JP2016014741A - 立体ディスプレイ - Google Patents

立体ディスプレイ Download PDF

Info

Publication number
JP2016014741A
JP2016014741A JP2014136199A JP2014136199A JP2016014741A JP 2016014741 A JP2016014741 A JP 2016014741A JP 2014136199 A JP2014136199 A JP 2014136199A JP 2014136199 A JP2014136199 A JP 2014136199A JP 2016014741 A JP2016014741 A JP 2016014741A
Authority
JP
Japan
Prior art keywords
light
controller
light beam
generators
stereoscopic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014136199A
Other languages
English (en)
Other versions
JP6376861B2 (ja
Inventor
俊介 吉田
Shunsuke Yoshida
俊介 吉田
豊 木俵
Yutaka Kidawara
豊 木俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2014136199A priority Critical patent/JP6376861B2/ja
Publication of JP2016014741A publication Critical patent/JP2016014741A/ja
Application granted granted Critical
Publication of JP6376861B2 publication Critical patent/JP6376861B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Projection Apparatus (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】立体画像の上部の画質を向上させることが可能な立体ディスプレイを提供する。
【解決手段】円錐形状を有する光線制御子1の底部が天板51上に開口するようにかつ周壁が天板51の上方に位置するように、光線制御子1が配置される。天板51の下方でかつ光線制御子1の内側から複数の光線からなる光線群を光線制御子1の内周面にそれぞれ照射するように、複数の光線発生器2が光線制御子1の周囲に配置される。立体形状データに基づいて、複数の光線発生器により発生される光線群により天板51の上方かつ光線制御子1の内側の空間に立体画像300の少なくとも一部が提示されるように複数の光線発生器2が制御される。光線制御子1は、入射される光線を周方向において第1の角度で拡散させて透過させるとともに稜線方向において第1の角度よりも大きい第2の角度で拡散させて透過させるように形成される。
【選択図】図1

