JP2016007722A - Copper-clad laminate and flexible printed wiring board using copper-clad laminate - Google Patents

Copper-clad laminate and flexible printed wiring board using copper-clad laminate Download PDF

Info

Publication number
JP2016007722A
JP2016007722A JP2014127997A JP2014127997A JP2016007722A JP 2016007722 A JP2016007722 A JP 2016007722A JP 2014127997 A JP2014127997 A JP 2014127997A JP 2014127997 A JP2014127997 A JP 2014127997A JP 2016007722 A JP2016007722 A JP 2016007722A
Authority
JP
Japan
Prior art keywords
copper
copper foil
resin film
plating layer
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014127997A
Other languages
Japanese (ja)
Other versions
JP5695253B1 (en
Inventor
室賀 岳海
Takemi Muroga
岳海 室賀
千鶴 後藤
Chizuru Goto
千鶴 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52830856&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016007722(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2014127997A priority Critical patent/JP5695253B1/en
Application granted granted Critical
Publication of JP5695253B1 publication Critical patent/JP5695253B1/en
Publication of JP2016007722A publication Critical patent/JP2016007722A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an FPC which maintains excellent bondability between a resin film and copper foil and has a high degree of freedom in arrangement relation between the resin film and a positioning marker with excellent transmissive visibility at a resin film portion remaining after removal of the copper foil by chemical etching, and a copper-clad laminate for obtaining the FPC.SOLUTION: The copper-clad laminate includes a resin film and copper foil which are directly laminated. The peel strength between the resin film and the copper foil is 0.5 N/mm or more. The resin film remaining after removal of a part of the copper foil by chemical etching has a transmissive visibility Vdefined by a formula: V=(T-T)×C/100 (T: total light transmittance (unit: %), T: diffuse transmittance (unit: %), and C: transparency (unit: %)) satisfying: V≥10%.

Description

本発明は、フレキシブルプリント配線板の技術に関し、特に、導体箔をエッチング除去した後の残部となる可撓性基材を介した透過視認性が良好なフレキシブルプリント配線板および該フレキシブルプリント配線板を得るための銅張積層板に関するものである。   The present invention relates to a technique for a flexible printed wiring board, and in particular, a flexible printed wiring board having good transmission visibility through a flexible base material that becomes a remainder after etching and removing a conductive foil, and the flexible printed wiring board. The present invention relates to a copper clad laminate for obtaining.

フレキシブルプリント配線板(FPC)は、樹脂フィルム等の可撓性基材と導体箔とが積層された構造を有し、厚みが薄く可撓性に優れる特長から、配線の実装形態における自由度が高いという利点を有する。そのため、現在では、電子機器の可動部での配線や狭いスペース内での折り曲げ配線などにFPCが広く用いられている。   A flexible printed circuit board (FPC) has a structure in which a flexible base material such as a resin film and a conductive foil are laminated, and because of its thinness and excellent flexibility, the flexibility in the wiring mounting form is high. It has the advantage of being expensive. Therefore, at present, FPC is widely used for wiring in movable parts of electronic devices and bent wiring in a narrow space.

FPCの可撓性基材としては、熱的・機械的・化学的性質が良好な樹脂フィルム(例えば、ポリイミドフィルム)が一般的に用いられ、FPCの導体箔としては、種々の表面処理が施された純銅箔または銅合金箔(以下、単に「銅箔」という)が一般的に用いられている。銅箔は、その製造方法の違いにより、電解銅箔と圧延銅箔とに大別される。   As flexible substrates of FPC, resin films (for example, polyimide films) with good thermal, mechanical, and chemical properties are generally used, and various surface treatments are applied to FPC conductor foils. Pure copper foil or copper alloy foil (hereinafter simply referred to as “copper foil”) is generally used. Copper foils are roughly classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method.

FPCの製造工程は、概略的に、「FPC用銅箔と樹脂フィルムとを貼り合わせて銅張積層板(CCL)を形成する工程」と、「該銅張積層板に回路配線を形成する工程(回路配線部分以外の銅箔をエッチング除去する工程)」とを有する。なお、銅張積層板は、接着剤を介して樹脂フィルムと銅箔とが積層された三層銅張積層板と、接着剤を介さずに樹脂フィルムと銅箔とが直接積層された二層銅張積層板とに大別される。   The manufacturing process of FPC is roughly as follows: “Process for forming copper clad laminate (CCL) by bonding copper foil for FPC and resin film” and “Process for forming circuit wiring on the copper clad laminate” (Step of etching away copper foil other than the circuit wiring portion). The copper-clad laminate is a three-layer copper-clad laminate in which a resin film and a copper foil are laminated via an adhesive, and a two-layer in which a resin film and a copper foil are directly laminated without using an adhesive. Broadly divided into copper-clad laminates.

FPCは、前述のように可動部での配線材として用いられてきたことから、従来は、樹脂フィルムと銅箔との優れた接合性(例えば、0.5 N/mm以上のピール強度)と、優れた屈曲特性(例えば、100万回以上の屈曲特性)とが主に要求されてきた。   Since FPC has been used as a wiring material in moving parts as described above, it has traditionally had excellent bondability between resin film and copper foil (for example, peel strength of 0.5 N / mm or more) and excellent The bending characteristics (for example, bending characteristics of 1 million times or more) have been mainly required.

近年、小型電子機器(例えば、スマートフォン、タブレットPC)の高機能化により、液晶部材への配線材やICチップの搭載材などとして、FPCが利用されるようになってきた。この場合、液晶部材やICチップの実装工程において、FPCの樹脂フィルム部分(特に、回路配線以外の銅箔がエッチング除去されて残った樹脂フィルム部分)を透過して視認される位置決めマーカーで、実装部品(液晶部材やICチップ)とFPCとの位置合わせが行われる。そのため、FPCに対して、銅箔がエッチング除去されて残った樹脂フィルム部分での良好な透過視認性が要求されてきている。   In recent years, FPC has come to be used as a wiring material to a liquid crystal member, a mounting material for an IC chip, and the like due to high functionality of small electronic devices (for example, smart phones and tablet PCs). In this case, in the mounting process of liquid crystal members and IC chips, mounting with positioning markers that can be seen through the resin film part of the FPC (particularly the resin film part remaining after etching away the copper foil other than the circuit wiring) Components (liquid crystal members and IC chips) and FPC are aligned. For this reason, the FPC has been required to have good transmission visibility in the resin film portion remaining after the copper foil is removed by etching.

一方、前述したように、FPCは樹脂フィルムと銅箔との優れた接合性が求められており、CCLの段階で十分な接合性を確保するため、樹脂フィルムと銅箔との接合面(通常、銅箔側の接合面)に、しばしば粗化処理が施される(例えば、粗化銅めっき層が形成される)。一般的に、銅箔側の接合面の表面粗さが増大するほど(深い凹凸が形成されるほど)、アンカー効果により樹脂フィルムとの接合性が向上する。   On the other hand, as described above, FPC is required to have excellent bondability between the resin film and the copper foil. In order to ensure sufficient bondability at the CCL stage, the interface between the resin film and the copper foil (usually normal) , The copper foil side joining surface) is often subjected to a roughening treatment (for example, a roughened copper plating layer is formed). In general, as the surface roughness of the joint surface on the copper foil side increases (as the deep unevenness is formed), the bondability with the resin film is improved by the anchor effect.

ここで、アンカー効果とは、凹凸の噛み合いによる接合性の向上であることから、樹脂フィルム側の接合面にも、基本的にネガ/ポジの関係で凹凸が形成される。その結果、接合性向上のために接合面の粗度を大きくしたFPCでは、銅箔がエッチング除去されて残った樹脂フィルムに大きな表面凹凸が残存しているため、当該樹脂フィルムを介した位置決めマーカーの視認性が非常に悪いという問題が生じた。   Here, since the anchor effect is an improvement in bondability due to the engagement of irregularities, irregularities are basically formed on the resin film side also in a negative / positive relationship. As a result, in FPC with increased bonding surface roughness to improve bondability, large surface irregularities remain in the resin film that remains after the copper foil is etched away, so a positioning marker via the resin film The problem that the visibility of was very bad occurred.

しかしながら、樹脂フィルムを介した位置決めマーカーの視認性の向上を優先して接合面の粗度を過度に小さくすると、樹脂フィルムと銅箔との接合性が低下してFPCの信頼性が損なわれるという問題が生じる。すなわち、接合面の粗度を適度な範囲に制御する必要があることが判り、様々な技術が検討された。   However, if priority is given to improving the visibility of the positioning marker via the resin film and the roughness of the joint surface is excessively reduced, the bondability between the resin film and the copper foil is lowered and the reliability of the FPC is impaired. Problems arise. That is, it was found that the roughness of the joint surface needs to be controlled within an appropriate range, and various techniques were studied.

例えば、特許文献1(特開2004−98659)には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅層エッチング後のフィルムの波長600 nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500 N/m以上であり、150℃で1000時間の熱処理後の接着強度が285 N/ m以上である銅張積層板が、開示されている。特許文献1によると、従来公知の基板用の銅張積層板における問題点(接着強度が小さいこと、及び銅箔をエッチング除去後の残部のポリイミドフィルムの透明性が悪いこと)を解消した、オールポリイミドの基板材料を用いた銅張積層板を提供することができるとされている。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-98659), a polyimide film and a low-roughness copper foil are laminated, and the light transmittance at a wavelength of 600 nm of the film after the copper layer etching is 40% or more, A copper clad laminate having a haze value (HAZE) of 30% or less, an adhesive strength of 500 N / m or more, and an adhesive strength of 285 N / m or more after heat treatment at 150 ° C. for 1000 hours is disclosed. Has been. According to Patent Document 1, all the problems in the conventional copper-clad laminate for substrates (the adhesive strength is low and the transparency of the remaining polyimide film after etching the copper foil is poor) are all solved. It is said that a copper-clad laminate using a polyimide substrate material can be provided.

特許文献2(特開2013−147688)には、銅箔表面に粗化処理により粗化粒子が形成され、粗化処理表面の平均粗さRzが0.5〜1.3μmであり、粗化処理表面の光沢度が0.5〜68であり、前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが2.00〜2.45である表面処理銅箔が、開示されている。特許文献2によると、樹脂基板との接着性に優れる表面処理銅箔であり、且つ、銅張積層板における銅箔をエッチングで除去した後の樹脂基板の透明性が優れている(該樹脂基板の光透過率が30%以上となる)表面処理銅箔を提供することができるとされている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2013-147688), roughened particles are formed on a copper foil surface by a roughening treatment, and the average roughness Rz of the roughening treatment surface is 0.5 to 1.3 μm. The glossiness is 0.5 to 68, and the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 2.00 to 2.45. A surface treated copper foil is disclosed. According to Patent Document 2, it is a surface-treated copper foil excellent in adhesiveness to a resin substrate, and the transparency of the resin substrate after removing the copper foil in the copper-clad laminate by etching (the resin substrate) It is said that the surface-treated copper foil can be provided.

特開2004−98659号公報JP 2004-98659 A 特開2013−147688号公報JP 2013-147688 A

前述したように、近年ではFPCに対して、樹脂フィルムと銅箔との優れた接合性に加えて、銅箔がエッチング除去されて残った樹脂フィルム部分での良好な透過視認性が要求されてきている。樹脂フィルムの透明性は、一般的に全光線透過率Ttや曇度Hが指標として用いられている。そして、それらの指標は、樹脂フィルムの色調や表面粗さの影響を受ける。 As described above, in recent years, in addition to the excellent bondability between the resin film and the copper foil, the FPC has been required to have good transmission visibility in the resin film portion remaining after the copper foil is etched away. ing. In general, the total light transmittance T t and the haze H are used as indicators for the transparency of the resin film. These indicators are affected by the color tone and surface roughness of the resin film.

樹脂フィルムの色調に関しては、樹脂フィルムの材質の影響が大きいと考えられるが、FPCでは、種々の要求特性から、通常、ポリイミドフィルムが選定されており、コスト等の観点から材質の変更は容易ではない。言い換えると、本発明において、樹脂フィルムの材質は特段の制御対象ではない。   Regarding the color tone of the resin film, the influence of the material of the resin film is considered to be large, but in FPC, polyimide film is usually selected because of various required characteristics, and it is not easy to change the material from the viewpoint of cost etc. Absent. In other words, in the present invention, the material of the resin film is not a special control target.

一方、樹脂フィルムの表面粗さは、銅箔側の接合面の表面性状に強く影響される。すなわち、銅箔側の接合面の表面性状(粗化処理の性状)を制御することにより、樹脂フィルムの表面粗さを制御することができる。しかしながら、金属の表面粗さを示す一般的な指標(例えば、算術平均粗さRa、最大高さRz)に基づいた制御のみでは、樹脂フィルムの透過視認性の良否を上手く制御することができなかった。そのため、直接的に樹脂フィルムの透明性を示す指標(例えば、全光線透過率Tt、曇度H)が判断基準としてよく利用されている。 On the other hand, the surface roughness of the resin film is strongly influenced by the surface properties of the bonding surface on the copper foil side. That is, the surface roughness of the resin film can be controlled by controlling the surface properties (roughening properties) of the bonding surface on the copper foil side. However, it is not possible to successfully control the quality of transmission visibility of a resin film only by control based on general indices indicating the surface roughness of metal (for example, arithmetic average roughness Ra, maximum height Rz). It was. Therefore, an index (for example, total light transmittance T t , haze H) directly indicating the transparency of the resin film is often used as a judgment criterion.

本発明者等も、FPCにおける樹脂フィルム部分(銅箔が化学エッチング除去されて残った樹脂フィルム部分)での透過視認性について詳細に調査した。その結果、樹脂フィルムと位置決めマーカーとの配置関係によっては、樹脂フィルムの透明性を示す従来の指標(例えば、全光線透過率Tt、曇度H)でも、位置決めマーカーの透過視認性の良否を正しく判断できないことを見出した(詳細は後述する)。 The present inventors also investigated in detail the transmission visibility in the resin film portion (resin film portion remaining after the chemical etching removal of the copper foil) in the FPC. As a result, depending on the positional relationship between the resin film and the positioning marker, even if the conventional index indicating the transparency of the resin film (for example, total light transmittance T t , haze H), the positioning marker transmission visibility is good. It was found that it cannot be judged correctly (details will be described later).

したがって、本発明は、樹脂フィルムと銅箔との優れた接合性(例えば、0.5 N/mm以上のピール強度)が維持され、かつ銅箔が化学エッチング除去されて残った樹脂フィルム部分での透過視認性に関して、優れた透過視認性を確保しながら樹脂フィルムと位置決めマーカーとの配置関係で高い自由度を有するFPCを提供することを最終目的とし、該FPCを得るための銅張積層板を提供することを第一目的とする。   Therefore, the present invention maintains excellent bondability (for example, peel strength of 0.5 N / mm or more) between the resin film and the copper foil, and transmits the resin film portion remaining after the copper foil is chemically etched away. With regard to visibility, the ultimate goal is to provide an FPC with a high degree of freedom in the arrangement relationship between the resin film and the positioning marker while ensuring excellent transmission visibility, and provide a copper-clad laminate to obtain the FPC The primary purpose is to do.

