JP2016011787A - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP2016011787A
JP2016011787A JP2014133467A JP2014133467A JP2016011787A JP 2016011787 A JP2016011787 A JP 2016011787A JP 2014133467 A JP2014133467 A JP 2014133467A JP 2014133467 A JP2014133467 A JP 2014133467A JP 2016011787 A JP2016011787 A JP 2016011787A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014133467A
Other languages
Japanese (ja)
Other versions
JP6308051B2 (en
Inventor
道太郎 橋場
Michitaro HASHIBA
道太郎 橋場
秋吉 亮
Akira Akiyoshi
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014133467A priority Critical patent/JP6308051B2/en
Publication of JP2016011787A publication Critical patent/JP2016011787A/en
Application granted granted Critical
Publication of JP6308051B2 publication Critical patent/JP6308051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To achieve improvement of a heat storage amount and simplification of a structure.SOLUTION: A heat storage tank 2 is configured by including an inner tank 4 and an outer tank 5 partitioned by a partition wall 3 with a heater 20 for partitioning. In the inner tank 4, a heat storage material 6 for phase change which goes through a phase change within a heat storage temperature range and in which density of a solid phase is larger than that of a liquid phase is charged. At an upper position of the inner tank 4, a heat transfer pipe 16 for heat take-out is arranged by being submerged in the heat storage material 6 for phase change. A solid heat storage material 7 is charged in the outer tank 5. A heat storage system 1 is formed by providing a hot plate 10 for heating the inner tank 4 for heat storage and each of the heat storage materials 6, 7 in the outer tank 5 at a lower end part of the heat storage tank 2. In the heat storage tank 2, a heat storage amount per unit volume of the heat storage tank 2 is improved by performing heat storage by utilizing latent heat when the heat storage material 6 for phase change in the inner tank 4 goes through solid-liquid phase change and the solid heat storage material 7 in the outer tank 5. It is not necessary that the heat transfer pipe 16 for heat take-out and the hot plate 10 are distributed to the entire heat storage tank 2.

Description

本発明は、熱の貯蔵に用いる蓄熱システムに関するものである。   The present invention relates to a heat storage system used for heat storage.

太陽熱発電は、集熱エリアで太陽光を集光して集熱し、この集熱された熱で水蒸気を発生させ、この水蒸気で蒸気タービンを駆動して発電を行うものである。   In solar thermal power generation, sunlight is collected and collected in a heat collection area, steam is generated by the collected heat, and a steam turbine is driven by the steam to generate power.

この種の太陽熱発電では、夜間や日射量が得られない間の発電を補って、出力電力の過渡的な変化を抑制するために、蓄熱システムを備えることが一般的に行われている。   In this type of solar thermal power generation, a heat storage system is generally provided in order to compensate for power generation during nighttime or when the amount of solar radiation cannot be obtained and to suppress a transient change in output power.

この種の蓄熱システムは、当初、蓄熱槽に充填される蓄熱材として、蓄熱温度範囲の全域で液相となる溶融塩を用いるか、あるいは、蓄熱温度範囲の全域で固相となる、マグネシア等の固体蓄熱材を用いて、これらの蓄熱材の顕熱を利用して蓄熱を行う方式が採られていた。   This type of heat storage system initially uses a molten salt that becomes a liquid phase in the entire heat storage temperature range, or a solid phase in the entire heat storage temperature range, such as magnesia. A method of storing heat by using sensible heat of these heat storage materials has been adopted.

又、蓄熱密度の向上化を図った蓄熱システムとしては、蓄熱槽に、蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材を充填し、この蓄熱材の潜熱を利用して蓄熱を行う方式の蓄熱システムが従来考えられている。   Moreover, as a heat storage system for improving the heat storage density, a heat storage tank is filled with a heat storage material that causes a phase change between a solid phase and a liquid phase in the heat storage temperature range, and heat storage is performed using the latent heat of the heat storage material. Conventionally, a heat storage system of the type that performs the above has been considered.

この種の蓄熱温度範囲で固相と液相との相変化を生じる蓄熱材としては、たとえば、CsNOとNaNO、LiNOとLiOH、LiNOとNaNO、KNOとNaNO、NaNOとRbNO、LiBrとLiOH、LiBrとNaNOといった組み合わせの2成分系の混合塩による蓄熱材を用いることが提案されている(たとえば、特許文献1参照)。 Examples of heat storage materials that cause a phase change between a solid phase and a liquid phase in this type of heat storage temperature range include CsNO 3 and NaNO 3 , LiNO 3 and LiOH, LiNO 3 and NaNO 3 , KNO 3 and NaNO 3 , and NaNO 3. It has been proposed to use a heat storage material composed of a binary mixed salt of a combination of RbNO 3 , RbNO 3 , LiBr and LiOH, LiBr and NaNO 3 (for example, see Patent Document 1).

更に、別の方式の蓄熱システムとしては、蓄熱槽に、蓄熱温度範囲で固液の相変化を生じる蓄熱材にマグネシア等の固体蓄熱材を混合してなる固液混合蓄熱材を充填した形式の蓄熱システムが従来提案されている。かかる蓄熱システムによれば、前記固体蓄熱材が、相変化する蓄熱材よりも大きな比熱を有することから、蓄熱槽における単位体積当たりの蓄熱量を向上させることができるとされている(たとえば、特許文献2参照)。   Furthermore, as another type of heat storage system, a heat storage tank is filled with a solid-liquid mixed heat storage material obtained by mixing a solid heat storage material such as magnesia with a heat storage material that causes a solid-liquid phase change in the heat storage temperature range. A heat storage system has been proposed in the past. According to such a heat storage system, since the solid heat storage material has a specific heat larger than that of the phase change heat storage material, the amount of heat stored per unit volume in the heat storage tank can be improved (for example, patents). Reference 2).

しかし、前記相変化する蓄熱材と固体蓄熱材を併用する従来の蓄熱システムでは、蓄熱槽に充填してある固液混合蓄熱材の流動性が乏しいために、蓄熱槽内に充填されている固液混合蓄熱材に蓄熱のための加熱を行うヒータや、前記固液混合蓄熱材より熱を取り出すための伝熱管は、共に蓄熱槽内の全域に亘って配置させる必要がある。そのため、前記ヒータや伝熱管の構造が大きくなると共に、蓄熱槽内の構造が複雑化してしまう。更に、前記従来の蓄熱槽内の構造が複雑化することに伴い、製造コストも嵩んでしまう。   However, in the conventional heat storage system using both the phase change heat storage material and the solid heat storage material, since the fluidity of the solid-liquid mixed heat storage material filled in the heat storage tank is poor, the solid heat storage tank is filled with the solid heat storage material. A heater for heating the liquid mixed heat storage material for heat storage and a heat transfer tube for taking out heat from the solid-liquid mixed heat storage material need to be arranged over the entire area of the heat storage tank. Therefore, the structure of the heater and the heat transfer tube is increased, and the structure in the heat storage tank is complicated. Further, as the structure in the conventional heat storage tank becomes complicated, the manufacturing cost increases.

特開2013−224343号公報JP 2013-224343 A 特開平5−256591号公報Japanese Patent Laid-Open No. 5-256591

そこで、本発明は、蓄熱温度範囲で固液の相変化を生じる蓄熱材と、固体蓄熱材の双方を利用して蓄熱を行うことで、蓄熱槽の単位体積当たりの蓄熱量の向上化を図ることができると共に、蓄熱槽に設ける蓄熱のための加熱を行う加熱手段、及び、熱を取り出すための伝熱管を蓄熱槽全体に分布させる必要がなく、該加熱手段及び伝熱管の構成を小さくして、構造を簡略化することができる蓄熱システムを提供しようとするものである。   Therefore, the present invention aims to improve the amount of heat stored per unit volume of the heat storage tank by performing heat storage using both a heat storage material that causes a solid-liquid phase change in the heat storage temperature range and a solid heat storage material. It is possible to reduce the configuration of the heating means and the heat transfer tubes without having to distribute the heating means for heating for heat storage provided in the heat storage tank and the heat transfer tubes for taking out heat throughout the heat storage tank. Thus, an object of the present invention is to provide a heat storage system that can simplify the structure.

