cast iron material is not particularly limited as long as the graphite is spheroidized cast iron, but FCD540, FCD600, FCD700, etc. are preferable, and the average particle size of the spherical graphite is preferably 20-30 μm. . When the average particle diameter exceeds 30 μm, the adhesive strength of the titanium-based hard coating is remarkably reduced, and it is said that production of spherical graphite having an average particle diameter of 20 μm or less tends to be difficult to produce. The thickness of the nitrided layer is preferably 100 to 200 μm from the surface of the spheroidal graphite cast iron, and the titanium-based hard coating is made of titanium nitride, titanium carbide, titanium carbonitride, etc., and the thickness is 2 About ~ 4 μm is preferable. Since this spheroidized graphite cast iron material has a hard film having a hard film with high adhesion formed on the surface, it can be suitably used for press working of high-tensile steel sheets.
特許文献2に、フレームハード処理により表面を硬化させて使用される黒鉛球状化率が30〜70%であって、質量比で、酸素含有量5〜20ppm、パーライト率60〜100%、S含有量0.03%以下のプレス金型用鋳鉄であり、C含有量3〜4%、Si含有量1.5〜2.5%、Mn含有量0.5〜1.0%、Cr含有量0.2〜1.0%、Cu含有量0.2〜1.0%である、強度が高く、制振性、溶接性、焼き入れ性、加工性に優れたプレス金型用鋳鉄が提案されている。このプレス金型用鋳鉄は、黒鉛球状化率30〜70%において引張強度が500〜600N/mm2で黒鉛球状化率80%のものと同等の引張強度を有し、フレームハード処理後の硬さをHRC50以上にすることができるので高張力鋼板のプレス金型材としても使用できるとされる。 Patent Document 2 states that the spheroidization ratio of graphite used by curing the surface by frame hard treatment is 30 to 70%, the oxygen content is 5 to 20 ppm, the pearlite ratio is 60 to 100%, and S is contained. It is cast iron for press dies with an amount of 0.03% or less, C content 3-4%, Si content 1.5-2.5%, Mn content 0.5-1.0%, Cr content 0.2-1.0%, Cu content 0.2- A cast iron for press dies having a strength of 1.0%, high strength, excellent vibration damping, weldability, hardenability and workability has been proposed. This cast iron for press dies has a tensile strength equivalent to that of a graphite spheroidization rate of 30 to 70% and a tensile strength of 500 to 600 N / mm2 and a graphite spheroidization rate of 80%. Can be used as a press mold material for high-tensile steel sheets.
特許文献3に、鋳物を基材とするプレス金型に広く使用されている球状黒鉛鋳鉄FCD55は、自動車の車体部品のような大型部品のプレス金型としては所用の硬度にすることが容易でないことから、CV鋳鉄を使用したプレス金型が提案されている。すなわち、パーライト地が90%以上である組織を有し、硬度がHb180乃至250であるCV黒鉛鋼鉄からなるプレス金型が提案されている。このプレス金型においては、パーライト地が90%以上でないと硬度Hb180以上にすることができず、硬度は高い方がよいが、250を超えると金型の機械加工が困難になるとされる。そして、実施例に係る硬度がHb220のプレス金型は、硬度がHb190のFCD55を基地とするプレス金型に対し、かじり傷に要する補修時間を1/3〜1/2にすることができるとされる。 Patent Document 3 discloses that spheroidal graphite cast iron FCD55, which is widely used for press molds based on castings, is not easy to achieve the required hardness as a press mold for large parts such as automobile body parts. Therefore, a press die using CV cast iron has been proposed. That is, a press die made of CV graphite steel having a structure in which pearlite is 90% or more and hardness of Hb 180 to 250 has been proposed. In this press mold, if the pearlite is not 90% or higher, the hardness cannot be increased to Hb 180 or higher, and it is better that the hardness is higher, but if it exceeds 250, it is considered difficult to machine the mold. And, the press mold with hardness Hb220 according to the embodiment can reduce the repair time required for galling to 1/3 to 1/2 with respect to the press mold based on FCD55 with hardness Hb190. Is done.