(I)本発明の1つの態様は、樹脂フィルムと銅箔とが直接積層された銅張積層板であって、前記樹脂フィルムと前記銅箔とのピール強度が0.5 N/mm以上であり、前記銅箔の一部が化学エッチング除去されたとき、化学エッチング除去後の残存した前記樹脂フィルムにおいて、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義される透過視認度Vtが「Vt≧10%」である銅張積層板を提供する。 (I) One aspect of the present invention is a copper-clad laminate in which a resin film and a copper foil are directly laminated, and a peel strength between the resin film and the copper foil is 0.5 N / mm or more, When a part of the copper foil is removed by chemical etching, in the resin film remaining after the chemical etching is removed, the formula “V t = (T t −T d ) × C / 100” (T t : total light transmission) rate (unit:%), T d: diffuse transmittance (unit:%), C: transparency (units:%)) copper-clad laminate permeability visibility V t being defined is "V t ≧ 10%" in Provide a board.

本発明は、上記の本発明に係る銅張積層板において、以下のような改良や変更を加えることができる。
(i)前記樹脂フィルムに対向する前記銅箔の接合面に粗化銅めっき層が形成されており、前記粗化銅めっき層の平均厚さが0.05μm以上0.3μm以下である。
(ii)前記銅箔が圧延銅箔であり、前記銅箔と前記粗化銅めっき層との間に下地銅めっき層が形成されており、前記下地銅めっき層の平均厚さが0.1μm以上0.6μm以下である。
(iii)前記透過視認度Vtが「Vt≧20%」である。
In the copper-clad laminate according to the present invention described above, the present invention can be improved or changed as follows.
(I) A roughened copper plating layer is formed on the joint surface of the copper foil facing the resin film, and the average thickness of the roughened copper plating layer is 0.05 μm or more and 0.3 μm or less.
(Ii) The copper foil is a rolled copper foil, a base copper plating layer is formed between the copper foil and the roughened copper plating layer, and an average thickness of the base copper plating layer is 0.1 μm or more 0.6 μm or less.
(Iii) the transmission visibility V t is "V t ≧ 20%."

(II)本発明の他の1つの態様は、上記の銅張積層板の前記銅箔の一部が化学エッチング除去されて回路配線が形成されたフレキシブルプリント配線板であって、化学エッチング除去後の残存した前記樹脂フィルムにおいて、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義される透過視認度Vtが「Vt≧10%」であることを特徴とするフレキシブルプリント配線板を提供する。 (II) Another aspect of the present invention is a flexible printed wiring board in which a part of the copper foil of the copper-clad laminate is chemically etched to form a circuit wiring, after the chemical etching is removed. in the remaining the resin films of, the expression "V t = (T t - T d) × C / 100 " (T t: total light transmittance (unit:%), T d: diffuse transmittance (unit:%) , C: transparency (units:%)) transmitted visibility V t as defined in to provide a flexible printed wiring board, which is a "V t ≧ 10%."

本発明は、上記の本発明に係るフレキシブルプリント配線板において、以下のような改良や変更を加えることができる。
(iv)前記透過視認度Vtが「Vt≧20%」である。
In the flexible printed wiring board according to the present invention described above, the present invention can be improved or changed as follows.
(Iv) The transmission visibility V t is “V t ≧ 20%”.

本発明によれば、樹脂フィルムと銅箔との優れた接合性が維持され、かつ銅箔が化学エッチング除去されて残った樹脂フィルム部分での透過視認性に関して、優れた透過視認性を確保しながら樹脂フィルムと位置決めマーカーとの配置関係で高い自由度を有するFPCを提供することができる。また、該FPCを得るための銅張積層板を提供することができる。   According to the present invention, excellent bondability between the resin film and the copper foil is maintained, and excellent transmission visibility is ensured with respect to the transmission visibility in the resin film portion remaining after the copper foil is chemically etched away. However, it is possible to provide an FPC having a high degree of freedom in the arrangement relationship between the resin film and the positioning marker. In addition, a copper clad laminate for obtaining the FPC can be provided.

樹脂フィルムの透過光測定(較正測定、全光線透過率測定、拡散透過率測定)の基本方法(JIS K 7361、JIS K 7136)を示す断面模式図である。It is a cross-sectional schematic diagram which shows the basic method (JIS K 7361, JIS K 7136) of the transmitted light measurement (calibration measurement, total light transmittance measurement, diffuse transmittance measurement) of a resin film. 従来の銅張積層板において銅箔を化学エッチング除去した後の樹脂フィルム部分での透過視認性の一例を示す写真であり、(a)透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合の透過視認性、(b)透過視認するマーカーを、樹脂フィルムの下で隙間(約10 mm)を空けて配置した場合の透過視認性である。It is a photograph which shows an example of the transmission visibility in the resin film part after carrying out the chemical etching removal of the copper foil in the conventional copper clad laminated board, (a) The marker which carries out the transmission visual recognition is closely_contact | adhered and arrange | positioned under the resin film And (b) transmission visibility when a marker to be visually recognized is arranged with a gap (about 10 mm) under the resin film. 樹脂フィルムとマーカーとの配置関係、および透過視認する光路を概略的に示した模式図であり、(a)透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合、(b)透過視認するマーカーを、樹脂フィルムの下で隙間を空けて配置した場合である。It is the schematic diagram which showed the arrangement | positioning relationship between a resin film and a marker, and the optical path which permeate | transmits visually, (a) When the marker which permeate | transmits visually is arrange | positioned in close contact with the resin film, (b) Permeation | transmission This is a case where the marker to be visually recognized is arranged with a gap under the resin film. 樹脂フィルムの透明度測定の基本方法を示す断面模式図である。It is a cross-sectional schematic diagram which shows the basic method of the transparency measurement of a resin film. 本発明に係る銅張積層板の構造例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of the copper clad laminated board which concerns on this invention. 本発明に係る銅張積層板の製造工程の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing process of the copper clad laminated board which concerns on this invention. 比較例5および実施例5の表面処理銅箔における「下地銅めっき層/圧延銅箔」の界面付近の断面微細組織のSEM観察像であり、(a)比較例5、(b)実施例5である。It is a SEM observation image of the cross-sectional microstructure near the interface of “underlying copper plating layer / rolled copper foil” in the surface-treated copper foils of Comparative Example 5 and Example 5, (a) Comparative Example 5, (b) Example 5 It is. 実施例5のFPC模擬試料において表面処理銅箔を化学エッチング除去した後の露出したポリイミドフィルム部分での透過視認性の一例を示す写真であり、(a)透過視認するマーカーを、ポリイミドフィルムの下に密着させて配置した場合の透過視認性、(b)透過視認するマーカーを、ポリイミドフィルムの下で隙間(約10 mm)を空けて配置した場合の透過視認性である。It is a photograph which shows an example of the transmission visibility in the exposed polyimide film part after carrying out the chemical etching removal of the surface treatment copper foil in the FPC simulated sample of Example 5, (a) The marker which carries out the transmission visual recognition is under a polyimide film. And (b) transmission visibility when a marker to be visually recognized is arranged with a gap (about 10 mm) under the polyimide film.

以下、本発明に係る実施形態について図面を参照しながら説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で組合せや改良が適宜可能である。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to the embodiments taken up here, and combinations and improvements can be appropriately made without departing from the technical idea of the invention.

(従来技術における問題点、およびその要因調査)
前述したように、本発明者等は、FPCにおける各種要求(例えば、樹脂フィルムと銅箔との優れた接合性、樹脂フィルム部分での優れた透過視認性)を満たすべく、銅箔エッチング除去後の樹脂フィルム部分での透過視認性を詳細に調査した。まず、樹脂フィルムの透明性を示す従来の指標(例えば、全光線透過率Tt、拡散透過率Td、曇度H)の測定方法について確認・検討した。
(Problems in conventional technology and investigation of its causes)
As described above, the present inventors have been able to satisfy various requirements in FPC (for example, excellent bondability between the resin film and the copper foil, excellent transmission visibility in the resin film portion) after removing the copper foil by etching. The penetration visibility in the resin film part of was investigated in detail. First, a conventional method for measuring the transparency of a resin film (for example, total light transmittance T t , diffuse transmittance T d , haze H) was confirmed and examined.

図1は、樹脂フィルムの透過光測定(較正測定、全光線透過率測定、拡散透過率測定)の基本方法(JIS K 7361、JIS K 7136)を示す断面模式図である。図1に示したように、透過光測定を行う積分球には、測定光線(入射光束)を入射する入口開口と、平行光線が出射される出口開口と、光量を計測するための受光器開口と、望まない反射光をキャンセルするための補償開口(反射測定窓とも言う)とが設けられ、補償開口にはライトトラップボックスが接続されている。   FIG. 1 is a schematic cross-sectional view showing a basic method (JIS K 7361, JIS K 7136) of transmitted light measurement (calibration measurement, total light transmittance measurement, diffuse transmittance measurement) of a resin film. As shown in FIG. 1, an integrating sphere for measuring transmitted light has an entrance opening for receiving a measurement light beam (incident light beam), an exit opening for emitting a parallel light beam, and a receiver opening for measuring the amount of light. And a compensation aperture (also referred to as a reflection measurement window) for canceling unwanted reflected light, and a light trap box is connected to the compensation aperture.

較正測定においては、入口開口に試料を設置せずに開放し、出口開口を白板によって塞ぎ、補償開口に試料を設置した状態で、入口開口から入射光束を入射して光量を測定する。これにより、試料からの反射光を含む環境の較正ができる。全光線透過率測定においては、入口開口に試料を設置し、出口開口を白板によって塞ぎ、補償開口を開放した状態で、試料の背面(積分球に対向しない面の意味)から入射光束を入射して光量を測定する。これを較正測定の光量と比較することにより、試料の全光線透過率Tt(%)が測定される。拡散透過率測定においては、入口開口に試料を設置し、出口開口を開放し、補償開口を白板(ヘイズ補償用白板)によって塞いだ状態で、試料の背面から入射光束を入射して光量を測定する。試料を透過した平行光線が出口開口から抜けるため、拡散透過率Td(%)が測定される。曇度H(%)は、全光線透過率Ttに対する拡散透過率Tdの比率(Td/Tt × 100)により算出される。 In the calibration measurement, a sample is not opened at the entrance opening, the exit opening is closed with a white plate, and the sample is placed at the compensation opening. Thereby, the environment including the reflected light from the sample can be calibrated. In total light transmittance measurement, a sample is placed at the entrance opening, the exit opening is closed with a white plate, and the compensation opening is opened. The incident light beam enters from the back of the sample (meaning the surface not facing the integrating sphere). Measure the light intensity. By comparing this with the light quantity of the calibration measurement, the total light transmittance T t (%) of the sample is measured. In diffuse transmittance measurement, a sample is installed at the entrance opening, the exit opening is opened, and the compensation opening is closed with a white plate (white plate for haze compensation), and the amount of light is measured by entering the incident light beam from the back of the sample. To do. Since the parallel light beam that has passed through the sample passes through the exit opening, the diffuse transmittance T d (%) is measured. The haze H (%) is calculated by the ratio of the diffuse transmittance T d to the total light transmittance T t (T d / T t × 100).

図2は、従来の銅張積層板において銅箔を化学エッチング除去した後の樹脂フィルム部分での透過視認性の一例を示す写真であり、(a)透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合の透過視認性、(b)透過視認するマーカーを、樹脂フィルムの下で隙間(約10 mm)を空けて配置した場合の透過視認性である。   FIG. 2 is a photograph showing an example of transmission visibility in the resin film portion after chemical etching removal of the copper foil in the conventional copper-clad laminate, and (a) a marker for visual recognition is placed under the resin film. Transmission visibility when arranged in close contact, and (b) transmission visibility when a marker for visual recognition is arranged with a gap (about 10 mm) under the resin film.

図2(a)に示したように、透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合、マーカーに表示された文字を十分視認・判別することができる。これに対し、図2(b)に示したように、透過視認するマーカーを、樹脂フィルムの下で隙間(約10 mm)を空けて配置した場合、マーカーに表示された文字を全く視認・判別できない。この実験から、樹脂フィルムを介した透過視認性は、樹脂フィルムとマーカーとの配置関係(特に、樹脂フィルムとマーカーとの距離)に強く影響されることが判った。   As shown in FIG. 2 (a), when the marker to be seen through is placed in close contact with the bottom of the resin film, the characters displayed on the marker can be sufficiently visually recognized and discriminated. On the other hand, as shown in Fig. 2 (b), when the marker to be seen through is placed under a resin film with a gap (about 10 mm), the characters displayed on the marker are completely visible and discriminated. Can not. From this experiment, it was found that the transmission visibility through the resin film is strongly influenced by the arrangement relationship between the resin film and the marker (particularly, the distance between the resin film and the marker).

なお、FPCに対する液晶部材やICチップの実装工程においては、長尺のFPCが連続的に搬送されながら位置決めがなされるため、FPC表面に傷を付けないように、通常、FPCと位置決めマーカーとの間には適当な隙間が空くように設定されている。   In the process of mounting liquid crystal members and IC chips on the FPC, positioning is performed while the long FPC is continuously transported, so the FPC and the positioning marker are usually placed in order not to damage the FPC surface. An appropriate gap is set between them.

上記実験は樹脂フィルムとマーカーとの配置関係のみを変化させたものなので、当然のことながら、樹脂フィルムの透明性を示す指標(例えば、全光線透過率Tt、拡散透過率Td、曇度H)自体には変化がない。すなわち、樹脂フィルムとマーカーとの配置関係を考慮すると、透明性を示す従来の指標のみでは、樹脂フィルムを介した透過視認性を適切に評価できないことが判明した。 In the above experiment, only the positional relationship between the resin film and the marker is changed, so of course, an index indicating the transparency of the resin film (for example, total light transmittance T t , diffuse transmittance T d , haze) H) There is no change in itself. That is, when the arrangement relationship between the resin film and the marker is taken into consideration, it has been found that the transmission visibility through the resin film cannot be appropriately evaluated only with the conventional index indicating transparency.

樹脂フィルムを介した透過視認性を適切に評価できない要因について考察する。   The reason why the transmission visibility through the resin film cannot be properly evaluated will be considered.