本発明は、前記課題を解決するために、請求項1に対応して、槽内の外周寄り位置に周方向に延びる隔壁を備えて、該隔壁の内側の領域を内槽とし、外側の領域を外槽とした蓄熱槽と、前記内槽に充填した、予め設定される蓄熱温度範囲で固液の相変化を生じ、且つ固相の密度が液相の密度よりも大きい相変化用蓄熱材と、前記外槽に充填した、前記蓄熱温度範囲で固相となる固体蓄熱材と、前記蓄熱槽の下端部にて、前記内槽および外槽の底部に設けて、前記各蓄熱材に対し蓄熱用の加熱を行うホットプレートと、前記内槽の上部位置に前記相変化用蓄熱材に没する配置で設けて、該相変化用蓄熱材の保有する熱を取り出すための伝熱管と、前記隔壁を前記相変化用蓄熱材の固液の相変化温度に加熱する隔壁用ヒータとを備えた構成を有する蓄熱システムとする。   In order to solve the above-mentioned problem, the present invention comprises a partition wall extending in the circumferential direction at a position near the outer periphery in the tank, corresponding to claim 1, wherein the inner region is the inner region, and the outer region. A heat storage tank having an outer tank and a phase change heat storage material that fills the inner tank and causes a solid-liquid phase change in a preset heat storage temperature range, and the solid phase density is greater than the liquid phase density. And a solid heat storage material filled in the outer tank, which becomes a solid phase in the heat storage temperature range, and at the lower end of the heat storage tank, provided at the bottom of the inner tank and the outer tank, for each of the heat storage materials A hot plate that performs heating for heat storage, and a heat transfer tube for taking out the heat possessed by the phase change heat storage material, provided at an upper position of the inner tub and immersed in the phase change heat storage material, And a partition wall heater for heating the partition wall to a solid-liquid phase change temperature of the phase change heat storage material. And thermal storage system.

又、請求項2に対応して、前記請求項1に対応する構成において、蓄熱槽の外槽には、固体蓄熱材を小片の状態で充填し、蓄熱槽の隔壁には、前記固体蓄熱材の小片の通過は阻止し且つ相変化用蓄熱材の液相の通過は許容する連通孔を、内槽と外槽を連通させるよう備え、相変化用蓄熱材の一部を内槽より前記隔壁の連通孔を通して外槽に移動させて、前記固体蓄熱材の小片同士の隙間に満たした構成とする。   Further, corresponding to claim 2, in the configuration corresponding to claim 1, the outer tank of the heat storage tank is filled with a solid heat storage material in the form of small pieces, and the partition wall of the heat storage tank is filled with the solid heat storage material. The phase change heat storage material is provided with a communication hole that allows passage of the liquid phase of the phase change heat storage material so that the inner tank and the outer tank communicate with each other. It is set as the structure filled with the clearance gap between the small pieces of the said solid heat storage material by moving to an outer tank through this communicating hole.

更に、請求項3に対応して、前記請求項1に対応する構成において、蓄熱槽の外槽には、固体蓄熱材を小片の状態で充填し、前記外槽における前記固体蓄熱材の小片同士の隙間に、溶融塩蓄熱材を満たした構成とする。   Furthermore, corresponding to claim 3, in the configuration corresponding to claim 1, the outer tank of the heat storage tank is filled with a solid heat storage material in the form of small pieces, and the pieces of the solid heat storage material in the outer tank are filled with each other. The gap is filled with a molten salt heat storage material.

本発明の蓄熱システムによれば、以下のような優れた効果を発揮する。
(1)相変化用蓄熱材の蓄熱温度範囲における固液の相変化の潜熱と、固体蓄熱材の顕熱の双方を利用して蓄熱を行うことで、蓄熱槽の単位体積当たりの蓄熱量の向上化を図ることができる。
(2)蓄熱槽では、蓄熱のための加熱を行う加熱手段、及び、熱を取り出すための伝熱管を、該蓄熱槽全体に分布させる必要をなくすことができる。よって、前記加熱手段及び伝熱管の構成を小さくできて、構造の簡略化を図ることができる。
According to the heat storage system of the present invention, the following excellent effects are exhibited.
(1) By storing heat using both the latent heat of the solid-liquid phase change in the heat storage temperature range of the phase change heat storage material and the sensible heat of the solid heat storage material, the amount of heat storage per unit volume of the heat storage tank Improvement can be achieved.
(2) In the heat storage tank, it is possible to eliminate the need to distribute the heating means for heating for heat storage and the heat transfer tube for taking out heat throughout the heat storage tank. Therefore, the structure of the heating means and the heat transfer tube can be reduced, and the structure can be simplified.

本発明の蓄熱システムの実施の一形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows one Embodiment of the thermal storage system of this invention. 本発明の実施の他の形態を示す概略切断側面図である。It is a general | schematic cutting side view which shows the other form of implementation of this invention. 本発明の実施の更に他の形態を示す概略切断側面図である。It is a general | schematic cutaway side view which shows other form of implementation of this invention.

以下、本発明を実施するための形態を図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は本発明の蓄熱システムの実施の一形態を示すものである。   FIG. 1 shows one embodiment of the heat storage system of the present invention.

本発明の蓄熱システム1で用いる蓄熱槽2は、槽内の外周寄り位置に、周方向に延びる隔壁3を備えて、該隔壁3によって仕切られた内側の領域を内槽4とし、外側の領域を外槽5とした構成としてある。   The heat storage tank 2 used in the heat storage system 1 of the present invention includes a partition wall 3 extending in the circumferential direction at a position near the outer periphery in the tank, and an inner region partitioned by the partition wall 3 is an inner tank 4, and an outer region. Is configured as an outer tub 5.

前記内槽4には、予め設定される蓄熱温度範囲(Tmin<T<Tmax)において固相と液相との間で相変化を生じ、且つ固相の密度が液相の密度よりも大となる相変化用蓄熱材6が充填されている。図1では、前記相変化用蓄熱材6の固相には、ハッチングを付して示してある。なお、この相変化用蓄熱材6の詳細については後述する。 In the inner tank 4, a phase change occurs between a solid phase and a liquid phase in a preset heat storage temperature range (T min <T <T max ), and the density of the solid phase is higher than the density of the liquid phase. A large phase change heat storage material 6 is filled. In FIG. 1, the solid phase of the phase change heat storage material 6 is hatched. The details of the phase change heat storage material 6 will be described later.

前記外槽5には、前記蓄熱温度範囲(Tmin<T<Tmax)で常時固相となる固体蓄熱材7が、小片の状態で充填されている。前記固体蓄熱材7としては、たとえば、マグネシアを用いるようにすればよい。これにより、前記外槽5には、前記固体蓄熱材7の顕熱を利用した蓄熱を行うと共に、該固体蓄熱材7の比熱の大きさを利用して前記内槽4の保温を行うための蓄熱兼保温層8を形成させる。 The outer tub 5 is filled with a solid heat storage material 7 that is always in a solid phase in the heat storage temperature range (T min <T <T max ) in a small piece. For example, magnesia may be used as the solid heat storage material 7. Thereby, in the said outer tank 5, while performing the thermal storage using the sensible heat of the said solid heat storage material 7, the heat retention of the said inner tank 4 using the magnitude | size of the specific heat of this solid heat storage material 7 is performed. The heat storage and heat retaining layer 8 is formed.

前記隔壁3には、内外方向に貫通して前記内槽4と外槽5とを連通させる複数の連通孔9が、上下方向及び周方向に配列して設けられている。この連通孔9のサイズは、前記固体蓄熱材7の小片のサイズよりも小さく設定して、前記相変化用蓄熱材6の液相の通過は許容する一方、前記固体蓄熱材7の通過は阻止するようにしてある。   The partition wall 3 is provided with a plurality of communication holes 9 penetrating in the inner and outer directions to communicate the inner tub 4 and the outer tub 5 in the vertical and circumferential directions. The size of the communication hole 9 is set to be smaller than the size of the small piece of the solid heat storage material 7 and allows the liquid phase of the phase change heat storage material 6 to pass while blocking the passage of the solid heat storage material 7. I have to do it.

これにより、前記蓄熱槽2では、前記内槽4に充填された相変化用蓄熱材6の液相の一部が、前記隔壁3の連通孔9を通過して外槽5に移動する。このため、前記外槽5では、充填されている前記固体蓄熱材7の小片同士の隙間に、前記相変化用蓄熱材6の液相が満たされる。この状態の固体蓄熱材7では、小片同士の隙間に前記相変化用蓄熱材6の液相が存在することにより、該小片同士の間の熱抵抗が低減される。   Thereby, in the heat storage tank 2, a part of the liquid phase of the phase change heat storage material 6 filled in the inner tank 4 passes through the communication hole 9 of the partition wall 3 and moves to the outer tank 5. For this reason, in the outer tub 5, the liquid phase of the phase change heat storage material 6 is filled in the gaps between the filled pieces of the solid heat storage material 7. In the solid heat storage material 7 in this state, since the liquid phase of the phase change heat storage material 6 exists in the gap between the small pieces, the thermal resistance between the small pieces is reduced.

更に、前記蓄熱槽2では、前記相変化用蓄熱材6の一部が、前記外槽5内の固体蓄熱材7に直接接しているため、前記相変化用蓄熱材6と固体蓄熱材7との相互の熱伝達の効率は高いものとなる。   Furthermore, in the heat storage tank 2, since a part of the phase change heat storage material 6 is in direct contact with the solid heat storage material 7 in the outer tank 5, the phase change heat storage material 6 and the solid heat storage material 7 The mutual heat transfer efficiency is high.

前記蓄熱槽2の下端部には、蓄熱のための加熱を行うための板状の加熱手段として、ホットプレート10が、内槽4及び外槽5の下方に一連に設けられている。   At the lower end of the heat storage tank 2, a hot plate 10 is provided in series below the inner tank 4 and the outer tank 5 as plate-like heating means for performing heat storage.