球状黒鉛鋳鉄は、普通鋳鉄に較べて引張強度は2倍以上、伸びも大きく粘りも強く耐摩性に優れるので鋳物を基材とするプレス金型として好ましい。このような球状黒鉛鋳鉄に対して、特許文献1に提案されている球状黒鉛鋳鉄材は、窒化処理をした球状黒鉛鋳鉄にさらにアークイオンプレーティング法などによりチタン系硬質皮膜を形成したものであり、高張力鋼板のプレス金型として好ましいものである。しかしながら、チタンのアークイオンプレーティングなど特殊な装置を要し、その装置による限定から利用可能な金型の形状・サイズなどが制限される恐れがある。 Spheroidal graphite cast iron is preferable as a press die having a casting as a base material because it has a tensile strength of 2 times or more as compared with ordinary cast iron, has a large elongation, is strong and has excellent wear resistance. In contrast to such spheroidal graphite cast iron, the spheroidal graphite cast iron material proposed in Patent Document 1 is obtained by forming a titanium-based hard film on a spheroidal graphite cast iron that has been subjected to nitriding treatment by an arc ion plating method or the like. It is preferable as a press die for high-tensile steel plates. However, a special apparatus such as arc ion plating of titanium is required, and there is a risk that the shape and size of the mold that can be used may be limited due to the limitation of the apparatus.
一方、特許文献2又は3に提案されているCV鋳鉄をプレス金型の基材として使用する方法がある。特許文献2に提案されたフレームハード(火炎焼き入れ)方法は、簡便であるが一定の品質を維持するには技能を要するという問題がある。特許文献3に提案されたプレス金型は、硬度がHb180乃至250であるため、高張力鋼板を含めたプレス加工が可能なプレス金型材としては問題がある。高張力鋼板を含めたプレス加工が可能なプレス金型材としては、特許文献2又は3に提案されているプレス金型よりもさらに硬度の高いものが要求される。 On the other hand, there is a method of using CV cast iron proposed in Patent Document 2 or 3 as a base material for a press die. The frame hard (flame quenching) method proposed in Patent Document 2 is simple but has a problem that skill is required to maintain a certain quality. Since the press die proposed in Patent Document 3 has a hardness of Hb 180 to 250, there is a problem as a press die material that can be pressed including a high-tensile steel plate. As a press die material capable of press working including a high-tensile steel plate, a material having higher hardness than the press die proposed in Patent Document 2 or 3 is required.
本発明は、このような従来の問題点に鑑み、窒化処理したCV鋳鉄により鋳物を基材とするプレス金型の特質を生かすとともに、溶接性に優れプレス成形にかかるトータルコストを低減することができるプレス金型材を提供することを目的とする。 In view of such a conventional problem, the present invention makes use of the characteristics of a press mold based on a casting by nitriding CV cast iron and has excellent weldability and can reduce the total cost for press forming. It aims at providing the press die material which can be performed.
本願発明者等は、CV鋳鉄は、普通鋳鉄と球状黒鉛鋳鉄の中間的な特性を有し、鋳造性、熱伝導性、被削性及び溶接性に優れるので、プレス金型材としての特徴を活かすことができるとともに補修も容易に行うことができることに着目し、このCV鋳鉄に一般鋼材に広く使用されている窒化処理を施すことにより高張力鋼板を含めたプレス加工が可能なプレス金型材に係る本発明を完成させた。 The inventors of the present application show that CV cast iron has intermediate characteristics between ordinary cast iron and spheroidal graphite cast iron, and is excellent in castability, thermal conductivity, machinability, and weldability. Focusing on the fact that it can be easily repaired, this CV cast iron is related to a press mold material that can be pressed including high-tensile steel sheets by applying nitriding treatment widely used for general steel materials. The present invention has been completed.