Description

本発明は、立体画像を提示する立体ディスプレイに関する。
立体画像を提示する種々の立体ディスプレイが開発されている。特許文献1に記載された三次元表示システムは、鉛直軸に対して45°傾斜した状態で鉛直軸の周りで回転可能に構成されたスクリーン(ミラー)を含む。そのスクリーンが鉛直軸の周りで回転された状態で、スクリーンの傾斜面上にプロジェクタから画像が投影されることにより立体画像が提示される。
上記の例の他、立体ディスプレイとして、円板状のスクリーンとプロジェクタとを鉛直軸の周りで一体的に回転させつつプロジェクタからスクリーンに投影される画像を約1°回転するごとに切り替えることにより立体画像を提示する装置が知られている。
上記の立体ディスプレイ装置は、プロジェクタから画像が投影されるスクリーンが回転する。そのため、使用者がスクリーンに触れることを防止するために、保護ケースが必要となり構造が複雑化する。また、回転するスクリーンに画像を投影する場合、画像の投影とともにスクリーンを正確に回転させる必要がある。この場合、スクリーンを回転させるための制御が煩雑になる。
これに対して、静止したスクリーンに画像が投影されることにより、そのスクリーンの前方または後方等の空間に立体画像が提示される光線再生方式の立体ディスプレイが提案されている(例えば特許文献2参照)。
特許文献2に記載された立体ディスプレイは、スクリーンとして錐体形状の光線制御子を有する。光線制御子は、その底部がテーブルの天板上に開口するように、テーブルの天板に形成された円形孔部に嵌め込まれる。テーブルの天板の下方の位置で、複数の走査型プロジェクタが光線制御子の軸を中心とする円周上に配置される。各走査型プロジェクタは、光線制御子の外側から複数の光線からなる光線群を光線制御子の外周面に照射する。光線制御子は、各走査型プロジェクタにより照射された各光線を周方向において拡散させずに透過させる。それにより、錐体形状の光線制御子の内側および上方の空間に立体画像が提示される。
米国特許第8432436号明細書 特開2010−32952号公報
上記いずれの立体ディスプレイにおいても、立体画像の画質の向上が求められる。特に、立体画像の上部は観察者の眼に近いため詳細に観察される。そのため、立体画像の上部の画質を向上させることが求められる。
本発明の目的は、立体画像の上部の画質を向上させることが可能な立体ディスプレイを提供することである。
(1)本発明に係る立体ディスプレイは、立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、錐体形状または柱体形状を有するとともに錐体形状または柱体形状の底部が基準面上に開口するようにかつ錐体形状または柱体形状の周壁が基準面の上方に位置するように配置される光線制御子と、複数の光線からなる光線群を光線制御子に照射するように配置された光線発生器と、立体形状データに基づいて、光線発生器により発生される光線群により基準面の上方かつ光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように光線発生器を制御する制御手段とを備え、光線制御子は、光線発生器により照射された各光線を周方向において第1の角度で拡散させて透過または反射させるとともに稜線方向において第1の角度よりも大きい第2の角度で拡散させて透過または反射させるように形成されたものである。
その立体ディスプレイにおいては、光線制御子は錐体形状または柱体形状を有する。光線制御子の底部が基準面上に開口するようにかつ周壁が基準面の上方に位置するように、光線制御子が配置される。基準面上に配置された光線制御子に、立体形状データに基づいて光線発生器から光線群が照射される。
この場合、光線制御子の内側の空間において、複数の光線の各交点が点光源となる。観察者は、点光源の集合を実体物の立体形状として仮想的に知覚する。このとき、同じ点光源に交差する左眼の視線方向と右眼の視線方向とが異なり、それぞれの眼において各々の点光源の見かけ上の位置関係が異なって見えるので、両眼視差が生じる。その結果、複数の点光源の集合により立体画像が提示される。
光線制御子は、光線発生器により照射された各光線を周方向において第1の角度で拡散させつつ透過または反射させる。それにより、光線制御子により拡散された複数の光線間の隙間が低減される。したがって、観察者は、周方向における任意の位置から立体画像を形成する各点光源を視認することができる。
また、光線制御子は、光線発生器により照射された各光線を稜線方向において第1の角度よりも大きい第2の角度で拡散させつつ透過または反射させる。それにより、観察者は、鉛直方向における比較的広い範囲で立体画像を形成する点光源を視認することができる。
光線制御子において各光線が周方向において第1の角度で拡散されるので、点光源と光線制御子との間の距離が短いほどその点光源のぼけの程度が小さい。上記の構成によれば、立体画像の上部と光線制御子の周壁との間の距離は、立体画像の下部と光線制御子の周壁との間の距離に比べて小さい。それにより、立体画像の上部のぼけの程度が下部のぼけの程度に比べて小さくなる。したがって、立体画像の上部のぼけの程度は下部のそれよりも小さく、その結果立体画像の上部の画質を向上させることが可能となる。
(2)立体ディスプレイは、光線発生器を複数備え、複数の光線発生器は、基準面の下方でかつ光線制御子の内側から複数の光線からなる光線群を光線制御子の周壁の内周面にそれぞれ照射するように光線制御子の周囲に配置され、光線制御子は、各光線発生器により照射された各光線を透過させるように形成され、制御手段は、立体形状データに基づいて、複数の光線発生器により発生される光線群により基準面の上方かつ光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように複数の光線発生器を制御してもよい。
この場合、各光線発生器から発生された複数の光線からなる光線群が、基準面の下方でかつ光線制御子の外側から光線制御子の周壁の内周面にそれぞれ照射される。光線制御子に照射された光線は、その光線制御子を透過する。立体形状データに基づいて、複数の光線発生器により発生される光線群により立体画像が提示されるように複数の光線発生器が制御される。
上記の構成によれば、複数の光線発生器が基準面の下方に配置された状態で、基準面の上方に立体画像の少なくとも一部が提示される。それにより、基準面の上方に立体画像の画質を向上させるための装置を設けることなく、基準面の上方に提示される立体画像の画質を向上させることができる。
(3)立体ディスプレイは、光線発生器を1または複数備え、1または複数の光線発生器は、基準面の下方でかつ光線制御子の内側から複数の光線からなる光線群を光線制御子の内周面に照射するように光線制御子の周囲に配置され、立体ディスプレイは、1または複数の光線発生器を光線制御子の中心軸周りで回転させる回転機構をさらに備え、光線制御子は、1または複数の光線発生器の各々により照射された各光線を透過させるように形成され、制御手段は、立体形状データに基づいて、回転する1または複数の光線発生器により発生される光線群により基準面の上方かつ光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように複数の光線発生器を制御してもよい。
この場合、1または複数の光線発生器の各々から発生された複数の光線からなる光線群が、基準面の下方でかつ光線制御子の外側から光線制御子の周壁の内周面にそれぞれ照射される。光線制御子に照射された光線は、その光線制御子を透過する。光線発生器は、回転機構により光線制御子の中心軸周りで回転する。立体形状データに基づいて、回転する光線発生器により発生される光線群により立体画像が提示されるように1または複数の光線発生器が制御される。
上記の構成によれば、光線制御子が、入射する光線を周方向において第1の角度で拡散させる。また、光線発生器が回転しつつ光線制御子の外周面に光線群を照射する。それにより、光線発生器の数が少ない場合でも、周方向において途切れた部分を有しない連続的な立体画像が提示される。つまり、より少ない光線発生器を用いて上部の画質が向上された立体画像を提示することが可能となる。
さらに、1または複数の光線発生器が基準面の下方に配置された状態で、基準面の上方に立体画像の少なくとも一部が提示される。それにより、基準面の上方に立体画像の画質を向上させるための装置を設けることなく、基準面の上方に提示される立体画像の画質を向上させることができる。
(4)立体ディスプレイは、光線発生器を複数備え、複数の光線発生器は、基準面の上方から複数の光線からなる光線群を光線制御子の周壁の外周面にそれぞれ照射するように光線制御子の上方または周囲に配置され、光線制御子は、各光線発生器により照射された各光線を反射するように形成され、制御手段は、立体形状データに基づいて、複数の光線発生器により発生される光線群により基準面の上方かつ光線制御子の内側の空間に立体画像の少なくとも一部が擬似的に提示されるように複数の光線発生器を制御してもよい。
この場合、各光線発生器から発生された複数の光線からなる光線群が、基準面の上方から光線制御子の周壁の外周面にそれぞれ照射される。光線制御子に照射された光線は、その光線制御子により反射される。立体形状データに基づいて、複数の光線発生器により発生される光線群により立体画像が提示されるように複数の光線発生器が制御される。
上記の構成によれば、複数の光線発生器が基準面の上方に配置された状態で、基準面の上方に立体画像の少なくとも一部が擬似的に提示される。それにより、基準面の下方に複数の光線発生器を配置することなく基準面の上方に画質が向上された立体画像を提示することができる。
(5)立体ディスプレイは、提示された立体画像に対する操作を行うための操作手段をさらに備え、制御手段は、操作手段による操作に応答して、提示された立体画像に関する予め定められた処理を行ってもよい。
この場合、観察者は、操作手段を用いて提示された立体画像に対する操作を行うことができる。それにより、立体画像に関する予め定められた処理が実行される。
(6)操作手段は、タッチパネルを含み、タッチパネルは、光線制御子の外周面に設けられてもよい。
この場合、タッチパネルは光線制御子の外周面上に設けられる。立体画像の少なくとも一部は、基準面よりも上方かつ光線制御子の内側に提示されるので、立体画像の上部と光線制御子の周壁との間の距離は比較的小さい。したがって、観察者は、立体画像により近い位置で、その立体画像に対する操作をタッチパネルが設けられた光線制御子の外周面を経由して直感的に行うことができる。また、このとき、観察者は、立体画像の上部に触れている感覚を擬似的に得ることができる。したがって、触覚的な実体物の存在感を十分に得ることができる。
(7)操作手段は、光線制御子に赤外線を照射する赤外線照射装置と、照射装置により赤外線が照射されて物体により変化した赤外線を受光することにより光線制御子を撮像する赤外線撮像装置とを含み、制御手段は、赤外線撮像装置の撮像により得られる画像データに基づいて、光線制御子の外周面に物体が接触したことを操作手段による操作として検出してもよい。
この場合、赤外線照射装置から光線制御子に赤外線が照射される。光線制御子に照射される赤外線が観察者の指等の物体に当たると、その物体により変化した赤外線が赤外線撮像装置により受光され、光線制御子が撮像される。撮像により得られる画像データに基づいて、光線制御子の外周面に物体が接触したことが操作手段による操作として検出される。それにより、観察者は、光線制御子に触れて立体画像に対する操作を行うことができる。
立体画像の少なくとも一部は、基準面よりも上方かつ光線制御子の内側に提示されるので、立体画像の上部と光線制御子の周壁との間の距離は比較的小さい。したがって、観察者は、立体画像により近い位置で、その立体画像に対する操作を直感的に行うことができる。また、このとき、観察者は、立体画像の上部に触れている感覚を擬似的に得ることができる。したがって、触覚的な実体物の存在感を十分に得ることができる。
(8)光線制御子は、錐体形状を有してもよい。この場合、立体画像は光線制御子の内側に提示されるので、立体画像の上部と光線制御子の周壁との間の距離をより短くすることができる。それにより、立体画像の上部の画質がより向上する。