このホットプレート10は、前記内槽4の内底面、及び、外槽5の内底面をフラットな面として形成するためのプレート部材11と、該プレート部材11の下側に設けた加熱手段とから構成されている。   The hot plate 10 includes a plate member 11 for forming the inner bottom surface of the inner tub 4 and the inner bottom surface of the outer tub 5 as flat surfaces, and heating means provided below the plate member 11. It is configured.

前記プレート部材11を備える構成とするのは、蓄熱槽2の温度低下時に前記内槽4内で生じて沈降する相変化用蓄熱材6の固相を、前記プレート部材11の上側に分散させて堆積させ、この堆積物の荷重を、前記プレート部材11の面で分散して受けることが好ましいためである。   The plate member 11 is configured to disperse the solid phase of the phase change heat storage material 6 that is generated and settles in the inner tank 4 when the temperature of the heat storage tank 2 is lowered, on the upper side of the plate member 11. This is because it is preferable to deposit and to receive the load of the deposit distributed on the surface of the plate member 11.

前記ホットプレート10の加熱手段は、たとえば、前記プレート部材11の下側に、加熱用熱媒13を流通させる熱媒流路12を設けた構成としてある。この熱媒流路12は、前記加熱用熱媒13の有する熱により前記プレート部材11の全面をできるだけ均等に加熱できるように、該プレート部材11の面内での加熱用熱媒13の流通経路の配置、形状、流路断面積等を適宜設定してよいことは勿論である。なお、図1では、図示する便宜上、前記熱媒流路12における加熱用熱媒13の流通経路は簡略化した記載としてある。   The heating means of the hot plate 10 has a configuration in which, for example, a heat medium flow path 12 through which the heating heat medium 13 is circulated is provided below the plate member 11. The heat medium flow path 12 is a flow path of the heating medium 13 in the plane of the plate member 11 so that the entire surface of the plate member 11 can be heated as uniformly as possible by the heat of the heating medium 13. Of course, the arrangement, shape, cross-sectional area of the flow path, etc. may be set as appropriate. In FIG. 1, for convenience of illustration, the flow path of the heating heat medium 13 in the heat medium flow path 12 is simplified.

前記熱媒流路12の上流側端部には、外部の図示しない加熱用熱媒供給手段より加熱用熱媒13を導くための加熱用熱媒供給ライン14が接続されている。又、前記熱媒流路12の下流側端部には、該熱媒流路12を流通した後の加熱用熱媒13を、前記加熱用熱媒供給手段へ戻すための加熱用熱媒戻しライン15が接続されている。更に、前記加熱用熱媒供給手段は、太陽熱発電の集熱部のような熱源(図示せず)の熱を前記加熱用熱媒13に与えて加熱するための熱交換部を備えているものとする。   A heating heat medium supply line 14 is connected to the upstream end of the heat medium flow path 12 for guiding the heating heat medium 13 from an external heating medium supply means (not shown). A heating heat medium return for returning the heating heat medium 13 after flowing through the heat medium flow path 12 to the heating heat medium supply means is provided at the downstream end of the heat medium flow path 12. Line 15 is connected. Further, the heating medium supply means includes a heat exchanging unit for supplying the heating medium 13 with heat from a heat source (not shown) such as a heat collecting unit of solar thermal power generation for heating. And

前記加熱用熱媒13は、前記蓄熱温度範囲(Tmin<T<Tmax)の全域、更には、それよりもやや高い温度域まで液相となる熱媒を選定して用いるか、あるいは、スチームを用いるようにすればよい。 For the heating heat medium 13, a heat medium that is in a liquid phase is selected and used over the entire heat storage temperature range (T min <T <T max ), or even a slightly higher temperature range, or Steam should be used.

これにより、前記ホットプレート10の熱媒流路12には、前記加熱用熱媒供給手段より、加熱された加熱用熱媒13を循環供給することができる。したがって、前記ホットプレート10では、加熱された状態で前記熱媒流路12に順次供給される前記加熱用熱媒13の有する熱により前記プレート部材11を介して、前記内槽4内の相変化用蓄熱材6と、前記外槽5内の固体蓄熱材7及び相変化用蓄熱材6とを、下方から加熱することができるようにしてある。   Thereby, the heated heating medium 13 can be circulated and supplied to the heating medium flow path 12 of the hot plate 10 from the heating medium supplying means. Therefore, in the hot plate 10, the phase change in the inner tub 4 is performed via the plate member 11 by the heat of the heating medium 13 that is sequentially supplied to the heating medium flow path 12 in a heated state. The heat storage material 6 and the solid heat storage material 7 and the phase change heat storage material 6 in the outer tub 5 can be heated from below.

前記内槽4内の上部位置には、熱取出用の伝熱管16が、前記相変化用蓄熱材6に没入する配置で設けられている。前記伝熱管16は、図示しない支持部材を介して、前記内槽4の壁面や蓄熱槽2の天井部より支持されているものとする。   At the upper position in the inner tank 4, a heat transfer tube 16 for heat extraction is provided so as to be immersed in the phase change heat storage material 6. It is assumed that the heat transfer tube 16 is supported from the wall surface of the inner tank 4 or the ceiling portion of the heat storage tank 2 through a support member (not shown).

前記伝熱管16における前記相変化用蓄熱材6に接する表面(外面)は、ガラスにより構成されていることが望ましい。かかる構成としてある伝熱管16によれば、後述するように該伝熱管16の周囲で凝固して生じる前記相変化用蓄熱材6の固相が、該伝熱管16の表面に付着することを抑制できる。   The surface (outer surface) in contact with the phase change heat storage material 6 in the heat transfer tube 16 is preferably made of glass. According to the heat transfer tube 16 having such a configuration, the solid phase of the heat storage material for phase change 6 generated by solidifying around the heat transfer tube 16 is prevented from adhering to the surface of the heat transfer tube 16 as will be described later. it can.

前記伝熱管16の上流側端部には、外部の図示しない熱取出用熱媒供給手段より熱取出用熱媒17を導くための熱取出用熱媒供給ライン18が接続されている。又、前記伝熱管16の下流側端部には、該伝熱管16を流通した後の熱取出用熱媒17を、前記熱取出用熱媒供給手段へ戻すための熱取出用熱媒戻しライン19が接続されている。更に、前記熱取出用熱媒供給手段は、前記熱取出用熱媒17の有する熱を、所望の熱負荷(図示せず)へ与えるための熱交換部を備えているものとする。   A heat extraction heat medium supply line 18 for guiding the heat extraction heat medium 17 from an external heat extraction heat medium supply means (not shown) is connected to the upstream end of the heat transfer tube 16. A heat extraction heat medium return line for returning the heat extraction heat medium 17 after flowing through the heat transfer pipe 16 to the heat extraction heat medium supply means is provided at the downstream end of the heat transfer pipe 16. 19 is connected. Furthermore, the heat extraction heat medium supply means includes a heat exchanging section for applying the heat of the heat extraction heat medium 17 to a desired heat load (not shown).

これにより、前記伝熱管16には、前記熱取出用熱媒供給手段より熱取出用熱媒17を循環供給することができる。したがって、前記伝熱管16内を流通する熱取出用熱媒17は、該伝熱管16の周囲に存在している前記相変化用蓄熱材6との熱交換により順次加熱されるようになり、この加熱状態で前記熱取出用熱媒供給手段に回収される前記熱取出用熱媒17の保有する熱が、前記熱負荷へ与えられるようにしてある。   Thus, the heat extraction heat medium 17 can be circulated and supplied to the heat transfer tube 16 from the heat extraction heat medium supply means. Therefore, the heat extraction heat medium 17 that flows through the heat transfer tube 16 is sequentially heated by heat exchange with the phase change heat storage material 6 existing around the heat transfer tube 16, Heat held by the heat extraction heat medium 17 recovered by the heat extraction heat medium supply means in a heated state is applied to the heat load.

前記のように、伝熱管16内を流通する熱取出用熱媒17が、該伝熱管16の周囲に存在している相変化用蓄熱材6との熱交換により加熱されるときには、前記伝熱管16の周囲に存在している相変化用蓄熱材6は、相対的に温度低下する。この相変化用蓄熱材6の温度低下が、液相と固相との相変化温度で生じると、図1に示すように、前記伝熱管16の周囲では、前記相変化用蓄熱材6が液相より凝固して固相が生じる。この相変化用蓄熱材6の固相は、液相よりも密度が大きいために、該液相中を沈降するようになる。   As described above, when the heat extraction heat medium 17 flowing in the heat transfer tube 16 is heated by heat exchange with the phase change heat storage material 6 existing around the heat transfer tube 16, the heat transfer tube The temperature of the phase change heat storage material 6 existing around 16 is relatively lowered. When the temperature drop of the phase change heat storage material 6 occurs at the phase change temperature between the liquid phase and the solid phase, the phase change heat storage material 6 is liquid around the heat transfer tube 16 as shown in FIG. Solidifies from the phase to form a solid phase. The solid phase of the phase change heat storage material 6 has a higher density than the liquid phase, and therefore settles in the liquid phase.