本発明に係るプレス金型材は、質量%で、C:3.0〜3.9、Si:1.5〜2.5、Mn:0.2〜0.8、P:0.02以下、S:0.02以下、Mg:0.01〜0.02、Cr:0.1〜1.5、Al:0.05〜1.0、不可避不純物及び残部鉄(Fe)からなるCV黒鉛鋳鉄を基地部とし、前記基地部の表面に厚さが0.05〜0.2mm、その表面硬度がビッカース硬さ(HV)550〜1000なる窒化層を有してなる。 The press die material according to the present invention is in mass%, C: 3.0 to 3.9, Si: 1.5 to 2.5, Mn: 0.2 to 0.8, P: 0.02 or less, S: 0.02 or less, Mg: 0.01 to 0.02, Cr: 0.1 ~ 1.5, Al: 0.05 ~ 1.0, CV graphite cast iron consisting of unavoidable impurities and the balance iron (Fe) is used as the base part, the thickness of the base part is 0.05 ~ 0.2mm, the surface hardness is Vickers hardness (HV ) It has a nitride layer of 550-1000.
上記発明において、基地部は、黒鉛球状化率が30〜60%、黒鉛面積率が5〜1%であるのが好ましい。 In the above invention, the base portion preferably has a graphite spheroidization ratio of 30 to 60% and a graphite area ratio of 5 to 1%.
本発明によれば、高張力鋼板のプレス加工が可能で、自動車の車体部品など大型部品のプレス加工も可能なプレス金型材を提供することができる。そして、このプレス金型材は、鋳造性及び溶接性に優れ、プレス部品のコーナ部などの損耗しやすいプレス金型の補修を迅速容易に行うことができ、プレス成形にかかるトータルコストを低減することができる。 ADVANTAGE OF THE INVENTION According to this invention, the press metal mold | die material which can press-process a high-tensile steel plate and can also press large-sized parts, such as a vehicle body part, can be provided. This press mold material is excellent in castability and weldability, and can quickly and easily repair a wearable press mold such as a corner portion of a pressed part, thereby reducing the total cost of press molding. Can do.
以下、本発明を実施するための形態について説明する。本発明に係るプレス金型材は、
質量%で、C:3.0〜3.9、Si:1.5〜2.5、Mn:0.2〜0.8、P:0.02以下、S:0.02以下、Mg:0.01〜0.02、Cr:0.1〜1.5、Al:0.05〜1.0、不可避不純物及び残部鉄(Fe)からなるCV黒鉛鋳鉄を基地部とし、前記基地部の表面に厚さが0.05〜0.2mm、その表面硬度がビッカース硬さ(HV)600〜1000なる窒化層を有してなる。すなわち、本プレス金型材は、鋳鉄であって晶出黒鉛が芋虫状をしており、JIS G5505に規定するCV黒鉛鋳鉄品に属し、かつ、その組成にCrとAlを含有する。そして、本プレス金型材は、基地部表面に厚さが0.05〜0.20mmの窒化層を有し、その表面硬度はHV600〜1000の硬さを有する。
Hereinafter, modes for carrying out the present invention will be described. The press die material according to the present invention is:
In mass%, C: 3.0 to 3.9, Si: 1.5 to 2.5, Mn: 0.2 to 0.8, P: 0.02 or less, S: 0.02 or less, Mg: 0.01 to 0.02, Cr: 0.1 to 1.5, Al: 0.05 to 1.0, CV graphite cast iron consisting of inevitable impurities and the remaining iron (Fe) is used as a base, and the base has a nitride layer with a thickness of 0.05 to 0.2 mm and a surface hardness of Vickers hardness (HV) 600 to 1000. Do it. That is, the present press die material is cast iron, the crystallized graphite has a worm-like shape, belongs to the CV graphite cast iron product specified in JIS G5505, and contains Cr and Al in its composition. The press die material has a nitride layer having a thickness of 0.05 to 0.20 mm on the surface of the base portion, and the surface hardness thereof is HV600 to 1000.