(9)基準面は、テーブルの天板の上面であり、天板は開口部を有し、光線制御子は、天板の開口部に取り付けられてもよい。
この場合、テーブルの天板上の空間に立体画像が提示される。上記の構成によれば、立体画像の上部の画質が向上する。それにより、テーブルを取り囲む複数の観察者の眼に近い位置で精細な立体画像を提供することが可能となる。
本発明によれば、立体画像の上部の画質を向上させることが可能となる。
第1の実施の形態に係る立体ディスプレイの模式的断面図である。 図1の立体ディスプレイの模式的平面図である。 図1および図2の立体ディスプレイに用いられる光線制御子の斜視図である。 光線発生器の動作を説明するための模式的平面図である。 立体画像の提示方法を説明するための模式的平面図である。 立体画像の提示方法を説明するための模式的断面図である。 第1の実施の形態に係る立体ディスプレイにおける両眼視差の発生原理を説明するための模式的平面図である。 光線制御子による光線の水平面内での拡散を説明するための図である。 点光源と光線制御子との間の距離と点光源に発生するぼけの程度との関係を説明するための模式的平面図である。 観察者の眼が円環状視域から外れた位置にある場合の光線群の補正を説明するための図である。 第2の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。 図11の光線制御子へのタッチパネルの取り付け方法の一例を示す図である。 第3の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。 第3の実施の形態に係る立体ディスプレイの他の構成例を示す模式的断面図である。 (a)は第4の実施の形態に係る立体ディスプレイの一部を示す模式的断面図であり、(b)は(a)の太い点線部分の拡大図である。 第5の実施の形態に係る立体ディスプレイの模式的断面図である。 図16の立体ディスプレイの一部を示す模式的平面図である。 第6の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。 図18の立体ディスプレイにより立体画像を提示するメカニズムを説明するための模式的断面図である。 他の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。
[1]第1の実施の形態
(1)立体ディスプレイの構成
図1は第1の実施の形態に係る立体ディスプレイの模式的断面図である。図2は図1の立体ディスプレイの模式的平面図である。図3は図1および図2の立体ディスプレイに用いられる光線制御子の斜視図である。
図1に示すように、立体ディスプレイは、円錐形状の光線制御子1、複数の光線発生器2、制御装置3、記憶装置4および複数のカメラ8により構成される。
図1および図2の立体ディスプレイは、テーブル5に設けられる。テーブル5は、天板51および複数の脚52からなる。天板51は円形孔部を有する。
図3に示されるように、光線制御子1は、鉛直方向に延びる軸Zを中心として回転対称な円錐形状を有する。本実施の形態においては、光線制御子1の底部の直径は例えば200mmであり、光線制御子1の高さは例えば120mmである。光線制御子1の底部は開口している。光線制御子1は、稜線方向Tと円周方向Rとで異なる特性を有する。ここで、稜線方向Tおよび軸Zを含む面を垂直面と呼び、軸Zに垂直な面を水平面と呼ぶ。光線制御子1は、入射した光線が水平面内で円周方向Rにおいては第1の角度で拡散して透過するようにかつ垂直面内で稜線方向Tにおいては第2の角度で拡散して透過するように形成されている。第1の角度は、第2の角度よりも十分に小さく設定される。光線制御子1は、レンチキュラシートであってもよいし、ホログラフィックスクリーンであってもよい。また、光線制御子1は、透光性を有する平坦なシート状部材の表面上に、微小な光拡散材料を含む樹脂層が形成された構成を有してもよい。この場合、微小な光拡散材料は、例えば楕円形状または繊維形状を有する。
図1に示すように、光線制御子1は、底部開口が下方を向くように天板51の円形孔部に嵌め込まれる。光線制御子1の少なくとも一部は、テーブル5の天板51の上面から上方に突出する。テーブル5の周囲にいる観察者10は、テーブル5の天板51の斜め上方から光線制御子1の外周面を観察することができる。
図2に示すように、テーブル5の下方には、複数の光線発生器2が光線制御子1の軸Zを中心とする円周上に配置されている。複数の光線発生器2は、光線制御子1の斜め下方から光線制御子1の内周面に光線を照射するように設けられる。
各光線発生器2は、例えば走査型プロジェクタである。各光線発生器2は、光線を出射するとともにその光線を水平面内および垂直面内で偏向させることができる。それにより、各光線発生器2は、光線で光線制御子1の内周面を走査することができる。ここで、光線とは、拡散しない直線で表される光をいう。
図1の記憶装置4は、例えばハードディスク、メモリカード等からなる。記憶装置4には、立体画像300を提示するための立体形状データが記憶される。制御装置3は、例えばパーソナルコンピュータからなる。制御装置3は、記憶装置4に記憶される立体形状データに基づいて複数の光線発生器2を制御する。それにより、光線制御子1の内側の空間に立体画像300が提示される。図1および図2の例では、立体画像300として人物像が示される。
複数のカメラ8は、テーブル5の周囲にいる観察者10の顔を撮像するように配置される。制御装置3においては、カメラ8から出力される電気信号に基づいて画像データが生成される。制御装置3は、生成された画像データに基づいて各観察者10の眼の位置(視点)を算出し、後述する視点追跡による光線群の補正を行う。
(2)光線発生器2の動作
図4は光線発生器2の動作を説明するための模式的平面図である。図4には1つの光線発生器2のみが示される。
光線発生器2は、レーザ光からなる光線を出射するとともにその光線を水平面内および垂直面内で偏向させることができる。
光線発生器2が光線を水平面内で偏向させることにより、光線制御子1の内周面を水平方向に走査することができる。また、光線発生器2が光線を垂直面内で偏向させることにより、光線制御子1の内周面を垂直方向に走査することができる。それにより、光線発生器2は、光線で光線制御子1の対向する面を走査することができる。
また、光線発生器2は、光線の方向ごとに光線の色を設定することができる。それにより、光線発生器2は、擬似的に複数の光線からなる光線群を出射する。
図4において、光線発生器2は、複数の光線L1〜L11を光線制御子1に照射する。光線L1〜L11は、それぞれ任意の色に設定される。それにより、光線制御子1の複数の位置P1〜P11をそれぞれ設定された色の光線L1〜L11が透過する。
光線制御子1は、円周方向において光線L1〜L11を第1の角度で拡散させつつ透過させるので、観察者は、ある位置で一本の光線が拡散されることにより生成された光線(以下、拡散光線と呼ぶ。)を視認することができる。また、光線制御子1は、光線L1〜L11を垂直方向において第1の角度よりも大きい第2の角度で拡散させて透過させるので、観察者は、一本の光線から生成された拡散光線を鉛直方向の任意の位置から視認することができる。
なお、本実施の形態では、光線発生器2として、走査型プロジェクタを用いているが、これに限定されない。光線発生器としては、DMD(Digital Micromirror Device)、LCOS(Liquid Crystal on Silicon)またはLCD(Liquid Crystal Display)等の空間光変調器および複数のレンズからなるレンズアレイ等の投影系を備えた一般的なプロジェクタを用いることもできる。この場合、投影系のアパーチャ(開口)が十分に小さい場合には、走査型プロジェクタと同様に光線群を形成することができる。
(3)立体画像300の提示方法
図5は立体画像300の提示方法を説明するための模式的平面図である。図5においては、3つの光線発生器2A,2B,2Cが示される。なお、図5および後述する図6および図7では、立体画像300として星型の像が示される。
例えば、光線制御子1の下方の位置PRに赤色の画素を提示する場合には、光線発生器2Aから位置PRを通る方向に赤色の光線LA0を出射し、光線発生器2Bから位置PRを通る方向に赤色の光線LB0を出射し、光線発生器2Cから位置PRを通る方向に赤色の光線LC0を出射する。それにより、赤色の光線LA0,LB0,LC0の交点に点光源となる赤色の画素が提示される。この場合、観察者の眼が位置IA0にある場合、位置IB0にある場合および位置IC0にある場合に、位置PRに赤色の画素が見える。
同様にして、光線制御子1の下方の位置PGに緑色の画素を提示する場合には、光線発生器2Aから位置PGを通る方向に緑色の光線LA1を出射し、光線発生器2Bから位置PGを通る方向に緑色の光線LB1を出射し、光線発生器2Cから位置PGを通る方向に緑色の光線LC1を出射する。
それにより、緑色の光線LA1,LB1,LC1の交点に点光源となる緑色の画素が提示される。この場合、観察者の眼が位置IA1にある場合、位置IB1にある場合および位置IC1にある場合に、位置PGに緑色の画素が見える。
このようにして、複数の光線発生器2A,2B,2Cの各々から立体画像300の各位置を通る方向に提示すべき色の光線が出射される。
光線発生器2A,2B,2Cを含む複数の走査型プロジェクタが円周上に密に並べられており、それらの複数の走査型プロジェクタから照射される光線群によって光線制御子1の内側の空間が光線が交わった状態である光点群で十分に密に満たされていれば、円周上のいずれの方向から光線制御子1の内側を観察しても位置PR,PGを通過する適切な光線が眼に入射することになり、人の眼はそこに点光源があるように認識する。実物体の表面にて反射または拡散した照明光を人は物体として認識するので、物体の表面は点光源の集合とみなすことができる。すなわち、物体の表面としたいある位置PR,PGの色を複数のプロジェクタ2A,2B,2Cより飛来する光線によって適切に再現することにより、立体画像300を提示することができる。
このようにして、立体画像300を光線制御子1の内側の空間に提示することができる。この場合、観察者は、円周方向における異なる位置で同一の立体画像300をそれぞれ異なる方向から視認することができる。
図6は立体画像300の提示方法を説明するための模式的断面図である。図6においては、1つの光線発生器2が示される。
図6に示すように、光線発生器2から出射された光線は、光線制御子1で第2の角度αで垂直方向において拡散される。それにより、観察者は、第2の角度αの範囲内において垂直方向の異なる位置で光線発生器2から出射される同じ色の光線を見ることができる。例えば、観察者が視線を基準の位置Eから上方の位置E’に移動させた場合でも、立体画像300の同じ部分を見ることができる。この場合、垂直方向における観察者の眼の位置により観察者が視認する立体画像300の位置が移動する。このように、光線発生器2から出射された光線が光線制御子1で垂直方向において拡散されるため、観察者が視線を上下に移動させても立体画像300を観察することができる。第2の角度αは、例えば40°程度に設定される。
図1の複数の光線発生器2により出射される光線群の各光線の色は、記憶装置4に記憶される立体形状データに基づいて制御装置3により算出される。具体的には、制御装置3は、立体形状データとして予め定義される三次元の立体形状の面と各光線との交点を求め、光線に与えるべき適切な色を算出する。
制御装置3は、算出した光線群の各光線の色に基づいて複数の光線発生器2を制御する。それにより、光線制御子1の内側の空間に立体画像300が提示されるように、各光線発生器2から設定された色をそれぞれ有する光線群が出射される。
上記のようにして、本実施の形態に係る立体ディスプレイによれば、立体画像300の指向性表示が可能となる。
(4)両眼視差の発生原理
本実施の形態に係る立体ディスプレイにおける両眼視差の発生原理について説明する。
図7は第1の実施の形態に係る立体ディスプレイにおける両眼視差の発生原理を説明するための模式的平面図である。図7には、5つの光線発生器2a,2b,2c,2d,2eが示される。