前記内槽4内では、その上部位置にのみ前記伝熱管16を設けた構成としてあるので、該伝熱管16の周囲に温度低下した前記相変化用蓄熱材6の固相が生じても、該固相は沈降して、前記内槽4の底部に設けてある前記ホットプレート10の上側に堆積される。   In the inner tank 4, the heat transfer tube 16 is provided only at the upper position thereof, so that even if a solid phase of the phase change heat storage material 6 having a lowered temperature is generated around the heat transfer tube 16, The solid phase settles and is deposited on the upper side of the hot plate 10 provided at the bottom of the inner tank 4.

したがって、前記内槽4内では、前記伝熱管16の周囲に前記相変化用蓄熱材6の固相が留まることはなく、該伝熱管16の周囲には、前記相変化温度よりも高い温度を有する相変化用蓄熱材6の液相が継続的に供給されるようになる。このため、前記相変化用蓄熱材6と、前記伝熱管16内を流通させる熱取出用熱媒17との間の熱伝達の効率が低下することを抑制することができる。   Therefore, in the inner tank 4, the solid phase of the phase change heat storage material 6 does not stay around the heat transfer tube 16, and the heat transfer tube 16 has a temperature higher than the phase change temperature. The liquid phase of the phase change heat storage material 6 is continuously supplied. For this reason, it can suppress that the efficiency of the heat transfer between the said heat | fever storage material 6 for phase changes and the heat-extraction heat medium 17 which distribute | circulates the inside of the said heat exchanger tube 16 falls.

前記隔壁3には、該隔壁3の温度を上昇させるための隔壁用ヒータ20が設けられている。   The partition wall 3 is provided with a partition wall heater 20 for raising the temperature of the partition wall 3.

前記隔壁用ヒータ20は、前記隔壁3における連通孔9と干渉しない個所の外周面、又は、内周面に、該隔壁3の上下方向の全長に亘り延びるよう取り付けられている。なお、図1では、前記隔壁3の外周面に、前記隔壁用ヒータ20を設けた構成が示してある。   The partition heater 20 is attached to the outer peripheral surface or inner peripheral surface of the partition 3 where it does not interfere with the communication hole 9 so as to extend over the entire length of the partition 3 in the vertical direction. FIG. 1 shows a configuration in which the partition wall heater 20 is provided on the outer peripheral surface of the partition wall 3.

又、前記隔壁用ヒータ20は、たとえば、電気ヒータを用いるようにすればよい。あるいは、前記隔壁用ヒータ20は、前記ホットプレート10と同様に、スチームやその他の液相の熱媒を流通させる熱媒流路を備えた構成のヒータとしてもよい。   The partition wall heater 20 may be an electric heater, for example. Alternatively, similarly to the hot plate 10, the partition wall heater 20 may be a heater having a heat medium flow path for circulating steam or other liquid phase heat medium.

更に、前記隔壁用ヒータ20は、前記ホットプレート10による内槽4及び外槽5の加熱時、すなわち、蓄熱槽2への蓄熱時に、該隔壁用ヒータ20による隔壁3の加熱も同期して行われるように制御されるものとしてある。   Further, the partition wall heater 20 performs the heating of the partition wall 3 by the partition wall heater 20 in synchronism with the heating of the inner tank 4 and the outer tank 5 by the hot plate 10, that is, when the heat storage tank 2 stores heat. To be controlled.

前記隔壁用ヒータ20による前記隔壁3の加熱温度は、前記相変化用蓄熱材6が液相になる温度に設定してあるものとする。   The heating temperature of the partition wall 3 by the partition wall heater 20 is set to a temperature at which the phase change heat storage material 6 becomes a liquid phase.

これにより、前記ホットプレート10による内槽4の加熱時には、該内槽4内にて前記ホットプレート10の上側に堆積している前記相変化用蓄熱材6の固相が、下方から加熱されて、先ず、該ホットプレート10の上面に接している部分から溶融して液相となる。   Thereby, when the inner tank 4 is heated by the hot plate 10, the solid phase of the heat storage material for phase change 6 deposited on the upper side of the hot plate 10 in the inner tank 4 is heated from below. First, the liquid phase is melted from the portion in contact with the upper surface of the hot plate 10.

このとき、前記隔壁用ヒータ20を同時に運転することにより、前記内槽4内では、隔壁3の内周面近傍に存在している相変化用蓄熱材6の固相を溶融させて、液相にさせることができる。このため、前記ホットプレート10上の相変化用蓄熱材6の固相の堆積物は、前記隔壁3の内周面への固着が解消される。更に、前記ホットプレート10の上面に接している部分で生じる前記相変化用蓄熱材6の液相は、該隔壁3の内周面に沿う位置で流動させて、前記相変化用蓄熱材6の固相の堆積物の上方へ移動させることができる。   At this time, by operating the partition heater 20 at the same time, the solid phase of the phase change heat storage material 6 existing in the vicinity of the inner peripheral surface of the partition wall 3 is melted in the inner tub 4 to form a liquid phase. Can be made. For this reason, the solid phase deposit of the phase change heat storage material 6 on the hot plate 10 is prevented from sticking to the inner peripheral surface of the partition wall 3. Further, the liquid phase of the phase change heat storage material 6 generated at the portion in contact with the upper surface of the hot plate 10 is caused to flow at a position along the inner peripheral surface of the partition wall 3, so that the phase change heat storage material 6 It can be moved above the solid deposit.

その結果、前記内槽4内では、相変化用蓄熱材6の固相の堆積物を、自重により前記ホットプレート10の上面に押し付けることができ、その際、該ホットプレート10の上面と前記堆積物との間に形成される相変化用蓄熱材6の液相の層を薄くすることができる。これにより、前記ホットプレート10から前記相変化用蓄熱材6の固相への熱伝達の効率を高めることができるようにしてある。   As a result, in the inner tank 4, the solid phase deposit of the phase change heat storage material 6 can be pressed against the upper surface of the hot plate 10 by its own weight. The liquid phase layer of the phase change heat storage material 6 formed between the objects can be thinned. As a result, the efficiency of heat transfer from the hot plate 10 to the solid phase of the phase change heat storage material 6 can be increased.

又、前記ホットプレート10による外槽5の加熱時には、該外槽5内の固体蓄熱材7及び相変化用蓄熱材6は、前記ホットプレート10に近い下端寄りに存在するものから温度が上昇するようになり、外槽5内に相変化用蓄熱材6の固相が存在していた場合は、その溶融が下方側から生じるようになる。   Further, when the outer tub 5 is heated by the hot plate 10, the temperature of the solid heat storage material 7 and the phase change heat storage material 6 in the outer tub 5 rises from those present near the lower end close to the hot plate 10. Thus, when the solid phase of the heat storage material 6 for phase change exists in the outer tub 5, the melting occurs from the lower side.

このとき、前記隔壁用ヒータ20を同時に運転することにより、前記内槽4内と同様に、外槽5内では、隔壁3の外周面近傍に存在している相変化用蓄熱材6の固相を溶融させて、液相にさせることができる。このため、前記外槽5内の下方側での相変化用蓄熱材6の固相の溶融によって生じる液相は、前記隔壁3の外周面に沿う位置で流動させて、上方へ移動させることができ、更には、前記隔壁3の連通孔9を通して内槽4内へ移動させることもできる。   At this time, by operating the partition heater 20 simultaneously, the solid phase of the phase change heat storage material 6 existing in the vicinity of the outer peripheral surface of the partition wall 3 in the outer tank 5 as in the inner tank 4. Can be melted into a liquid phase. For this reason, the liquid phase produced by melting of the solid phase of the phase change heat storage material 6 on the lower side in the outer tub 5 is allowed to flow at a position along the outer peripheral surface of the partition wall 3 and be moved upward. Further, it can be moved into the inner tank 4 through the communication hole 9 of the partition wall 3.

このため、前記外槽5に充填された固体蓄熱材7の小片同士の隙間に存在している前記相変化用蓄熱材6に、固相から液相への相変化に伴って体積膨張が生じるとしても、その体積変化分は、前記相変化用蓄熱材6の液相の流動(移動)によって容易に吸収させることができる。したがって、前記外槽5内の固体蓄熱材7及び相変化用蓄熱材6の加熱時に、前記蓄熱槽2や隔壁3に対して局所的に過大な圧力が作用する虞は、防止できるようにしてある。   For this reason, in the phase change heat storage material 6 existing in the gap between the small pieces of the solid heat storage material 7 filled in the outer tub 5, volume expansion occurs with the phase change from the solid phase to the liquid phase. Even so, the volume change can be easily absorbed by the flow (movement) of the liquid phase of the phase change heat storage material 6. Therefore, when the solid heat storage material 7 and the phase change heat storage material 6 in the outer tank 5 are heated, the possibility that an excessively large pressure acts locally on the heat storage tank 2 and the partition wall 3 can be prevented. is there.

