JP2016011721A - アクチュエータおよび該アクチュエータを備えた射出成形機 - Google Patents

アクチュエータおよび該アクチュエータを備えた射出成形機 Download PDF

Info

Publication number
JP2016011721A
JP2016011721A JP2014134173A JP2014134173A JP2016011721A JP 2016011721 A JP2016011721 A JP 2016011721A JP 2014134173 A JP2014134173 A JP 2014134173A JP 2014134173 A JP2014134173 A JP 2014134173A JP 2016011721 A JP2016011721 A JP 2016011721A
Authority
JP
Japan
Prior art keywords
screw shaft
ball
motor
torque
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014134173A
Other languages
English (en)
Inventor
正仁 森山
Masahito Moriyama
正仁 森山
水口 淳二
Junji Mizuguchi
淳二 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014134173A priority Critical patent/JP2016011721A/ja
Publication of JP2016011721A publication Critical patent/JP2016011721A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】難しいセンサの位置調整作業の必要がなく、簡単な構成でボールねじの磨耗状況を把握することができるアクチュエータ、および当該アクチュエータを備えた射出成形機を提供する。【解決手段】ねじ軸5とナット23とボールとからなるボールねじ3と、ねじ軸5を回動するためのモータ7とを備えたアクチュエータ1であって、ねじ軸5の回動方向が反転する際、エンコーダ13によって検知されるボールねじ3のねじ軸5の回動角と、モータ7のトルクとに基づいて、ボールねじ3のボールとボール転動路との軸方向のすきま量を演算する演算部17を備えている。【選択図】図1