図7において、観察者が右眼100Rで光線制御子1の点P31を見た場合には、光線発生器2aから出射された光線Laが光線制御子1の点P31を透過して右眼100Rに入射する。また、観察者が右眼100Rで光線制御子1の点P33を見た場合には、光線発生器2cから出射された光線Lcが光線制御子1の点P33を透過して右眼100Rに入射する。さらに、観察者が右眼100Rで光線制御子1の点P34を見た場合には、光線発生器2eから出射された光線Leが光線制御子1の点P34を透過して右眼100Rに入射する。
一方、観察者が左眼100Lで光線制御子1の点P32を見た場合には、光線発生器2bから出射された光線Lbが光線制御子1の点P32を透過して左眼100Lに入射する。また、観察者が左眼100Lで光線制御子1の点P34を見た場合には、光線発生器2dから出射された光線Ldが光線制御子1の点P34を透過して左眼100Lに入射する。
ここで、光線Laの色と光線Ldの色とは同じであり、光線Lbの色と光線Leの色とは同じであり、光線Ldの色は光線Leの色と異なり、光線Lcの色は他の光線La,Lb,Ld,Leの色とは異なるとする。この場合、光線制御子1の外側の点P34の色は見る方向により異なる。同様に、光線制御子1の外側の点P31,P32,P33の色も見る方向により異なる。
光線Laにより立体画像300の点Paが作られ、光線Lbにより立体画像300の点Pbが作られ、光線Lcにより立体画像300の点Pcが作られ、光線Ldにより立体画像300の点Pdが作られ、光線Leにより立体画像300の点Peが作られる。
図7の例では、立体画像300の点Paと点Pdとが同じ位置にある。すなわち、光線Laと光線Ldとの交点に立体画像300の点Pa,Pdが作られる。したがって、点Pa,Pdは、仮想的な点光源となすことができる。この場合、右眼100Rで点Pa,Pdを見る方向と左眼100Lで点Pa,Pdを見る方向とが異なる。
また、図7の例では、立体画像300の点Pbと点Peとが同じ位置にある。すなわち、光線Lbと光線Leとの交点に立体画像300の点Pb,Peが作られる。したがって、点Pb,Peは、仮想的な点光源となすことができる。この場合、右眼100Rで点Pb,Peを見る方向と左眼100Lで点Pa,Pdを見る方向とが異なる。
このように、右眼100Rの視線方向と左眼100Lの視線方向との間には輻輳角がある。また、右目100Rで点P31〜P34を見た場合の点Pa〜Peの見かけ上の位置関係と、左目100Lで点P31〜P34を見た場合の点Pa〜Peの見かけ上の位置関係とが異なり視差がある。これにより、光線群により形成される画像の立体視が可能となる。
(5)光線制御子による光線の水平面内での拡散
図8は、光線制御子1による光線の水平面内での拡散を説明するための図である。図8の例では、周方向に並ぶ3つの光線発生器2x,2y,2zから出射される光線Lx,Ly,Lzにより、光線制御子1の内側に立体画像を構成する仮想的な点光源PPが生成される。
光線制御子1の点Px,Py,Pzに入射した光線Lx,Ly,Lzは、一点鎖線で示すように、水平面内で微小な第1の角度βで拡散して透過する。したがって、光線発生器2x,2y,2zの点Px,Py,Pzから出射される光線がそれぞれ第1の角度βの範囲ER内で観察者の眼に入射する。光線発生器2x,2y,2zに対応する拡散光の範囲ER間に隙間が生じないように第1の角度βが設定される。それにより、光線発生器2x,2y,2z間に隙間がある場合でも、観察者は、周方向における任意の位置から点光源PPを視認することができる。
本実施の形態においては、複数の光線発生器2は、図3の光線制御子1の軸Zを中心とする円周上に等角度間隔で配置される。第1の角度βは、例えば複数の光線発生器2が配置される角度間隔と等しい角度に設定される。また、第1の角度βは、できる限り小さい値(例えば、0.1°程度)に設定されることが好ましい。
ここで、光線制御子1に入射した光線が水平面内で第1の角度βで拡散して透過する場合、観察者には点光源がぼけて見える。ぼけの程度は、点光源が光線制御子1から遠いほど大きくなる。この理由について説明する。
図9は点光源と光線制御子1との間の距離と点光源に発生するぼけの程度との関係を説明するための模式的平面図である。図9(a),(b)に示すように、点光源PP0を形成する1本の光線L0が光線制御子1に入射する。光線L0は、光線制御子1で第1の角度βだけ拡散されて出射される。光線制御子1から出射された複数の拡散光線は観察者の眼EY0に入射される。ここで、複数の拡散光線のうち両外側の拡散光線をL1a,L1bとする。
図9(a)は点光源PP0が光線制御子1に近い場合を示し、図9(b)は点光源PP0が光線制御子1に遠い場合を示す。この場合は、拡散光線L1a,L1bの延長線上の仮想的な光線L2a,L2b間の複数の光線が観察者の眼EYに入射することと等価である。そのため、観察者は、点光源PP0を点線PP01,PP02で示すように認識する。したがって、点光源PP0が光線制御子1に近いほど点光源PP0のぼけの程度が小さくなる。したがって、光線制御子1に近い点光源ほど、観察者からは精細な像として知覚される。
(6)視点追跡による光線群の補正機能
複数の観察者10がテーブル5の周囲に着座している場合には、複数の観察者10の眼は、天板51の中心軸Zからほぼ一定の距離でかつほぼ一定の高さの位置(基準の位置)にあるとみなすことができる。そこで、図1および図2に示すように、複数の観察者10の眼が位置する円環状の領域を円環状視域500として設定する。
制御装置3は、複数の観察者10の眼が円環状視域500にあるとみなして各光線発生器2を制御する。それにより、複数の観察者10の眼が円環状視域500にある場合に、複数の観察者10は、同じ高さに同じ形状の立体画像300を視認することができる。
図6を用いて説明したように、垂直方向における観察者10の眼の位置により観察者10が視認する立体画像300の各画素の位置が移動する。そのため、観察者10の眼が円環状視域500から外れた位置にある場合には、立体画像300が変形して見える。
そこで、本実施の形態に係る立体ディスプレイでは、カメラ8を用いた視点追跡により検出される各観察者10の眼の位置に基づいて各光線発生器2から光線制御子1に照射される光線群が補正される。
図10は、観察者10の眼が円環状視域500から外れた位置にある場合の光線群の補正を説明するための図である。図10において、円環状視域500は、光線制御子1の中心を通る軸Zから水平方向において距離d1でかつテーブル5の天板51から高さH1の位置にある。ここでは、立体画像300の1つの画素PIXを光線制御子1の内側の標準の位置PSに提示する方法について説明する。
観察者10の眼が円環状視域500上の位置I1にある場合には、立体画像300の画素PIXの色を有する光線L31が、光線発生器2から標準の位置PSを通過して光線制御子1の位置k1に照射される。位置k1に照射された光線L31は、光線制御子1で垂直方向において拡散され、位置I1にある観察者10の眼に入射する。それにより、位置I1に眼がある観察者10は、標準の位置PSに画素PIXを視認することができる。
観察者10の眼が円環状視域500よりも上方の高さH2の位置I2にある場合には、立体画像300の画素PIXの色を有する光線L32が、光線発生器2から光線制御子1の位置k2に照射される。位置k2は位置k1よりも上方に位置する。位置k2に照射された光線L32は、光線制御子1で垂直方向において拡散され、拡散された1本の光線が位置I2にある観察者10の眼に入射する。この場合、標準の位置PSは、位置k2から観察者10の眼に入射する光線の延長線上に位置する。それにより、位置I2に眼がある観察者10は、標準の位置PSに画素PIXを視認することができる。
観察者10の眼が円環状視域500と同じ高さで水平方向において中心軸Zから距離d2の位置I3にある場合には、立体画像300の画素PIXの色を有する光線L33が、光線発生器2から光線制御子1の位置k3に照射される。位置k3は位置k1よりも下方に位置する。位置k3に照射された光線L33は、光線制御子1で垂直方向において拡散され、拡散された1本の光線が位置I3にある観察者10の眼に入射する。この場合、標準の位置PSは、位置k3から観察者10の眼に入射する光線の延長線上に位置する。それにより、位置I3に眼がある観察者10は、標準の位置PSに画素PIXを視認することができる。
具体的には、制御装置3は、カメラ8の撮像により得られる画像データに基づいて観察者10の眼の位置の座標を算出する。観察者10の眼の位置が円環状視域500上にある場合には、制御装置3は、眼の位置と標準の位置PSとを通る直線が光線制御子1と交差する位置k1に画素PIXの色を有する光線L31が照射されるように光線発生器2を制御する。
観察者10の眼が円環状視域500から外れた位置にある場合には、制御装置3は、眼の位置と標準の位置PSとを通る直線が光線制御子1と交差する位置に画素PIXの色を有する光線が照射されるように光線発生器2を制御する。
このようにして、制御装置3は、観察者10の眼の位置に応じて標準の位置PSに画素PIXを提示するための光線の方向を補正する。換言すると、制御装置3は、観察者10の眼の位置に応じて画素PIXの色を有する光線が観察者10の眼に入射するように、光線発生器2から出射される光線群の各光線の色を補正する。その結果、観察者10は、眼の位置にかかわらず同一の形状を有する立体画像300を視認することができる。
なお、観察者10の眼が円環状視域500と標準の位置PSとを通る直線上にある場合には、観察者10の眼が円環状視域500から外れた位置I4にあっても、観察者10の眼が円環状視域500上にある場合と同様に、立体画像300の画素PIXの色を有する光線L31が光線発生器2から光線制御子1の位置k1に照射される。それにより、観察者10は、標準の位置PSに画素PIXを視認することができる。
このように、観察者10の眼の位置に応じて光線発生器2から出射される光線群を補正することにより観察者10の眼の位置にかかわらず立体画像300が変形することなく提示される。
本実施の形態においては、カメラ8から与えられる画像データに基づいて観察者10の眼の位置の座標が算出されるが、これに限定されない。例えば、レーダーまたはソナー等の物体探知機構が立体ディスプレイに設けられ、物体探知機構から与えられるデータに基づいて観察者10の眼の位置の座標が算出されてもよい。
また、本実施の形態においては、複数の観察者10にそれぞれ対応して複数のカメラ8が設けられるが、これに限定されない。1または複数の観察者10に対応しないように1または複数のカメラ8が設けられてもよい。例えば、1または複数の観察者10の顔を撮像するように1個のカメラ8が設けられてもよい。
(7)第1の実施の形態の効果
第1の実施の形態に係る立体ディスプレイにおいては、光線制御子1の底部が天板51上に開口するようにかつ周壁が天板51の上方に位置するように、円錐形状を有する光線制御子1が配置される。天板51上に配置された光線制御子1に、立体形状データに基づいて複数の光線発生器2から光線群が照射される。
この場合、光線制御子1の内側の空間において、複数の光線の各交点が点光源となる。観察者は、点光源の集合を実体物の立体形状として仮想的に知覚する。このとき、同じ点光源に交差する左眼の視線方向と右眼の視線方向とが異なり、それぞれの眼において各々の点光源の見かけ上の位置関係が異なって見えるので、両眼視差が生じる。その結果、複数の点光源の集合により立体画像300が提示される。
光線制御子1は、各光線発生器2により照射された各光線を周方向において第1の角度βで拡散させつつ透過させる。それにより、光線制御子1により拡散された複数の光線間の隙間が低減される。したがって、観察者は、周方向における任意の位置から立体画像300を形成する各点光源を視認することができる。
また、光線制御子1は、各光線発生器2により照射された各光線を稜線方向において第1の角度βよりも大きい第2の角度αで拡散させつつ透過させる。それにより、観察者は、鉛直方向における比較的広い範囲で立体画像300を形成する各点光源を視認することができる。