更に、不測の事態により、万一、蓄熱槽2全体が、前記蓄熱温度範囲(Tmin<T<Tmax)よりも温度低下して、前記内槽4内、及び、外槽5内に充填されている相変化用蓄熱材6がすべて固相になった場合には、前記隔壁用ヒータ20を運転することにより、前記相変化用蓄熱材6を上下方向の全体的に溶融させながら、前記蓄熱槽2内を昇温させて、前記蓄熱温度範囲まで復帰させることができるようにしてある。 Furthermore, due to unforeseen circumstances, the entire heat storage tank 2 is filled in the inner tank 4 and the outer tank 5 by lowering the temperature below the heat storage temperature range (T min <T <T max ). When all of the phase change heat storage materials 6 are in a solid phase, the phase change heat storage material 6 is melted in the vertical direction by operating the partition heater 20, The temperature inside the heat storage tank 2 is raised so that it can be returned to the heat storage temperature range.

ここで、前記相変化用蓄熱材6について説明する。   Here, the phase change heat storage material 6 will be described.

前記内槽4内の相変化用蓄熱材6の保有する熱を、前記伝熱管16を流通させる熱取出用熱媒17を用いて取り出す際、前記伝熱管16の周囲で凝固する相変化用蓄熱材6の固相が、前記伝熱管16の表面に付着すると、前記相変化用蓄熱材6の固相が沈降せず、伝熱効率の低下につながる。   Phase change heat storage that solidifies around the heat transfer tube 16 when the heat of the phase change heat storage material 6 in the inner tank 4 is taken out using the heat extraction heat medium 17 that circulates the heat transfer tube 16. When the solid phase of the material 6 adheres to the surface of the heat transfer tube 16, the solid phase of the phase change heat storage material 6 does not settle, leading to a decrease in heat transfer efficiency.

本発明者等が実施した研究の結果、前記伝熱管16の表面へ相変化用蓄熱材6の固相が付着しにくくなるようにするためには、相変化用蓄熱材6としては、前記蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminにおいて固液共存状態となる非共晶組成の2成分混合塩からなるものを用いることが有利であるという知見が得られている。 As a result of research conducted by the present inventors, in order to make it difficult for the solid phase of the phase change heat storage material 6 to adhere to the surface of the heat transfer tube 16, the heat storage material for phase change 6 is the heat storage material. It has been found that it is advantageous to use a non-eutectic composition binary mixed salt that is in a solid-liquid coexistence state at the minimum heat storage temperature T min in the temperature range (T min <T <T max ). .

たとえば、太陽熱発電等の高温のシステムに適用することを想定する場合、蓄熱システムに所望される蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminは150℃以上、好ましくは200℃以上となる。 For example, when assuming application to a high-temperature system such as solar thermal power generation, the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) desired for the heat storage system is 150 ° C. or higher, preferably 200 ℃ or more.

そこで、一例として、本発明の蓄熱システム1における蓄熱温度範囲(Tmin<T<Tmax)は、蓄熱最高温度Tmaxが400℃、蓄熱最低温度Tminが250℃に設定されるものとする。 Therefore, as an example, the heat storage temperature range (T min <T <T max ) in the heat storage system 1 of the present invention is set such that the maximum heat storage temperature T max is 400 ° C. and the minimum heat storage temperature T min is 250 ° C. .

この条件に好適な相変化用蓄熱材6としては、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、たとえば、硝酸カリウム(KNO)と硝酸ナトリウム(NaNO)とを、非共晶となる組成で混合した2成分混合塩がある。 As the phase change heat storage material 6 suitable for this condition, for example, potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) among the combinations of binary mixed salts shown in Patent Document 1 are used. There is a binary mixed salt mixed with a composition that is non-eutectic.

前記硝酸カリウムと硝酸ナトリウムの混合物では、硝酸ナトリウムのモル分率が0.49となる組成で共晶となるので、この共晶となる組成以外の組成とし、且つ、前記蓄熱最低温度Tminである250℃において固液共存状態となるようにする。具体的な組成例としては、硝酸ナトリウムのモル分率が0.786(質量分率が0.755)となる組成のものを、前記相変化用蓄熱材6として用いることができる。 The mixture of potassium nitrate and sodium nitrate becomes a eutectic with a composition in which the molar fraction of sodium nitrate is 0.49. Therefore, a composition other than this eutectic is used, and the minimum heat storage temperature Tmin . A solid-liquid coexistence state is established at 250 ° C. As a specific composition example, a composition having a sodium nitrate molar fraction of 0.786 (mass fraction of 0.755) can be used as the phase change heat storage material 6.

又、前記相変化用蓄熱材6としては、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、CsNOとNaNOの混合物、LiNOとNaNOの混合物、NaNOとRbNOの混合物を用いることも可能である。 Further, as the phase change heat storage material 6, of the combination of the mixed salts of two-component systems the disclosed in Patent Document 1, a mixture of CsNO 3 and NaNO 3, mixture of LiNO 3 and NaNO 3, NaNO 3 It is also possible to use a mixture of RbNO 3 .

前記CsNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.902(質量分率を0.801)とし、前記LiNOとNaNOの混合物を用いる場合は、NaNOのモル分率を0.877(質量分率を0.898)とし、NaNOとRbNOの混合物を用いる場合は、RbNOのモル分率を0.105(質量分率を0.169)とすることにより、前記蓄熱最低温度Tminである250℃において固液共存状態とすることができる。 When the mixture of CsNO 3 and NaNO 3 is used, the molar fraction of NaNO 3 is 0.902 (mass fraction is 0.801), and when the mixture of LiNO 3 and NaNO 3 is used, NaNO 3 When the molar fraction is 0.877 (mass fraction is 0.898) and a mixture of NaNO 3 and RbNO 3 is used, the molar fraction of RbNO 3 is 0.105 (mass fraction is 0.169). By doing so, a solid-liquid coexistence state can be obtained at 250 ° C., which is the minimum heat storage temperature T min .

更に、前記蓄熱温度範囲(Tmin<T<Tmax)の蓄熱最低温度Tminが280℃に設定される場合には、前記相変化用蓄熱材6として、前記特許文献1に示されている2成分系の混合塩の組み合わせのうち、LiBrとNaNOの混合物を用いることが可能である。この場合は、NaNOのモル分率を0.964(質量分率を0.963)とすることにより、前記蓄熱最低温度Tminである280℃において固液共存状態とすることができる。 Furthermore, when the minimum heat storage temperature T min in the heat storage temperature range (T min <T <T max ) is set to 280 ° C., the phase change heat storage material 6 is shown in Patent Document 1. Among combinations of binary mixed salts, it is possible to use a mixture of LiBr and NaNO 3 . In this case, by setting the molar fraction of NaNO 3 to 0.964 (mass fraction of 0.963), a solid-liquid coexistence state can be achieved at 280 ° C., which is the lowest heat storage temperature T min .

前記のような非共晶組成の2成分混合塩を相変化用蓄熱材6として用いると、前記伝熱管16の周囲で凝固して生じた該相変化用蓄熱材6の固相は、冷却面である前記伝熱管16の表面に強く付着せず、容易にはがれ落ちるようになる。   When a binary mixed salt having a non-eutectic composition as described above is used as the phase change heat storage material 6, the solid phase of the phase change heat storage material 6 generated by solidifying around the heat transfer tube 16 is the cooling surface. It does not adhere strongly to the surface of the heat transfer tube 16 and is easily peeled off.

これは、凝固しはじめる際に冷却面付近の固相率が局所的に大きくなるため、融点が比較的低い液相を形成している溶融塩が、冷却面と固相との間に入り込みながら凝固が進行するためであると考えられ、非共晶の溶融塩の固液共存領域が温度幅をもって存在することに起因すると考えられる。   This is because the solid fraction near the cooling surface increases locally when it begins to solidify, so that the molten salt forming a liquid phase with a relatively low melting point enters between the cooling surface and the solid phase. This is thought to be due to the progress of solidification, and is attributed to the existence of a solid-liquid coexistence region of non-eutectic molten salt with a temperature range.

したがって、本発明の蓄熱システム1は、前記内槽4内にて、前記相変化用蓄熱材6が液相の状態から徐々に固相が増加するように、すなわち、徐々に温度を低下させるように制御を行うことで、固相となった相変化用蓄熱材6が前記伝熱管16の表面に密着してしまうことを、抑制することが可能になる。   Therefore, in the heat storage system 1 of the present invention, the phase change heat storage material 6 is gradually increased from the liquid phase state in the inner tank 4, that is, the temperature is gradually decreased. It is possible to suppress the phase change heat storage material 6 that has become a solid phase from being in close contact with the surface of the heat transfer tube 16 by performing the control.

以上の構成としてある本発明の蓄熱システム1を使用して蓄熱を行う場合は、前記加熱用熱媒供給手段より加熱用熱媒供給ライン14を通して加熱状態で供給される加熱用熱媒13を、前記ホットプレート10の熱媒流路12に連続供給する。これにより、前記ホットプレート10が加熱されるため、この加熱されたホットプレート10により、前記内槽4内の相変化用蓄熱材6と、外槽5内の固体蓄熱材7及び相変化用蓄熱材6の下方からの加熱を行わせる。   When heat storage is performed using the heat storage system 1 of the present invention having the above-described configuration, the heating heat medium 13 supplied in a heated state through the heating heat medium supply line 14 from the heating heat medium supply means, Continuously supplied to the heat medium flow path 12 of the hot plate 10. Thereby, since the hot plate 10 is heated, the heated hot plate 10 causes the phase change heat storage material 6 in the inner tank 4, the solid heat storage material 7 and the phase change heat storage in the outer tank 5. The material 6 is heated from below.