図3は、樹脂フィルムとマーカーとの配置関係、および透過視認する光路を概略的に示した模式図であり、(a)透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合、(b)透過視認するマーカーを、樹脂フィルムの下で隙間を空けて配置した場合である。   FIG. 3 is a schematic diagram schematically showing an arrangement relationship between a resin film and a marker, and an optical path to be viewed through transmission. (A) When a marker to be viewed through transmission is placed in close contact with the resin film, (B) This is a case where the marker to be visually recognized is arranged with a gap below the resin film.

図3(a)に示したように、透過視認するマーカーを、樹脂フィルムの下に密着させて配置した場合、マーカーが樹脂フィルムに密着していることから、マーカー表面での反射は、樹脂フィルムとマーカーとの界面での反射と見なすことができる。これは、樹脂フィルムを透過してからマーカー表面で反射するまでの距離を実質的にゼロと見なせることができ、樹脂フィルムを最初に透過したときの拡散光(拡散による光線の広がり)を考慮する必要がない。言い換えると、全光線透過率Ttで透過した光がほぼそのまま反射するものと考えられる。 As shown in FIG. 3 (a), when the marker to be seen through is placed in close contact with the resin film, the marker is in close contact with the resin film. And reflection at the interface between the marker and the marker. In this case, the distance from the transmission through the resin film to the reflection at the marker surface can be regarded as substantially zero, and the diffused light (spread of light due to diffusion) when first transmitted through the resin film is taken into consideration. There is no need. In other words, it is considered that the light transmitted at the total light transmittance T t is reflected almost as it is.

これに対し、図3(b)に示したように、透過視認するマーカーを、樹脂フィルムの下で隙間を空けて配置した場合、樹脂フィルムを透過した光は、拡散透過率Tdに相当する拡散光を生じさせながらマーカー表面で反射し、反射光のうちで樹脂フィルムを再度透過した光のみが検知される。言い換えると、樹脂フィルムを透過してからマーカー表面で反射するまでにある程度の距離が存在する場合、樹脂フィルムを透過して直進する光(すなわち、平行光線)が重要になると考えられる。 On the other hand, as shown in FIG. 3B, when the marker to be visually recognized is disposed with a gap under the resin film, the light transmitted through the resin film corresponds to the diffuse transmittance Td . Only the light reflected from the marker surface while producing diffuse light and transmitted through the resin film again is detected. In other words, when there is a certain distance from the transmission through the resin film to the reflection at the marker surface, it is considered that light that travels straight through the resin film (that is, parallel rays) becomes important.

上記考察から、樹脂フィルムを介したマーカーの透過視認性とは、樹脂フィルムを透過した光が、マーカー表面で反射し、樹脂フィルムを再度透過して観測者(またはCCDカメラのような観測器)に検知されたものと考えられ、樹脂フィルムを往復透過する光が透過視認性の本質であると考えられた。すなわち、樹脂フィルムを往復透過する光を考慮すべきという点で、樹脂フィルムを一回だけ透過する光を計測した従来の指標(例えば、全光線透過率Tt、拡散透過率Td、曇度H)のみでは、樹脂フィルムを介した透過視認性を適切に評価できないものと考えられた。 From the above considerations, the marker transmission visibility through the resin film means that the light that has passed through the resin film is reflected by the marker surface and is transmitted again through the resin film (or an observer such as a CCD camera). It was considered that the light that reciprocates through the resin film is the essence of transmission visibility. That is, the conventional index (for example, total light transmittance T t , diffuse transmittance T d , haze, etc.) that measures the light transmitted through the resin film only once in consideration that the light passing through the resin film should be taken into consideration. It was considered that the transmission visibility through the resin film could not be properly evaluated only with H).

(樹脂フィルムを介した透過視認性を判定するための指標)
透過視認性の良否を判定できる適当な指標が存在しないと、透過視認性を改善するために制御する項目が定まらないため、非常に大きな問題になる。言い換えると、前述した要求(樹脂フィルムと銅箔との優れた接合性と、樹脂フィルムを介した良好な透過視認性との両立)を満たせる銅張積層板を得るためには、少なくとも、樹脂フィルムを介した透過視認性の良否を判定できる適当な指標が必要である。
(Indicator for judging transmission visibility through a resin film)
If there is no appropriate index for determining whether or not the transmission visibility is good, items to be controlled in order to improve the transmission visibility are not determined, which is a very big problem. In other words, in order to obtain a copper-clad laminate that satisfies the above-described requirements (coexistence of excellent bondability between the resin film and the copper foil and good transmission visibility through the resin film), at least the resin film An appropriate index that can determine whether or not the transmission visibility through the screen is good is required.

前述の実験・考察から、樹脂フィルムを介した透過視認性は、樹脂フィルムを透過して直進する光(平行光線)が重要であることが判明した。そこで、樹脂フィルムを透過した平行光線について、さらに詳細に検討した。   From the above experiments and considerations, it has been found that light (parallel rays) that passes straight through the resin film and travels straight through the resin film is important for transmission visibility through the resin film. Therefore, the parallel light beam that passed through the resin film was examined in more detail.

樹脂フィルムを透過した平行光線には、通常、直進光と狭角度散乱光とが含まれていると言われている。樹脂フィルムを介した透過視認性は樹脂フィルムを往復透過する光が重要であることを考慮すると、樹脂フィルムとマーカーとの間にある程度の距離が存在する場合、たとえ狭角度であっても散乱光の影響は無視できず、樹脂フィルムを透過して直進しそのまま反射直進する光(すなわち、直進光)が重要であると考えられる。なお、平行光線中の狭角度散乱光は、マーカー表面での反射においてマーカーの輪郭をぼやけさせる要因になると考えられる。   It is said that the parallel light transmitted through the resin film usually contains straight light and narrow-angle scattered light. Considering the importance of light passing through the resin film for transmission visibility through the resin film, if there is a certain distance between the resin film and the marker, even if it is a narrow angle, scattered light The light that passes through the resin film and goes straight and reflects straight (that is, straight light) is considered important. In addition, it is thought that the narrow angle scattered light in a parallel ray becomes a factor which blurs the outline of a marker in reflection on the marker surface.

直線光の指標(狭角度散乱光の影響を表す指標)に透明度Cがある。図4は、樹脂フィルムの透明度測定の基本方法を示す断面模式図である。透明度Cは、図4のようにして、試料を透過した平行光線の光量を中心センサーと外周センサーとからなるリングセンサーで計測し、式「C(%)= (Ic − Ir)/(Ic + Ir) × 100」(ただし、Ic:センターセンサー受光量、Ir:リングセンサー受光量)により求められる指標である。 Transparency C is an index of linear light (an index indicating the influence of narrow-angle scattered light). FIG. 4 is a schematic cross-sectional view showing a basic method for measuring the transparency of a resin film. As shown in FIG. 4, the transparency C is obtained by measuring the amount of parallel light transmitted through the sample with a ring sensor composed of a center sensor and an outer periphery sensor. The expression “C (%) = (I c −I r ) / ( I c + I r ) × 100 ”(where I c is the received light amount of the center sensor, I r is the received light amount of the ring sensor).

上述した透明性に関する各指標および本発明者等の数多くの実験・解析から、樹脂フィルムを介した透過視認性の指標(以下、透過視認度Vtと称す、単位:%)は、樹脂フィルムを透過した平行光線における直線光の比率として、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義することができる。これにより、樹脂フィルムとマーカーとの間にある程度の距離が存在する場合であっても、透過視認度Vtが所定の値を満たすように制御することによって、良好な透過視認性を確保することができる。なお、「Tt − Td」は、樹脂フィルムを透過した平行光線の比率(例えば、平行光線透過率Tpと称す)を意味する。 From a number of experiments and analysis, such as the indicators and the inventors Transparency described above, transparent visibility of indicators through the resin film (hereinafter, referred to as transmission visibility V t, unit:%) is a resin film As a ratio of the linear light in the transmitted parallel rays, the formula “V t = (T t −T d ) × C / 100” (T t : total light transmittance (unit:%), T d : diffuse transmittance (unit) :%), C: transparency (unit:%)). Thus, even if there is some distance between the resin film and the marker, by transmitting visibility V t is controlled so as to satisfy a predetermined value, ensuring a good transmission visibility Can do. “T t −T d ” means the ratio of parallel rays transmitted through the resin film (for example, referred to as parallel ray transmittance T p ).

[銅張積層板の構造]
図5は、本発明に係る銅張積層板の構造例を示す断面模式図である。図5に示したように、本発明に係る銅張積層板10は、銅箔1と樹脂フィルム6とが樹脂接着層を介さずに直接積層された二層銅張積層板であって、樹脂フィルム6に対向する銅箔1の接合面に、下地銅めっき層2と粗化銅めっき層3と防錆層4とが形成されている。通常、銅箔1〜防錆層4を総称して表面処理銅箔5と称する。
[Copper-clad laminate structure]
FIG. 5 is a schematic cross-sectional view showing a structural example of a copper-clad laminate according to the present invention. As shown in FIG. 5, a copper clad laminate 10 according to the present invention is a two-layer copper clad laminate in which a copper foil 1 and a resin film 6 are laminated directly without a resin adhesive layer, A base copper plating layer 2, a roughened copper plating layer 3, and a rust prevention layer 4 are formed on the bonding surface of the copper foil 1 facing the film 6. Usually, the copper foil 1 to the antirust layer 4 are collectively referred to as a surface-treated copper foil 5.

なお、図5においては、樹脂フィルム6の片面に銅箔1(または表面処理銅箔5)が積層された二層片面銅張積層板を描いたが、本発明に係る銅張積層板は、樹脂フィルム6の両面に銅箔1(または表面処理銅箔5)が積層された二層両面銅張積層板であってもよい。   In addition, in FIG. 5, although the two-layer single-sided copper clad laminated board by which the copper foil 1 (or surface treatment copper foil 5) was laminated | stacked on the single side | surface of the resin film 6, the copper clad laminated board which concerns on this invention, It may be a two-layer double-sided copper-clad laminate in which copper foil 1 (or surface-treated copper foil 5) is laminated on both surfaces of the resin film 6.

(銅箔)
銅箔1に特段の限定はなく、従前の銅箔(例えば、電解銅箔や圧延銅箔)を用いることができる。FPCにおいて極めて優れた屈曲特性(例えば、100万回以上の屈曲特性)が要求される場合、圧延銅箔を用いることが好ましい。また、素材としては、純銅(例えば、タフピッチ銅(JIS H 3100 C1100)や無酸素銅(JIS H 3100 C1020))、および純銅にスズ(Sn)や銀(Ag)が微量添加された希薄銅合金がよく用いられる。以下では、特に断らない限り、銅箔1として圧延銅箔を用いた場合について説明する。
(Copper foil)
The copper foil 1 is not particularly limited, and a conventional copper foil (for example, an electrolytic copper foil or a rolled copper foil) can be used. When extremely excellent bending characteristics (for example, bending characteristics of 1 million times or more) are required in FPC, it is preferable to use a rolled copper foil. In addition, as raw materials, pure copper (for example, tough pitch copper (JIS H 3100 C1100) and oxygen-free copper (JIS H 3100 C1020)), and dilute copper alloys with a small amount of tin (Sn) or silver (Ag) added to pure copper Is often used. Hereinafter, a case where a rolled copper foil is used as the copper foil 1 will be described unless otherwise specified.

(下地銅めっき層)
下地銅めっき層2は、銅箔1の直上に形成され、粗化銅めっき層3の下地となる層である。本発明においては、所定の下地銅めっき層2を設けることにより、その上に形成する粗化銅めっき層3の粗化形状(厚さ(凹凸)方向や面内方向の形状)を均等化・安定化することができる。本発明の下地銅めっき層2の平均厚さは0.1μm以上0.6μm以下が好ましい。平均厚さが0.1μm未満になると、下地銅めっき層の作用効果が不十分になる。平均厚さが0.6μm超では、作用効果が飽和しプロセスコストが無駄になる。素材としては、純銅または銅箔1と同じ組成が好ましい。
(Underlying copper plating layer)
The base copper plating layer 2 is a layer that is formed immediately above the copper foil 1 and serves as a base for the roughened copper plating layer 3. In the present invention, by providing a predetermined base copper plating layer 2, the roughened shape (thickness (unevenness) direction or in-plane direction shape) of the roughened copper plating layer 3 formed thereon is equalized. Can be stabilized. The average thickness of the base copper plating layer 2 of the present invention is preferably 0.1 μm or more and 0.6 μm or less. When the average thickness is less than 0.1 μm, the effect of the underlying copper plating layer becomes insufficient. If the average thickness exceeds 0.6 μm, the effect is saturated and the process cost is wasted. The material is preferably the same composition as pure copper or copper foil 1.

本発明の下地銅めっき層2は、再結晶焼鈍処理が施されていない表面処理銅箔の状態において、下地銅めっき層2を構成する多結晶粒が銅箔1を構成する多結晶粒と異なる結晶方位関係を有するという特徴を有する。銅箔1を構成する多結晶粒は、少なくともその圧延面において、銅結晶の{022}面が優先配向した微細組織(いわゆる圧延集合組織:圧延面に対して2θ/θ法によるX線回折(XRD)測定を行うと、{022}面が主ピーク(最強ピーク)として現れ、{002}面が第2ピークとして現れる微細組織)を有している。   In the state of the surface-treated copper foil that has not been subjected to the recrystallization annealing treatment, the underlying copper plating layer 2 of the present invention is different from the polycrystalline grains constituting the copper foil 1 in the polycrystalline grains constituting the underlying copper plating layer 2 It has the characteristic of having a crystal orientation relationship. The polycrystalline grains constituting the copper foil 1 have a microstructure in which the {022} plane of the copper crystals is preferentially oriented at least on the rolling surface (so-called rolling texture: X-ray diffraction by the 2θ / θ method with respect to the rolling surface ( When XRD) measurement is performed, the {022} plane appears as a main peak (strongest peak) and the {002} plane appears as a second peak.

これに対し、下地銅めっき層2を構成する多結晶粒は、当該圧延集合組織とは異なる微細組織を有する。具体的には、下地銅めっき層2の表面に対してXRD測定を行うと、銅結晶の{111}面および/または{002}面が優先配向している。なお、銅箔1は、再結晶焼鈍処理(例えば、CCL形成工程)により、銅結晶の{002}面が優先配向した微細組織(いわゆる立方体集合組織)に変化する。   On the other hand, the polycrystalline grains constituting the base copper plating layer 2 have a microstructure different from the rolling texture. Specifically, when XRD measurement is performed on the surface of the underlying copper plating layer 2, the {111} plane and / or the {002} plane of the copper crystal is preferentially oriented. The copper foil 1 is changed to a microstructure (so-called cubic texture) in which the {002} plane of the copper crystal is preferentially oriented by a recrystallization annealing process (for example, CCL forming step).