Description

本発明は、ボールねじを用いたアクチュエータ、特にボールねじの磨耗検出機能を備えたアクチュエータと、当該アクチュエータを備えた射出成形機とに関する。
産業用の工作機械、例えば射出成形機において、機械装置の位置決めや動力伝達のために、ボールねじを備えたアクチュエータが用いられている。このようなアクチュエータに備えられたボールねじのうち、予圧式ではないタイプのものは、ねじ軸およびナットにそれぞれ設けられたボール転動溝とボールとの間に、すきまがある。ねじ軸およびナットのボール転動溝およびボールは、ボールがこれらのボール転動溝を転動することにより、磨耗する。これらボール転動溝およびボールの磨耗が進むに従い、前記すきまは大きくなる。また、このような磨耗がさらに進行すると、ボールねじは、ボールの転動面が剥離してしまうフレーキングに至る。ボールねじは、フレーキングに至ると、ボールねじとしての機能を損なってしまう。
そこで、前記すきまに着目し、すきまの大きさを測定してボールねじの磨耗状況を把握することにより、フレーキングに至ることを防止できるボールねじ装置が提案されている。
特許文献1には、ナットに接触センサを配置したボールねじが記載されている。接触センサは、ねじ軸に形成されたボール転動溝に対してクリアランスを持って対向して配置されている。特許文献1のボールねじは、ねじ軸側のボール転動溝の磨耗が進行すると接触センサが作動し、これにより磨耗が進行したことを把握し、フレーキングに至ることを防止している。
特開2008−111468号公報
しかしながら、特許文献1に記載されたボールねじは、接触センサを最適な位置に配置する必要がある。すなわち、センサとねじ軸のボール転動溝とのクリアランスを最適な距離に設定する必要があり、そのためのセンサの位置調整が難しいという問題がある。
本発明はこのような状況に鑑みてなされたものであり、難しいセンサの位置調整作業の必要がなく、簡単な構成でボールねじの磨耗状況を把握することができるアクチュエータ、および当該アクチュエータを備えた射出成形機を提供することを課題とする。
上記課題を解決するために、本発明に係るアクチュエータは、外周面に螺旋溝が形成されたねじ軸と、前記ねじ軸の前記螺旋溝と対向する螺旋溝が内周面に形成されたナットと、前記ねじ軸の螺旋溝と前記ナットの螺旋溝とによって形成されるボール転動路内に転動自在に配置され、前記ナットを前記ねじ軸に軸方向移動自在に支持する多数のボールとを備えたボールねじと、前記ねじ軸を回動するためのモータとを備えたアクチュエータであって、前記ねじ軸の回動角を測定するための回動角測定手段と、前記モータのトルクを測定するためのトルク測定手段と、前記回動角測定手段によって測定された前記ねじ軸の回動角と、前記トルク測定手段によって測定された前記モータのトルクとに基づいて、前記ボールと前記ボール転動路との軸方向のすきま量を演算する演算手段とを備えたことを特徴とする。
また、本発明の好ましい態様は、前記演算手段は、前記ねじ軸の回動方向が反転した際に、前記軸方向のすきま量を演算することを特徴とする。
また、本発明の好ましい態様は、前記ナットは、前記ねじ軸の回動方向が反転してから所定の時間は軸方向へ移動せず、該所定の時間経過後に軸方向に移動を開始し、前記演算手段は、前記所定の時間で回動する前記ねじ軸の回動角に基づいて前記軸方向のすきま量を演算することを特徴とする。
また、本発明の好ましい態様は、前記演算手段は、前記トルク測定手段によって測定された前記モータのトルクに基づいて、前記所定の時間を識別することを特徴とする。
また、本発明の好ましい態様は、前記トルク測定手段によって測定される前記モータのトルクは、前記所定の時間においては、前記ナットが軸方向に移動しているときの前記モータのトルクよりも小さいことを特徴とする。
また、本発明の好ましい態様は、前記トルク測定手段は、前記モータを流れる電流の大きさに基づいて前記トルクを測定していることを特徴とする。
また、本発明の好ましい態様は、前記軸方向のすきま量は、前記ねじ軸の回動方向が反転した際の、前記ナットの螺旋溝に対する前記ねじ軸の螺旋溝の軸方向の相対的な移動量であることを特徴とする。
また、本発明の好ましい態様は、前記演算手段は、任意の時における軸方向のすきま量を記憶し、前記任意の時における軸方向のすきま量と比較した現在の軸方向のすきま量の増加量をさらに演算することを特徴とする。
また、本発明に係る射出成形機は、上記アクチュエータを備えたことを特徴とする。
本発明によれば、難しいセンサの位置調整作業の必要がなく、簡単な構成でボールねじの磨耗状況を把握することができるアクチュエータ、および当該アクチュエータを備えた射出成形機を提供することができる。
実施形態に係るアクチュエータの全体構成を示す模式図である。 (a)は、ねじ軸が一方側に回動している状態におけるボールねじの側面図であり、(b)は(a)の状態におけるボール転動路の一部の拡大断面図であり、(c)は(a)の状態からねじ軸が一方側に所定量回動した後の状態におけるボールねじの側面図であり、(d)は(c)の状態におけるボール転動路の一部の拡大断面図である。 (a)は、ねじ軸が他方側へ回動を開始した時点におけるボールねじの側面図であり、(b)はねじ軸が他方側へ回動を開始した時点のボール転動路の一部の拡大断面図であり、(c)は(b)の状態からねじ軸が他方側に所定量回動した後の状態におけるボール転動路の一部の拡大断面図であり、(d)は(c)の状態からねじ軸が他方側に所定量回動した後の状態におけるボール転動路の一部の拡大断面図である。 (a)は、ねじ軸が他方側に回動している状態におけるボールねじの側面図であり、(b)は(a)の状態におけるボール転動路の一部の拡大断面図であり、(c)は(a)の状態からねじ軸が他方側に所定量回動した後の状態におけるボールねじの側面図であり、(d)は(c)の状態におけるボール転動路の一部の拡大断面図である。 モータの発生トルクとねじ軸の回動角との関係を示すグラフである。