この際、前述したように、本発明の蓄熱システム1では、前記ホットプレート10から前記相変化用蓄熱材6の固相への熱伝達の効率が高いことから、該相変化用蓄熱材6の加熱を効率よく行うことができる。この相変化用蓄熱材6に加えられた熱は、該相変化用蓄熱材6が固相から液相へ相変化する際の潜熱として、又、該相変化用蓄熱材6の温度が上昇するときの顕熱として吸収させることができる。   At this time, as described above, in the heat storage system 1 of the present invention, the efficiency of heat transfer from the hot plate 10 to the solid phase of the phase change heat storage material 6 is high. Heating can be performed efficiently. The heat applied to the phase change heat storage material 6 is used as latent heat when the phase change heat storage material 6 undergoes a phase change from a solid phase to a liquid phase, and the temperature of the phase change heat storage material 6 increases. It can be absorbed as sensible heat.

更に、外槽5内の固体蓄熱材7は、該外槽5の下方に設けてある前記ホットプレート10により直接加熱することができるため、該固体蓄熱材7の加熱も効率よく行うことができる。この固体蓄熱材7に加えられた熱は、該固体蓄熱材7が温度上昇するときの顕熱として吸収させることができる。   Furthermore, since the solid heat storage material 7 in the outer tub 5 can be directly heated by the hot plate 10 provided below the outer tub 5, the solid heat storage material 7 can also be efficiently heated. . The heat applied to the solid heat storage material 7 can be absorbed as sensible heat when the temperature of the solid heat storage material 7 rises.

したがって、本発明の蓄熱システム1は、相変化用蓄熱材6のみを用いる形式の従来の蓄熱システムに比して、蓄熱密度を増加させることができると共に、蓄熱槽2における単位体積当たりの蓄熱量を高いものとすることができる。   Therefore, the heat storage system 1 of the present invention can increase the heat storage density and the amount of heat stored per unit volume in the heat storage tank 2 as compared with the conventional heat storage system using only the phase change heat storage material 6. Can be high.

本発明の蓄熱システム1は、前記内槽4内の相変化用蓄熱材6と、外槽5内の固体蓄熱材7及び相変化用蓄熱材6に対して前記ホットプレート10より与えられる熱が、予め設定されている或る目標蓄熱量に達すると、前記加熱用熱媒供給手段より前記ホットプレート10への加熱用熱媒13の供給を停止させる。   In the heat storage system 1 of the present invention, the heat applied from the hot plate 10 to the phase change heat storage material 6 in the inner tub 4, the solid heat storage material 7 and the phase change heat storage material 6 in the outer tub 5 is provided. When a predetermined target heat storage amount is reached, supply of the heating heat medium 13 to the hot plate 10 is stopped from the heating medium supply means.

この状態で、本発明の蓄熱システム1では、前記内槽4内の相変化用蓄熱材6と、外槽5内の固体蓄熱材7及び相変化用蓄熱材6の熱が保持される。   In this state, in the heat storage system 1 of the present invention, the heat of the phase change heat storage material 6 in the inner tub 4, the solid heat storage material 7 and the phase change heat storage material 6 in the outer tub 5 is retained.

この際、本発明の蓄熱システム1では、前記相変化用蓄熱材6が充填された内槽4の外側に、周方向の全体を取り巻く外槽5を設けて、大きな比熱を有する固体蓄熱材7を充填した構成としてあるため、前記固体蓄熱材7の充填された外槽5は、前記した蓄熱を行う機能に加えて、前記内槽4内の相変化用蓄熱材6から外部への熱の放出を抑える蓄熱兼保温層8としての機能を果たすようになる。   At this time, in the heat storage system 1 of the present invention, the outer tank 5 surrounding the entire circumferential direction is provided outside the inner tank 4 filled with the phase change heat storage material 6, and the solid heat storage material 7 having a large specific heat. Therefore, the outer tub 5 filled with the solid heat storage material 7 has the function of performing the heat storage described above, and the heat from the phase change heat storage material 6 in the inner tub 4 to the outside. The function as the heat storage and heat retaining layer 8 for suppressing the release is achieved.

よって、本発明の蓄熱システム1は、前記相変化用蓄熱材6の保温性能が高いものとなる。   Therefore, the heat storage system 1 of the present invention has a high heat retention performance of the phase change heat storage material 6.

本発明の蓄熱システム1より、蓄熱されている熱を取り出す場合は、前記熱取出用熱媒供給手段より熱取出用熱媒供給ライン18を通して供給される熱取出用熱媒17を、前記伝熱管16に連続供給して、該伝熱管16内を流通させる。これにより、前記熱取出用熱媒17は、前記伝熱管16を流通する間に、該伝熱管16の周囲に存在する相変化用蓄熱材6との熱交換により加熱されるので、この加熱された状態で外部に取り出される熱取出用熱媒17より熱を回収し、その回収した熱を、所望の熱負荷へ与えるようにする。   When taking out the stored heat from the heat storage system 1 of the present invention, the heat extraction heat medium 17 supplied through the heat extraction heat medium supply line 18 from the heat extraction heat medium supply means is used as the heat transfer tube. 16 is continuously supplied to flow through the heat transfer tube 16. As a result, the heat extraction heat medium 17 is heated by heat exchange with the phase change heat storage material 6 existing around the heat transfer tube 16 while flowing through the heat transfer tube 16, and thus is heated. Then, heat is recovered from the heat extraction heat medium 17 taken out in the state, and the recovered heat is applied to a desired heat load.

この際、前記したように、前記伝熱管16の周囲で凝固して生じる前記相変化用蓄熱材6の固相は、前記内槽4内で底部へ向けて沈降させて前記伝熱管16の周囲から除去できるため、本発明の蓄熱システム1では、該相変化用蓄熱材6から前記熱取出用熱媒17への熱伝達の効率を高めて、蓄熱された熱の散り出しを効率よく行うことができる。   At this time, as described above, the solid phase of the heat storage material for phase change 6 generated by solidifying around the heat transfer tube 16 is settled toward the bottom in the inner tank 4 to surround the heat transfer tube 16. Therefore, in the heat storage system 1 of the present invention, the efficiency of heat transfer from the phase change heat storage material 6 to the heat extraction heat medium 17 is increased, and the stored heat is efficiently scattered. Can do.

更に、前記構成としてある本実施の蓄熱システム1では、前記隔壁3に備えた連通孔9を通過する前記相変化用蓄熱材6の液相と、外槽5に充填してある固体蓄熱材7との間で直接熱伝達が行われる。このため、前記外槽5内の固体蓄熱材7の有する熱は、前記内槽4内の相変化用蓄熱材6に効率よく伝えられて、前記熱取出用熱媒17の加熱に効率よく利用される。   Furthermore, in the present heat storage system 1 having the above-described configuration, the liquid phase of the phase change heat storage material 6 passing through the communication hole 9 provided in the partition wall 3 and the solid heat storage material 7 filled in the outer tub 5. Direct heat transfer to and from. For this reason, the heat of the solid heat storage material 7 in the outer tub 5 is efficiently transmitted to the phase change heat storage material 6 in the inner tub 4 and is efficiently used for heating the heat extracting heat medium 17. Is done.

このように、本発明の蓄熱システム1によれば、予め設定された蓄熱温度範囲で固液の相変化を生じる相変化用蓄熱材6と、固体蓄熱材7の双方を利用して蓄熱を行うことができて、蓄熱槽2の単位体積当たりの蓄熱量の向上化を図ることができる。   Thus, according to the heat storage system 1 of the present invention, heat storage is performed by using both the phase change heat storage material 6 that causes a solid-liquid phase change in the preset heat storage temperature range and the solid heat storage material 7. It is possible to improve the amount of heat stored per unit volume of the heat storage tank 2.

更に、前記蓄熱槽2にて各蓄熱材6,7の蓄熱のための加熱を行う加熱手段となるホットプレート10は、該蓄熱槽2の下端部のみに設ければよく、一方、前記相変化用蓄熱材6との熱交換により熱を取り出す放熱用の伝熱管16は、内槽4の上部位置にのみ設ければよいので、これらのホットプレート10や伝熱管16の構成を小さくし、構造の簡略化を図ることができる。よって、製造コストの低減化も図ることができる。   Furthermore, the hot plate 10 serving as a heating means for heating the heat storage materials 6 and 7 in the heat storage tank 2 may be provided only at the lower end of the heat storage tank 2, while the phase change is performed. Since the heat transfer tubes 16 for extracting heat by heat exchange with the heat storage material 6 need only be provided at the upper position of the inner tank 4, the structure of the hot plate 10 and the heat transfer tubes 16 is reduced, and the structure Can be simplified. Therefore, the manufacturing cost can be reduced.

次に、図2は本発明の実施の他の形態を示すものである。   Next, FIG. 2 shows another embodiment of the present invention.