さらに、本発明の下地銅めっき層2は、再結晶焼鈍処理が施されていない表面処理銅箔の状態で断面組織観察を行った場合に、下地銅めっき層2を構成する多結晶粒の平均厚さが銅箔1を構成する多結晶粒の平均厚さよりも大きいという特徴を有する。   Further, the base copper plating layer 2 of the present invention is an average of the polycrystalline grains constituting the base copper plating layer 2 when the cross-sectional structure observation is performed in the state of the surface-treated copper foil not subjected to the recrystallization annealing treatment. The thickness is larger than the average thickness of the polycrystalline grains constituting the copper foil 1.

本発明では、下地銅めっき層2の形成方法が従来技術と大きく異なり(詳細は後述する)、最終的な「樹脂フィルム部分での透過視認性」に関して明らかな効果を示す。ただし、下地銅めっき層2の上記特徴が「樹脂フィルム部分での透過視認性」に効果を示すメカニズムに関しては、残念ながら、現段階において解明できていない。   In the present invention, the formation method of the base copper plating layer 2 is greatly different from the prior art (details will be described later), and an obvious effect is exhibited with respect to the final “transmission visibility at the resin film portion”. However, unfortunately, the mechanism by which the above characteristics of the underlying copper plating layer 2 have an effect on “transparency visibility at the resin film portion” has not been elucidated at this stage.

(粗化銅めっき層)
粗化銅めっき層3は、下地銅めっき層2の直上に形成される。粗化銅めっき層3の粗化形状が、「樹脂フィルムと銅箔との接合性」および「樹脂フィルム部分での透過視認性」に対して直接的に影響する。粗化銅めっき層3の平均厚さは0.05μm以上0.3μm以下が好ましい。平均厚さが0.05μm未満になると、樹脂フィルム6と表面処理銅箔5との接合性が不十分になる。平均厚さが0.3μm超では、表面処理銅箔5を化学エッチング除去した後の樹脂フィルム6の透過視認性が不十分になる。平均厚さの規定以外は、従前の技術を利用できる。
(Roughened copper plating layer)
The roughened copper plating layer 3 is formed immediately above the base copper plating layer 2. The roughened shape of the roughened copper plating layer 3 directly affects “bondability between the resin film and the copper foil” and “transparency visibility at the resin film portion”. The average thickness of the roughened copper plating layer 3 is preferably 0.05 μm or more and 0.3 μm or less. When the average thickness is less than 0.05 μm, the bondability between the resin film 6 and the surface-treated copper foil 5 becomes insufficient. When the average thickness exceeds 0.3 μm, the transmission visibility of the resin film 6 after the surface-treated copper foil 5 is removed by chemical etching becomes insufficient. Except for the average thickness specification, conventional techniques can be used.

(防錆層)
防錆層4は、粗化銅めっき層3の直上に形成される。防錆層4は、本発明において必須の層ではないが、FPC(およびFPC用の銅張積層板)においてしばしば形成される層である。防錆層4の構成に特段の限定はなく、従前の技術を利用できる。例えば、ニッケルめっき層(平均厚さ9 nm以上50 nm以下)、亜鉛めっき層(平均厚さ1 nm以上10 nm以下)、3価クロム化成処理層(平均厚さ1 nm以上10 nm以下)、シランカップリング処理層(分子層レベルの厚さ)が、この順に積層される。なお、従来技術と同様に、樹脂フィルム6に対向する銅箔1の接合面と反対側の面に、防錆層4を設けてもよい。
(Rust prevention layer)
The rust prevention layer 4 is formed immediately above the roughened copper plating layer 3. The rust prevention layer 4 is not an essential layer in the present invention, but is a layer often formed in FPC (and copper clad laminate for FPC). There is no particular limitation on the configuration of the rust prevention layer 4, and a conventional technique can be used. For example, nickel plating layer (average thickness 9 nm to 50 nm), zinc plating layer (average thickness 1 nm to 10 nm), trivalent chromium conversion treatment layer (average thickness 1 nm to 10 nm), A silane coupling treatment layer (molecular layer level thickness) is laminated in this order. As in the prior art, the antirust layer 4 may be provided on the surface opposite to the bonding surface of the copper foil 1 facing the resin film 6.

(樹脂フィルム)
樹脂フィルム6は、FPCにおける可撓性基材となる層である。樹脂フィルム6の素材に特段の限定はなく、従前の技術を利用できる。例えば、ポリイミドフィルムが好適に用いられる。
(Resin film)
The resin film 6 is a layer that becomes a flexible substrate in the FPC. There is no particular limitation on the material of the resin film 6, and the conventional technology can be used. For example, a polyimide film is preferably used.

本発明に係る銅張積層板10は、表面処理銅箔5が化学エッチング除去されたとき、化学エッチング除去後の残存した樹脂フィルム6において、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義される透過視認度Vtが「Vt≧10%」である。また、樹脂フィルム6と表面処理銅箔5とのピール強度が0.5 N/mm以上である。 When the surface-treated copper foil 5 is removed by chemical etching, the copper-clad laminate 10 according to the present invention has a formula “V t = (T t −T d ) × C in the remaining resin film 6 after chemical etching removal. / 100 "(T t: total light transmittance (unit:%), T d: diffuse transmittance (unit:%), C: transparency (units:%)) transmitted visibility V t being defined by the" V t ≧ 10% ”. Further, the peel strength between the resin film 6 and the surface-treated copper foil 5 is 0.5 N / mm or more.

[銅張積層板の製造方法]
本発明に係る銅張積層板の製造方法について、図6を用いて説明する。図6は、本発明に係る銅張積層板の製造工程の一例を示すフロー図である。なお、以下では、洗浄工程や乾燥工程の説明を省略する場合があるが、それらの工程は必要に応じて適宜行われることが好ましい。
[Manufacturing method of copper clad laminate]
The manufacturing method of the copper clad laminated board which concerns on this invention is demonstrated using FIG. FIG. 6 is a flowchart showing an example of a manufacturing process of the copper clad laminate according to the present invention. In addition, below, description of a washing | cleaning process and a drying process may be abbreviate | omitted, However, It is preferable that these processes are suitably performed as needed.

(S10)銅箔準備工程
本工程では、銅箔1を準備する。前述したように、銅箔1自体に特段の限定はなく、従前の銅箔(例えば、電解銅箔や圧延銅箔)を用いることができるので、銅箔準備方法にも特段の限定はなく、従前の方法を用いることができる。
(S10) Copper foil preparation process In this process, the copper foil 1 is prepared. As described above, there is no particular limitation on the copper foil 1 itself, and since conventional copper foil (for example, electrolytic copper foil and rolled copper foil) can be used, the copper foil preparation method is not particularly limited, Conventional methods can be used.

(S20)下地銅めっき層形成工程
本工程では、銅箔1の直上に下地銅めっき層2を形成する。下地銅めっき層2を形成する前に、電解脱脂処理および酸洗処理を行って銅箔1の表面を清浄化することは好ましい。電解脱脂処理は、銅箔1をアルカリ水溶液に浸漬し陰極電解脱脂を行う処理である。アルカリ水溶液としては、例えば、水酸化ナトリウム(NaOH)を20 g/L以上60 g/L以下、炭酸ナトリウム(Na2CO3)を10 g/L以上30 g/L以下で含む水溶液を用いることができる。
(S20) Base copper plating layer forming step In this step, the base copper plating layer 2 is formed immediately above the copper foil 1. Before forming the base copper plating layer 2, it is preferable to clean the surface of the copper foil 1 by performing electrolytic degreasing treatment and pickling treatment. The electrolytic degreasing treatment is a treatment in which the copper foil 1 is immersed in an alkaline aqueous solution to perform cathodic electrolytic degreasing. As the alkaline aqueous solution, for example, an aqueous solution containing sodium hydroxide (NaOH) at 20 g / L to 60 g / L and sodium carbonate (Na 2 CO 3 ) at 10 g / L to 30 g / L is used. Can do.

酸洗処理は、電解脱脂処理を行った銅箔1を酸性水溶液に浸漬し、銅箔1の表面に残存するアルカリ成分の中和および銅酸化膜の除去を行う処理である。酸性水溶液としては、例えば、硫酸(H2SO4)を120 g/L以上180 g/L以下含む水溶液や、クエン酸(C6H8O7)水溶液、銅エッチング液等を用いることができる。 The pickling treatment is a treatment of immersing the copper foil 1 that has been subjected to electrolytic degreasing treatment in an acidic aqueous solution to neutralize the alkali component remaining on the surface of the copper foil 1 and remove the copper oxide film. As the acidic aqueous solution, for example, an aqueous solution containing sulfuric acid (H 2 SO 4 ) of 120 g / L or more and 180 g / L or less, a citric acid (C 6 H 8 O 7 ) aqueous solution, a copper etching solution, or the like can be used. .

下地銅めっき層2の形成は、硫酸銅および硫酸を主成分とする酸性銅めっき浴にて銅箔1を陰極とする電解処理により行う。酸性銅めっき浴の液組成、液温、電解条件、下地銅めっき層の平均厚さは、例えば下記の範囲から選択されることが好ましい。
硫酸銅五水和物:20 g/L以上300 g/L以下(50 g/L以上300 g/L以下がより好ましい)
硫酸:10 g/L以上200 g/L以下(30 g/L以上200 g/L以下がより好ましい)
添加剤:所定の有機系添加剤を添加
液温:15℃以上50℃以下
電流密度:2 A/dm2以上15 A/dm2以下(限界電流密度末満とする)
処理時間:1秒間以上30秒間以下
平均厚さ:0.1μm以上0.6μm以下。
The formation of the base copper plating layer 2 is performed by electrolytic treatment using the copper foil 1 as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid. The liquid composition, liquid temperature, electrolysis conditions, and average thickness of the base copper plating layer of the acidic copper plating bath are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less (preferably 50 g / L or more and 300 g / L or less)
Sulfuric acid: 10 g / L or more and 200 g / L or less (more preferably 30 g / L or more and 200 g / L or less)
Additive: Add specified organic additive Additive temperature: 15 ° C or more and 50 ° C or less Current density: 2 A / dm 2 or more and 15 A / dm 2 or less
Treatment time: 1 second or more and 30 seconds or less Average thickness: 0.1 μm or more and 0.6 μm or less.

所定の有機系添加剤としては、例えば、メルカプト基を持つ化合物(例えば、3-メルカプト-1-スルホン酸(MPS)、ビス(3-スルホプロピル)ジスルフィド(SPS))、界面活性剤(例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリオキシアルキレンエーテル)、レベリング剤(例えば、ジアリルジアルキルアンモニウムアルキルサルフェイト)、および塩化物イオンを含む水溶液(例えば、塩酸水溶液)を、組み合わせた添加剤が用いられる。   Examples of the predetermined organic additive include a compound having a mercapto group (for example, 3-mercapto-1-sulfonic acid (MPS), bis (3-sulfopropyl) disulfide (SPS)), a surfactant (for example, Additives combining polyethylene glycol (PEG), polypropylene glycol (PPG), polyoxyalkylene ether), leveling agents (eg diallyldialkylammonium alkyl sulfate), and aqueous solutions containing chloride ions (eg aqueous hydrochloric acid) Is used.

このような添加剤は、構成成分の試薬(市販品)を所定量配合して作製することが可能である。また、構成成分が予め配合されて市販されているめっき用薬液(例えば、メルカプト基を持つ化合物が配合されためっき用薬液、界面活性剤が配合されためっき用薬液、レベリング剤が配合されためっき用薬液)を混合して用いることも可能である。さらに、構成成分が予め配合されて市販されているめっき用薬液と、構成成分の試薬(市販品)とを混合して用いることも可能である。   Such an additive can be prepared by blending a predetermined amount of constituent reagents (commercially available products). Also, plating chemicals that are pre-mixed with components (for example, plating chemicals containing a compound having a mercapto group, plating chemicals containing a surfactant, and plating containing a leveling agent) It is also possible to use a mixture of medicinal solution). Furthermore, it is also possible to mix and use a chemical solution for plating in which constituent components are mixed in advance and a constituent reagent (commercial product).

より具体的には、下地銅めっき浴中のメルカプト基を持つ化合物の濃度としては、例えばSPSの場合、10 mg/L以上60 mg/L以下が好ましく、10 mg/L以上45 mg/L以下がより好ましく、10 mg/L以上30 mg/L以下が更に好ましい。SPSの濃度が10 mg/L未満であると、本発明の効果が十分に得られないことがある。一方、SPSの濃度が60 mg/L超になると、本発明の作用効果が飽和して、無駄な材料コストが発生する。   More specifically, as the concentration of the compound having a mercapto group in the base copper plating bath, for example, in the case of SPS, 10 mg / L or more and 60 mg / L or less is preferable, 10 mg / L or more and 45 mg / L or less Is more preferable, and 10 mg / L or more and 30 mg / L or less is still more preferable. If the SPS concentration is less than 10 mg / L, the effects of the present invention may not be sufficiently obtained. On the other hand, when the concentration of SPS exceeds 60 mg / L, the operational effects of the present invention are saturated and wasteful material costs are generated.

界面活性剤としては、例えば、荏原ユージライト株式会社製のCU-BRITE TH-R III(登録商標)シリーズの界面活性剤薬液を用いることができる。この場合、下地銅めっき浴中への添加濃度は、1 mL/L以上5 mL/L以下が好ましい。   As the surfactant, for example, a CU-BRITE TH-R III (registered trademark) series surfactant chemical solution manufactured by Ebara Eugelite Co., Ltd. can be used. In this case, the addition concentration in the base copper plating bath is preferably 1 mL / L or more and 5 mL / L or less.

レベリング剤としては、例えば、荏原ユージライト株式会社製のCU-BRITE TH-R III(登録商標)シリーズの高分子炭化水素を主成分とするレベリング剤薬液を用いることができる。この場合、下地銅めっき浴中への添加濃度は、3 mL/L以上10 mL/L以下が好ましい。   As the leveling agent, for example, a leveling agent chemical solution mainly composed of CU-BRITE TH-R III (registered trademark) series polymer hydrocarbons manufactured by Ebara Eugelite Co., Ltd. can be used. In this case, the addition concentration in the base copper plating bath is preferably 3 mL / L or more and 10 mL / L or less.

塩化物イオンを含む水溶液としては、例えば、市販の塩酸(塩化水素濃度35%〜37%)を用いることができる。この場合、下地銅めっき浴中への添加濃度は、0.05 mL/L以上0.3 mL/L以下が好ましい。   As an aqueous solution containing chloride ions, for example, commercially available hydrochloric acid (hydrogen chloride concentration: 35% to 37%) can be used. In this case, the addition concentration in the base copper plating bath is preferably 0.05 mL / L or more and 0.3 mL / L or less.