この場合、光線制御子1において各光線が周方向において第1の角度βで拡散されるので、点光源と光線制御子1との間の距離が短いほどその点光源のぼけの程度が小さい。上記の構成によれば、立体画像300の上部と光線制御子1の周壁との間の距離は、図1および図6から明らかなように立体画像300の下部と光線制御子1の周壁との間の距離に比べて小さい。それにより、立体画像300の上部のぼけの程度が下部のぼけの程度に比べて小さくなる。したがって、立体画像300の上部のぼけの程度は下部のぼけの程度より小さく、立体画像300の上部の画質を向上させることが可能となる。
上記のように、本実施の形態では、複数の光線発生器2が天板51の下側に配置された状態で、天板51の上方に立体画像300の少なくとも一部が提示される。それにより、天板51の上方に立体画像300の画質を向上させるための装置を設けることなく、天板51の上方に提示される立体画像300の画質を向上させることができる。
本実施の形態では、光線制御子1が円錐形状を有する。立体画像300は光線制御子1の内側に提示される。この場合、立体画像300の上部と光線制御子1の内周面との間の距離をより短くすることができる。それにより、立体画像300の上部の画質がより向上する。
[2]第2の実施の形態
第2の実施の形態に係る立体ディスプレイについて、第1の実施の形態に係る立体ディスプレイと異なる点を説明する。図11は第2の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。
図11の立体ディスプレイは、図1の立体ディスプレイの構成に加えてタッチパネル7を備える。本実施の形態では、観察者が立体画像300に対する操作を行うための操作手段として、タッチパネル7が用いられる。本例のタッチパネル7は、表面型静電容量方式のタッチパネルであり、光線制御子1上に取り付けられる。図12は、図11の光線制御子1へのタッチパネル7の取り付け方法の一例を示す図である。
図12に示すように、扇状のシート状透明素材1xの周方向に並ぶように等角度間隔で複数(本例では10枚)の台形状のタッチパネル7が貼り付けられる。その後、シート状透明素材1xの2本の半径がつなげられることにより光線制御子1が作製される。それにより、光線制御子1のほぼ全ての領域を覆うようにタッチパネル7が設けられる。シート状透明素材1xは、例えばアクリルまたはポリカーボネート等の所定の屈折率を有する透明な樹脂からなるレンチキュラシートまたはホログラフィックスクリーンである。
図11に示すように、光線制御子1上に設けられる複数のタッチパネル7は制御装置3に接続される。それにより、制御装置3は、立体画像300が提示された状態で、タッチパネル7から与えられる信号に基づいて、観察者によるタッチパネル7の操作を検出する。
具体的には、制御装置3は、例えば観察者の指がいずれかのタッチパネル7に接触したこと、および観察者の指が接触したタッチパネル7の位置(座標)を検出する。また、制御装置3は、観察者によるタッチパネル7の操作の検出に基づいて立体画像300に関する予め定められた処理を実行する。
制御装置3は、立体画像300に関する予め定められた処理として、例えば観察者の指が接触したタッチパネル7の位置に最も近い立体画像300の部分が拡大表示または縮小表示されるように複数の光線発生器2を制御してもよい。
また、制御装置3は、例えば観察者の指が接触したタッチパネル7の位置の近傍に特定の色の点光源が提示されるように複数の光線発生器2を制御してもよい。
また、制御装置3は、例えば観察者の指がいずれかのタッチパネル7上で移動した場合に立体画像300の提示方向または立体画像300の提示位置が変更されるように複数の光線発生器2を制御してもよい。
また、制御装置3は、例えば観察者の指がいずれかのタッチパネル7に接触した場合に、記憶装置4に記憶されている立体形状データに予め定められた処理を行ってもよいし、立体画像300の提示を停止してもよい。
本実施の形態に係る立体ディスプレイは、スピーカを含む音声出力装置を有してもよい。また、図11の記憶装置4には、立体画像300を提示するための立体形状データとともに、その立体形状データに対応付けられた音声データが記憶されてもよい。この場合、制御装置3は、例えば観察者の指がいずれかのタッチパネル7に接触した場合に、立体画像300の立体形状データに対応付けられた音声データに基づく音声が出力されるように音声出力装置を制御してもよい。
本実施の形態では、タッチパネル7として表面型静電容量方式のタッチパネルが用いられる。タッチパネル7としては、上記の例に限らず、投影型静電容量方式のタッチパネルが用いられてもよいし、抵抗膜方式のタッチパネルが用いられてもよい。また、マトリクス状に並んだ複数のスイッチ(接触センサ)により構成されるタッチパネルが用いられてもよいし、その他の方式のタッチパネルが用いられてもよい。
また、図12の例では、扇状のシート状透明素材1x上に複数の台形状のタッチパネル7が取り付けられるが、シート状透明素材1xと同じ形状を有する1枚のタッチパネル7がシート状透明素材1x上に取り付けられてもよい。
本実施の形態に係る立体ディスプレイにおいては、タッチパネル7は光線制御子1の外周面上に設けられる。立体画像300の少なくとも一部が天板51よりも上方かつ光線制御子1の内側に提示されるので、立体画像300の上部とタッチパネル7との間の距離は比較的小さい。したがって、観察者は、立体画像300により近い位置で、その立体画像300に対する操作を直感的に行うことができる。また、このとき、観察者は、立体画像300の上部に触れている感覚を擬似的に得ることができる。したがって、触覚的な実体物の存在感を十分に得ることができる。
[3]第3の実施の形態
第3の実施の形態に係る立体ディスプレイについて、第2の実施の形態に係る立体ディスプレイと異なる点を説明する。図13は、第3の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。
図13の立体ディスプレイは、図11の立体ディスプレイに設けられるタッチパネル7に代えて、赤外線ランプ81および赤外線撮像カメラ82を備える。本実施の形態では、観察者が立体画像300に対する操作を行うための操作手段として、赤外線ランプ81および赤外線撮像カメラ82が用いられる。
図13に示すように、本実施の形態では、赤外線ランプ81および赤外線撮像カメラ82が天板51の下方に配置され、制御装置3に接続される。光線制御子1の内側に立体画像300が提示された状態で、赤外線ランプ81から光線制御子1の内周面全体に向かって赤外線が照射される。赤外線撮像カメラ82においては、光線制御子1に接近する指にて反射した赤外線が受光されることにより光線制御子1の内周面が撮像される。この場合、制御装置3においては、赤外線撮像カメラ82から出力される電気信号に基づいて画像データが生成される。画像データには、赤外線撮像カメラ82の各画素に対応する輝度レベルの情報が含まれる。
本実施の形態では、各光線発生器2から光線制御子1に赤外線が照射されないように、光線発生器2に赤外線を遮断するフィルタが設けられる。なお、光線発生器2から赤外線が出射されない場合には、フィルタを設ける必要はない。
上記のように、光線制御子1は入射した光を透過する。そのため、下方から光線制御子1に向かって赤外線が照射された状態で、光線制御子1の上方に赤外線を反射する物体が存在しない場合、赤外線撮像カメラ82により取得される画像データにおいて、複数の画素に対応する輝度レベルは全体的に低くなる。
一方、光線制御子1の上面に観察者の指が接触する場合には、光線制御子1の下方から照射される赤外線が、光線制御子1を透過して観察者の指で反射し、赤外線撮像カメラ82に入射する。それにより、観察者の指が接触した光線制御子1の部分の輝度レベルが他の部分の輝度レベルに比べて著しく高くなる。
そこで、制御装置3は、赤外線撮像カメラ82により取得される画像データにおける複数の画素間の輝度レベルの差分に基づいて、例えば観察者の指が光線制御子1の一部に接触したこと、および観察者の指が接触した光線制御子1の位置(座標)を検出する。また、制御装置3は、これらの検出に基づいて立体画像300に関する予め定められた処理を実行する。
図13の立体ディスプレイにおいては、赤外線ランプ81が天板51の下方に配置され、赤外線ランプ81から光線制御子1の内周面全体に向かって赤外線が照射される。赤外線ランプ81は、図13の例に限らず、光線制御子1および天板51の上方に配置されてもよい。
図14は、第3の実施の形態に係る立体ディスプレイの他の構成例を示す模式的断面図である。図14の立体ディスプレイにおいては、赤外線ランプ81が、光線制御子1および天板51の上方に配置される。それにより、赤外線ランプ81から光線制御子1の外周面全体に向かって赤外線が照射される。
上記のように、光線制御子1は入射した光を透過する。そのため、光線制御子1の上方に赤外線を遮る物体が存在しない場合、光線制御子1の上方から照射される赤外線は、光線制御子1を透過するとともに光線制御子1の全体から赤外線撮像カメラ82に入射する。それにより、赤外線撮像カメラ82により取得される画像データにおいて、複数の画素に対応する輝度レベルは全体的に高くなる。
一方、光線制御子1の上面に観察者の指が接触する場合には、光線制御子1の上方から照射される赤外線が観察者の指により遮られる。それにより、観察者の指が接触した光線制御子1の部分の輝度レベルが他の部分の輝度レベルに比べて著しく低くなる。
そこで、制御装置3は、赤外線撮像カメラ82により取得される画像データにおける複数の画素間の輝度レベルの差分に基づいて、例えば観察者の指が光線制御子1の一部に接触したこと、および観察者の指が接触した光線制御子1の位置(座標)を検出する。それにより、制御装置3は、図13の例と同様に、これらの検出に基づいて立体画像300に関する予め定められた処理を実行する。
なお、本実施の形態においては、赤外線撮像カメラ82は、光線制御子1および天板51の上方に配置されてもよい。この場合においても、制御装置3は、赤外線撮像カメラ82により取得される画像データにおける複数の画素間の輝度レベルの差分に基づいて、例えば観察者の指が光線制御子1の一部に接触したこと、および観察者の指が接触した光線制御子1の位置(座標)を検出する。
本実施の形態に係る立体ディスプレイにおいては、立体画像300の少なくとも一部が天板51よりも上方かつ光線制御子1の内側に提示されるので、立体画像300の上部と光線制御子1の内周面との間の距離は比較的小さい。そのため観察者は、立体画像300により近い位置で、その立体画像300に対する操作を直感的に行うことができる。またこのとき観察者は、立体画像300の上部に触れている感覚を擬似的に得ることができる。したがって、触覚的な実体物の存在感を十分に得ることができる。
[4]第4の実施の形態
第4の実施の形態に係る立体ディスプレイについて、第3の実施の形態に係る立体ディスプレイと異なる点を説明する。図15(a)は第4の実施の形態に係る立体ディスプレイの一部を示す模式的断面図であり、図15(b)は図15(a)の太い点線部分の拡大図である。
図15(a)の立体ディスプレイは、図13および図14の立体ディスプレイに設けられる赤外線ランプ81に代えて、複数の赤外線LED(発光ダイオード)83を備える。本実施の形態では、観察者が立体画像300に対する操作を行うための操作手段として、複数の赤外線LED83および赤外線撮像カメラ82が用いられる。
ここで、図15(b)に示すように、本例の光線制御子1は、例えば第1のシート状透明素材11の内周面に、シート状透明素材11とは異なる屈折率を有する第2のシート状透明素材12を挟んで複数の環状レンズ13が設けられた構成を有する。例えば、第1のシート状透明素材11はアクリルからなる。第2のシート状透明素材12としては、アクリルとは異なる屈折率を有する樹脂が用いられる。
複数の赤外線LED83は、光線制御子1の底部に等角度間隔で設けられる。各赤外線LED83は、その赤外線LED83から出射される赤外線が第1のシート状透明素材11の端面に入射するように配置される。
この場合、第1のシート状透明素材11と空気との屈折率が異なることにより、第1のシート状透明素材11に入射される赤外線は、第1のシート状透明素材11の外周面と空気との境界で全反射する。また、第1のシート状透明素材11と第2のシート状透明素材12との屈折率が異なることにより、第1のシート状透明素材11に入射される赤外線は、第1のシート状透明素材11の内周面と第2のシート状透明素材12との境界で全反射する。