本実施の形態の蓄熱システム1Aは、図2に示す如く、図1に示したと同様の構成において、連通孔9を備えた隔壁3を用いる構成に代えて、連通孔のない隔壁3aにより、内槽4と外槽5を仕切る構成としたものである。   As shown in FIG. 2, the heat storage system 1A of the present embodiment has a configuration similar to that shown in FIG. 1, but instead of the configuration using the partition 3 with the communication hole 9, the partition 3a without the communication hole The tank 4 and the outer tank 5 are separated.

前記連通孔のない形式の隔壁3aを用いていることにより、本実施の形態では、前記外槽5内は、前記内槽4内とは隔離される。   In the present embodiment, the inside of the outer tub 5 is separated from the inside of the inner tub 4 by using the partition wall 3a having no communication hole.

前記外槽5内には、図1に示したと同様の固体蓄熱材7の小片と、該固体蓄熱材7の小片同士の隙間に満たすための溶融塩蓄熱材21を充填した構成としてある。   The outer tub 5 is filled with a small piece of the solid heat storage material 7 similar to that shown in FIG. 1 and a molten salt heat storage material 21 for filling a gap between the small pieces of the solid heat storage material 7.

前記外槽5内の溶融塩蓄熱材21は、図1の実施の形態の構成における相変化用蓄熱材6と同様に、蓄熱温度範囲で固液の相変化するものを用いるようにしてもよい。この場合、前記溶融塩蓄熱材21は、たとえば、前記内槽4内に充填される相変化用蓄熱材6と同じものを用いてもよい。この構成によれば、外槽5に形成される蓄熱兼保温層8は、前記溶融塩蓄熱材21が固液の相変化するときの潜熱を利用した蓄熱が可能になるため、蓄熱密度を高めることができる。   As the molten salt heat storage material 21 in the outer tub 5, a material that undergoes a solid-liquid phase change in the heat storage temperature range may be used, similarly to the phase change heat storage material 6 in the configuration of the embodiment of FIG. 1. . In this case, the molten salt heat storage material 21 may be the same as the phase change heat storage material 6 filled in the inner tank 4, for example. According to this configuration, the heat storage and heat retaining layer 8 formed in the outer tub 5 can store heat using latent heat when the molten salt heat storage material 21 undergoes a solid-liquid phase change, and thus increases the heat storage density. be able to.

あるいは、前記外槽5内の溶融塩蓄熱材21は、前記固体蓄熱材7の小片同士の隙間を満たして該小片同士の間の熱抵抗を低減させることを主目的とする場合は、蓄熱温度範囲の全域で液相となるものを用いるようにしてもよい。   Alternatively, when the molten salt heat storage material 21 in the outer tub 5 mainly fills the gaps between the small pieces of the solid heat storage material 7 and reduces the thermal resistance between the small pieces, the heat storage temperature You may make it use what becomes a liquid phase in the whole range.

その他の構成は図1に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIG. 1, and the same components are denoted by the same reference numerals.

以上の構成としてある本実施の形態の蓄熱システム1Aは、図1の実施の形態の蓄熱システム1と同様に使用して、同様の効果を得ることができる。   The heat storage system 1A of the present embodiment configured as described above can be used in the same manner as the heat storage system 1 of the embodiment of FIG.

次いで、図3は本発明の実施の更に他の形態を示すものである。   Next, FIG. 3 shows still another embodiment of the present invention.

本実施の形態の蓄熱システム1Bは、図3に示す如く、図2に示したと同様の構成において、外槽5に、固体蓄熱材7の小片と、溶融塩蓄熱材21を充填した構成に代えて、外槽5に、固体蓄熱材22のみを収納した構成としたものである。   As shown in FIG. 3, the heat storage system 1 </ b> B of the present embodiment is replaced with a configuration in which the outer tub 5 is filled with small pieces of the solid heat storage material 7 and the molten salt heat storage material 21 in the same configuration as shown in FIG. 2. Thus, only the solid heat storage material 22 is stored in the outer tub 5.

この場合、前記固体蓄熱材22と内槽4内の相変化用蓄熱材6との間で隔壁3aを介して行われる熱伝達の効率を高めるためには、前記固体蓄熱材22と隔壁3aの外周面との間の隙間をなくして熱抵抗を低減させることが望ましい。又、前記固体蓄熱材22の上下方向には、熱抵抗を生じる隙間が存在しないことが望ましい。   In this case, in order to increase the efficiency of heat transfer between the solid heat storage material 22 and the phase change heat storage material 6 in the inner tank 4 via the partition wall 3a, the solid heat storage material 22 and the partition wall 3a It is desirable to reduce the thermal resistance by eliminating the gap between the outer peripheral surface. In addition, it is desirable that there are no gaps that generate thermal resistance in the vertical direction of the solid heat storage material 22.

よって、前記固体蓄熱材22は、前記隔壁3aの外径に対応する内径を備えた円筒形状の一体物か、あるいは、前記円筒形状を周方向にのみ複数分割したセグメントに成形して、前記隔壁3aの外周面に密着させて配置するようにしてある。   Therefore, the solid heat storage material 22 is molded into a cylindrical integrated body having an inner diameter corresponding to the outer diameter of the partition wall 3a or a segment obtained by dividing the cylindrical shape into a plurality of segments only in the circumferential direction, and the partition wall 3a is arranged in close contact with the outer peripheral surface.

その他の構成は図1に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIG. 1, and the same components are denoted by the same reference numerals.

以上の構成としてある本実施の形態の蓄熱システム1Bによっても、図1の実施の形態の蓄熱システム1と同様に使用して、同様の効果を得ることができる。   The heat storage system 1B of the present embodiment having the above configuration can be used in the same manner as the heat storage system 1 of the embodiment of FIG. 1 to obtain the same effect.

なお、本発明は、前記実施の形態にのみ限定されるものではなく、各図に示した蓄熱槽2の上下寸法や径寸法、隔壁3,3aの径寸法や厚み寸法、隔壁3に設けた連通孔9の大きさや配置、伝熱管16の太さ、その他の各部の寸法は、図示するための便宜上のものであり、実際の寸法を反映したものではない。   In addition, this invention is not limited only to the said embodiment, The vertical dimension and diameter dimension of the thermal storage tank 2 shown in each figure, the diameter dimension and thickness dimension of the partition 3, 3a, and provided in the partition 3 The size and arrangement of the communication holes 9, the thickness of the heat transfer tube 16, and the dimensions of each other part are for convenience of illustration, and do not reflect actual dimensions.

ホットプレート10の熱媒流路12に接続する加熱用熱媒供給ライン14と加熱用熱媒戻しライン15は、いずれか一方、又は、双方を、蓄熱槽2の内側を通す配置とせずに、ホットプレート10に、側方や下方から直接接続する構成としてもよい。   The heating medium supply line 14 and the heating medium return line 15 connected to the heating medium flow path 12 of the hot plate 10 are not arranged such that either one or both of them pass through the inside of the heat storage tank 2, The hot plate 10 may be connected directly from the side or from below.

蓄熱槽2の下端部に設けるホットプレート10は、プレート部材11の下面側に熱媒流路とするための伝熱管を直接取り付けて、この伝熱管に加熱用熱媒13を流通させる構成としてもよい。   The hot plate 10 provided at the lower end of the heat storage tank 2 may be configured such that a heat transfer tube for making a heat medium flow path is directly attached to the lower surface side of the plate member 11 and the heating medium 13 is circulated through the heat transfer tube. Good.

更に、本発明の蓄熱システム1,1A,1Bを、自然エネルギー利用の発電装置で発電された電力や、その他の電力の熱貯蔵を目的として用いる場合は、前記ホットプレート10として、電気ヒータを用いる構成としてもよい。   Furthermore, when the heat storage system 1, 1A, 1B of the present invention is used for the purpose of heat storage of power generated by a power generator using natural energy or other power, an electric heater is used as the hot plate 10. It is good also as a structure.

内槽4の上部位置における伝熱管16の配置は、蓄熱槽2内に設ける内槽4のサイズや形状等に応じて、図示した以外の任意の配置としてよい。   The arrangement of the heat transfer tubes 16 at the upper position of the inner tank 4 may be any arrangement other than that illustrated in accordance with the size and shape of the inner tank 4 provided in the heat storage tank 2.

相変化用蓄熱材6としては、例示した非共晶組成の2成分混合塩からなるものを用いることが好ましいが、所定の蓄熱温度範囲で固液の相変化を生じるものであり、且つ固相の密度が液相の密度よりも大きいものであれば、単成分の塩(溶融塩)、非共晶組成の3成分以上の混合塩、共晶組成の複数成分の混合塩、その他、塩以外の任意の蓄熱材を用いるようにしてもよい。   As the heat storage material 6 for phase change, it is preferable to use the exemplified non-eutectic composition binary mixed salt, but it causes a solid-liquid phase change in a predetermined heat storage temperature range, and a solid phase. If the density of the liquid is higher than the density of the liquid phase, a single component salt (molten salt), a mixed salt of three or more components of a non-eutectic composition, a mixed salt of a plurality of components of a eutectic composition, other than salts Any heat storage material may be used.