ここで、メルカプト基を持つ化合物と界面活性剤とレベリング剤と塩化物イオンとを含む有機系添加剤自体は、従来から銅めっき処理における光沢剤として知られているが、光沢剤として添加・使用する場合の濃度(推奨濃度)は、通常0.5〜1.5 mg/L程度である。これに対し、本発明における該有機系添加剤(メルカプト基を持つ化合物)の濃度は、10〜60 mg/Lと、通常の光沢剤用途に比して桁違いに高いところに特徴がある。   Here, an organic additive itself containing a compound having a mercapto group, a surfactant, a leveling agent, and a chloride ion has been conventionally known as a brightener in copper plating, but is added and used as a brightener. The concentration (recommended concentration) is usually about 0.5 to 1.5 mg / L. On the other hand, the concentration of the organic additive (compound having a mercapto group) in the present invention is 10 to 60 mg / L, which is characterized by an order of magnitude higher than that for ordinary brightener applications.

具体的な事例は後述するが、本発明の製造方法で形成した下地銅めっき層2は前述したような特徴を有し、本発明の下地銅めっき層2が組み込まれた銅張積層板10は、表面処理銅箔5を化学エッチング除去した後の樹脂フィルム6での透過視認性が良好であり、明らかに効果があると言える。ただし、本発明の下地銅めっき層2の特徴が「樹脂フィルム部分での透過視認性」に効果を示すメカニズムに関しては、残念ながら、現段階において解明できていない。   Although specific examples will be described later, the base copper plating layer 2 formed by the manufacturing method of the present invention has the above-described characteristics, and the copper clad laminate 10 incorporating the base copper plating layer 2 of the present invention is In addition, it can be said that the transmission visibility in the resin film 6 after the surface-treated copper foil 5 is removed by chemical etching is good, and it is clearly effective. However, unfortunately, the mechanism by which the characteristics of the base copper plating layer 2 of the present invention have an effect on “transparency visibility at the resin film portion” has not been elucidated at this stage.

(S30)粗化銅めっき層形成工程
本工程では、下地銅めっき層2の直上に粗化銅めっき層3を形成する。粗化銅めっき層3の形成は、硫酸銅および硫酸を主成分とする酸性銅めっき浴にて銅箔1を陰極とする電解処理により行い、粗化粒を下地銅めっき層2の表面に析出・成長させるものである。酸性銅めっき浴の液組成、液温、電解条件、粗化銅めっき層の平均厚さは、例えば下記の範囲から選択されることが好ましい。
硫酸銅五水和物:20 g/L以上300 g/L以下
硫酸:10 g/L以上200 g/L以下
その他成分:Fe,Mo,Ni,Co,Cr,Zn,Wから選ばれる一種以上の添加が好ましい
液温:15℃以上50℃以下
電流密度:20 A/dm2以上100 A/dm2以下(限界電流密度超とする)
処理時間:0.3秒間以上2.0秒間未満
平均厚さ:0.05μm以上0.3μm以下。
(S30) Roughened copper plating layer forming step In this step, the roughened copper plating layer 3 is formed immediately above the base copper plating layer 2. The roughened copper plating layer 3 is formed by electrolytic treatment using copper foil 1 as a cathode in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid, and the roughened grains are deposited on the surface of the underlying copper plating layer 2.・ Grow it up. The liquid composition, liquid temperature, electrolysis conditions, and average thickness of the roughened copper plating layer of the acidic copper plating bath are preferably selected from the following ranges, for example.
Copper sulfate pentahydrate: 20 g / L or more and 300 g / L or less Sulfuric acid: 10 g / L or more and 200 g / L or less Other components: One or more selected from Fe, Mo, Ni, Co, Cr, Zn, W Liquid temperature: 15 ° C or higher and 50 ° C or lower Current density: 20 A / dm 2 or higher and 100 A / dm 2 or lower (exceeding the limit current density)
Treatment time: 0.3 seconds or more and less than 2.0 seconds Average thickness: 0.05 μm or more and 0.3 μm or less.

粗化銅めっき層3の形成は、限界電流密度を超えた電流密度のめっき(いわゆる、ヤケめっき)によって行うので、析出・成長する粗化粒が過剰に巨大化しないように、めっき浴にFe,Mo,Ni,Co,Cr,Zn,Wから選ばれる一種以上の硫酸塩を添加することが好ましい。例えば、硫酸鉄七水和物を10 g/L以上30 g/L以下の範囲でめっき浴に添加する。これにより、粗化形状の制御が容易になる。なお、粗化形状は、各粗化粒が凹凸方向や面内方向に均等に析出・成長している限り特段の限定はなく、粒形状でもよいし、こぶ形状でもよいし、樹枝形状でもよいし、針形状でもよい。   Since the formation of the roughened copper plating layer 3 is performed by plating with a current density exceeding the limit current density (so-called burnt plating), it is necessary to add Fe to the plating bath so that the coarsening grains that precipitate and grow do not become excessively large. It is preferable to add at least one sulfate selected from Mo, Ni, Co, Cr, Zn and W. For example, iron sulfate heptahydrate is added to the plating bath in the range of 10 g / L to 30 g / L. This facilitates control of the roughened shape. The roughened shape is not particularly limited as long as each roughened grain is uniformly deposited and grown in the uneven direction or in-plane direction, and may be a grain shape, a hump shape, or a dendritic shape. However, it may be needle-shaped.

(S40)防錆層形成工程
本工程では、粗化銅めっき層3の直上に防錆層4を形成する。前述したように、防錆層4は本発明において必須の層ではないが、ここでは、防錆層4を形成する場合の工程例について説明する。防錆層4の形成は、ニッケルめっき処理と、亜鉛めっき処理と、3価クロム化成処理(クロメート処理)と、シランカップリング処理とからなる。
(S40) Rust prevention layer formation process At this process, the rust prevention layer 4 is formed on the roughening copper plating layer 3 directly. As described above, the rust prevention layer 4 is not an essential layer in the present invention, but here, an example of a process in the case of forming the rust prevention layer 4 will be described. The formation of the rust preventive layer 4 includes a nickel plating process, a galvanizing process, a trivalent chromium chemical conversion process (chromate process), and a silane coupling process.

ニッケルめっき処理(ニッケルめっき層の形成)は、例えば、下記のめっき条件から選択されることが好ましい。
硫酸ニッケル六水和物:280 g/L以上320 g/L以下
塩化ニッケル:40 g/L以上50 g/L以下
硼酸:40 g/L以上60 g/L以下
その他成分:他の金属元素(例えばCo)を添加してNi-Co合金めっき層としてもよい
液温:30℃以上60℃以下
電流密度:0.5 A/dm2以上10 A/dm2以下(限界電流密度末満とする)
処理時間:1秒間以上10秒間以下
平均厚さ:9 nm以上50 nm以下。
The nickel plating treatment (formation of the nickel plating layer) is preferably selected from the following plating conditions, for example.
Nickel sulfate hexahydrate: 280 g / L or more and 320 g / L or less Nickel chloride: 40 g / L or more and 50 g / L or less Boric acid: 40 g / L or more and 60 g / L or less Other components: Other metal elements ( For example, Co) may be added to form a Ni-Co alloy plating layer. Liquid temperature: 30 ° C to 60 ° C Current density: 0.5 A / dm 2 to 10 A / dm 2
Treatment time: 1 second to 10 seconds Average thickness: 9 nm to 50 nm

亜鉛めっき処理(亜鉛めっき層の形成)は、例えば、下記のめっき条件から選択されることが好ましい。
硫酸亜鉛:80 g/L以上120 g/L以下
硫酸ナトリウム:60 g/L以上80 g/L以下
その他成分:他の金属元素(例えばCu)を添加してZn-Cu合金めっき層としてもよい
液温:15℃以上35℃以下
電流密度:0.1 A/dm2以上10 A/dm2以下(限界電流密度末満とする)
処理時間:1秒間以上10秒間以下
平均厚さ:1 nm以上10 nm以下。
The galvanizing treatment (formation of the galvanized layer) is preferably selected from the following plating conditions, for example.
Zinc sulfate: 80 g / L or more and 120 g / L or less Sodium sulfate: 60 g / L or more and 80 g / L or less Other components: Other metal elements (for example, Cu) may be added to form a Zn-Cu alloy plating layer Liquid temperature: 15 ° C to 35 ° C Current density: 0.1 A / dm 2 or more and 10 A / dm 2 or less
Treatment time: 1 second or more and 10 seconds or less Average thickness: 1 nm or more and 10 nm or less.

3価クロム化成処理(3価クロム化成処理層の形成)は、例えば、下記の処理条件から選択されることが好ましい。
処理液:3価クロムの反応型クロメート液(3価クロムイオン濃度:金属クロム換算で70 mg/L以上500 mg/L未満。3価クロムイオンの供給源に特段の限定はなく、例えば、硝酸クロム、硫酸クロム、塩化クロムが挙げられる)
液温:15℃以上40℃以下
処理時間:3秒間以上30秒間以下
平均厚さ:1 nm以上10 nm以下。
The trivalent chromium chemical conversion treatment (formation of the trivalent chromium chemical conversion treatment layer) is preferably selected from the following processing conditions, for example.
Treatment liquid: Trivalent chromium reactive chromate liquid (trivalent chromium ion concentration: 70 mg / L or more and less than 500 mg / L in terms of metallic chromium. There is no particular limitation on the source of trivalent chromium ions. For example, nitric acid Chromium, chromium sulfate, chromium chloride)
Liquid temperature: 15 ° C to 40 ° C Treatment time: 3 seconds to 30 seconds Average thickness: 1 nm to 10 nm

シランカップリング処理(シランカップリング処理層の形成)は、例えば、下記の処理条件から選択されることが好ましい。
処理液:シランカップリング液(積層する可撓性基材に適したものを選択する。例えば、可撓性基材がポリイミドからなる場合、アミノシランやアミノプロピルトリメトキシシランを主成分とするものを選択することが望ましい)
液温:15℃以上35℃以下
処理時間:3秒間以上40秒間以下
乾燥温度:100℃以上300℃以下
乾燥時間:5秒間以上35秒間以下
厚さ:分子層レベル。
The silane coupling treatment (formation of the silane coupling treatment layer) is preferably selected from the following treatment conditions, for example.
Treatment liquid: Silane coupling liquid (Select one suitable for the flexible base material to be laminated. For example, when the flexible base material is made of polyimide, the main material is aminosilane or aminopropyltrimethoxysilane. Preferably selected)
Liquid temperature: 15 ° C to 35 ° C Treatment time: 3 seconds to 40 seconds Drying temperature: 100 ° C to 300 ° C Drying time: 5 seconds to 35 seconds Thickness: Molecular layer level.

以上S10〜S40の工程により、本発明に係る銅張積層板10に好適な表面処理銅箔5(銅張積層板用の表面処理銅箔)が完成する。   Through the steps S10 to S40, the surface-treated copper foil 5 (surface-treated copper foil for copper-clad laminate) suitable for the copper-clad laminate 10 according to the present invention is completed.

(S50)可撓性基材積層工程
本工程では、表面処理銅箔5と樹脂フィルム6とを積層する。二層銅張積層板の場合、表面処理銅箔5と樹脂フィルム6とが、樹脂接着層を介さずに加熱・押圧されて直接積層される。加熱・押圧の条件は、樹脂フィルム6の性状により適宜設定されるが、例えば下記の範囲から選択されることが好ましい。
温度:150℃以上400℃以下
圧力:0.5 MPa以上30 MPa以下
保持時間:1分間以上120分間以下。
(S50) Flexible base material laminating step In this step, the surface-treated copper foil 5 and the resin film 6 are laminated. In the case of a two-layer copper-clad laminate, the surface-treated copper foil 5 and the resin film 6 are directly laminated by being heated and pressed without going through the resin adhesive layer. The heating / pressing conditions are appropriately set depending on the properties of the resin film 6, but are preferably selected from the following ranges, for example.
Temperature: 150 ° C to 400 ° C Pressure: 0.5 MPa to 30 MPa Holding time: 1 minute to 120 minutes

本工程における加熱により、通常、銅箔1(圧延銅箔)は再結晶焼鈍されて立方体集合組織に調質される。これにより、銅箔1の屈曲特性(最終的なFPCの屈曲特性)が飛躍的に向上する。なお、本工程のハンドリング中に、表面処理銅箔5の望まない変形(伸び、しわ、折れ等)を防ぐため、本工程に供される表面処理銅箔5(少なくとも銅箔1)は、再結晶組織に調質されていない状態(少なくとも焼鈍されていない状態)であることが好ましい。   By heating in this step, the copper foil 1 (rolled copper foil) is usually recrystallized and tempered into a cubic texture. Thereby, the bending characteristic (final FPC bending characteristic) of the copper foil 1 is dramatically improved. In addition, in order to prevent undesired deformation (elongation, wrinkle, breakage, etc.) of the surface-treated copper foil 5 during handling in this step, the surface-treated copper foil 5 (at least the copper foil 1) to be provided in this step is reused. It is preferable that the crystal structure is not tempered (at least not annealed).

上記では、予め成形された樹脂フィルム6を可撓性基材として用いた場合について説明したが、本発明はそれに限定されるものではない。例えば、ポリイミドになるワニスを表面処理銅箔5の接合面に塗布し、熱処理によって該ワニスを硬化させて可撓性基材とする積層方法(キャスト法による二層銅張積層板の製造)であってもよい。   In the above description, the case where the pre-molded resin film 6 is used as the flexible base material has been described, but the present invention is not limited thereto. For example, with a lamination method (manufacture of a two-layer copper-clad laminate by a casting method), a varnish that becomes polyimide is applied to the joint surface of the surface-treated copper foil 5 and the varnish is cured by heat treatment to form a flexible substrate. There may be.

以上の工程により、本発明に係る銅張積層板10が完成する。   Through the above steps, the copper clad laminate 10 according to the present invention is completed.

(FPC製造方法)
上記で得られた銅張積層板10に対し、回路配線の形成工程を行うことによりFPCが製造される。回路配線の形成工程は、通常、銅張積層板10の表面処理銅箔5の一部を化学エッチング除去することによりなされる。表面処理銅箔5がエッチング除去され残った樹脂フィルム6部分において、良好な透過視認性を確保することが、本発明の目的の一つである。
(FPC manufacturing method)
FPC is manufactured by performing the formation process of a circuit wiring with respect to the copper clad laminated board 10 obtained above. The step of forming the circuit wiring is usually performed by chemically removing a part of the surface-treated copper foil 5 of the copper clad laminate 10. It is one of the objects of the present invention to ensure good transmission visibility in the resin film 6 portion where the surface-treated copper foil 5 is removed by etching.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

[実施例1の表面処理銅箔の作製]
以下の手順により、実施例1の表面処理銅箔5を作製した。はじめに、銅箔1として、無酸素銅からなる圧延銅箔(厚さ11μm)を準備した。次に、銅箔1に対して電解脱脂処理および酸洗処理をそれぞれ下記の条件で施して、銅箔1の表面を清浄化した。酸洗処理の後、銅箔1を水洗した。
[Production of surface-treated copper foil of Example 1]
The surface-treated copper foil 5 of Example 1 was produced by the following procedure. First, a rolled copper foil (thickness 11 μm) made of oxygen-free copper was prepared as the copper foil 1. Next, electrolytic degreasing treatment and pickling treatment were performed on the copper foil 1 under the following conditions, respectively, to clean the surface of the copper foil 1. After the pickling treatment, the copper foil 1 was washed with water.