したがって、光線制御子1の外周面に観察者の指が接触しない場合、赤外線LED83から出射される赤外線が赤外線撮像カメラ82に入射することはない。そのため、赤外線撮像カメラ82により取得される画像データにおいて、複数の画素に対応する輝度レベルは全体的に低い。
一方、光線制御子1の上面に観察者の指が接触する場合には、第1のシート状透明素材11の外周面の表面状態が変化する。この場合、赤外線は、表面状態が変化した第1のシート状透明素材11の部分から観察者の指に漏れ出て、反射し、光線制御子1の下方に向かい、赤外線撮像カメラ82に入射する。それにより、赤外線撮像カメラ82により取得される画像データにおいて、観察者の指が接触した光線制御子1の部分の輝度レベルが他の部分の輝度レベルに比べて著しく高くなる。
そこで、制御装置3は、赤外線撮像カメラ82により取得される画像データにおける複数の画素間の輝度レベルの差分に基づいて、例えば観察者の指が光線制御子1の一部に接触したこと、および観察者の指が接触した光線制御子1の位置(座標)を検出する。また、制御装置3は、これらの検出に基づいて立体画像300に関する予め定められた処理を実行する。
本実施の形態に係る立体ディスプレイにおいても、立体画像300の少なくとも一部が天板51よりも上方かつ光線制御子1の内側に提示されるので、立体画像300の上部と光線制御子1の内周面との間の距離は比較的小さい。そのため、観察者は、立体画像300により近い位置で、その立体画像300に対する操作を直感的に行うことができる。また、このとき、観察者は、立体画像300の上部に触れている感覚を擬似的に得ることができる。したがって、触覚的な実体物の存在感を十分に得ることができる。
本実施の形態においては、第2のシート状透明素材12に代えて、第1のシート状透明素材11と環状レンズ13との間にハーフミラーが設けられてもよい。この場合、第1のシート状透明素材11に入射される赤外線は、第1のシート状透明素材11の外周面と空気との境界で全反射する。また、第1のシート状透明素材11とハーフミラーとの屈折率が異なることにより、第1のシート状透明素材11に入射される赤外線は、第1のシート状透明素材11の内周面とハーフミラーとの境界で全反射する。それにより、光線制御子1がハーフミラーを含む場合でも、上記の例と同様の機能が確保される。
また、第2のシート状透明素材12が設けられる代わりに、スペーサを用いることにより第1のシート状透明素材11と環状レンズ13との間に空隙(空気の層)が形成されてもよい。この場合、第1のシート状透明素材11に入射される赤外線は、第1のシート状透明素材11の外周面と空気との境界、および第1のシート状透明素材11の内周面と空気との境界で全反射する。それにより、光線制御子1が空隙を含む場合でも、上記の例と同様の機能が確保される。
[5]第5の実施の形態
第5の実施の形態に係る立体ディスプレイについて、第1の実施の形態に係る立体ディスプレイと異なる点を説明する。図16は第5の実施の形態に係る立体ディスプレイの模式的断面図である。図17は図16の立体ディスプレイに設けられる複数の光線発生器2および回転モジュール9を示す模式的平面図である。
図16および図17に示すように、本実施の形態に係る立体ディスプレイに設けられる複数の光線発生器2の数は、図1の立体ディスプレイよりも少なくてよい。また、図16に示すように、本実施の形態に係る立体ディスプレイは、図1の立体ディスプレイの構成に加えて、回転モジュール9を備える。
回転モジュール9は、テーブル5の下方に設けられる。回転モジュール9は、モータ91、回転軸92、回転台93、信号伝送装置94および回転量計測器95により構成される。回転軸92は、鉛直方向に延び、光線制御子1の軸Zと共通の直線上に位置するようにモータ91に取り付けられる。回転軸92には、回転台93が水平姿勢で取り付けられる。回転軸92と回転台93との間には信号伝送装置94が設けられる。信号伝送装置94は、静止体と回転体との間で電力または信号を伝送するための装置である。信号伝送装置94としては、例えばスリップリングまたは光ロータリジョイント等を用いることができる。
また、回転軸92には、回転量計測器95が設けられる。回転量計測器95は、回転軸92の回転位置を検出するために用いられる。回転量計測器95としては、例えばロータリエンコーダ等を用いることができる。モータ91は、制御装置3により制御される。モータ91がステッピングモータ等の回転量を厳密に制御可能な機構である場合には、回転量計測器95は必ずしも必要ではない。
回転台93上に複数の光線発生器2が固定される。本実施の形態では、複数の光線発生器2は、光線制御子1の軸Zを中心とする円周上に等角度間隔で配置される。複数の光線発生器2は、光線制御子1の斜め下方から光線制御子1の内周面に光線を照射するように設けられる。回転台93上の複数の光線発生器2および回転量計測器95は、信号伝送装置94を介して制御装置3に接続される。
モータ91が作動すると、回転軸92が回転台93および複数の光線発生器2とともに回転する。回転台93の回転速度は、図17の例のように、光線発生器2の数が6個の場合には1秒間に5回転以上であることが好ましい。回転台93の回転速度は、光線発生器2の数が4個の場合には1秒間に7.5回転以上であることが好ましく、光線発生器2の数が3個の場合には1秒間に10回転以上であることが好ましい。
回転台93の回転速度は、光線発生器2の数が2個の場合には1秒間に15回転以上であることが好ましく、光線発生器2の数が1個の場合には1秒間に30回転以上であることが好ましい。すなわち、回転台93の回転速度は、光線発生器2の数がn個(nは自然数)の場合には、1秒間に30/n回転以上であることが好ましい。
制御装置3は、記憶装置4に記憶される立体形状データに基づいて複数の光線発生器2を制御する。それにより、光線制御子1の内側かつ下方に立体画像300が提示される。
本実施の形態に係る立体ディスプレイにおいては、各光線発生器2が回転することにより、複数の回転位置から光線制御子1に光線群を照射することができる。それにより、少ない数の光線発生器2を用いて円周方向において途切れた部分を有しない連続的な立体画像300を光線制御子1の上方に提示することができる。
なお、本実施の形態に係る立体ディスプレイは、第2〜第4の実施の形態の例と同様に、観察者が立体画像300に対する操作を行うための上記のいずれかの操作手段を有してもよい。
上記の構成によれば、1または複数の光線発生器2が天板51の下側に配置された状態で、天板51の上方に立体画像300の少なくとも一部が提示される。それにより、天板51の上方に立体画像300の画質を向上させるための装置を設けることなく、天板51の上方に提示される立体画像300の画質を向上させることができる。
また、光線制御子1が入射する光線を周方向において第1の角度βで拡散させるとともに光線発生器2が回転しつつ光線制御子1の外周面に光線群を照射するので、光線発生器2の数が少ない場合でも、周方向において途切れた部分を有しない連続的な立体画像300が提示される。
[6]第6の実施の形態
第6の実施の形態に係る立体ディスプレイについて、第1の実施の形態に係る立体ディスプレイと異なる点を説明する。図18は第6の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。
図18の立体ディスプレイにおいては、図2の複数の光線発生器2が、天板51の下方ではなく天板51の上方に設けられる。また、光線制御子1の内周面にシート状反射部材19が設けられる。
本実施の形態においては、立体画像300を提示するために複数の光線発生器2から光線制御子1の外周面に向かって光線群が照射される。光線制御子1に照射された光線群はシート状反射部材19により反射され、光線制御子1の外周面から外方に向かって出射される。
図19は、図18の立体ディスプレイにより立体画像300を提示するメカニズムを説明するための模式的断面図である。図19では、1つの光線発生器2と光線制御子1との位置関係が示される。
図19に示すように、シート状反射部材19の反射面に関して光線発生器2の光線出射口と面対称となる点を仮想出射点VPと呼ぶ。光線発生器2の光線出射口から出射された光線群がシート状反射部材19により反射されかつ光線制御子1により拡散される構成は、仮想出射点VPから出射される光線群が光線制御子1により拡散される構成と等価となる。
そこで、本実施の形態では、仮想出射点VPから出射される光線群により光線制御子1の内側に立体画像300が擬似的に表示されるように立体画像データが生成される。上記のように、本実施の形態では、複数の光線発生器2を天板51の上方に設けることができる。
[7]他の実施の形態
上記の実施の形態では、光線制御子1は円錐形状を有するが、光線制御子1の形状は上記の例に限られない。光線制御子1は、円錐台形状を有してもよく、あるいは多角錘形状または多角錘台形状を有してもよい。これらの形状を錐体形状と呼ぶ。さらに、光線制御子1は、錐体形状の他、円筒、楕円筒またはN角柱(Nは3以上の整数)を含む柱体形状を有してもよい。
図20は、他の実施の形態に係る立体ディスプレイの一部を示す模式的断面図である。図20の例では、天板51上に円筒形状を有する光線制御子1が設けられる。この場合においても、立体画像300の上部と光線制御子1の周壁との間の距離は、立体画像300の下部と光線制御子1の周壁との間の距離に比べて小さい。それにより、立体画像300の上部のぼけの程度が下部のぼけの程度に比べて小さくなる。したがって、立体画像300の上部ののぼけの程度は下部のぼけの程度より小さく、立体画像300の上部の画質を向上させることが可能となる。
[8]請求項の各構成要素と実施の形態の各要素との対応
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
上記実施の形態では、立体ディスプレイが立体ディスプレイの例であり、光線制御子1が光線制御子の例であり、光線発生器2が光線発生器の例であり、制御装置3が制御手段の例であり、第1の角度βが第1の角度の例であり、第2の角度αが第2の角度の例である。
また、タッチパネル7、赤外線ランプ81、赤外線撮像カメラ82および複数の赤外線LED83が操作手段の例であり、タッチパネル7がタッチパネルの例であり、赤外線ランプ81および複数の赤外線LED83が赤外線照射装置の例であり、赤外線撮像カメラ82が赤外線撮像装置の例であり、テーブル5がテーブルの例であり、天板51が天板の例であり、回転モジュール9が回転機構の例である。
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
本発明は、立体画像を表示する種々の立体ディスプレイに有効に利用することができる。
1 光線制御子
1x シート状透明素材
2,2A,2B,2C,2a,2b,2c,2d,2e,2x,2y,2z 光線発生器
3 制御装置
4 記憶装置
5 テーブル
7 タッチパネル
8 カメラ
9 回転モジュール
10 観察者
11 第1のシート状透明素材
12 第2のシート状透明素材
13 環状レンズ
19 シート状反射部材
51 天板
52 脚
81 赤外線ランプ
82 赤外線撮像カメラ
83 赤外線LED
91 モータ
92 回転軸
93 回転台
94 信号伝送装置
95 回転量計測器
100R 右眼
100L 左眼
300 立体画像
500 円環状視域
d1,d2 距離
ER 範囲
EYO 眼
H1,H2 高さ
I1,I2,I3,I4,k1,k2,k3,IA0,IB0,IC0,IA1,IB1,IC1,PP,PS,PR,E,E’ 位置
L1〜L11,L31,L32,L33,La,Lb,Lc,Ld,Le,LA0,LB0,LC0,LA1,LB1,LC1,LR1,LR2,L1a,L1b,L2a,L2b 光線
P31,P32,P33,P34,Pa,Pb,Pc,Pd,Pe,Px,Py,Pz 点
PIX 画素
PP0 点光源
PP01,PP02 点線
R 円周方向
T 稜線方向
VP 仮想出射点
Z 軸
β 第1の角度
α 第2の角度

Claims (7)

  1. 立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、
    錐体形状または柱体形状を有するとともに前記錐体形状または前記柱体形状の底部が基準面上に開口するようにかつ前記錐体形状または前記柱体形状の周壁が前記基準面の上方に位置するように配置される光線制御子と、
    複数の光線からなる光線群を前記光線制御子に照射するように配置された光線発生器と、
    前記立体形状データに基づいて、前記光線発生器により発生される光線群により前記基準面の上方かつ前記光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように前記光線発生器を制御する制御手段とを備え、
    前記光線制御子は、前記光線発生器により照射された各光線を周方向において第1の角度で拡散させて透過または反射させるとともに稜線方向において前記第1の角度よりも大きい第2の角度で拡散させて透過または反射させるように形成された、立体ディスプレイ。
  2. 前記光線発生器を複数備え、
    前記複数の光線発生器は、前記基準面の下方でかつ前記光線制御子の内側から複数の光線からなる光線群を前記光線制御子の前記周壁の内周面にそれぞれ照射するように前記光線制御子の周囲に配置され、
    前記光線制御子は、各光線発生器により照射された各光線を透過させるように形成され、
    前記制御手段は、前記立体形状データに基づいて、前記複数の光線発生器により発生される光線群により前記基準面の上方かつ前記光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように前記複数の光線発生器を制御する、請求項1記載の立体ディスプレイ。
  3. 前記光線発生器を1または複数備え、
    前記1または複数の光線発生器は、基準面の下方でかつ前記光線制御子の内側から複数の光線からなる光線群を前記光線制御子の内周面に照射するように光線制御子の周囲に配置され、
    前記立体ディスプレイは、
    前記1または複数の光線発生器を前記光線制御子の中心軸周りで回転させる回転機構をさらに備え、
    前記光線制御子は、前記1または複数の光線発生器の各々により照射された各光線を透過させるように形成され、
    前記制御手段は、前記立体形状データに基づいて、回転する前記1または複数の光線発生器により発生される光線群により前記基準面の上方かつ前記光線制御子の内側の空間に立体画像の少なくとも一部が提示されるように前記複数の光線発生器を制御する、請求項1記載の立体ディスプレイ。
  4. 前記光線発生器を複数備え、
    前記複数の光線発生器は、前記基準面の上方から複数の光線からなる光線群を前記光線制御子の前記周壁の外周面にそれぞれ照射するように前記光線制御子の上方または周囲に配置され、
    前記光線制御子は、各光線発生器により照射された各光線を反射するように形成され、
    前記制御手段は、前記立体形状データに基づいて、前記複数の光線発生器により発生される光線群により前記基準面の上方かつ前記光線制御子の内側の空間に立体画像の少なくとも一部が擬似的に提示されるように前記複数の光線発生器を制御する、請求項1記載の立体ディスプレイ。
  5. 提示された立体画像に対する操作を行うための操作手段をさらに備え、
    前記制御手段は、前記操作手段による操作に応答して、提示された立体画像に関する予め定められた処理を行う、請求項1〜4のいずれか一項に記載の立体ディスプレイ。
  6. 前記操作手段は、タッチパネルを含み、
    前記タッチパネルは、前記光線制御子の外周面に設けられる、請求項5記載の立体ディスプレイ。
  7. 前記操作手段は、
    前記光線制御子に赤外線を照射する赤外線照射装置と、
    前記照射装置により赤外線が照射されて物体により変化した赤外線を受光することにより前記光線制御子を撮像する赤外線撮像装置とを含み、
    前記制御手段は、前記赤外線撮像装置の撮像により得られる画像データに基づいて、前記光線制御子の外周面に物体が接触したことを前記操作手段による操作として検出する、請求項5記載の立体ディスプレイ。
JP2014136199A 2014-07-01 2014-07-01 立体ディスプレイ Active JP6376861B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136199A JP6376861B2 (ja) 2014-07-01 2014-07-01 立体ディスプレイ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136199A JP6376861B2 (ja) 2014-07-01 2014-07-01 立体ディスプレイ

Publications (2)

Publication Number Publication Date
JP2016014741A true JP2016014741A (ja) 2016-01-28
JP6376861B2 JP6376861B2 (ja) 2018-08-22

Family

ID=55230975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136199A Active JP6376861B2 (ja) 2014-07-01 2014-07-01 立体ディスプレイ

Country Status (1)

Country Link
JP (1) JP6376861B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124916A1 (ja) * 2019-12-18 2021-06-24 ソニーグループ株式会社 画像表示装置
US11971537B2 (en) 2018-11-29 2024-04-30 Ricoh Company, Ltd. Light deflection device, distance measurement device, and mobile body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278456A (ja) * 2008-05-15 2009-11-26 Hitachi Ltd 映像表示装置
JP2011048273A (ja) * 2009-08-28 2011-03-10 National Institute Of Information & Communication Technology 立体ディスプレイ
US20120147003A1 (en) * 2009-08-17 2012-06-14 Xu Liu Omnidirectional-view three-dimensional display apparatus
JP2013021522A (ja) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology 立体画像制作支援装置、立体画像制作支援方法および立体画像制作支援プログラム
JP2013210590A (ja) * 2012-03-30 2013-10-10 National Institute Of Information & Communication Technology 立体ディスプレイ
JP2013213883A (ja) * 2012-03-31 2013-10-17 Dainippon Printing Co Ltd 透過型スクリーン、背面投射型表示装置
US20150355471A1 (en) * 2014-06-10 2015-12-10 Seiko Epson Corporation Display apparatus
US20150362742A1 (en) * 2014-06-11 2015-12-17 Seiko Epson Corporation Display apparatus
JP2015232633A (ja) * 2014-06-10 2015-12-24 セイコーエプソン株式会社 表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009278456A (ja) * 2008-05-15 2009-11-26 Hitachi Ltd 映像表示装置
US20120147003A1 (en) * 2009-08-17 2012-06-14 Xu Liu Omnidirectional-view three-dimensional display apparatus
JP2011048273A (ja) * 2009-08-28 2011-03-10 National Institute Of Information & Communication Technology 立体ディスプレイ
US20120146897A1 (en) * 2009-08-28 2012-06-14 National Institute Of Information And Communications Technology Three-dimensional display
JP2013021522A (ja) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology 立体画像制作支援装置、立体画像制作支援方法および立体画像制作支援プログラム
JP2013210590A (ja) * 2012-03-30 2013-10-10 National Institute Of Information & Communication Technology 立体ディスプレイ
JP2013213883A (ja) * 2012-03-31 2013-10-17 Dainippon Printing Co Ltd 透過型スクリーン、背面投射型表示装置
US20150355471A1 (en) * 2014-06-10 2015-12-10 Seiko Epson Corporation Display apparatus
JP2015232633A (ja) * 2014-06-10 2015-12-24 セイコーエプソン株式会社 表示装置
US20150362742A1 (en) * 2014-06-11 2015-12-17 Seiko Epson Corporation Display apparatus
JP2016001211A (ja) * 2014-06-11 2016-01-07 セイコーエプソン株式会社 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971537B2 (en) 2018-11-29 2024-04-30 Ricoh Company, Ltd. Light deflection device, distance measurement device, and mobile body
WO2021124916A1 (ja) * 2019-12-18 2021-06-24 ソニーグループ株式会社 画像表示装置

Also Published As

Publication number Publication date
JP6376861B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5187639B2 (ja) 立体ディスプレイ
US9053660B2 (en) Combined-screen-based multi-pitching angle suspended panoramic space 3D display device
JP5099554B2 (ja) 立体ディスプレイ
US11536959B2 (en) Image display apparatus
JP5943273B2 (ja) 立体ディスプレイ
JP2015232633A (ja) 表示装置
WO2019073688A1 (ja) 画像表示装置
JP6327806B2 (ja) ディスプレイ装置
CN104714306A (zh) 悬浮式裸眼多视点3d显示装置
JP6376861B2 (ja) 立体ディスプレイ
TWI704378B (zh) 頭戴式顯示裝置
WO2017199854A1 (ja) 立体ディスプレイ
JP5398015B2 (ja) 立体ディスプレイおよび立体画像提示方法
JP2021021914A (ja) 裸眼3d反射型拡散片ヘッドアップディスプレイ装置
JP6456189B2 (ja) 立体画像表示装置
JP6376862B2 (ja) 立体ディスプレイ
CN112970247B (zh) 显示多重景深影像的系统与方法
JP6060417B2 (ja) 立体ディスプレイ
WO2023181598A1 (ja) 表示装置、表示方法およびプログラム
JP2015187649A (ja) 立体画像を提示する立体ディスプレイ
TW201307896A (zh) 立體顯示裝置
JP5943275B2 (ja) 立体ディスプレイ
JP2005099425A (ja) 三次元表示装置
JP2016018119A (ja) 立体画像を提示する光線制御子および立体ディスプレイ
WO2020256582A1 (ru) Устройство для представления движущихся изображений

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6376861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250