蓄熱温度範囲は、熱源及び熱負荷の種類等に応じて自在に変更してよい。   The heat storage temperature range may be freely changed according to the type of heat source and heat load.

内槽4内には、伝熱管16の表面に付着する相変化用蓄熱材6の固相を強制的に剥落させるための固相剥落手段を備えた構成としてもよい。   The inner tank 4 may be configured to include a solid phase peeling means for forcibly peeling the solid phase of the phase change heat storage material 6 attached to the surface of the heat transfer tube 16.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

1,1A,1B 蓄熱システム、2 蓄熱槽、3,3a 隔壁、4 内槽、5 外槽、 6 相変化用蓄熱材、7 固体蓄熱材、9 連通孔、10 ホットプレート、16 伝熱管、20 隔壁用ヒータ、21 溶融塩蓄熱材、22 固体蓄熱材 1, 1A, 1B heat storage system, 2 heat storage tank, 3, 3a partition wall, 4 inner tank, 5 outer tank, 6 phase change heat storage material, 7 solid heat storage material, 9 communication hole, 10 hot plate, 16 heat transfer tube, 20 Partition heater, 21 Molten salt heat storage material, 22 Solid heat storage material

Claims (3)

槽内の外周寄り位置に周方向に延びる隔壁を備えて、該隔壁の内側の領域を内槽とし、外側の領域を外槽とした蓄熱槽と、
前記内槽に充填した、予め設定される蓄熱温度範囲で固液の相変化を生じ、且つ固相の密度が液相の密度よりも大きい相変化用蓄熱材と、
前記外槽に充填した、前記蓄熱温度範囲で固相となる固体蓄熱材と、
前記蓄熱槽の下端部にて、前記内槽および外槽の底部に設けて、前記各蓄熱材に対し蓄熱用の加熱を行うホットプレートと、
前記内槽の上部位置に前記相変化用蓄熱材に没する配置で設けて、該相変化用蓄熱材の保有する熱を取り出すための伝熱管と、
前記隔壁を前記相変化用蓄熱材の固液の相変化温度に加熱する隔壁用ヒータとを備えた構成を有すること
を特徴とする蓄熱システム。
A heat storage tank comprising a partition wall extending in the circumferential direction at a position near the outer periphery in the tank, an inner area of the partition wall as an inner tank, and an outer area as an outer tank,
A phase change heat storage material filled in the inner tank, causing a solid-liquid phase change in a preset heat storage temperature range, and having a solid phase density larger than the liquid phase density, and
A solid heat storage material filled in the outer tub and serving as a solid phase in the heat storage temperature range;
At the lower end of the heat storage tank, provided at the bottom of the inner tank and the outer tank, a hot plate that heats the heat storage material for heat storage,
A heat transfer tube for taking out the heat held by the phase change heat storage material;
A heat storage system comprising: a partition wall heater configured to heat the partition wall to a solid-liquid phase change temperature of the phase change heat storage material.
蓄熱槽の外槽には、固体蓄熱材を小片の状態で充填し、
蓄熱槽の隔壁には、前記固体蓄熱材の小片の通過は阻止し且つ相変化用蓄熱材の液相の通過は許容する連通孔を、内槽と外槽を連通させるよう備え、
相変化用蓄熱材の一部を内槽より前記隔壁の連通孔を通して外槽に移動させて、前記固体蓄熱材の小片同士の隙間に満たした
請求項1記載の蓄熱システム。
The outer tank of the heat storage tank is filled with a solid heat storage material in the form of small pieces,
The partition wall of the heat storage tank is provided with a communication hole that blocks the passage of the small pieces of the solid heat storage material and allows the liquid phase of the phase change heat storage material to pass through, so that the inner tank and the outer tank communicate with each other.
The heat storage system according to claim 1, wherein a part of the phase change heat storage material is moved from the inner tank to the outer tank through the communication hole of the partition wall to fill a gap between the small pieces of the solid heat storage material.
蓄熱槽の外槽には、固体蓄熱材を小片の状態で充填し、
前記外槽における前記固体蓄熱材の小片同士の隙間に、溶融塩蓄熱材を満たした
請求項1記載の蓄熱システム。
The outer tank of the heat storage tank is filled with a solid heat storage material in the form of small pieces,
The heat storage system according to claim 1, wherein a gap between the small pieces of the solid heat storage material in the outer tank is filled with a molten salt heat storage material.
JP2014133467A 2014-06-30 2014-06-30 Heat storage system Active JP6308051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133467A JP6308051B2 (en) 2014-06-30 2014-06-30 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133467A JP6308051B2 (en) 2014-06-30 2014-06-30 Heat storage system

Publications (2)

Publication Number Publication Date
JP2016011787A true JP2016011787A (en) 2016-01-21
JP6308051B2 JP6308051B2 (en) 2018-04-11

Family

ID=55228625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133467A Active JP6308051B2 (en) 2014-06-30 2014-06-30 Heat storage system

Country Status (1)

Country Link
JP (1) JP6308051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595366A (en) * 2016-11-15 2017-04-26 桑夏太阳能股份有限公司 Hot pipe-type medium-temperature heat storage device with shaping PCM
WO2019080806A1 (en) * 2017-10-25 2019-05-02 深圳市爱能森科技有限公司 Energy storage heat exchange integrated device
JP2019078413A (en) * 2017-10-20 2019-05-23 株式会社ちきたく Natural energy utilization type cold system
CN110763065A (en) * 2019-11-29 2020-02-07 浙江大学 Hybrid heat storage and heat release integrated tank
CN114294987A (en) * 2022-01-26 2022-04-08 烟台大学 Composite phase change waste heat recovery device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931554B (en) * 2018-07-16 2021-01-12 东南大学 Storage and discharge energy testing system and method for non-ideal solid-liquid phase change material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180285A (en) * 1983-03-31 1984-10-13 Tobishima Kensetsu Kk Heat accumulator
JP2000292084A (en) * 1999-04-02 2000-10-20 Energy Support Corp Heat storage unit
JP2009030912A (en) * 2007-07-30 2009-02-12 Dainichi Co Ltd Heat storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180285A (en) * 1983-03-31 1984-10-13 Tobishima Kensetsu Kk Heat accumulator
JP2000292084A (en) * 1999-04-02 2000-10-20 Energy Support Corp Heat storage unit
JP2009030912A (en) * 2007-07-30 2009-02-12 Dainichi Co Ltd Heat storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595366A (en) * 2016-11-15 2017-04-26 桑夏太阳能股份有限公司 Hot pipe-type medium-temperature heat storage device with shaping PCM
JP2019078413A (en) * 2017-10-20 2019-05-23 株式会社ちきたく Natural energy utilization type cold system
WO2019080806A1 (en) * 2017-10-25 2019-05-02 深圳市爱能森科技有限公司 Energy storage heat exchange integrated device
CN110763065A (en) * 2019-11-29 2020-02-07 浙江大学 Hybrid heat storage and heat release integrated tank
CN110763065B (en) * 2019-11-29 2024-04-19 浙江大学 Hybrid heat storage and release integrated tank
CN114294987A (en) * 2022-01-26 2022-04-08 烟台大学 Composite phase change waste heat recovery device

Also Published As

Publication number Publication date
JP6308051B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6308051B2 (en) Heat storage system
US9841243B2 (en) Thermal energy storage system combining sensible heat solid material and phase change material
US8584734B2 (en) Two material phase change energy storage system
US11022102B2 (en) Methods of pumping heat transfer fluid in thermal energy storage systems
Hamed et al. Numerical analysis of an integrated storage solar heater
CN106347702B (en) A kind of gas-jetting flow-guiding plate
CN107975951A (en) A kind of heat-storing device and heat reservoir
GB2493092A (en) Electricity generation apparatus having a thermal store and thermoelectric heat exchanger
CN103531652A (en) Cooling device for dish-type solar concentrating photovoltaic cell panel
CN107749431A (en) The photovoltaic cell component of composite phase-change material auxiliary
Shank et al. Experimental study of a latent heat thermal energy storage system assisted by variable-length radial fins
Reid et al. Computational evaluation of a latent heat energy storage system
JP6477249B2 (en) Heat storage system
JP6630946B2 (en) Latent heat storage device
CN208170767U (en) A kind of heat-storing device and heat reservoir
JP2017048265A (en) Heat storage material, heat accumulator, and solar heat power generating system
Mahdi et al. Solidification enhancement of phase change material implemented in latent heat thermal energy storage
Nithyanandam et al. Design and analysis of metal foam enhanced latent thermal energy storage with embedded heat pipes for concentrating solar power plants
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
CN206297955U (en) A kind of fused salt storage tank for storing up salt salt dissolving
JP5594752B2 (en) Heat storage device
JP2016217664A (en) Heat storage system
CN114909934A (en) Self-adaptive heat reservoir
Kavitha et al. Performance of paraffin as PCM solar thermal energy storage
EP2998674A1 (en) Heat storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R151 Written notification of patent or utility model registration

Ref document number: 6308051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151