(電解脱脂処理)
溶液:水酸化ナトリウム40 g/Lと炭酸ナトリウム20 g/Lとを含む水溶液
液温:40℃
電流密度:10 A/dm2
処理時間:10秒。
(Electrolytic degreasing)
Solution: Aqueous solution containing 40 g / L sodium hydroxide and 20 g / L sodium carbonate Temperature: 40 ° C
Current density: 10 A / dm 2
Processing time: 10 seconds.

(酸洗処理)
溶液:硫酸150 g/Lを含む水溶液
液温:室温(25℃)
処理時間:10秒。
(Pickling treatment)
Solution: Aqueous solution containing 150 g / L sulfuric acid Liquid temperature: Room temperature (25 ° C)
Processing time: 10 seconds.

次に、銅箔1の片面に、下記のめっき条件により下地銅めっき層2を形成し、その後、水洗を行った。
(下地銅めっき処理)
硫酸銅五水和物:170 g/L
硫酸:70 g/L
添加剤1:有機硫黄化合物としてSPS 30 mg/L
添加剤2:界面活性剤として荏原ユージライト株式会社製のCU-BRITE TH-R III
シリーズの界面活性剤薬液 3 mL/L
添加剤3:レベリング剤として荏原ユージライト株式会社製のCU-BRITE TH-R III
シリーズの高分子炭化水素を主成分とするレベリング剤薬液 5 mL/L
添加剤4:塩化物イオンを含む水溶液として塩酸試薬原液 0.15 mL/L
液温:35℃
電流密度:7 A/dm2
処理時間:10秒
平均厚さ:0.1μm。
Next, the base copper plating layer 2 was formed on one surface of the copper foil 1 under the following plating conditions, and then washed with water.
(Under copper plating treatment)
Copper sulfate pentahydrate: 170 g / L
Sulfuric acid: 70 g / L
Additive 1: SPS 30 mg / L as an organic sulfur compound
Additive 2: CU-BRITE TH-R III manufactured by Sugawara Eugene Corporation as a surfactant
Series of surfactant chemicals 3 mL / L
Additive 3: CU-BRITE TH-R III manufactured by Sugawara Eugene Corporation as a leveling agent
Leveling chemicals based on high-molecular-weight hydrocarbons of the series 5 mL / L
Additive 4: Hydrochloric acid reagent stock solution as an aqueous solution containing chloride ions 0.15 mL / L
Liquid temperature: 35 ℃
Current density: 7 A / dm 2
Processing time: 10 seconds Average thickness: 0.1 μm.

次に、下地銅めっき層2上に、下記のめっき条件により粗化銅めっき層3を形成し、その後、水洗を行った。
(粗化銅めっき処理)
硫酸銅五水和物:100 g/L
硫酸:70 g/L
その他成分:硫酸鉄七水和物 20 g/L
液温:30℃
電流密度:60 A/dm2
処理時間:0.5秒
平均厚さ:0.05μm。
Next, a roughened copper plating layer 3 was formed on the base copper plating layer 2 under the following plating conditions, and then washed with water.
(Roughening copper plating treatment)
Copper sulfate pentahydrate: 100 g / L
Sulfuric acid: 70 g / L
Other ingredients: Iron sulfate heptahydrate 20 g / L
Liquid temperature: 30 ℃
Current density: 60 A / dm 2
Processing time: 0.5 seconds Average thickness: 0.05 μm.

次に、粗化銅めっき層3を形成した銅箔1に対し、下記のめっき条件により防錆層4を形成した。各処理間および最後に水洗を行った。なお、ニッケルめっき処理、亜鉛めっき処理および3価クロム化成処理は、銅箔1の両面に対して行い、シランカップリング処理は、銅箔1の接合面(粗化銅めっき層3の側)に対してのみ行った。   Next, a rust prevention layer 4 was formed on the copper foil 1 on which the roughened copper plating layer 3 was formed under the following plating conditions. A water wash was performed between and at the end of each treatment. Nickel plating treatment, zinc plating treatment and trivalent chromium chemical conversion treatment are performed on both sides of the copper foil 1, and silane coupling treatment is performed on the joint surface of the copper foil 1 (the roughened copper plating layer 3 side). I only went to it.

(ニッケルめっき処理)
硫酸ニッケル六水和物:300 g/L
塩化ニッケル:45 g/L
硼酸:50 g/L
液温:50℃
電流密度:2 A/dm2
処理時間:5秒間
平均厚さ:20 nm。
(Nickel plating treatment)
Nickel sulfate hexahydrate: 300 g / L
Nickel chloride: 45 g / L
Boric acid: 50 g / L
Liquid temperature: 50 ℃
Current density: 2 A / dm 2
Processing time: 5 seconds Average thickness: 20 nm.

(亜鉛めっき処理)
硫酸亜鉛:90 g/L
硫酸ナトリウム:70 g/L
液温:30℃
電流密度:1.5 A/dm2
処理時間:4秒間
平均厚さ:7 nm。
(Zinc plating treatment)
Zinc sulfate: 90 g / L
Sodium sulfate: 70 g / L
Liquid temperature: 30 ℃
Current density: 1.5 A / dm 2
Processing time: 4 seconds Average thickness: 7 nm.

(3価クロム化成処理)
処理液:硝酸クロムを3価クロムイオンの供給源とした3価クロムの反応型クロメート液
(3価クロムイオン濃度:金属クロム換算で300 mg/L)
液温:30℃
処理時間:5秒間
平均厚さ:5 nm。
(Trivalent chromium conversion treatment)
Treatment solution: Trivalent chromium reactive chromate solution using chromium nitrate as the source of trivalent chromium ions (Trivalent chromium ion concentration: 300 mg / L in terms of metallic chromium)
Liquid temperature: 30 ℃
Processing time: 5 seconds Average thickness: 5 nm.

(シランカップリング処理)
処理液:5%の3-アミノプロピルトリメトキシシランを含有するシランカップリング液
液温:室温(25℃)
処理時間:5秒間
加熱乾燥:200℃,15秒間。
(Silane coupling treatment)
Treatment liquid: Silane coupling liquid containing 5% 3-aminopropyltrimethoxysilane Liquid temperature: Room temperature (25 ° C)
Treatment time: 5 seconds Heat drying: 200 ° C, 15 seconds.

[実施例2,3の表面処理銅箔の作製]
実施例2,3の表面処理銅箔5は、下地銅めっき層2の平均厚さをそれぞれ0.3μm,0.6μmとした以外は、上述の実施例1の表面処理銅箔5と同様の条件で作製した。
[Production of surface-treated copper foils of Examples 2 and 3]
The surface-treated copper foil 5 of Examples 2 and 3 was the same as the surface-treated copper foil 5 of Example 1 described above except that the average thickness of the base copper plating layer 2 was 0.3 μm and 0.6 μm, respectively. Produced.

[実施例4の表面処理銅箔の作製]
実施例4の表面処理銅箔5は、粗化銅めっき層3の平均厚さを0.11μmとして、粗化銅めっき層3の粗化粒を実施例1のよりも大きく形成したこと以外は、上述の実施例1の表面処理銅箔5と同様の条件で作製した。
[Production of surface-treated copper foil of Example 4]
The surface-treated copper foil 5 of Example 4 has an average thickness of the roughened copper plating layer 3 of 0.11 μm, except that the roughened grains of the roughened copper plating layer 3 are formed larger than in Example 1. It was produced under the same conditions as the surface-treated copper foil 5 of Example 1 described above.

[実施例5,6の表面処理銅箔の作製]
実施例5,6の表面処理銅箔5は、下地銅めっき層2の平均厚さをそれぞれ0.3μm,0.6μmとした以外は、上述の実施例4の表面処理銅箔5と同様の条件で作製した。
[Production of surface-treated copper foils of Examples 5 and 6]
The surface-treated copper foil 5 of Examples 5 and 6 was under the same conditions as the surface-treated copper foil 5 of Example 4 described above, except that the average thickness of the base copper plating layer 2 was 0.3 μm and 0.6 μm, respectively. Produced.

[実施例7の表面処理銅箔の作製]
実施例7の表面処理銅箔5は、粗化銅めっき層3の平均厚さを0.3μmとして、粗化銅めっき層3の粗化粒を実施例4のよりも更に大きく形成したこと以外は、上述の実施例1の表面処理銅箔5と同様の条件で作製した。
[Production of surface-treated copper foil of Example 7]
In the surface-treated copper foil 5 of Example 7, the average thickness of the roughened copper plating layer 3 was set to 0.3 μm, and the roughened grains of the roughened copper plating layer 3 were formed to be larger than that of Example 4. These were produced under the same conditions as the surface-treated copper foil 5 of Example 1 described above.

[実施例8,9の表面処理銅箔の作製]
実施例8,9の表面処理銅箔5は、下地銅めっき層2の平均厚さをそれぞれ0.3μm,0.6μmとした以外は、上述の実施例7の表面処理銅箔5と同様の条件で作製した。
[Production of surface-treated copper foils of Examples 8 and 9]
The surface-treated copper foil 5 of Examples 8 and 9 was under the same conditions as the surface-treated copper foil 5 of Example 7 described above, except that the average thickness of the base copper plating layer 2 was 0.3 μm and 0.6 μm, respectively. Produced.

[比較例1,2の表面処理銅箔の作製]
比較例1の表面処理銅箔は、粗化銅めっき層3の平均厚さを0.03μmとして、粗化銅めっき層3の粗化粒を実施例2のよりも小さく形成したこと以外は、上述の実施例2の表面処理銅箔5と同様の条件で作製した。比較例1は、粗化銅めっき層3の平均厚さの影響を観ることができる。また、比較例2の表面処理銅箔は、下地銅めっき層2の形成にあたって所定の有機系添加剤を添加しなかったこと以外は、比較例1の表面処理銅箔と同様の条件で作製した。比較例2は、比較例1に加えて、下地銅めっき層2の形成における所定の有機系添加剤の影響を観ることができる。
[Production of surface-treated copper foils of Comparative Examples 1 and 2]
The surface-treated copper foil of Comparative Example 1 was the same as that described above except that the average thickness of the roughened copper plating layer 3 was 0.03 μm and the roughened grains of the roughened copper plating layer 3 were formed smaller than in Example 2. The surface-treated copper foil 5 of Example 2 was prepared under the same conditions. In Comparative Example 1, the influence of the average thickness of the roughened copper plating layer 3 can be observed. Further, the surface-treated copper foil of Comparative Example 2 was produced under the same conditions as the surface-treated copper foil of Comparative Example 1 except that the predetermined organic additive was not added in forming the base copper plating layer 2. . In Comparative Example 2, in addition to Comparative Example 1, the influence of a predetermined organic additive in the formation of the base copper plating layer 2 can be observed.

[比較例3,4の表面処理銅箔の作製]
比較例3の表面処理銅箔は、粗化銅めっき層3の平均厚さを0.35μmとして、粗化銅めっき層3の粗化粒を実施例8のよりも更に大きく形成したこと以外は、上述の実施例8の表面処理銅箔5と同様の条件で作製した。比較例3は、粗化銅めっき層3の平均厚さの影響を観ることができる。また、比較例4の表面処理銅箔は、下地銅めっき層2の形成にあたって所定の有機系添加剤を添加しなかったこと以外は、比較例3の表面処理銅箔と同様の条件で作製した。比較例4は、比較例3に加えて、下地銅めっき層2の形成における所定の有機系添加剤の影響を観ることができる。
[Production of surface-treated copper foil of Comparative Examples 3 and 4]
In the surface-treated copper foil of Comparative Example 3, the average thickness of the roughened copper plating layer 3 was set to 0.35 μm, and the roughened grains of the roughened copper plating layer 3 were formed larger than in Example 8, It was produced under the same conditions as the surface-treated copper foil 5 of Example 8 described above. In Comparative Example 3, the influence of the average thickness of the roughened copper plating layer 3 can be observed. The surface-treated copper foil of Comparative Example 4 was produced under the same conditions as the surface-treated copper foil of Comparative Example 3 except that the predetermined organic additive was not added in forming the base copper plating layer 2. . In Comparative Example 4, in addition to Comparative Example 3, the influence of a predetermined organic additive in the formation of the base copper plating layer 2 can be observed.

[比較例5の表面処理銅箔の作製]
比較例5の表面処理銅箔は、下地銅めっき層2の形成にあたって所定の有機系添加剤を添加しなかったこと以外は、実施例5の表面処理銅箔5と同様の条件で作製した。比較例5は、下地銅めっき層2の形成における所定の有機系添加剤の影響を観ることができる。
[Production of surface-treated copper foil of Comparative Example 5]
The surface-treated copper foil of Comparative Example 5 was produced under the same conditions as the surface-treated copper foil 5 of Example 5 except that the predetermined organic additive was not added in forming the base copper plating layer 2. In Comparative Example 5, the influence of a predetermined organic additive in the formation of the base copper plating layer 2 can be observed.

[比較例6の表面処理銅箔の作製]
比較例6の表面処理銅箔は、粗化銅めっき層3の形成にあたってその他成分として鉄成分(硫酸鉄七水和物)を添加しなかったこと以外は、実施例5の表面処理銅箔5と同様の条件で作製した。比較例6は、粗化銅めっき層3の形成におけるその他成分の影響を観ることができる。
[Production of surface-treated copper foil of Comparative Example 6]
The surface-treated copper foil of Comparative Example 6 is the surface-treated copper foil of Example 5 except that no iron component (iron sulfate heptahydrate) was added as the other component in forming the roughened copper plating layer 3. It was produced under the same conditions. In Comparative Example 6, the influence of other components in the formation of the roughened copper plating layer 3 can be observed.

[比較例7〜9の表面処理銅箔の作製]
比較例7〜9の表面処理銅箔は、下地銅めっき層2を形成しなかったこと以外は、それぞれ実施例1,4,7の表面処理銅箔5と同様の条件で作製した。比較例7〜9は、下地銅めっき層2の有無の影響を観ることができる。
[Production of surface-treated copper foils of Comparative Examples 7 to 9]
The surface-treated copper foils of Comparative Examples 7 to 9 were produced under the same conditions as the surface-treated copper foils 5 of Examples 1, 4 and 7, respectively, except that the base copper plating layer 2 was not formed. In Comparative Examples 7 to 9, the influence of the presence or absence of the base copper plating layer 2 can be observed.

実施例1〜9および比較例1〜9の表面処理銅箔の作製条件一覧を後述の表1に示す。   A list of conditions for producing the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9 is shown in Table 1 described later.

[銅張積層板の作製]
上記の実施例1〜9および比較例1〜9の表面処理銅箔を用いて、以下の条件により、実施例1〜9および比較例1〜9の銅張積層板を作製した。なお、銅張積層板としては、表面処理銅箔の粗化面(粗化銅めっき層3を形成した側の面)を樹脂フィルムに対向させて、樹脂フィルムの両面に表面処理銅箔を積層した二層両面銅張積層板を作製した。
樹脂フィルム:ポリイミドフィルム(厚さ25μm、株式会社カネカ製、ピクシオ)
温度:300℃
圧力:5 MPa
保持時間:15分間。
[Preparation of copper-clad laminate]
Using the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9, copper-clad laminates of Examples 1 to 9 and Comparative Examples 1 to 9 were produced under the following conditions. In addition, as a copper clad laminated board, the roughened surface (surface on the side where the roughened copper plating layer 3 is formed) of the surface-treated copper foil is opposed to the resin film, and the surface-treated copper foil is laminated on both surfaces of the resin film. A two-layer double-sided copper-clad laminate was prepared.
Resin film: Polyimide film (thickness 25 μm, Kaneka Corporation, Pixio)
Temperature: 300 ° C
Pressure: 5 MPa
Retention time: 15 minutes.

[FPC模擬試料の作製]
実施例1〜9および比較例1〜9の銅張積層板に対して、両面の表面処理銅箔の一部を化学エッチング除去し、ポリイミドフィルムの両面が所定の面積で露出したFPC模擬試料(実施例1〜9および比較例1〜9)を作製した。化学エッチング除去は、塩化第二鉄のスプレーエッチングにより行った。
[FPC sample preparation]
FPC simulated samples in which a part of both surface-treated copper foils were removed by chemical etching with respect to the copper clad laminates of Examples 1 to 9 and Comparative Examples 1 to 9, and both surfaces of the polyimide film were exposed in a predetermined area ( Examples 1 to 9 and Comparative Examples 1 to 9) were produced. Chemical etching removal was performed by ferric chloride spray etching.

[表面処理銅箔およびFPC模擬試料の性状調査]
(1)表面処理銅箔の下地銅めっき層のXRD測定
実施例1〜9および比較例1〜9の表面処理銅箔において、下地銅めっき層を形成した段階で該下地銅めっき層の表面に対して、X線回折装置(株式会社リガク、型式:Ultima IV)を用いてXRD測定を行った。結果は後述の表1に併記する。なお、圧延銅箔の表面に対しても同様のXRD測定を行い、{022}Cu面に優先配向していること(圧延集合組織を有していること)を別途確認した。
[Survey of properties of surface-treated copper foil and FPC simulation sample]
(1) XRD measurement of base copper plating layer of surface-treated copper foil In the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9, the surface of the base copper plating layer was formed at the stage where the base copper plating layer was formed. On the other hand, XRD measurement was performed using an X-ray diffractometer (Rigaku Corporation, model: Ultima IV). The results are also shown in Table 1 below. Note that the same XRD measurement was performed on the surface of the rolled copper foil, and it was separately confirmed that it was preferentially oriented on the {022} Cu surface (having a rolled texture).

(2)表面処理銅箔の下地銅めっき層の微細組織観察
実施例1〜9および比較例1〜9の表面処理銅箔に対して、走査型電子顕微鏡(SEM)を用いて、下地銅めっき層/圧延銅箔の界面付近の断面微細組織を観察した。また、撮影したSEM像から、圧延銅箔を構成する多結晶粒の平均厚さと下地銅めっき層を構成する多結晶粒の平均厚さとを求めた。結果は後述する。
(2) Microstructure observation of the surface-treated copper foil of the surface-treated copper foil For the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9, using a scanning electron microscope (SEM), the surface copper-plated The cross-sectional microstructure near the layer / rolled copper foil interface was observed. Moreover, from the photographed SEM image, the average thickness of the polycrystalline grains constituting the rolled copper foil and the average thickness of the polycrystalline grains constituting the base copper plating layer were determined. The results will be described later.

(3)表面処理銅箔の粗化銅めっき層の表面粗度測定
実施例1〜9および比較例1〜9の表面処理銅箔において、粗化銅めっき層を形成した段階で該粗化銅めっき層の表面粗度を測定した。測定装置として表面粗さ測定機(株式会社小坂研究所、型式:SE500)を用い、十点平均粗さRzjis(JIS B 0601:2001)を測定した。測定条件は、触針径を2μm、測定速度を0.2 mm/s、測定長を4 mm、抜き取り基準長さを0.8 mm、荷重を0.75 mN以下とした。結果は後述の表1に併記する。
(3) Measurement of surface roughness of roughened copper plating layer of surface-treated copper foil In the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9, the roughened copper plating layer was formed at the stage where the roughened copper plating layer was formed. The surface roughness of the plating layer was measured. Using a surface roughness measuring machine (Kosaka Laboratory Ltd., model: SE500) as a measuring device, ten-point average roughness Rzjis (JIS B 0601: 2001) was measured. The measurement conditions were a stylus diameter of 2 μm, a measurement speed of 0.2 mm / s, a measurement length of 4 mm, a sampling reference length of 0.8 mm, and a load of 0.75 mN or less. The results are also shown in Table 1 below.

(4)露出したポリイミドフィルム部分での透過視認度測定
実施例1〜9および比較例1〜9のFPC模擬試料における露出したポリイミドフィルム部分対して、ヘイズメーター(BYKガードナー・ヘイズ-ガード プラス、株式会社東洋精機製作所)を用いて、該ポリイミドフィルムの全光線透過率Tt、拡散透過率Td、透明度Cを測定し、平行光線透過率Tpと透過視認度Vtとを前述の定義式を用いて算出した。結果を後述の表2に示す。
(4) Transmission visibility measurement in the exposed polyimide film part For the exposed polyimide film part in the FPC simulated samples of Examples 1-9 and Comparative Examples 1-9, a haze meter (BYK Gardner-Haze-Guard Plus, stock) The total light transmittance T t , diffuse transmittance T d , and transparency C of the polyimide film are measured using the Toyo Seiki Seisakusho Co., Ltd., and the parallel light transmittance T p and the transmission visibility V t are defined as described above. It calculated using. The results are shown in Table 2 below.

(5)表面処理銅箔とポリイミドフィルムとの間のピール強度測定
実施例1〜9および比較例1〜9のFPC模擬試料における表面処理銅箔が残存している部分(回路配線部分)に対して、JIS C6481に準拠してピール強度の測定を行った。結果を後述の表2に併記する。
(5) Peel strength measurement between surface-treated copper foil and polyimide film For the portion (circuit wiring portion) where the surface-treated copper foil remains in the FPC simulated samples of Examples 1 to 9 and Comparative Examples 1 to 9 The peel strength was measured according to JIS C6481. The results are also shown in Table 2 below.

(6)露出したポリイミドフィルム部分での透過視認性の確認実験
実施例1〜9および比較例1〜9のFPC模擬試料における露出したポリイミドフィルム部分の下に透過視認するマーカーを配置し、該マーカーとポリイミドフィルムとの距離を「0 mm → 約10 mm」で変化させて、当該ポリイミドフィルムを介した透過視認性を目視で確認した。
(6) Experiment for confirming transmission visibility in exposed polyimide film portion A marker for transparent viewing is placed under the exposed polyimide film portion in the FPC simulated samples of Examples 1 to 9 and Comparative Examples 1 to 9, and the marker The distance between the film and the polyimide film was changed from “0 mm to about 10 mm”, and the transmission visibility through the polyimide film was visually confirmed.

Figure 2016007722
Figure 2016007722

Figure 2016007722
Figure 2016007722

前述したように、銅箔1の表面(圧延面)は、{022}Cu面に優先配向しており、圧延集合組織を有していることが確認された。これに対し、表1に示したように、実施例1〜9の表面処理銅箔5の下地銅めっき層2では、その表面が{111}Cu面および/または{002}Cu面に優先配向しており、銅箔1の圧延面と異なる結晶方位を有していることが確認された。 As described above, it was confirmed that the surface (rolled surface) of the copper foil 1 is preferentially oriented to the {022} Cu surface and has a rolled texture. In contrast, as shown in Table 1, in the base copper plating layer 2 of the surface-treated copper foil 5 of Examples 1 to 9, the surface is preferentially oriented to the {111} Cu plane and / or the {002} Cu plane. Thus, it was confirmed that the copper foil 1 had a crystal orientation different from the rolled surface.

また、下地銅めっき層2の形成において所定の有機系添加剤を使用した比較例1,3,6においても、下地銅めっき層2の表面が{111}Cu面に優先配向していた。一方、下地銅めっき層2の形成において所定の有機系添加剤を使用しなかった比較例2,4,5は、下地銅めっき層2の表面が銅箔1の圧延面と同じ{022}Cu面に優先配向していた。 Also in Comparative Examples 1, 3, and 6 in which a predetermined organic additive was used in the formation of the base copper plating layer 2, the surface of the base copper plating layer 2 was preferentially oriented in the {111} Cu plane. On the other hand, in Comparative Examples 2, 4, and 5 in which the predetermined organic additive was not used in the formation of the base copper plating layer 2, the surface of the base copper plating layer 2 was the same as the rolled surface of the copper foil 1 {022} Cu It was preferentially oriented on the surface.

なお、所定の有機系添加剤を使用して形成した下地銅めっき層2は、その結晶配向性が時間の経過と共に変化していく様が観察されたことから、室温再結晶が生じているものと考えられた。そのため、上記のXRD測定は、結晶配向性の経時変化を考慮して、変化が十分に完了していると考えられる時間(例えば、3日間)が経過してから行ったものである。一方、所定の有機系添加剤を使用しないで形成した下地銅めっき層2では、その結晶配向性に経時変化は観察されなかった。   In addition, it was observed that the base copper plating layer 2 formed using a predetermined organic additive was recrystallized at room temperature because the crystal orientation was observed to change over time. It was considered. Therefore, the above XRD measurement is performed after a time (for example, 3 days) when the change is considered to be sufficiently completed in consideration of the change with time of the crystal orientation. On the other hand, in the base copper plating layer 2 formed without using a predetermined organic additive, no change with time in the crystal orientation was observed.

図7は、比較例5および実施例5の表面処理銅箔における「下地銅めっき層/圧延銅箔」の界面付近の断面微細組織のSEM観察像であり、(a)比較例5、(b)実施例5である。図7(a),(b)に示したように、いずれの場合においても、銅箔1は、扁平状の多結晶粒から構成されており、該多結晶粒の平均厚さは約0.07μmと見積もられた。   FIG. 7 is a SEM observation image of a cross-sectional microstructure near the interface of “underlying copper plating layer / rolled copper foil” in the surface-treated copper foils of Comparative Example 5 and Example 5, (a) Comparative Example 5, (b) ) Example 5. As shown in FIGS. 7A and 7B, in either case, the copper foil 1 is composed of flat polycrystalline grains, and the average thickness of the polycrystalline grains is about 0.07 μm. It was estimated.

下地銅めっき層2の微細組織を比較すると、比較例5と実施例5との間に大きな差異があることが判る。図7(a)に示したように、比較例5の下地銅めっき層2を構成する多結晶粒は、銅箔1のそれらと同様の扁平形状を有しており、銅箔1の多結晶粒からエピタキシャル成長しているかのような微細組織を有している。そのため、比較例5の下地銅めっき層2を構成する多結晶粒の平均厚さも、銅箔1と同様に、約0.07μmと見積もられた。   When the microstructures of the underlying copper plating layer 2 are compared, it can be seen that there is a large difference between Comparative Example 5 and Example 5. As shown in FIG. 7A, the polycrystalline grains constituting the base copper plating layer 2 of Comparative Example 5 have the same flat shape as those of the copper foil 1, and the polycrystalline of the copper foil 1 It has a microstructure as if it is epitaxially grown from grains. Therefore, the average thickness of the polycrystalline grains constituting the base copper plating layer 2 of Comparative Example 5 was estimated to be about 0.07 μm, as with the copper foil 1.

一方、図7(b)に示したように、実施例5の下地銅めっき層2を構成する多結晶粒は、銅箔1のそれらと全く異なる微細組織を有していることが確認された。また、実施例5の下地銅めっき層2を構成する多結晶粒の平均厚さは、約0.15μmと見積もられ、銅箔1のそれよりも大きいことが確認された。   On the other hand, as shown in FIG. 7B, it was confirmed that the polycrystalline grains constituting the base copper plating layer 2 of Example 5 had a microstructure different from those of the copper foil 1. . Further, the average thickness of the polycrystalline grains constituting the base copper plating layer 2 of Example 5 was estimated to be about 0.15 μm, which was confirmed to be larger than that of the copper foil 1.

粗化銅めっき層3の表面粗度に関しては、表1に示したように、実施例1〜9および比較例1〜9の表面処理銅箔において、特段の差異が見出せなかった。言い換えると、金属の表面粗さを示す一般的な指標(ここではRzjis)では、後述する特性(特に、化学エッチング除去により露出した樹脂フィルムを介した透過視認性)の制御・良否判定が困難であることが確認された。   Regarding the surface roughness of the roughened copper plating layer 3, as shown in Table 1, in the surface-treated copper foils of Examples 1 to 9 and Comparative Examples 1 to 9, no particular difference was found. In other words, it is difficult to control and pass / fail judgment of the characteristics described later (particularly, transmission visibility through a resin film exposed by chemical etching removal) with a general index (here Rzjis) indicating the surface roughness of a metal. It was confirmed that there was.

表2に示したように、実施例1〜9のFPC模擬試料は、平行光線透過率Tpと透明度Cとが高く、その結果、高い透過視認度Vtが得られた。また、目視による、ポリイミドフィルムを介した透過視認性の確認実験においても、良好な透過視認性を示すことが確認された。 As shown in Table 2, the FPC simulated samples of Examples 1 to 9 had high parallel light transmittance T p and transparency C, and as a result, high transmission visibility V t was obtained. Moreover, it was confirmed that the transmission visibility was confirmed through visual observation through a polyimide film.

図8は、実施例5のFPC模擬試料において表面処理銅箔を化学エッチング除去した後の露出したポリイミドフィルム部分での透過視認性の一例を示す写真であり、(a)透過視認するマーカーを、ポリイミドフィルムの下に密着させて配置した場合の透過視認性、(b)透過視認するマーカーを、ポリイミドフィルムの下で隙間(約10 mm)を空けて配置した場合の透過視認性である。図8(a),(b)に示したように、いずれの場合においても、マーカーに表示された文字を十分視認・判別することができる。   FIG. 8 is a photograph showing an example of transmission visibility in an exposed polyimide film portion after chemical etching removal of the surface-treated copper foil in the FPC simulated sample of Example 5, and (a) a marker for visual recognition of transmission is The transmission visibility when arranged in close contact with the polyimide film, and (b) the transmission visibility when the marker for visual recognition is arranged with a gap (about 10 mm) under the polyimide film. As shown in FIGS. 8A and 8B, the character displayed on the marker can be sufficiently visually recognized and determined in any case.

なお、前述した図2は、比較例5のFPC模擬試料におけるポリイミドフィルムを介した透過視認性の結果である。図2と図8とを比較すると、ポリイミドフィルムを介した透過視認性の差異は、一目瞭然である。種々の透過視認性確認実験から、十分な透過視認性を確保するためには、透過視認度Vtは少なくとも10%以上が必要であることが確認された。 In addition, FIG. 2 mentioned above is a result of the transmission visibility through the polyimide film in the FPC simulated sample of Comparative Example 5. Comparing FIG. 2 and FIG. 8, the difference in transmission visibility through the polyimide film is obvious. From various transparent visibility confirmation experiment, in order to ensure sufficient transmission visibility, the transmittance visibility V t was confirmed to be required at least 10% or more.

回路配線部分のピール強度(樹脂フィルムと銅箔との接合性)に関しては、実施例1〜9のFPC模擬試料のいずれにおいても、0.5 N/mm以上を示し、要求特性を十分満足していることが確認された。   Regarding the peel strength of the circuit wiring part (bondability between the resin film and the copper foil), any of the FPC simulated samples of Examples 1 to 9 shows 0.5 N / mm or more, and sufficiently satisfies the required characteristics. It was confirmed.

比較例1,2のFPC模擬試料は、粗化銅めっき層3の平均厚さを本発明の規定よりも薄くした(粗化銅めっき層3の粗化粒を小さく形成した)試料であり、高い透過視認度Vt(良好な透過視認性)を示したものの、回路配線部分のピール強度が不十分であった。また、比較例2のFPC模擬試料は、下地銅めっき層2の形成において所定の有機系添加剤を使用しておらず、比較例1のFPC模擬試料と比較して、拡散透過率Tdが増大し、透明度Cが大きく低下していた。 The FPC simulated samples of Comparative Examples 1 and 2 are samples in which the average thickness of the roughened copper plating layer 3 was made thinner than that of the present invention (the roughened grains of the roughened copper plating layer 3 were formed smaller), Although high transmission visibility V t (good transmission visibility) was exhibited, the peel strength of the circuit wiring portion was insufficient. Further, the FPC simulated sample of Comparative Example 2 does not use a predetermined organic additive in the formation of the base copper plating layer 2, and has a diffusion transmittance T d that is higher than that of the FPC simulated sample of Comparative Example 1. The transparency C was greatly decreased.

比較例3,4のFPC模擬試料は、粗化銅めっき層3の平均厚さを本発明の規定よりも厚くした(粗化銅めっき層3の粗化粒を大きく形成した)試料であり、高いピール強度を示したものの、透過視認度Vtが大きく低下した。また、比較例3と比較例4とを比較すると、透明度Cに大きな差異があった。 The FPC simulated samples of Comparative Examples 3 and 4 are samples in which the average thickness of the roughened copper plating layer 3 is made thicker than specified in the present invention (the roughened grains of the roughened copper plating layer 3 are formed larger). although showed high peel strength, permeability visibility V t is decreased significantly. Further, when Comparative Example 3 and Comparative Example 4 were compared, there was a large difference in transparency C.

比較例5のFPC模擬試料は、実施例5との比較により、下地銅めっき層2の形成における所定の有機系添加剤の影響を観ることができる。その結果、比較例5では、拡散透過率Tdが増大し、透明度Cが大きく低下していた。言い換えると、本発明における表面処理銅箔の製造方法のように、下地銅めっき層2の形成の際に所定の有機系添加剤を添加することにより、最終的なFPCにおいてエッチングにより露出させた樹脂フィルムの拡散透過率Tdを減少させ、透明度Cを向上させることができると考えられる。 By comparing the FPC simulated sample of Comparative Example 5 with Example 5, the influence of a predetermined organic additive in the formation of the base copper plating layer 2 can be observed. As a result, in Comparative Example 5, the diffuse transmittance Td was increased and the transparency C was greatly decreased. In other words, like the method for producing a surface-treated copper foil in the present invention, a resin exposed by etching in the final FPC by adding a predetermined organic additive when forming the base copper plating layer 2 It is considered that the diffuse transmittance Td of the film can be reduced and the transparency C can be improved.

比較例6のFPC模擬試料は、実施例5との比較により、粗化銅めっき層3の形成におけるその他成分の影響を観ることができる。その結果、比較例6では、拡散透過率Tdが増大していた。これは、粗化銅めっき層3の形成において、個々の粗化粒の大きさが不揃いになったことに起因する可能性が考えられる。 By comparing the FPC simulated sample of Comparative Example 6 with Example 5, the influence of other components in the formation of the roughened copper plating layer 3 can be observed. As a result, in Comparative Example 6, the diffuse transmittance T d was increased. This may be caused by the fact that the sizes of the individual roughened grains are not uniform in the formation of the roughened copper plating layer 3.

比較例7〜9のFPC模擬試料は、表面処理銅箔で下地銅めっき層2を形成していない試料であり、実施例1,4,7と比較して、全光線透過率Ttが減少し、拡散透過率Tdが増大し、透明度Cが大きく低下していた。この結果から、表面処理銅箔において下地銅めっき層2を形成することの意義は大きいと考えられる。 The FPC simulated samples of Comparative Examples 7 to 9 are samples in which the base copper plating layer 2 is not formed with the surface-treated copper foil, and the total light transmittance T t is reduced as compared with Examples 1, 4 and 7. However, the diffuse transmittance Td was increased and the transparency C was greatly decreased. From this result, it is considered that the significance of forming the base copper plating layer 2 in the surface-treated copper foil is great.

以上説明したように、本発明に係る実施例1〜9の銅張積層板から作製したFPCは、樹脂フィルムと銅箔との優れた接合性が維持され、かつ銅箔を化学エッチング除去して露出させた樹脂フィルム部分での透過視認性に関して、樹脂フィルムと位置決めマーカーとの配置関係によらず、優れた透過視認性を確保できることが確認された。   As described above, the FPC produced from the copper-clad laminates of Examples 1 to 9 according to the present invention maintains excellent bondability between the resin film and the copper foil, and removes the copper foil by chemical etching. Regarding the transmission visibility at the exposed resin film portion, it was confirmed that excellent transmission visibility could be ensured regardless of the positional relationship between the resin film and the positioning marker.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples are described in order to facilitate understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification can be deleted, replaced with other configurations, and added with other configurations.

10…銅張積層板、
1…銅箔、2…下地銅めっき層、3…粗化銅めっき層、4…防錆層、
5…表面処理銅箔、6…樹脂フィルム。
10 ... Copper clad laminate,
1 ... copper foil, 2 ... underlying copper plating layer, 3 ... roughened copper plating layer, 4 ... rust prevention layer,
5 ... surface-treated copper foil, 6 ... resin film.

Claims (6)

樹脂フィルムと銅箔とが直接積層された銅張積層板であって、
前記樹脂フィルムと前記銅箔とのピール強度が0.5 N/mm以上であり、
前記銅箔の一部が化学エッチング除去されたとき、化学エッチング除去後の残存した前記樹脂フィルムにおいて、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義される透過視認度Vtが「Vt≧10%」であることを特徴とする銅張積層板。
A copper-clad laminate in which a resin film and a copper foil are directly laminated,
The peel strength between the resin film and the copper foil is 0.5 N / mm or more,
When a part of the copper foil is removed by chemical etching, in the resin film remaining after the chemical etching is removed, the formula “V t = (T t −T d ) × C / 100” (T t : total light transmission) The transmission visibility V t defined by the rate (unit:%), T d : diffuse transmittance (unit:%), C: transparency (unit:%)) is “V t ≧ 10%” A copper-clad laminate.
請求項1に記載の銅張積層板において、
前記樹脂フィルムに対向する前記銅箔の接合面に粗化銅めっき層が形成されており、
前記粗化銅めっき層の平均厚さが0.05μm以上0.3μm以下であることを特徴とする銅張積層板。
In the copper-clad laminate according to claim 1,
A roughened copper plating layer is formed on the bonding surface of the copper foil facing the resin film,
The copper clad laminate, wherein the roughened copper plating layer has an average thickness of 0.05 μm or more and 0.3 μm or less.
請求項2に記載の銅張積層板において、
前記銅箔が圧延銅箔であり、
前記銅箔と前記粗化銅めっき層との間に下地銅めっき層が形成されており、
前記下地銅めっき層の平均厚さが0.1μm以上0.6μm以下であることを特徴とする銅張積層板。
In the copper clad laminate according to claim 2,
The copper foil is a rolled copper foil,
A base copper plating layer is formed between the copper foil and the roughened copper plating layer,
The copper-clad laminate, wherein the base copper plating layer has an average thickness of 0.1 μm to 0.6 μm.
請求項1乃至請求項3のいずれかに記載の銅張積層板において、
前記透過視認度Vtが「Vt≧20%」であることを特徴とする銅張積層板。
In the copper clad laminated board in any one of Claim 1 thru | or 3,
The copper-clad laminate, wherein the transmission visibility V t is “V t ≧ 20%”.
請求項1乃至請求項4のいずれかに記載の銅張積層板の前記銅箔の一部が化学エッチング除去されて回路配線が形成されたフレキシブルプリント配線板であって、
化学エッチング除去後の残存した前記樹脂フィルムにおいて、式「Vt = (Tt − Td) × C/100」(Tt:全光線透過率(単位:%)、Td:拡散透過率(単位:%)、C:透明度(単位:%))で定義される透過視認度Vtが「Vt≧10%」であることを特徴とするフレキシブルプリント配線板。
A flexible printed wiring board in which a part of the copper foil of the copper clad laminate according to any one of claims 1 to 4 is chemically etched to form a circuit wiring,
In the resin film remaining after the chemical etching removal, the formula “V t = (T t −T d ) × C / 100” (T t : total light transmittance (unit:%), T d : diffuse transmittance ( unit:%), C: transparency (units:%)) flexible printed wiring board transmitting visibility V t is characterized in that it is a "V t ≧ 10%" as defined.
請求項5に記載のフレキシブルプリント配線板において、
前記透過視認度Vtが「Vt≧20%」であることを特徴とするフレキシブルプリント配線板。
In the flexible printed wiring board according to claim 5,
The flexible printed wiring board, wherein the transmission visibility V t is “V t ≧ 20%”.
JP2014127997A 2014-06-23 2014-06-23 Copper-clad laminate and flexible printed wiring board using the copper-clad laminate Active JP5695253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127997A JP5695253B1 (en) 2014-06-23 2014-06-23 Copper-clad laminate and flexible printed wiring board using the copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127997A JP5695253B1 (en) 2014-06-23 2014-06-23 Copper-clad laminate and flexible printed wiring board using the copper-clad laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015020807A Division JP5732181B1 (en) 2015-02-05 2015-02-05 Copper-clad laminate and flexible printed wiring board using the copper-clad laminate

Publications (2)

Publication Number Publication Date
JP5695253B1 JP5695253B1 (en) 2015-04-01
JP2016007722A true JP2016007722A (en) 2016-01-18

Family

ID=52830856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127997A Active JP5695253B1 (en) 2014-06-23 2014-06-23 Copper-clad laminate and flexible printed wiring board using the copper-clad laminate

Country Status (1)

Country Link
JP (1) JP5695253B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122193A (en) * 1985-11-21 1987-06-03 信越化学工業株式会社 Flexible copper-clad laminated substrate
JP2003309336A (en) * 2002-04-15 2003-10-31 Toray Ind Inc Laminated plate for flexible printed wiring board and the flexible printed wiring board
JP2005333028A (en) * 2004-05-20 2005-12-02 Nitto Denko Corp Wiring circuit board
JP2007134658A (en) * 2005-11-14 2007-05-31 Nitto Denko Corp Wiring circuit substrate and method for manufacturing the same and mounting electronic component
JP2009295874A (en) * 2008-06-06 2009-12-17 Shirai Electronics Industrial Co Ltd Flexible printed circuit board and method of manufacturing the same
JP5405981B2 (en) * 2009-10-29 2014-02-05 帝人デュポンフィルム株式会社 Biaxially oriented polyester film for transparent flat speaker, diaphragm made of the same, and transparent flat speaker made of the same
JP2012038785A (en) * 2010-08-03 2012-02-23 Jsr Corp Method for manufacturing substrate, and film and composition for use in the same
JP5432357B1 (en) * 2012-09-10 2014-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
TWI532592B (en) * 2012-09-10 2016-05-11 Jx Nippon Mining & Metals Corp Surface treatment of copper foil and the use of its laminated board

Also Published As

Publication number Publication date
JP5695253B1 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP5497808B2 (en) Surface-treated copper foil and copper-clad laminate using the same
JP5819569B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
TW202340543A (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
JP5563849B2 (en) Treated copper foil
WO2013108415A1 (en) Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same
JP2014148691A (en) Surface-treated copper foil and laminate plate using the same, copper foil, printed wiring board, electronic apparatus, and method for manufacturing printed wiring board
KR20150077306A (en) Surface-treated copper foil and laminated plate
KR20150014886A (en) Copper foil for circuit board, and circuit board
JP6373166B2 (en) Surface-treated copper foil and laminate
TW201942370A (en) Roughened copper foil, copper foil with carrier, copper-clad multi-layer board, and printed wiring board
KR101974687B1 (en) Surface-treated copper foil and laminate
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
JP5728118B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP5732181B1 (en) Copper-clad laminate and flexible printed wiring board using the copper-clad laminate
JP5695253B1 (en) Copper-clad laminate and flexible printed wiring board using the copper-clad laminate
JP5702881B1 (en) Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP6845382B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP5728117B1 (en) Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
JP2014129560A (en) Surface-treated copper foil and printed wiring board using the surface-treated copper foil
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil
JP5922169B2 (en) Manufacturing method of electronic equipment
JP2014177712A (en) Surface-treated copper foil and laminated board using the same, copper foil, printed wiring board, electronic apparatus and method for producing printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150205

R150 Certificate of patent or registration of utility model

Ref document number: 5695253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250