本発明に係るプレス金型材は、図1に示すように晶出黒鉛が芋虫状をしている。本プレス金型材は、その組成が球状化黒鉛鋳鉄の範疇に属するが、Cr及びAlを含有する。Cr及びAl成分は窒化層の形成に寄与する。Cr成分は、窒化層形成促進とともに基地部の強度向上に資するが、黒鉛生成を阻止しチル化傾向を有するので1.5%以下とする。Al成分は、基地部の強度を阻害するので1.0%以下とする。 In the press die material according to the present invention, the crystallized graphite has a worm-like shape as shown in FIG. This press mold material belongs to the category of spheroidal graphite cast iron, but contains Cr and Al. Cr and Al components contribute to the formation of a nitride layer. The Cr component contributes to promoting the formation of the nitride layer and improving the strength of the base portion. However, the Cr component prevents the formation of graphite and has a tendency to chill, so it is made 1.5% or less. The Al component is 1.0% or less because it inhibits the strength of the base portion.
また、Mg成分は、本プレス金型材の組織がCV黒鉛鋳鉄相当品になるように、以下に説明する成分範囲とする。図2に、本プレス金型材中のMg含有量に対する黒鉛球状化率(図2(a))と、引張強度(図2(b))との関係を示す。図2(a)は、横軸にMg含有量、縦軸に黒鉛球状化率を示す。図2(a)に示すように、Mg含有量が0.01〜0.02%において、黒鉛球状化率を40〜60%にすることができる。また、図2(b)は、横軸にMg含有量、縦軸に引張強さを示す。図2(b)に示すように、Mg含有量が0.01〜0.02%において、引張強度を500〜600MPaにすることができ、この引張強度はほぼ一定値になっており、このMg含有量の範囲で均一な引張強度を有するプレス金型材を得ることができる。すなわち、本プレス金型材中のMg含有量は、0.01〜0.02%とする。 Further, the Mg component has a component range described below so that the structure of the press mold material is equivalent to CV graphite cast iron. FIG. 2 shows the relationship between the graphite spheroidization ratio (FIG. 2 (a)) and the tensile strength (FIG. 2 (b)) with respect to the Mg content in the present press die material. FIG. 2A shows the Mg content on the horizontal axis and the graphite spheroidization ratio on the vertical axis. As shown in FIG. 2A, when the Mg content is 0.01 to 0.02%, the spheroidizing ratio of graphite can be 40 to 60%. FIG. 2B shows the Mg content on the horizontal axis and the tensile strength on the vertical axis. As shown in FIG. 2 (b), when the Mg content is 0.01 to 0.02%, the tensile strength can be 500 to 600 MPa, and this tensile strength is almost constant. The range of this Mg content A press mold material having a uniform tensile strength can be obtained. That is, the Mg content in the press die material is set to 0.01 to 0.02%.
また、図2に示すように、本プレス金型材の引張強度は、Mg含有量が0.04%以上で黒鉛球状化率が90%以上のもの(JIS G5502に規定する球状黒鉛鋳鉄品FCD600相当であって、Cr及びAl成分を含まない。)の引張強度(500〜700MPa)とほぼ同等になっている。なお、上記、黒鉛球状化率は、JIS G5502に基づいている。 In addition, as shown in FIG. 2, the tensile strength of this press die material is that the Mg content is 0.04% or more and the graphite spheroidization ratio is 90% or more (equivalent to the spheroidal graphite cast iron product FCD600 specified in JIS G5502). The tensile strength (500 to 700 MPa) of Cr and Al components is not included. The above-mentioned graphite spheroidization rate is based on JIS G5502.