以下、本発明の実施形態について、図面を参照しつつ説明する。
図1は、本発明の実施形態に係るアクチュエータの全体構成を示す模式図である。本実施形態に係るアクチュエータは、生産用の工作機械、例えば射出成形機(図示省略)において、機械装置の位置決めや動力伝達のために用いられる。
図1に示すように、本実施形態に係るアクチュエータ1は、ボールねじ3と、ボールねじ3のねじ軸5を回動させるためのモータ7と、ねじ軸5とモータ7の回転軸とを連結しモータ7の回転軸の回転をねじ軸5に伝達するための回転伝達部材9と、モータ7を駆動、制御するためのモータドライバ11と、モータ7の回転軸の回転方向および回転量を検出するためのエンコーダ13と、モータ7に流れる電流を検出するための電流センサ15とを備えている。モータドライバ11は、図示しない制御部からの指示に従ってモータ7を駆動する。また、モータドライバ11は、エンコーダ13からの出力信号および電流センサ15が検出した電流値に基づいて、後述する所定の測定および演算を行う電子回路で構成された演算部17を備えている。
ボールねじ3は公知のものなので、構成の詳細な説明および詳細な図示は省略し、概要を説明する。ボールねじ3は、外周面に螺旋状のボール転動溝19(図2〜4各図参照)が形成された直線状のねじ軸5と、ねじ軸5の外周側に配置され、内周面にねじ軸5のボール転動溝19に対向する螺旋状のボール転動溝21(図2〜4各図参照)が形成されたナット23とを備えている。ねじ軸5のボール転動溝19とナット23のボール転動溝21とでボール転動路が形成されている。
ねじ軸5に形成されたボール転動溝19は、断面形状が所謂ゴシックアーチ状となっている。具体的には、ボール転動溝19の断面形状は、2つの円弧形状が組み合わされた略V字状となっている(図2〜4各図参照)。同様に、ナット23に形成されたボール転動溝21も、断面形状がゴシックアーチ状すなわち略V字状の溝となっている(図2〜4各図参照)。
ボール転動路には、鋼材から成る多数のボール25(図2〜4各図参照)が転動可能に配置されている。ナット23は、これら多数のボール25を介してねじ軸5に螺合している。したがって、ねじ軸5を一方側または他方側に回動させると、これらのボール25がボール転動路を転動し、ナット23はねじ軸5の軸方向一方側または他方側に移動する。本実施形態に係るボールねじ3は、ボール転動路とボール25との間に、後述する軸方向すきまが介在している。
ボール転動路の一方端と他方端とは、図示しない戻し路によって連結されている。これにより、ボール転動路の一方端に達したボール25は戻し路を介してボール転動路の他方端に送られる。こうして、ボールは戻し路を介してボール転動路を循環するようになっている。
エンコーダ13は、モータ7に備えられている。本実施形態におけるエンコーダ13は、光学透過式のインクリメンタル型ロータリーエンコーダである。このようなロータリーエンコーダは公知のものなので構成の詳細な説明および図示は省略し、概要を説明する。光学透過式のインクリメンタル型ロータリーエンコーダは、LED等の発光素子と、モータ7の回転軸と共に回転する回転盤と、回転盤を挟んで発光素子と対向して設けられたフォトダイオード等の受光素子と、信号変換回路とを主要構成要素としている。回転盤には多数のスリットが設けられており、発光素子からの光は回転盤のスリットを通過して受光素子に到達する。信号変換回路は、受光素子が検知した発光素子からの光の受光状態を、A相およびB相の2つの電気信号に変換して出力する。本実施形態においては、ロータリーエンコーダ13が検知したモータ7の回転軸の回転方向および回転量に基づいて、モータドライバ11の演算部17がボールねじ3のねじ軸5の回動方向および回動量すなわち回動角を測定している。
また、本実施形態においては、モータ7の駆動電流の大きさに基づいて、モータドライバ11の演算部17がモータ7の発生トルクを計測している。モータ7の駆動電流値は、モータ7に備えられた電流センサ15が検出している。
エンコーダ13からのA相およびB相の電気信号と、モータ7の駆動電流値とは、それぞれモータドライバ11の演算部17に入力される。演算部17は、エンコーダ13からのA相およびB相の2つの電気信号に基づいて、ねじ軸5の回動方向および回動量すなわち回動角を演算する。また、演算部17は、モータ7の駆動電流値に基づいてモータ7の発生トルク(以後、単に「トルク」ともいう)を演算する。演算部17はさらに、求められたねじ軸5の回動方向および回動角と、モータ7のトルクとに基づいて、後述する軸方向すきま量を演算する。
次に、ねじ軸5に対するナット23の移動と、ボール転動路におけるボール25の状態との関係について説明する。まず、ねじ軸5が一方側に回動している状態について説明する。