本発明に係るプレス金型材は、上記の組成を有する基材を窒化処理する。窒化処理は、ガス窒化法、塩浴窒化法、イオン窒化法などを使用することができる。図3に、本発明に係るプレス金型材の硬度測定試験例(発明例)を示す。図3に示す比較例は、上記の本プレス金型材の組成のうち、Al及びCr成分を含まない組成のものであり、発明例と同等の窒化処理を行った。図3において、横軸は表面からの距離、縦軸はビッカース硬さを示す。図3に示すように、本プレス金型材は、表面硬度がビッカース硬さで1000を超えており、表面から0.05mmまで急激に硬さが低下し、0.05mm〜0.2mmまでは硬さが緩やかに低下する。そして、表面から0.1mmの深さでもHV600を超え、0.2mmでHV550になり、0.2mm以上の深さにおいて次第に硬さが低下し、表面から3.5mmの深さで基地部と同じ硬さ(HV270〜250)になっている。窒化層の深さは、この例においては3.5mmである。なお、窒化層の深さについては、JIS G0562に基づいている。 The press die material according to the present invention performs nitriding treatment on a base material having the above composition. As the nitriding treatment, a gas nitriding method, a salt bath nitriding method, an ion nitriding method or the like can be used. FIG. 3 shows a hardness measurement test example (invention example) of a press die material according to the present invention. The comparative example shown in FIG. 3 has a composition that does not contain Al and Cr components in the composition of the above-described press mold material, and nitriding treatment equivalent to that of the inventive example was performed. In FIG. 3, the horizontal axis indicates the distance from the surface, and the vertical axis indicates the Vickers hardness. As shown in Fig. 3, this press mold material has a surface hardness exceeding 1000 in terms of Vickers hardness, the hardness sharply decreases to 0.05mm from the surface, and the hardness is moderate from 0.05mm to 0.2mm. To drop. And even at a depth of 0.1mm from the surface, it exceeds HV600, becomes HV550 at 0.2mm, gradually decreases in hardness at a depth of 0.2mm or more, and has the same hardness as the base at a depth of 3.5mm from the surface ( HV270 ~ 250). The depth of the nitride layer is 3.5 mm in this example. The depth of the nitride layer is based on JIS G0562.
一方、比較例の場合は、表面硬度がHV600を超え、表面から深さ0.2mmまで次第に硬さが低下し、表面から0.2mm以上の深さにおいて基地部の硬さ(HV220〜230)と同等になっている。発明例と比較例を較べると、Al及びCr成分を加えた窒化処理の効果が著しいことが分かる。 On the other hand, in the case of the comparative example, the surface hardness exceeds HV600, the hardness gradually decreases from the surface to a depth of 0.2 mm, and is equivalent to the hardness of the base (HV220 to 230) at a depth of 0.2 mm or more from the surface. It has become. Comparing the inventive example and the comparative example, it can be seen that the effect of the nitriding treatment with the addition of Al and Cr components is remarkable.
図4は、図2に示す試料と同じロットの試料の黒鉛球状化率に対する黒鉛面積率を示すグラフである。図4において、横軸は黒鉛球状化率、縦軸は黒鉛面積率を示す。図4によると、本発明に係るプレス金型材(黒鉛球状化率30〜60%)は黒鉛面積率が5%より小さく4.5〜1.5%にばらついており、平均値が3%程度である。一方、FCD600(黒鉛球状化率80〜95%)は、黒鉛面積率が7〜4.5%にばらついており、平均値が5.2%程度である。黒鉛面積率において、本発明に係るプレス金型材は、球状黒鉛鋳鉄品とは明らかに異なっている。本発明に係るプレス金型材の窒化層の厚さが球状黒鉛鋳鉄品の窒化層の厚さより厚いのは、この黒鉛面積率が小さいことが寄与しているものと推測される。
FIG. 4 is a graph showing the graphite area ratio with respect to the graphite spheroidization ratio of the sample of the same lot as the sample shown in FIG. In FIG. 4, the horizontal axis indicates the graphite spheroidization rate, and the vertical axis indicates the graphite area ratio. According to FIG. 4, the press die material (graphite spheroidization ratio 30 to 60%) according to the present invention has a graphite area ratio of less than 5% and varies from 4.5 to 1.5%, and the average value is about 3%. On the other hand, FCD600 (
以上本発明について説明した。本発明によれば、表面硬さがHV800〜1000を超える高い硬度で、窒化層厚さが0.2mmを超える厚い窒化層を有するプレス金型材を得ることができる。
The present invention has been described above. According to the present invention, it is possible to obtain a press mold material having a high
表1に示す組成の基材を作製しJIS4号引張り試験片を切り出した。そしてその試験片について、基地部及び窒化層の硬さ測定試験と、引張り強度測定試験を行った。黒鉛球状化処理は、Mg-Si-Fe合金により行った。窒化処理は、イオン窒化法により、窒素ガス雰囲気で550℃×10時間の処理を行った。なお、基材の組成において、P:0.02%以下、S:0.02%以下であった。 A base material having the composition shown in Table 1 was prepared, and a JIS No. 4 tensile test piece was cut out. And about the test piece, the hardness measurement test of the base part and the nitride layer, and the tensile strength measurement test were done. The graphite spheroidization treatment was performed with an Mg—Si—Fe alloy. Nitriding was performed by ion nitriding in a nitrogen gas atmosphere at 550 ° C. for 10 hours. The composition of the base material was P: 0.02% or less and S: 0.02% or less.
試験結果を表2に示す。表2において、適否判定は、基地部の硬度がブリネル硬さで250以上350以下、引張強さが300MPa以上、窒化層硬さ(表面硬度)がHV600以上であることをもって可(○)とした。表2によると、基地部のブリネル硬さが250〜350の範囲において、引張強さが600〜800MPaであることが分かる。すなわち、本発明に係るプレス金型材は、基地部がこのような250〜350のブリネル硬さ、600〜800MPaの引張強さを有し、CV黒鉛鋳鉄品(JISG5505)よりも高い硬度及び引張強強度を有する。また、球状黒鉛鋳鉄品(JISG5502)と同等以上の高い硬度及び引張強さを有する。そして、本発明に係るプレス金型材は、鋳造性、溶接性に優れプレス成形にかかるトータルコストを低減することができる。また、Cr+Alは、0.05〜2.0%であるのが好ましいことが分かる。 The test results are shown in Table 2. In Table 2, the determination of suitability is acceptable (O) when the hardness of the base portion is Brinell hardness of 250 to 350, the tensile strength is 300 MPa or more, and the nitrided layer hardness (surface hardness) is HV600 or more. . According to Table 2, it can be seen that the tensile strength is 600 to 800 MPa when the Brinell hardness of the base portion is 250 to 350. That is, the press mold material according to the present invention has a base portion having such a Brinell hardness of 250 to 350 and a tensile strength of 600 to 800 MPa, and higher hardness and tensile strength than a CV graphite cast iron product (JISG5505). Has strength. In addition, it has high hardness and tensile strength equal to or better than spheroidal graphite cast iron products (JISG5502). And the press die material which concerns on this invention is excellent in castability and weldability, and can reduce the total cost concerning press molding. It can also be seen that Cr + Al is preferably 0.05 to 2.0%.
Claims (3)
前記基地部の表面に厚さが0.05〜0.2mm、その表面硬度がビッカース硬さ(HV)600〜1000なる窒化層を有するプレス金型材。 In mass%, C: 3.0 to 3.9, Si: 1.5 to 2.5, Mn: 0.2 to 0.8, P: 0.02 or less, S: 0.02 or less, Mg: 0.01 to 0.02, Cr: 0.1 to 1.5, Al: 0.05 to 1.0, Based on CV graphite cast iron consisting of inevitable impurities and the balance iron (Fe),
A press die material having a nitride layer having a thickness of 0.05 to 0.2 mm and a surface hardness of Vickers hardness (HV) of 600 to 1000 on the surface of the base portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014140940A JP6326310B2 (en) | 2014-07-08 | 2014-07-08 | Press mold material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014140940A JP6326310B2 (en) | 2014-07-08 | 2014-07-08 | Press mold material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016017208A true JP2016017208A (en) | 2016-02-01 |
JP6326310B2 JP6326310B2 (en) | 2018-05-16 |
Family
ID=55232655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014140940A Active JP6326310B2 (en) | 2014-07-08 | 2014-07-08 | Press mold material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6326310B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108303346A (en) * | 2017-12-28 | 2018-07-20 | 中国农业科学院农产品加工研究所 | Powder fluidity quantitatively characterizing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3421886A (en) * | 1965-05-04 | 1969-01-14 | Int Nickel Co | Cast iron with at least 50% of the graphite in vermicular form and a process for making same |
JPS56123348A (en) * | 1980-03-03 | 1981-09-28 | Yamaha Motor Co Ltd | Cast iron for casting metal mold |
JPS5822388A (en) * | 1981-07-30 | 1983-02-09 | Kawasaki Heavy Ind Ltd | Surface treatment of metallic mold |
JPS61113706A (en) * | 1984-09-04 | 1986-05-31 | フオ−ド モ−タ− カンパニ− | Production of densified graphite (cg) cast iron |
JPS61189833A (en) * | 1985-02-19 | 1986-08-23 | Kobe Chutetsusho:Kk | Press metal die |
EP1111071A2 (en) * | 1999-12-22 | 2001-06-27 | Hyundai Motor Company | Method of manufacturing a compacted vermicular graphite cast iron for engine block |