図2(a)は、ねじ軸5が一方側に回動している状態におけるボールねじ3の側面図であり、(b)はこのときのボール転動路の一部の拡大断面図であり、(c)は、(a)の状態からねじ軸5が一方側に所定量回動した後の状態におけるボールねじ3の側面図であり、(d)はこのときのボール転動路の一部の拡大断面図である。なお、以後、説明の便宜上、図2において、紙面に向かって左方側を軸方向一方側とし、紙面に向かって右方側を軸方向他方側とする。また、当該方向は、図3および図4においても同様とする。
図2(a)、(c)に示すように、ねじ軸5が一方側(図2(a)中の回転矢印方向)に回動すると、ねじ軸5の回動に伴ってナット23はねじ軸5に対して軸方向一方側に向かって移動する。このとき、ねじ軸5側のボール転動溝19およびナット23側のボール転動溝21は、図2(b)、(d)の各拡大断面図に示すように、破線Aで示す接触角を持ってそれぞれボール25に接触しており、ボール転動溝19とボール25とボール転動溝21とは、ねじ軸5の回動運動をナット23の直線運動に変換する状態で係合している。具体的には、ボール25は、ナット23側のボール転動溝21に関し、軸方向一方側の溝面に接触し、軸方向他方側の溝面には接触せず、すきまを持って対向している。また、ボール25は、ねじ軸5側のボール転動溝19に関し、軸方向他方側の溝面に接触し、軸方向一方側の溝面には接触せず、すきまを持って対向している。すなわち、ねじ軸5側のボール転動溝19とナット23側のボール転動溝21とは、ねじ軸5側のボール転動溝19がナット23側のボール転動溝21に対して、軸方向一方側に所定量ずれた対向状態で、ボール25に接触している。
ここでモータ7の回転軸の回転方向を逆回転させ、ナット23の進行方向を逆方向、すなわちねじ軸5に対して軸方向他方側(図2の紙面左側から右側)に向かって移動させるようにする。
図3(a)は、モータ7の回転軸の回転方向が反転し、ねじ軸5が他方側へ回動を開始した時点におけるボールねじ3の側面図であり、(b)はねじ軸5が他方側へ回動を開始した時点におけるボール転動路の一部の拡大断面図であり、(c)は(b)の状態からねじ軸5が他方側に所定量回動した後の状態におけるボール転動路の一部の拡大断面図であり、(d)は(c)の状態からねじ軸5が他方側に所定量回動した後の状態におけるボール転動路の一部の拡大断面図である。
図示しない制御部からモータドライバ11へモータ7の回転軸の回転を逆転させる指示が伝達されると、モータドライバ11は、まずモータ7の回転軸の一方側への回転を停止する。モータ7の回転軸の一方側への回転が停止すると、ねじ軸5の一方側への回動は止まり、同時にナット23の軸方向一方側への移動も停止する。次に、モータドライバ11は、モータ7の回転軸を他方側へ回転させる。モータ7の回転軸が他方側への回転を開始すると、この回転が回転伝達部材9(図1参照)を介してねじ軸5に伝達され、ねじ軸5が他方側(図3(a)の回転矢印方向)へ回動を開始する。ねじ軸5の一方側への回動停止時点から他方側への回動開始時点までは、ボール転動溝19、21のボール25に対する接触状態は、図3(b)に示すように、ねじ軸5が一方側に回動している時と同様である。すなわちボール転動溝19、21は、破線Aで示す接触角を持ってボール25に接触している。
その後、ねじ軸5が他方側へ回動するに従い、ボール25はボール転動路を、ねじ軸5が一方側に回動していた時とは逆方向に転動する。このとき、ボール25とボール転動溝19との間、およびボール25とボール転動溝23との間には、それぞれ図2各図および図3(b)に示すようにすきまがあるので、ねじ軸5が他方側へ回動するにしたがい、ナット23側のボール転動溝21に対して、ねじ軸5側のボール転動溝19が軸方向他方側に移動していく。すると、ボール転動溝19とボール転動溝21との対向状態は変化し、両ボール転動溝19、21は、破線Aで示す接触角ではボール25に接触しなくなる。この状態では、ボール転動溝19とボール25とボール転動溝21とは、ねじ軸5の回動運動をナット23の直線運動に変換する状態では係合していない。つまり、ねじ軸5は他方側へ回動しているが、ナット23は軸方向に移動しない。
その後、ねじ軸5が他方側へさらに回動すると、図3(c)に示すように、両ボール転動溝19、21は径方向に真正面に対向する状態となり、その後、図3(d)に示すように、破線Bで示す接触角を持ってボール25に接触する状態となる。
破線Bで示す接触角は、図2各図および図3(b)で示した破線Aの接触角とは反対となる接触角である。この係合状態は、ボール転動溝19とボール25とボール転動溝21とが、ねじ軸5の回動運動をナット23の直線運動に変換する係合状態である。具体的には、ボール25は、ナット23側のボール転動溝21に関し、軸方向他方側の溝面に接触し、軸方向一方側の溝面には接触せず、すきまを持って対向している。また、ボール25は、ねじ軸5側のボール転動溝19に関し、軸方向一方側の溝面に接触し、軸方向他方側の溝面には接触せず、すきまを持って対向している。すなわち、ねじ軸5側のボール転動溝19とナット23側のボール転動溝21とは、ボール転動溝19がボール転動溝21に対して、軸方向他方側に所定量ずれた対向状態で、ボール25に接触している。上述したように、この時点で、ボール転動溝19とボール25とボール転動溝21とが、ねじ軸5の回動運動をナット23の直線運動に変換する状態で係合することとなる。したがって、ねじ軸5の一方側への回動が停止した時点から、ボール転動溝19、21が、図3(d)に示す、破線Bで示す接触角を持ってボール25に接触する状態となるまでは、ナット23は軸方向他方側への移動を開始せず、停止したままである。
ここで、本実施形態においてモータドライバ11の演算部17が演算する軸方向すきま量δは、図3(d)に示すように、ねじ軸5の回動方向の反転時における、ナット23側のボール転動溝21に対するねじ軸5側のボール転動溝19の軸方向の相対的な移動距離をいう。つまり、軸方向すきま量は、破線Aで示す接触角でボール25に接触していたボール転動溝19、21が、破線Bで示す接触角でボール25に接触する状態となるまでの、ボール転動溝21に対するボール転動溝19の軸方向の移動距離である。なお、図3(b)〜(d)においては、ねじ軸5側のボール転動溝19の軸方向の移動量を理解しやすくするために、ナット23側のボール転動溝21の溝底に対するねじ軸5側のボール転動溝19の溝底の移動量を示している。
図3(d)に示す状態からねじ軸5がさらに他方側へ回動すると、ナット23は軸方向他方側へ移動を開始する。図4(a)は、ねじ軸5が他方側に回動している状態におけるボールねじ3の側面図であり、(b)はこのときのボール転動路の一部の拡大断面図であり、(c)は、(a)の状態からねじ軸5が他方側に所定量回動した後の状態におけるボールねじ3の側面図であり、(d)はこのときのボール転動路の一部の拡大断面図である。
図4(a)、(c)に示すように、ねじ軸5が他方側(図4(a)中の回転矢印方向)に回動すると、ナット23はねじ軸5に対して軸方向他方側に向かって移動する。図4(a)、(c)に示す状態においては、ねじ軸5側のボール転動溝19とボール25とナット23側のボール転動溝21とは、上述したように、破線Bで示す接触角を持ってボール25に接触しており、ボール転動溝19とボール25とボール転動溝21とは、ねじ軸5の回動運動をナット23の直線運動に変換する状態で係合している。具体的には、ボール25は、ナット23側のボール転動溝21に関し、軸方向他方側の溝面に接触し、軸方向一方側の溝面には接触せず、すきまを持って対向している。また、ボール25は、ねじ軸5側のボール転動溝19に関し、軸方向一方側の溝面に接触し、軸方向他方側の溝面には接触せず、すきまを持って対向している。すなわち、ねじ軸5側のボール転動溝19とナット23側のボール転動溝21とは、ねじ軸5側のボール転動溝19がナット23側のボール転動溝21に対して、軸方向他方側に所定量ずれた対向状態で、ボール25に接触している。
このように、ねじ軸5の回動方向を一方側から他方側へ反転させると、軸方向一方側へ移動していたナット23は、ねじ軸5が他方側へ回動を開始してから所定の時間は軸方向に移動せず停止した状態となり、該所定の時間が経過した後に、軸方向他方側へ移動を開始する。ねじ軸5の回動方向が反転してからナット23が軸方向他方側へ移動を開始するまでのこの所定の時間は、ボール25とボール転動溝19、21との間の軸方向すきまに起因している。なお、ねじ軸5の回動方向を他方側から一方側へ反転させたときも同様に、ナット23は所定時間停止した状態となる。
ボール25がボール転動溝19、21を転動することにより、ボール25の表面およびボール転動溝19、21の各溝面が磨耗すると、上記軸方向すきまは大きくなる。本実施形態に係るアクチュエータ1は、ねじ軸5の回動角およびモータ7のトルクの大きさを測定し、この測定結果に基づいて、ボール転動路とボール25との軸方向すきまの大きさを検出している。
次に、ナット23の移動と、モータ7のトルクおよび駆動電流との関係について説明する。ナット23が軸方向に移動している状態(図2、図4の各図参照)においては、モータ7の負荷は、ねじ軸5の回動と、ねじ軸5の回動に伴うボール25の転動と、ナット23の移動となるため、大きくなる。すなわちモータ7のトルクは大きくなり、駆動電流も大きくなる。一方、ナット23が停止している状態(図3各図参照)においては、ナット23の移動が無いため、モータ7の負荷は、ねじ軸5の回動と、ねじ軸5の回動に伴うボール25の転動のみとなる。したがって、ナット23の移動が無い分だけモータ7の負荷は小さくなり、モータ7のトルクは小さくて済み、駆動電流も小さくなる。演算部17は、電流センサ15(図1参照)が検知した電流値に基づいて、モータ7のトルクを演算している。
次に、モータ7のトルクとねじ軸5の回動角との関係について説明する。
図5は、本実施形態における、モータ7のトルクとねじ軸5の回動角との関係を示すグラフである。図5において、左側の縦軸は、モータ7の発生トルク(単位:Nm)を示し、右側の縦軸はねじ軸5の角度位置すなわち回動角(単位:rad)を示し、横軸は測定時間(単位:sec)を示している。また、実線はモータ7のトルクを、破線はねじ軸5の角度位置をそれぞれ示している。
図5において、測定時間−3〜0(sec)の間は、ねじ軸5が一方側に回動しナット23が軸方向一方側に移動している状態である(図2各図参照)。この状態において、モータ7はほぼ一定のトルクを発生している。すなわちナット23を移動させるために、モータ7は大きなトルクを発生している。ここでモータ7の回転軸の回転方向を反転させ(測定時間0(sec))、ねじ軸5の回動方向が反転すると、上述したように、ナット23は所定時間停止する(図3各図参照)。ナット23が停止している間は、モータ7にはナット23を移動させるための負荷が掛からないので、図5に示すように、発生トルクは小さい状態となっている。そして、ねじ軸5の回動方向が反転してから所定時間経過後(本実施形態では、約1.3〜1.4秒後)、ナット23が停止状態から軸方向他方側へ移動を始めると(図4各図参照)、図5に示すように、モータ7の発生トルクは再び大きくなる。なお、これらトルクの大きさは、モータ7に流れる電流値に基づいて演算部17が演算した値である。また、ねじ軸5の回動が反転してからのモータ7の回転軸の回転量をエンコーダ13がカウントし、A相、B相の電気信号を出力する。これら2つの電気信号に基づいて、演算部17はねじ軸5の回動角を演算する。
演算部17は、図5において、ねじ軸5の回動方向が反転した時点(測定時間:0(sec))からナット23が逆方向に移動開始するまでの間、すなわちモータ7の発生トルクが小さい状態の期間を識別し、この期間で回動するねじ軸5の回動角(以後、当該ねじ軸5の回動角を「すきま角」という)から、現在の軸方向すきま量を演算して求める。すなわち、すきま角をθ[rad]とし、現在の軸方向すきま量をδ[mm]とし、ボールねじ3のリードをL[mm]とすると、現在の軸方向すきま量δは次の式(1)の演算で求められる。
(1) δ=L×(θ/2π)
すなわち、ねじ軸5の回動方向が反転した時点から、ナット23側のボール転動溝21に対して、ねじ軸5側のボール転動溝19がδ[mm]だけ軸方向に移動した後に、ナット23は軸方向に移動を開始する。
ボールねじ3の磨耗が進行すると、軸方向すきまは大きくなる。軸方向すきまが大きくなると、上記すきま角は大きくなる。そうすると、演算部17によって式(1)で求められる軸方向すきま量δは大きくなる。すなわち、δの値が大きくなれば、ボールねじ3の磨耗が進行しているということがわかる。
さらに、演算部17は、ボールねじ3の初期の軸方向すきま量と比較した軸方向すきま量の増加量を演算して求める。すなわち、初期状態の軸方向すきま量をδ[mm]とし、初期状態と比較した軸方向すきま量の増加量をΔδ[mm]とすると、Δδは次の式(2)の演算で求められる。
(2) Δδ=δ−δ
なお、初期状態の軸方向すきま量δは、アクチュエータ1の使用前に上記式(1)を用いて測定し、演算部17が記憶している値である。
本実施形態は、演算部17で演算されたこれら式(1)および式(2)の演算結果を図示しない表示手段に表示している。これにより、操作者は、ボールねじ3の現在の軸方向すきま量と、初期状態のからの軸方向すきま量の増加量を把握することができる。こうして、ボールねじ3がどの程度磨耗が進行しているのかを把握することができる。
このように、本実施形態によれば、軸方向すきまを直接測定するための特別なセンサを必要とせず、従って難しいセンサの位置調整作業の必要がなく、従来公知のエンコーダ13や電流センサ15等を用いた簡単な構成でボールねじ3の磨耗状況を把握することができる。その結果、本実施形態に係るアクチュエータ1は、ボールねじ3がフレーキングに至ることを防止することができる。また、本実施形態に係るアクチュエータ1を備えた射出成形機によれば、ボールねじ3がフレーキングに至ることを防止することができる。
なお、式(1)の演算をほぼ未使用状態のねじ軸5に対して行えば、ボール25およびナット23に限定した軸方向すきま量δを求めることができる。また、ねじ軸5の全域に対して式(1)の演算を行えば、ねじ軸5に起因する軸方向すきま量δの分布を確認することができる。このように、本実施形態は、ナット23の移動範囲を変化させることにより、ボールねじ3の任意の部分の磨耗状況を把握することもできるし、ボールねじ3全体の磨耗状況を把握することもできる。
また、本実施形態では、光学透過式のインクリメンタル型のロータリーエンコーダを用いたが、モータ7の回転軸の回転方向および回転量をカウントできれば、磁気式のエンコーダであっても良い。また、本実施形態では、モータ7の発生トルクを測定するために、モータ7の駆動電流を測定する構成としたが、この構成に代えてトルクメータを備えても良い。また、モータ7の駆動電流は、モータドライバ11がモータ7へ流す電流値を検出しても良い。
また、本実施形態では、電流センサ15が検知した電流値に基づいて、モータドライバ11の演算部17がモータ7のトルクを演算し測定しているが、モータドライバ11とは別にトルク測定回路を設けても良い。また、本実施形態では、ロータリーエンコーダ13が検知したモータ7の回転軸の回転方向および回転量に基づいて、モータドライバ11の演算部17がボールねじ3のねじ軸5の回動方向および回動角を測定しているが、モータドライバ11とは別にねじ軸5の回動方向および回動角測定回路を設けても良い。
また、本実施形態では、演算部17は、ボールねじ3の初期の軸方向すきま量と比較した軸方向すきま量の増加量を求めているが、初期の軸方向すきま量に代えて、任意の時における軸方向すきま量を測定して演算部に記憶させ、このときの軸方向すきま量と比較した軸方向すきま量の増加量を演算できるようにしても良い。
1 アクチュエータ
3 ボールねじ
5 ねじ軸
7 モータ
9 回転伝達部材
11 モータドライバ
13 エンコーダ
15 電流センサ
17 演算部
19 (ねじ軸側の)ボール転動溝
21 (ナット側の)ボール転動溝
23 ナット
25 ボール

Claims (9)

  1. 外周面に螺旋溝が形成されたねじ軸と、前記ねじ軸の前記螺旋溝と対向する螺旋溝が内周面に形成されたナットと、前記ねじ軸の螺旋溝と前記ナットの螺旋溝とによって形成されるボール転動路内に転動自在に配置され、前記ナットを前記ねじ軸に軸方向移動自在に支持する多数のボールとを備えたボールねじと、
    前記ねじ軸を回動するためのモータとを備えたアクチュエータであって、
    前記ねじ軸の回動角を測定するための回動角測定手段と、
    前記モータのトルクを測定するためのトルク測定手段と、
    前記回動角測定手段によって測定された前記ねじ軸の回動角と、前記トルク測定手段によって測定された前記モータのトルクとに基づいて、前記ボールと前記ボール転動路との軸方向のすきま量を演算する演算手段とを備えたことを特徴とするアクチュエータ。
  2. 前記演算手段は、前記ねじ軸の回動方向が反転した際に、前記軸方向のすきま量を演算することを特徴とする請求項1に記載のアクチュエータ。
  3. 前記ナットは、前記ねじ軸の回動方向が反転してから所定の時間は軸方向へ移動せず、該所定の時間経過後に軸方向に移動を開始し、
    前記演算手段は、前記所定の時間で回動する前記ねじ軸の回動角に基づいて前記軸方向のすきま量を演算することを特徴とする請求項1または2に記載のアクチュエータ。
  4. 前記演算手段は、前記トルク測定手段によって測定された前記モータのトルクに基づいて、前記所定の時間を識別することを特徴とする請求項3に記載のアクチュエータ。
  5. 前記トルク測定手段によって測定される前記モータのトルクは、前記所定の時間においては、前記ナットが軸方向に移動しているときの前記モータのトルクよりも小さいことを特徴とする請求項3または4に記載のアクチュエータ。
  6. 前記トルク測定手段は、前記モータを流れる電流の大きさに基づいて前記トルクを測定していることを特徴とする請求項1から5の何れか一項に記載のアクチュエータ。
  7. 前記軸方向のすきま量は、前記ねじ軸の回動方向が反転した際の、前記ナットの螺旋溝に対する前記ねじ軸の螺旋溝の軸方向の相対的な移動量であることを特徴とする請求項1から6の何れか一項に記載のアクチュエータ。
  8. 前記演算手段は、任意の時における軸方向のすきま量を記憶し、前記任意の時における軸方向のすきま量と比較した現在の軸方向のすきま量の増加量をさらに演算することを特徴とする請求項1から7の何れか一項に記載のアクチュエータ。
  9. 請求項1から8の何れか一項に記載のアクチュエータを備えた射出成形機。
JP2014134173A 2014-06-30 2014-06-30 アクチュエータおよび該アクチュエータを備えた射出成形機 Pending JP2016011721A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134173A JP2016011721A (ja) 2014-06-30 2014-06-30 アクチュエータおよび該アクチュエータを備えた射出成形機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134173A JP2016011721A (ja) 2014-06-30 2014-06-30 アクチュエータおよび該アクチュエータを備えた射出成形機

Publications (1)

Publication Number Publication Date
JP2016011721A true JP2016011721A (ja) 2016-01-21

Family

ID=55228575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134173A Pending JP2016011721A (ja) 2014-06-30 2014-06-30 アクチュエータおよび該アクチュエータを備えた射出成形機

Country Status (1)

Country Link
JP (1) JP2016011721A (ja)

Similar Documents

Publication Publication Date Title
JP4684330B2 (ja) ねじ締め装置
JP4962488B2 (ja) トルク測定装置
US20150045952A1 (en) Torque detecting method and arm device
JP5910331B2 (ja) 位置決め装置
JPWO2007099629A1 (ja) モータ制御装置およびモータ制御方法
US20170001304A1 (en) Actuator
JP5657633B2 (ja) 移動体が反転するときの位置誤差を補正するサーボ制御装置
JP2009036718A (ja) 絶対位置測定装置
CN105917142B (zh) 用于磨合蜗轮传动装置的方法
US10286506B2 (en) Tool exchanger
JP2018029458A (ja) 駆動装置およびロボット
JP2009198198A (ja) ロープ溝形状測定装置およびロープ溝形状測定方法
KR101220111B1 (ko) 백래쉬 측정장치
WO2014129314A1 (ja) ねじ部の加工方法および加工装置
JP4834656B2 (ja) ポジションセンサの位置決め装置
KR20040038766A (ko) 회전각검출장치 및 토크검출장치
JP2016011721A (ja) アクチュエータおよび該アクチュエータを備えた射出成形機
JP5712759B2 (ja) 歯車伝達装置用物理量測定装置
JP5304570B2 (ja) リニアモータ位置検出システム
KR101601194B1 (ko) 기어드 엔코더 모터 및 그 제어 시스템
JP2014117778A (ja) ナットランナー
JP2012098268A5 (ja)
JP2000046141A (ja) ボールねじの予圧動トルク測定方法および装置
JP6277070B2 (ja) 電動パワーステアリング装置
WO2012014697A1 (ja) エンコーダ、アクチュエータ