JP2007138241A (en) * | 2005-11-17 | 2007-06-07 | Tomotetsu Kogyo Kk | Cast iron for press die, and its manufacturing method |
-
2014
- 2014-07-08 JP JP2014140940A patent/JP6326310B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3421886A (en) * | 1965-05-04 | 1969-01-14 | Int Nickel Co | Cast iron with at least 50% of the graphite in vermicular form and a process for making same |
JPS56123348A (en) * | 1980-03-03 | 1981-09-28 | Yamaha Motor Co Ltd | Cast iron for casting metal mold |
JPS5822388A (en) * | 1981-07-30 | 1983-02-09 | Kawasaki Heavy Ind Ltd | Surface treatment of metallic mold |
JPS61113706A (en) * | 1984-09-04 | 1986-05-31 | フオ−ド モ−タ− カンパニ− | Production of densified graphite (cg) cast iron |
US4596606A (en) * | 1984-09-04 | 1986-06-24 | Ford Motor Company | Method of making CG iron |
JPS61189833A (en) * | 1985-02-19 | 1986-08-23 | Kobe Chutetsusho:Kk | Press metal die |
EP1111071A2 (en) * | 1999-12-22 | 2001-06-27 | Hyundai Motor Company | Method of manufacturing a compacted vermicular graphite cast iron for engine block |
JP2001181779A (en) * | 1999-12-22 | 2001-07-03 | Hyundai Motor Co Ltd | Method for producing cv graphite cast iron |
JP2007138241A (en) * | 2005-11-17 | 2007-06-07 | Tomotetsu Kogyo Kk | Cast iron for press die, and its manufacturing method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108303346A (en) * | 2017-12-28 | 2018-07-20 | 中国农业科学院农产品加工研究所 | Powder fluidity quantitatively characterizing method |
Also Published As
Publication number | Publication date |
---|---|
JP6326310B2 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI675923B (en) | A wear resistant alloy | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
JP5143531B2 (en) | Cold mold steel and molds | |
JP2010280957A (en) | Iron-base sintered alloy, method for producing iron-base sintered alloy, and connecting rod | |
JP2017155306A (en) | Hot tool steel having excellent high temperature strength and toughness | |
JP5323679B2 (en) | Cold work steel | |
JP5186878B2 (en) | Steel for plastic molds and plastic molds | |
JP5744300B1 (en) | Hot work tool steel | |
JP2011094187A (en) | Method for producing high strength iron based sintered compact | |
JP6819624B2 (en) | Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance | |
JP6326310B2 (en) | Press mold material | |
JP2007224418A (en) | Hot tool steel having excellent toughness | |
WO2020241087A1 (en) | Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy | |
RU2430186C2 (en) | Heat-resistant steel | |
JP6743720B2 (en) | Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance | |
JP2008095181A (en) | Hot-working tool steel having superior toughness and high-temperature strength | |
JP7039692B2 (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
JP6692005B1 (en) | Manufacturing method of forged products | |
JP6516440B2 (en) | Powdered high speed tool steel | |
TWI727230B (en) | Cast iron structure and manufacturing method thereof | |
JP2009221594A (en) | Hot-working tool steel having excellent toughness | |
JP2022086865A (en) | Iron-based alloy sintered body and its manufacturing method | |
JP2001214238A (en) | Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die | |
JP2002088450A (en) | Hot work tool steel | |
TWI766454B (en) | Steel for mold, and mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170613 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6326310 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |