JP2016007133A - Power control system and server - Google Patents

Power control system and server Download PDF

Info

Publication number
JP2016007133A
JP2016007133A JP2015161845A JP2015161845A JP2016007133A JP 2016007133 A JP2016007133 A JP 2016007133A JP 2015161845 A JP2015161845 A JP 2015161845A JP 2015161845 A JP2015161845 A JP 2015161845A JP 2016007133 A JP2016007133 A JP 2016007133A
Authority
JP
Japan
Prior art keywords
power
consumer
control unit
server
consumers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015161845A
Other languages
Japanese (ja)
Other versions
JP6161012B2 (en
Inventor
山本 心司
Shinji Yamamoto
心司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011035027A priority Critical patent/JP5873984B2/en
Priority to PCT/JP2011/080413 priority patent/WO2012114642A1/en
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015161845A priority patent/JP6161012B2/en
Publication of JP2016007133A publication Critical patent/JP2016007133A/en
Application granted granted Critical
Publication of JP6161012B2 publication Critical patent/JP6161012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Abstract

PROBLEM TO BE SOLVED: To provide a power control system capable of providing equal opportunity to sell surplus power to plural users sharing a single transformer.SOLUTION: A power control system 10 includes: a control section 27 that controls the output voltage from a power conditioner 22 to thereby allow each of plural users 1 as a same bank to sell the power for power selling period of a predetermined length; and a transmission and reception circuit 28. The control section 27 communicates with different users 1 in the same bank to sequentially provide equal opportunity of power selling period to the plural users 1 in the same bank.

Description

本発明は、1台の変圧器を共用している複数の需要家に用いられる電力制御システムおよびサーバに関するものである。   The present invention relates to a power control system and a server used for a plurality of consumers who share a single transformer.

従来から、太陽電池や燃料電池等の分散電源を需要家に設置し、需要家で必要な電力の一部を分散電源で賄うようにすることが行われている。特に太陽電池の場合、余剰電力の発生時(太陽電池の出力が需要家の負荷で消費される消費電力よりも大きいとき)には、一般的に太陽電池の余剰電力は商用電源系統に逆潮流され電力会社に売電される。   2. Description of the Related Art Conventionally, distributed power sources such as solar cells and fuel cells are installed in consumers, and a part of power required by consumers is covered by the distributed power sources. In particular, in the case of solar cells, when surplus power is generated (when the output of the solar cell is greater than the power consumed by the consumer's load), the surplus power of the solar cell generally flows backward to the commercial power system. And sold to a power company.

売電に用いられるシステムとして、通信網に接続された一つまたは複数の分散電源の発電量情報を取得し、取得した情報に基づいて各分散電源の発電量を送配電系統に供給させる分散電源制御システムを有するシステムが提案されている(たとえば特許文献1参照)。   A distributed power supply that acquires power generation amount information of one or more distributed power sources connected to a communication network as a system used for power sale and supplies the power generation amount of each distributed power source to the transmission and distribution system based on the acquired information A system having a control system has been proposed (see, for example, Patent Document 1).

特開2006−280154号公報JP 2006-280154 A

しかし、今後さらに太陽電池等の分散電源が普及するのに伴い、1台の変圧器を共用している複数の需要家(いわゆる「同一バンク」)にそれぞれ分散電源が設置されるようになると、以下のような問題を生じ得る。すなわち、同一バンクとなる複数の需要家が余剰電力を一斉に売電しようとした場合、変圧器との位置関係によっては売電(逆潮流)できない需要家が生じることがあり、需要家間で売電の機会にばらつきを生じる可能性がある。   However, as distributed power sources such as solar cells become more widespread in the future, distributed power sources will be installed in multiple customers who share one transformer (so-called “same bank”). The following problems can occur. In other words, when multiple customers in the same bank try to sell surplus power all at once, there may be a customer who cannot sell (reverse power flow) depending on the positional relationship with the transformer. There may be variations in power sales opportunities.

本発明は上記事由に鑑みて為されており、1台の変圧器を共用している複数の需要家に対して余剰電力の売電の機会を均等に与えることができる電力制御システムおよびサーバを提供することを目的とする。   The present invention has been made in view of the above-described reasons, and provides a power control system and a server that can evenly give an opportunity for selling surplus power to a plurality of consumers who share one transformer. The purpose is to provide.

本発明の電力制御システムは、共通の変圧器から商用電力系統の引き込みを行う複数の需要家からなり、電力を生成する分散電源と、前記分散電源で生成された電力を負荷回路に供給可能な電力に変換するとともに、前記分散電源で生成された電力中に余剰電力がある場合に当該余剰電力を商用電力系統に逆潮流することにより売電を行うパワーコンディショナとを複数の需要家の各々に備えた需要家群に用いられる電力制御システムであって、前記パワーコンディショナを制御して所定長さの売電期間に亘って売電を行わせる制御部を前記複数の前記需要家の各々に備え、前記複数の前記制御部の各々と通信可能に構成されたサーバを備え、前記サーバは、前記商用電力系統の電圧の大きさに応じて、前記複数の前記制御部の各々に前記売電期間を割り当てることを特徴とする。   The power control system according to the present invention includes a plurality of consumers that draw a commercial power system from a common transformer, and is capable of supplying a distributed power source that generates power and the power generated by the distributed power source to a load circuit. A power conditioner that converts power into electric power and sells power by flowing the surplus power back to the commercial power system when there is surplus power in the electric power generated by the distributed power supply Each of the plurality of consumers includes a control unit that controls the power conditioner and sells power for a predetermined length of power selling period. And a server configured to be able to communicate with each of the plurality of control units, and the server sells the control unit with each of the plurality of control units according to a voltage level of the commercial power system. And allocating a time.

この電力制御システムにおいて、前記サーバは、前記商用電力系統の電圧の大きさが上限値から低くなるに従って、同時に売電許可を出す前記制御部の数を増やすことがより望ましい。   In this power control system, it is more desirable that the server increase the number of the control units that issue the power sale permission at the same time as the voltage of the commercial power system becomes lower than the upper limit value.

本発明のサーバは、上記の電力制御システムに用いられることを特徴とする。   The server according to the present invention is used in the power control system described above.

本発明は、通信により需要家ごとに売電期間が割り当てられるので、1台の変圧器を共用している複数の需要家に対して余剰電力の売電の機会を均等に与えることができるという利点がある。   According to the present invention, since a power selling period is allocated to each consumer by communication, it is possible to evenly give a chance to sell surplus power to a plurality of consumers who share one transformer. There are advantages.

実施形態1に係る電力制御システムを示すシステム構成図である。1 is a system configuration diagram illustrating a power control system according to a first embodiment. 実施形態1に係る電力制御システムの動作の説明図である。It is explanatory drawing of operation | movement of the electric power control system which concerns on Embodiment 1. FIG. 実施形態1に係る電力制御システムの動作の説明図である。It is explanatory drawing of operation | movement of the electric power control system which concerns on Embodiment 1. FIG. 実施形態1に係る電力制御システムの他の例を示す要部の構成図である。It is a block diagram of the principal part which shows the other example of the electric power control system which concerns on Embodiment 1. FIG. 実施形態2に係る電力制御システムを示すシステム構成図である。FIG. 3 is a system configuration diagram illustrating a power control system according to a second embodiment. 実施形態2に係る電力制御システムの動作の説明図である。FIG. 10 is an explanatory diagram of an operation of the power control system according to the second embodiment. 実施形態2に係る電力制御システムの動作の説明図である。FIG. 10 is an explanatory diagram of an operation of the power control system according to the second embodiment.

(実施形態1)
本実施形態の電力制御システム10は、図1に示すようにそれぞれ分散電源としての太陽電池20を有する複数の需要家11,12,・・・(以下、各々を特に区別しないときには「需要家1」という)に用いられている。この電力制御システム10において、各需要家1では太陽電池20と電力会社から供給される商用電力系統とで系統連系が行われ、複数の電気機器を含む負荷回路21に電力が供給される。ここでは、一般的な戸建住宅を需要家1の例として説明するが、これに限らず集合住宅の各住戸や施設、工場等を需要家1としてもよい。
(Embodiment 1)
As shown in FIG. 1, the power control system 10 of the present embodiment includes a plurality of consumers 11, 12,... Each having a solar battery 20 as a distributed power source (hereinafter referred to as “customer 1” when not particularly distinguished from each other). "). In this power control system 10, in each customer 1, grid connection is performed between the solar battery 20 and a commercial power system supplied from an electric power company, and power is supplied to a load circuit 21 including a plurality of electric devices. Here, a general detached house will be described as an example of the consumer 1, but the present invention is not limited thereto, and each dwelling unit, facility, factory, etc. of the apartment house may be the consumer 1.

太陽電池20は、インバータ回路(図示せず)を有するパワーコンディショナ22に接続されている。パワーコンディショナ22は、太陽電池20で生成された直流電力をインバータ回路にて交流電力に変換して出力する。パワーコンディショナ22には蓄電部としての蓄電池23も接続されており、パワーコンディショナ22は蓄電池23の充電および放電を行う。つまり、パワーコンディショナ22は、たとえば昼間に太陽電池20の出力によって蓄電池23を充電し、夜間には蓄電池23に蓄積された電力をインバータ回路にて交流電力に変換して出力する。   The solar cell 20 is connected to a power conditioner 22 having an inverter circuit (not shown). The power conditioner 22 converts the DC power generated by the solar cell 20 into AC power using an inverter circuit and outputs the AC power. A storage battery 23 as a power storage unit is also connected to the power conditioner 22, and the power conditioner 22 charges and discharges the storage battery 23. That is, the power conditioner 22 charges the storage battery 23 by the output of the solar cell 20 in the daytime, for example, and converts the power stored in the storage battery 23 into AC power by the inverter circuit and outputs it at night.

各需要家1には負荷回路21が接続される分電盤24がそれぞれ設置されており、パワーコンディショナ22は分電盤24に対して接続されている。太陽電池20および蓄電池23の出力は、商用電力系統と電圧および周波数が略等しい交流電圧にパワーコンディショナ22にて変換され、分電盤24を介して負荷回路21に供給される。   Each consumer 1 is provided with a distribution board 24 to which the load circuit 21 is connected, and the power conditioner 22 is connected to the distribution board 24. Outputs of the solar battery 20 and the storage battery 23 are converted into an AC voltage having substantially the same voltage and frequency as those of the commercial power system by the power conditioner 22 and supplied to the load circuit 21 via the distribution board 24.

分電盤24は、電力メータ25を介して商用電力系統の引込線30にも接続されており、負荷回路21で消費される電力を太陽電池20および蓄電池23の出力のみで賄えない場合には、商用電力系統から負荷回路21への電力供給を可能とする。なお、このように系統連系を行う需要家1においては、商用電力系統の停電時に太陽電池20の単独運転を防止する必要がある。そこで、商用電力系統の停電検出時にパワーコンディショナ22のインバータ回路の動作を停止させるとともに、引込線30とパワーコンディショナ22との間に挿入された解列リレー26を解列(開放)させる保護装置(図示せず)が需要家1ごとに設けられている。保護装置はパワーコンディショナ22に設けられている。   The distribution board 24 is also connected to the lead-in line 30 of the commercial power system via the power meter 25, and when the power consumed by the load circuit 21 cannot be covered only by the outputs of the solar battery 20 and the storage battery 23. The power supply from the commercial power system to the load circuit 21 is enabled. In addition, in the consumer 1 which performs grid connection in this way, it is necessary to prevent the single operation of the solar cell 20 at the time of a power failure of a commercial power system. Accordingly, a protection device that stops the operation of the inverter circuit of the power conditioner 22 when a power failure is detected in the commercial power system and disconnects (opens) the disconnect relay 26 inserted between the lead-in wire 30 and the power conditioner 22. (Not shown) is provided for each customer 1. The protective device is provided in the power conditioner 22.

商用電力系統の引込線30は、変圧器31の需要家1側(以下、「二次側」という)に接続されている。変圧器31は、電力会社からの電力を配電する配電線32に一次側が接続され、配電線32から印加される高圧(たとえば6.6〜3.3kV)電力を低圧(たとえば200〜100V)に変換し、二次側から引込線30を介して需要家1に供給する。変圧器31はここでは柱上変圧器からなるが、変圧器31の形態は柱上変圧器に限らない。住宅密集地などでは近隣の複数の需要家1は1台の変圧器31を共用しており、いわゆる「同一バンク」となるこれら複数の需要家1には、同一の変圧器31で変圧された電力がそれぞれ引込線30を介して引き込まれる。同一バンクの複数の需要家1は需要家群を構成する。   The lead-in wire 30 of the commercial power system is connected to the consumer 1 side (hereinafter referred to as “secondary side”) of the transformer 31. The transformer 31 has a primary side connected to a distribution line 32 that distributes power from an electric power company, and a high voltage (for example, 6.6 to 3.3 kV) applied from the distribution line 32 to a low voltage (for example, 200 to 100 V). The product is converted and supplied to the customer 1 from the secondary side via the service line 30. Although the transformer 31 consists of a pole transformer here, the form of the transformer 31 is not restricted to a pole transformer. In a densely populated area or the like, a plurality of neighboring customers 1 share one transformer 31, and the plurality of consumers 1, which are so-called “same bank”, are transformed by the same transformer 31. Electric power is drawn through the lead-in line 30. A plurality of customers 1 in the same bank constitute a customer group.

上記構成においては、太陽電池20で十分に電力が生成される昼間などに、太陽電池20の発電電力が負荷回路21の消費電力を上回ると、太陽電池20で生成される電力に余剰分(以下、「余剰電力」という)を生じることがある。この余剰電力については、蓄電池23に蓄積することもできるが、引込線30から商用電力系統に逆潮流することにより電力会社に売電することもできる。そのため、引込線30と分電盤24との間には、電力メータ25として、商用電力系統から需要家1に供給される電力量を計測する買電メータの他、需要家1から商用電力系統に逆潮流される電力量を計測する売電メータが設けられている。   In the above configuration, when the generated power of the solar cell 20 exceeds the power consumption of the load circuit 21 during the daytime when the power is sufficiently generated by the solar cell 20, a surplus (hereinafter referred to as the power generated by the solar cell 20). , “Surplus power”). The surplus power can be stored in the storage battery 23, but can also be sold to an electric power company by flowing backward from the service line 30 to the commercial power system. Therefore, between the service line 30 and the distribution board 24, as a power meter 25, in addition to a power purchase meter that measures the amount of power supplied from the commercial power system to the consumer 1, the consumer 1 to the commercial power system. There is a power sale meter that measures the amount of power that flows backward.

余剰電力の売電は、パワーコンディショナ22が余剰電力の電圧および周波数を調整することによって行われる。すなわち、パワーコンディショナ22は、余剰電力を、引込線30から引き込まれる商用電力系統よりも電圧(実効値)が高く且つ商用電力系統と周波数が同一の交流電力に変換することによって、商用電力系統への余剰電力の逆潮流を行う。たとえば商用電力系統の電圧(以下、「系統電圧」という)が100V(実効値)であれば、パワーコンディショナ22は、100Vを超える交流電力に余剰電力を変換することにより商用電力系統への逆潮流を行う。   The surplus power is sold by the power conditioner 22 adjusting the voltage and frequency of the surplus power. That is, the power conditioner 22 converts surplus power into AC power having a voltage (effective value) higher than that of the commercial power system drawn from the lead-in line 30 and having the same frequency as that of the commercial power system. Reverse power flow of surplus power. For example, if the voltage of the commercial power system (hereinafter referred to as “system voltage”) is 100 V (effective value), the power conditioner 22 converts the surplus power into AC power exceeding 100 V to reverse the power to the commercial power system. Tidal current.

ところで、同一バンクの複数の需要家(変圧器31共通の需要家)1にそれぞれ太陽電池20が設置されている場合、以下のような問題を生じ得る。   By the way, when the solar cell 20 is installed in each of a plurality of customers (customers common to the transformer 31) 1 in the same bank, the following problems may occur.

一般的に、多数の需要家1が一斉に電気を使用すると、配電線32を通して送電される系統電圧が低下して電気機器に影響する可能性があるので、電力会社は、電力需要が高い時間帯の供給電圧(系統電圧)を他の通常時間帯よりも若干高くしている。そのため、電力需要が高い時間帯に需要家1で発生した余剰電力の売電を行う場合、パワーコンディショナ22は、通常時間帯よりもさらに高い電圧に余剰電力を変換する必要がある。ただし、パワーコンディショナ22の出力電圧は、他の需要家1へ与える影響などを考慮して所定の範囲(たとえば101±6Vの範囲)に制限されている。したがって、電力会社からの供給電圧(系統電圧)が高くなると、需要家1において、パワーコンディショナ22の出力電圧が系統電圧を超えることができず売電できなくなることがある(いわゆる電圧上昇抑制問題)。   In general, when a large number of consumers 1 use electricity all at once, the grid voltage transmitted through the distribution line 32 may decrease and affect the electrical equipment. The band supply voltage (system voltage) is slightly higher than other normal time zones. Therefore, when selling surplus power generated by the customer 1 in a time zone when the power demand is high, the power conditioner 22 needs to convert the surplus power to a voltage higher than that in the normal time zone. However, the output voltage of the power conditioner 22 is limited to a predetermined range (for example, a range of 101 ± 6 V) in consideration of the influence on other consumers 1. Therefore, when the supply voltage (system voltage) from the electric power company becomes high, the output voltage of the power conditioner 22 may not exceed the system voltage in the consumer 1 and may not be able to sell power (so-called voltage rise suppression problem). ).

ここで、同一バンクの複数の需要家1にそれぞれ太陽電池20が設置されている場合、売電する際、変圧器31から遠い需要家1ほど高い電圧をパワーコンディショナ22が出力する必要がある。すなわち、同一バンクの複数の需要家1が一斉に売電するには、変圧器31の二次側に系統電圧よりも高い電圧を印加する必要があるため、電圧降下分を加味すると変圧器31から遠い需要家1ほど高い電圧を出力する必要がある。たとえば、変圧器31の二次側における系統電圧が106Vであるとすれば、変圧器31に最も近い需要家1では107Vの出力で売電可能であるのに対し、変圧器31から遠い需要家1では売電するために108Vの出力が必要になる。   Here, when the solar cell 20 is installed in each of the plurality of consumers 1 in the same bank, the power conditioner 22 needs to output a higher voltage to the consumer 1 farther from the transformer 31 when selling power. . That is, in order for a plurality of consumers 1 in the same bank to sell power all at once, it is necessary to apply a voltage higher than the system voltage to the secondary side of the transformer 31. It is necessary to output a higher voltage for the consumer 1 far away from the vehicle. For example, if the system voltage on the secondary side of the transformer 31 is 106 V, the consumer 1 closest to the transformer 31 can sell power at an output of 107 V, whereas the consumer far from the transformer 31 1 requires an output of 108V to sell power.

そのため、複数の需要家1にそれぞれ太陽電池20が設置されている場合、電力需要が高く系統電圧が高い時間帯などには、変圧器31から遠い需要家1ほど上述した電圧上昇抑制問題によって売電できなくなる可能性が高くなる。言い換えれば、同一バンクとなる複数の需要家1が余剰電力を一斉に売電しようとした場合、変圧器31との位置関係によっては売電(逆潮流)できない需要家1が生じることがあり、需要家1間で売電の機会にばらつきを生じる可能性がある。   Therefore, when the solar cell 20 is installed in each of the plurality of consumers 1, the consumer 1 far from the transformer 31 sells due to the above-described voltage rise suppression problem in a time period when the power demand is high and the system voltage is high. There is a high possibility that power will be lost. In other words, when a plurality of customers 1 in the same bank try to sell surplus power all at once, depending on the positional relationship with the transformer 31, there may be a customer 1 who cannot sell (reverse power flow). There is a possibility that there will be variations in the opportunities for selling power among consumers 1.

そこで、本実施形態の電力制御システム10は、同一バンク内の複数の需要家1において売電の機会が均等に与えられるように、以下に説明する構成を採用している。   Therefore, the power control system 10 according to the present embodiment employs the configuration described below so that a plurality of consumers 1 in the same bank are equally given the opportunity to sell power.

すなわち、電力制御システム10は、同一バンクとなる複数の需要家1それぞれに、パワーコンディショナ22の出力電圧を制御することによって所定長さ(たとえば10分)の売電期間に亘って売電を行わせる制御部27を備えている。本実施形態では、制御部27は各需要家1の電力メータ25内にそれぞれ設けられている。   In other words, the power control system 10 sells power to a plurality of consumers 1 in the same bank by controlling the output voltage of the power conditioner 22 over a predetermined length (for example, 10 minutes) of power selling period. A control unit 27 is provided. In the present embodiment, the control unit 27 is provided in the power meter 25 of each consumer 1.

この電力制御システム10は、制御部27が同一バンク内の異なる需要家1間で相互に通信を行うことにより、同一バンク内の複数の需要家1に対して売電の機会が均等に与えられるように、余剰電力を売電させるための売電期間を各需要家1へ割り当てる。本実施形態では、電力メータ25内において制御部27にPLC(Power Line Communication)用の送受信回路部28が付設され、同一の変圧器31に接続された複数の需要家1の制御部27間にPLCを用いた通信網が構築されている。制御部27は同一バンク内における需要家1間で相互に通信可能に構成されている。各需要家1の制御部27は、それぞれ同一バンク内における他の需要家1のアドレスを記憶しており、該アドレスを用いて双方向に通信を行う。つまり、各制御部27は通信系のノードを構成する。   In the power control system 10, the control unit 27 communicates between different customers 1 in the same bank, so that a plurality of consumers 1 in the same bank are equally given the opportunity to sell power. As described above, a power sale period for selling surplus power is allocated to each consumer 1. In the present embodiment, a transmission / reception circuit unit 28 for PLC (Power Line Communication) is attached to the control unit 27 in the power meter 25, and is connected between the control units 27 of a plurality of consumers 1 connected to the same transformer 31. A communication network using PLC has been established. The control unit 27 is configured to be able to communicate with each other between the consumers 1 in the same bank. The control part 27 of each consumer 1 has memorize | stored the address of the other consumer 1 in the same bank, respectively, and communicates bidirectionally using this address. That is, each control unit 27 constitutes a communication node.

具体的には、制御部27は、余剰電力が発生すると、同一バンク内の他の需要家1の制御部27に受電要求としてのRTS(Request to Send)を通信により送信する。RTSを送信した制御部27は、このRTSへの応答としてCTS(Clear to Send)を受信することにより売電期間が割り当てられ、割り当てられた売電期間に亘ってパワーコンディショナ22の出力電圧を上げ余剰電力の売電を行う。つまり、売電期間はCTSの返信があった時点から所定長さの期間となる。ここで、売電期間の長さは一律に決められていてもよいし、一律ではなく、時間帯や曜日や季節などにより異なっていてもよい。売電期間の長さが一律でない場合には、CTSと併せて売電期間の長さが制御部27に通知される。   Specifically, when surplus power is generated, the control unit 27 transmits an RTS (Request to Send) as a power reception request to the control unit 27 of another customer 1 in the same bank by communication. The control unit 27 that has transmitted the RTS is assigned a power sale period by receiving a CTS (Clear to Send) as a response to the RTS, and outputs the output voltage of the power conditioner 22 over the assigned power sale period. Selling surplus power. That is, the power selling period is a period of a predetermined length from the time when the CTS is returned. Here, the length of the power selling period may be determined uniformly, or may be different depending on the time zone, day of the week, season, or the like. When the length of the power sale period is not uniform, the control unit 27 is notified of the length of the power sale period together with the CTS.

一方、制御部27は、RTSへの応答としてのCTSを受信できなければ、後述する待ち時間を経てRTSを再送信する。RTSは同一バンク内の需要家1の制御部27に対してマルチキャスト送信され、RTSを受けたノード(制御部27)のうち受電可能なノードは、RTSの送信元のノードにCTSを返信する。   On the other hand, if the control unit 27 cannot receive the CTS as a response to the RTS, the control unit 27 retransmits the RTS after a waiting time described later. The RTS is multicast-transmitted to the control unit 27 of the customer 1 in the same bank, and the node that can receive power among the nodes (control unit 27) that has received the RTS returns the CTS to the node that transmitted the RTS.

また、本実施形態においては、制御部27は、同一バンクにおける他の需要家1の通信の終了時点を検知し、当該終了時点から需要家1ごとに長さが異なるランダムな待ち時間を経て、上述したような売電期間を割り当てるための通信を行う。つまり、同一バンク内の複数の制御部27は、アクセス制御方式としてCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)を用いており、これにより、1つの通信路(通信網)を共用しながらも互いに通信することができる。   Moreover, in this embodiment, the control part 27 detects the end time of communication of the other customer 1 in the same bank, and passes through the random waiting time from which the length differs for every customer 1 from the said end time, Communication for assigning a power sale period as described above is performed. In other words, the plurality of control units 27 in the same bank use CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) as an access control method, thereby sharing one communication path (communication network). Can communicate with each other.

さらに詳しく説明すると、本実施形態では、制御部27はRTS(またはCTS)を送信する前に一度受信を行い、同一バンク内において他に通信中の制御部27があるか否かを確認する(キャリアセンス)。このとき、制御部27は、他に通信中の制御部27がなければ、すぐにRTS(またはCTS)を送信し、他に通信中の制御部27があれば、当該他の制御部27の通信終了を検知してからランダムな長さの待ち時間が経過した後、RTS(またはCTS)を送信する。なお、特定の制御部27が永久に送信できない事態を回避するため、待ち時間の長さは徐々に短くされる。   More specifically, in this embodiment, the control unit 27 performs reception once before transmitting RTS (or CTS), and checks whether there is another control unit 27 in communication in the same bank ( Career sense). At this time, if there is no other communicating control unit 27, the control unit 27 immediately transmits an RTS (or CTS), and if there is another communicating control unit 27, the other control unit 27 After waiting for a random length after detecting the end of communication, RTS (or CTS) is transmitted. In addition, in order to avoid the situation where the specific control part 27 cannot transmit forever, the length of waiting time is gradually shortened.

以下に、上記構成の電力制御システム10の動作例について図2を参照して説明する。ここでは、同一バンク内の需要家11〜14のうち、需要家12および需要家13において余剰電力が発生し、この余剰電力が需要家11に供給される場合を例に説明する。   Hereinafter, an operation example of the power control system 10 having the above configuration will be described with reference to FIG. Here, a case will be described as an example where surplus power is generated in the customer 12 and the customer 13 among the consumers 11 to 14 in the same bank, and this surplus power is supplied to the customer 11.

需要家12の制御部27は、需要家12で余剰電力が発生すると、図2の例では、その時点で同一バンク内において他に通信中の制御部27がないことから、すぐにRTSを送信する。このとき、需要家11が受電可能な状態にあることから、需要家11の制御部27は、需要家12の制御部27にRTSへの応答としてCTSを返信する。これにより、需要家12の制御部27は、CTSを受信した直後から売電期間に亘ってパワーコンディショナ22の出力電圧を上げて余剰電力の売電(需要家11への送電)を行う。   When surplus power is generated in the customer 12, the control unit 27 of the customer 12 immediately transmits an RTS because there is no other control unit 27 in communication in the same bank at that time in the example of FIG. To do. At this time, since the consumer 11 is in a power receivable state, the control unit 27 of the consumer 11 returns a CTS as a response to the RTS to the control unit 27 of the consumer 12. Thereby, the control part 27 of the consumer 12 raises the output voltage of the power conditioner 22 over the power sale period immediately after receiving CTS, and sells surplus power (power transmission to the consumer 11).

一方、需要家13の制御部27は、需要家13で余剰電力が発生すると、図2の例では、その時点で需要家12の制御部27が通信中であることから、RTSの送信を行わずに、当該通信の終了時点から待ち時間(バックオフタイム)のカウントを開始する。待ち時間が経過すると、需要家13の制御部27はRTSを送信する。このとき、需要家12が売電を行うことにより需要家11は受電可能な状態になく、需要家13の制御部27に対してCTSの返信はない。そのため、需要家13の制御部27は、先ほどの待ち時間よりも短い待ち時間をカウントし、当該待ち時間の経過後、RTSを再送信する。このとき、需要家11が受電可能な状態にあることから、需要家11の制御部27は、需要家13の制御部27にRTSへの応答としてCTSを返信する。これにより、需要家13の制御部27は、CTSを受信した直後から売電期間に亘ってパワーコンディショナ22の出力電圧を上げて余剰電力の売電(需要家11への送電)を行う。   On the other hand, when surplus power is generated in the consumer 13, the control unit 27 of the consumer 13 transmits the RTS in the example of FIG. 2 because the control unit 27 of the consumer 12 is communicating at that time. Instead, the counting of the waiting time (back-off time) is started from the end of the communication. When the waiting time elapses, the control unit 27 of the consumer 13 transmits an RTS. At this time, when the consumer 12 sells power, the consumer 11 is not in a state capable of receiving power, and no CTS is returned to the control unit 27 of the consumer 13. Therefore, the control unit 27 of the consumer 13 counts a waiting time shorter than the previous waiting time, and retransmits the RTS after the waiting time has elapsed. At this time, since the consumer 11 is in a power receivable state, the control unit 27 of the consumer 11 returns a CTS as a response to the RTS to the control unit 27 of the consumer 13. Thereby, the control part 27 of the consumer 13 raises the output voltage of the power conditioner 22 over the power sale period immediately after receiving CTS, and sells surplus power (power transmission to the consumer 11).

また、本実施形態の電力制御システム10は上述した図2のような動作に限らず、ある需要家1の制御部27が通信を行った際に他の需要家1で売電が行われていた場合、当該他の需要家1の売電が終わるのを待ってから売電期間に亘る売電を開始してもよい。他の需要家1の売電が終わるのを待ってから売電を開始する場合の動作について、以下に、図3を参照して説明する。ここでは、同一バンク内の需要家11〜14のうち、需要家12および需要家13において余剰電力が発生し、この余剰電力が需要家11に供給される場合を例に説明する。   In addition, the power control system 10 of the present embodiment is not limited to the operation as shown in FIG. 2 described above, and power is sold by another consumer 1 when the control unit 27 of a certain consumer 1 communicates. In such a case, the power sale for the power sale period may be started after waiting for the power sale of the other consumer 1 to end. With reference to FIG. 3, the operation in the case where power selling is started after waiting for the end of the power selling of other consumers 1 will be described below. Here, a case will be described as an example where surplus power is generated in the customer 12 and the customer 13 among the consumers 11 to 14 in the same bank, and this surplus power is supplied to the customer 11.

需要家12の制御部27は、需要家12で余剰電力が発生すると、図3の例では、その時点で同一バンク内において他に通信中の制御部27がないことから、すぐにRTSを送信する。このとき、需要家11が受電可能な状態にあることから、需要家11の制御部27は、需要家12の制御部27にRTSへの応答としてCTSを返信する。これにより、需要家12の制御部27は、CTSを受信した時点から売電期間に亘ってパワーコンディショナ22の出力電圧を上げて余剰電力の売電(需要家11への送電)を行う。   When surplus power is generated in the customer 12, the control unit 27 of the customer 12 immediately transmits an RTS because there is no other control unit 27 in communication in the same bank at that time in the example of FIG. To do. At this time, since the consumer 11 is in a power receivable state, the control unit 27 of the consumer 11 returns a CTS as a response to the RTS to the control unit 27 of the consumer 12. Thereby, the control part 27 of the consumer 12 raises the output voltage of the power conditioner 22 over the electric power selling period from the time of receiving CTS, and sells surplus electric power (power transmission to the consumer 11).

一方、需要家13の制御部27は、需要家13で余剰電力が発生すると、図3の例では、その時点で需要家12の制御部27が通信中であることから、RTSの送信を行わずに、当該通信の終了時点から待ち時間(バックオフタイム)のカウントを開始する。待ち時間が経過すると、需要家13の制御部27はRTSを送信する。このとき、需要家12が売電を行うことにより需要家11は受電可能な状態にないので、需要家11の制御部27は需要家12の売電期間の終了後に受電可能となることを示すCTSを需要家13の制御部27にRTSへの応答として返信する。要するに、通信信号(RTS,CTS)は高周波を利用しているため、制御部27は売電中あるいは受電中であっても通信信号を送受信可能である。そこで、需要家11の制御部27は通信信号(CTS)を利用して、需要家12の売電期間の残り時間(または終了時刻)を需要家13の制御部27に通知する。言い換えれば、需要家13の制御部27は、需要家11の制御部27との通信によって、需要家12の売電終了後における売電期間の予約を行う。   On the other hand, when the surplus power is generated in the consumer 13, the control unit 27 of the consumer 13 transmits the RTS in the example of FIG. 3 because the control unit 27 of the consumer 12 is communicating at that time. Instead, the counting of the waiting time (back-off time) is started from the end of the communication. When the waiting time elapses, the control unit 27 of the consumer 13 transmits an RTS. At this time, since the consumer 11 is not in a state capable of receiving power by the consumer 12 selling power, the control unit 27 of the consumer 11 indicates that power can be received after the end of the power selling period of the consumer 12. The CTS is returned as a response to the RTS to the control unit 27 of the consumer 13. In short, since communication signals (RTS, CTS) use high frequencies, the control unit 27 can transmit and receive communication signals even during power sale or power reception. Therefore, the control unit 27 of the consumer 11 notifies the control unit 27 of the consumer 13 of the remaining time (or end time) of the power sale period of the consumer 12 using the communication signal (CTS). In other words, the control unit 27 of the consumer 13 makes a reservation for the power sale period after the end of the power sale of the consumer 12 through communication with the control unit 27 of the consumer 11.

需要家13の制御部27は、需要家11の制御部27から通知された残り時間をカウントし、当該残り時間の経過後、直ちに売電期間に亘ってパワーコンディショナ22の出力電圧を上げて余剰電力の売電(需要家11への送電)を行う。これにより、需要家12の売電期間の終了後には、予約済みの需要家13が直ちに売電を行うことが可能になる。   The control unit 27 of the consumer 13 counts the remaining time notified from the control unit 27 of the customer 11 and immediately increases the output voltage of the power conditioner 22 over the power sale period after the remaining time has elapsed. Selling surplus power (power transmission to the customer 11). Thereby, after the end of the power selling period of the consumer 12, the reserved consumer 13 can immediately sell the power.

以上説明した構成によれば、制御部27が同一バンク内の異なる需要家1間で通信を行うことにより、同一バンクの複数の需要家1には、余剰電力を売電するための売電期間が、所定の長さで区切って順次割り当てられることになる。要するに、制御部27は、同一バンクにおける他の需要家1の通信の終了時点を検知し、当該終了時点から需要家1ごとに長さが異なるランダムな待ち時間を経て、売電期間を割り当てるための通信を行うCSMA/CAを、アクセス制御方式として採用している。これにより、同一バンク内の複数の需要家1は、変圧器31との位置関係によらずに、余剰電力を売電する機会が与えられることになる。したがって、同一バンクの複数の需要家1にそれぞれ太陽電池20が設置されている場合でも、これら複数の需要家1間で売電の機会にばらつきを生じることなく、これら複数の需要家1に対して売電の機会が均等に与えられることになる。   According to the configuration described above, the control unit 27 communicates between different customers 1 in the same bank, so that a plurality of customers 1 in the same bank can sell surplus power to the power sale period. Are sequentially allocated by being separated by a predetermined length. In short, the control unit 27 detects the end point of communication of another customer 1 in the same bank, and allocates a power selling period through a random waiting time having a different length for each customer 1 from the end point. CSMA / CA that performs the above communication is adopted as an access control method. Thereby, the plurality of consumers 1 in the same bank is given an opportunity to sell surplus power regardless of the positional relationship with the transformer 31. Therefore, even when the solar cells 20 are installed in the plurality of consumers 1 in the same bank, the plurality of consumers 1 can be distributed to the plurality of consumers 1 without any variation in the opportunities for selling power. This will give equal opportunities to sell electricity.

また、上記電力制御システム10では、同一バンクの複数の需要家1について売電の機会が1軒ずつ順次与えられるので、同一バンク内の複数の需要家1が同時に売電を行うことはない。そのため、上記電力制御システム10によれば、複数の需要家1が同時に売電を行う場合に比べて、売電に伴う変圧器31の二次側の電圧の上昇幅を小さく抑えることができ、売電していない他の需要家1への影響を抑制することができる。   Further, in the power control system 10, the opportunity for selling power is sequentially given to the plurality of consumers 1 in the same bank one by one, so that the plurality of consumers 1 in the same bank do not sell power simultaneously. Therefore, according to the power control system 10, it is possible to suppress the increase in the voltage on the secondary side of the transformer 31 associated with power sale, as compared to the case where a plurality of consumers 1 sell power simultaneously. The influence on other customers 1 who are not selling power can be suppressed.

しかも、本実施形態では、各需要家1にそれぞれ蓄電池23が設けられているので、売電の機会が与えられていない状態で余剰電力が生じた需要家1においては、この余剰電力を蓄電池23に蓄積しておくことにより有効に利用することができる。   In addition, in the present embodiment, each consumer 1 is provided with a storage battery 23. Therefore, in the consumer 1 where surplus power is generated in a state where no opportunity for power sale is given, this surplus power is stored in the storage battery 23. It can be used effectively by accumulating in.

さらに、制御部27は各需要家1の電力メータ25内にそれぞれ設けられているので、制御部27が付加されることにより電力制御システム10を構成する装置の数が増えることなく、従来と同じ装置数で上記電力制御システム10を構築することができる。   Further, since the control unit 27 is provided in the power meter 25 of each consumer 1, the addition of the control unit 27 does not increase the number of devices constituting the power control system 10 and is the same as the conventional one. The power control system 10 can be constructed with the number of devices.

なお、制御部27は、アクセス制御方式として、複数のノードが同時に通信を行うと通信を中止しランダムな待ち時間を経て通信を再開するCSMA/CD(Carrier Sense Multiple Access with Collision Detection)を採用してもよい。この場合でも、同一バンク内の複数の需要家1は、変圧器31との位置関係によらずに、余剰電力を売電する機会が与えられることになる。ただし、制御部27は、CSMA/CDを採用する場合に比べると、CSMA/CDを採用した場合の方が、通信の衝突を回避でき効率的な売電が可能となる。   Note that the control unit 27 adopts CSMA / CD (Carrier Sense Multiple Access with Collision Detection) as an access control method, in which communication is stopped when a plurality of nodes simultaneously perform communication, and communication is resumed after a random waiting time. May be. Even in this case, the plurality of consumers 1 in the same bank are given an opportunity to sell surplus power regardless of the positional relationship with the transformer 31. However, as compared with the case where CSMA / CD is adopted, the control unit 27 can avoid communication collision and can efficiently sell power when the CSMA / CD is adopted.

また、本実施形態では、制御部27は各需要家1の電力メータ25内にそれぞれ設けられているが、この構成に限らず、各需要家1のパワーコンディショナ22内にそれぞれ制御部27が設けられていてもよい。この場合、制御部27がパワーコンディショナ22の出力電圧を制御するための配線をパワーコンディショナ22内に設けることができる。   Moreover, in this embodiment, although the control part 27 is each provided in the electric power meter 25 of each consumer 1, not only this structure but the control part 27 is each in the power conditioner 22 of each consumer 1. It may be provided. In this case, a wiring for the control unit 27 to control the output voltage of the power conditioner 22 can be provided in the power conditioner 22.

なお、上記実施形態では、同一バンク内の全ての需要家1が太陽電池20を備える例を示したが、この例に限らず、同一バンク内に太陽電池20を備える需要家1が複数含まれていればよい。   In addition, in the said embodiment, although all the consumers 1 in the same bank showed the example provided with the solar cell 20, not only this example but multiple customers 1 provided with the solar cell 20 in the same bank are included. It only has to be.

ところで、電力制御システム10は、パワーコンディショナ22によって商用電力系統に逆潮流された余剰電力を、同一バンクにおける他の需要家1または他バンクにおける需要家1に対して供給する配電制御部を備えていてもよい。この場合、たとえば図4に示すように、各需要家1のパワーコンディショナ22に制御部27および送受信回路部28が設けられ、これら制御部27および送受信回路部28が配電制御部を構成する。   By the way, the power control system 10 includes a power distribution control unit that supplies surplus power reversely flowed to the commercial power system by the power conditioner 22 to another customer 1 in the same bank or to a customer 1 in another bank. It may be. In this case, for example, as shown in FIG. 4, the control unit 27 and the transmission / reception circuit unit 28 are provided in the power conditioner 22 of each consumer 1, and the control unit 27 and the transmission / reception circuit unit 28 constitute a power distribution control unit.

配電制御部は、ある需要家1で発生した余剰電力の供給先を、同一バンクにおける他の需要家1または他バンクにおける需要家1の中から特定し、特定された供給先に対して余剰電力を配電する。具体的には、配電制御部は、複数の需要家1間での通信により、パワーコンディショナ22の出力電圧に勾配をつけ、特定の需要家1に対して余剰電力が供給されるようにする。   The power distribution control unit identifies a supply destination of surplus power generated in a certain consumer 1 from other consumers 1 in the same bank or the consumer 1 in another bank, and surplus power for the identified supply destination Power distribution. Specifically, the power distribution control unit grades the output voltage of the power conditioner 22 through communication between the plurality of consumers 1 so that surplus power is supplied to the specific consumers 1. .

ここで、余剰電力の供給先となる需要家1は、コミュニティ施設のように、余剰電力を発生した需要家1が含まれる地域で共用されている施設であってもよいし、一般的な戸建住宅であってもよい。また、地域ごとに蓄電設備が設けられている場合には、配電制御部は、余剰電力の供給先を蓄電設備とし、地域内で発生した余剰電力を蓄電設備にまとめて蓄積するようにしてもよい。この場合、各需要家1の蓄電池23は省略されていてもよい。   Here, the consumer 1 as a supply destination of surplus power may be a facility shared in an area including the consumer 1 that has generated surplus power, such as a community facility, or a general door. It may be a built house. In addition, when power storage facilities are provided in each region, the power distribution control unit may set the surplus power supply destination as the power storage facility, and accumulate the surplus power generated in the region in the power storage facility. Good. In this case, the storage battery 23 of each consumer 1 may be omitted.

また、配電制御部は、気象サーバなどから取得できる地域の天候情報に基づいて、ある需要家1で発生した余剰電力を、離れた地域の需要家1へ供給することにより、電力の安定化を図ることができる。すなわち、太陽電池20の発電電力は天候の影響を受けて大きく変動するので、たとえ同じ仕様の太陽電池20が使われていても、雨天の地域では晴天の地域に比べて発電電力が小さくなる。そこで、配電制御部は、晴天の地域の需要家1で発生した余剰電力を、雨天の地域の需要家1に供給することにより、複数の地域間で電力の安定化を図ることができる。   In addition, the power distribution control unit stabilizes power by supplying surplus power generated in a certain consumer 1 to a consumer 1 in a remote area based on local weather information that can be acquired from a weather server or the like. Can be planned. That is, since the generated power of the solar cell 20 varies greatly due to the influence of the weather, even if the solar cell 20 having the same specification is used, the generated power is smaller in a rainy region than in a clear region. Therefore, the power distribution control unit can stabilize the power among a plurality of regions by supplying surplus power generated by the customers 1 in a sunny area to the consumers 1 in a rainy region.

このように、配電制御部を備える電力制御システム10によれば、需要家1で生じた余剰電力を電力会社に売電する以外にも、需要家1間あるいは地域間での電力の売買が可能になる。   As described above, according to the power control system 10 including the power distribution control unit, in addition to selling surplus power generated in the customer 1 to the power company, it is possible to buy and sell power between the customers 1 or between regions. become.

(実施形態2)
本実施形態の電力制御システム10は、図5に示すように各需要家1の制御部27に対して売電期間を割り当てるサーバ4が、複数の需要家1からなるバンクごとに1台ずつ設けられている点が実施形態1の電力制御システム10と相違する。
(Embodiment 2)
In the power control system 10 of the present embodiment, as shown in FIG. 5, one server 4 that allocates a power sale period to the control unit 27 of each consumer 1 is provided for each bank including a plurality of consumers 1. This is different from the power control system 10 of the first embodiment.

サーバ4は、同一バンク内の複数の需要家1に対して売電の機会が均等に与えられるように、各需要家1の制御部27に対して売電期間を割り当てる。サーバ4は、送受信回路部28を介して各需要家1の制御部27と双方向に通信可能に構成されている。つまり、本実施形態では、各制御部27およびサーバ4が通信系のノードを構成する。   The server 4 allocates a power sale period to the control unit 27 of each consumer 1 so that the power sale opportunities are equally given to the plurality of consumers 1 in the same bank. The server 4 is configured to be capable of bidirectional communication with the control unit 27 of each customer 1 via the transmission / reception circuit unit 28. That is, in this embodiment, each control unit 27 and the server 4 constitute a communication node.

具体的には、変圧器31の二次側にモデム5が接続され、このモデム5にはケーブル(たとえば光ケーブル)51を介してサーバ4が接続されている。モデム5は、送受信回路部28から伝送されたPLC信号を通信信号に復調してサーバ4に送信したり、サーバ4から伝送された通信信号をPLC信号に変調して送受信回路部28に送信したりする。サーバ4と制御部27とは互いのアドレスをそれぞれ記憶しており、該アドレスを用いて双方向に通信を行う。   Specifically, the modem 5 is connected to the secondary side of the transformer 31, and the server 4 is connected to the modem 5 via a cable (for example, an optical cable) 51. The modem 5 demodulates the PLC signal transmitted from the transmission / reception circuit unit 28 into a communication signal and transmits it to the server 4, or modulates the communication signal transmitted from the server 4 into a PLC signal and transmits it to the transmission / reception circuit unit 28. Or The server 4 and the control unit 27 each store a mutual address, and perform bidirectional communication using the address.

本実施形態においては、同一バンク内の複数の需要家1の制御部27は、サーバ4からの指示に従って売電を行うタイミング(つまり売電期間の開始タイミング)を決定する。サーバ4は、各需要家1の制御部27に売電許可を通信により順次送信することによって、各需要家1に対して売電期間を順次割り当てる。サーバ4が売電許可を送信する順番は、同一バンク内の複数の需要家1に売電の機会が均等に与えられるように予め決められ、サーバ4に記憶されている。   In the present embodiment, the control units 27 of the plurality of consumers 1 within the same bank determine the timing for selling power (that is, the start timing of the power selling period) in accordance with an instruction from the server 4. The server 4 sequentially assigns a power sale period to each consumer 1 by sequentially transmitting a power sale permission to the control unit 27 of each consumer 1 by communication. The order in which the server 4 transmits the power sale permission is predetermined and stored in the server 4 so that a plurality of consumers 1 in the same bank are equally given the opportunity to sell power.

売電許可を受けた制御部27は、その時点で売電が可能か否か、つまり余剰電力が発生しているか否かを判断し、売電可能な状態(余剰電力あり)であれば、許可受諾の信号を売電許可への応答として通信によりサーバ4に返信する。一方、売電許可を受けた制御部27は、売電不可な状態(余剰電力なし)であれば、許可辞退の信号を売電許可への応答として通信によりサーバ4に返信する。売電許可を出した制御部27から許可辞退の返信があった場合、サーバ4は、次の需要家1の制御部27に対して売電許可を送信し、許可受諾の返信があるまで、各需要家1の制御部27に売電許可を順次送信する。   The control unit 27 that has received the power sale permission determines whether or not power sale is possible at that time, that is, whether or not surplus power is generated. If the power sale is possible (with surplus power), A signal of permission acceptance is returned to the server 4 by communication as a response to the power sale permission. On the other hand, if the power sale permission is received, the control unit 27 returns a permission decline signal to the server 4 by communication as a response to the power sale permission if the power sale is not possible (no surplus power). When there is a reply of permission refusal from the control unit 27 that has issued the power sale permission, the server 4 transmits a power sale permission to the control unit 27 of the next consumer 1 until there is a reply of permission acceptance. The power sale permission is sequentially transmitted to the control unit 27 of each consumer 1.

いずれかの需要家1から許可受諾の返信があると、サーバ4は、許可受諾を返信した需要家1に、余剰電力を売電させるための売電期間を設定する。つまり、売電期間は許可受諾の返信があった時点から所定長さの期間となる。ここで、売電期間の長さは一律に決められていてもよいし、一律ではなく、時間帯や曜日や季節などにより異なっていてもよい。売電期間の長さが一律でない場合には、サーバ4は売電許可と併せて売電期間の長さを制御部27に通知する。   When there is a reply of permission acceptance from any of the consumers 1, the server 4 sets a power sale period for selling surplus power to the consumer 1 that has returned permission acceptance. That is, the power sale period is a predetermined length from the time when the permission acceptance is returned. Here, the length of the power selling period may be determined uniformly, or may be different depending on the time zone, day of the week, season, or the like. If the length of the power sale period is not uniform, the server 4 notifies the control unit 27 of the length of the power sale period together with the power sale permission.

制御部27は、許可受諾の返信を行った場合、その時点から売電期間に亘り、パワーコンディショナ22の出力電圧を上げて余剰電力の売電を行う。ただし、余剰電力がなくなるなどして売電できない状態になると、制御部27は売電期間内であってもパワーコンディショナ22の出力電圧を下げて売電を中止する。一方、許可辞退の返信を行った場合には、制御部27は、余剰電力の売電を行わない。   When the control unit 27 returns a permission acceptance, the surplus power is sold by increasing the output voltage of the power conditioner 22 from that time point over the power sale period. However, when the power cannot be sold because the surplus power runs out, the control unit 27 stops the power sale by reducing the output voltage of the power conditioner 22 even during the power sale period. On the other hand, when a reply of permission decline is made, the control unit 27 does not sell surplus power.

また、サーバ4はインターネットなどの広域網6に接続されており、同様に広域網6に接続された管理装置7との間で通信可能に構成されている。管理装置7は、広域網6に接続されている複数のサーバ4との間で定期的に情報を授受することにより、たとえばこれら複数のサーバ4から収集した売電の状況等を一元管理する。   The server 4 is connected to a wide area network 6 such as the Internet, and is configured to be able to communicate with a management device 7 connected to the wide area network 6 in the same manner. The management device 7 centrally manages, for example, the status of power sales collected from the plurality of servers 4 by periodically exchanging information with the plurality of servers 4 connected to the wide area network 6.

以下、本実施形態の電力制御システム10の動作例について図6を参照して説明する。ここでは、同一バンク内の需要家11〜13に対して、サーバ4が需要家11、需要家12、需要家13の順で売電許可を送信する場合を例に説明する。なお、図6中の斜線部は、制御部27が通信中である時間帯を表している。   Hereinafter, an operation example of the power control system 10 of the present embodiment will be described with reference to FIG. Here, a case where the server 4 transmits a power sale permission in the order of the customer 11, the customer 12, and the customer 13 to the consumers 11 to 13 in the same bank will be described as an example. 6 indicates a time zone during which the control unit 27 is communicating.

サーバ4は、図6中の最初の通信期間(時刻t1〜t2)に需要家11の制御部27に対して売電許可を通信により送信する。このとき、需要家11の制御部27は、売電可能な状態(余剰電力あり)にあるため、許可受諾をサーバ4に返信するとともに、直後の売電期間(時刻t2〜t3)にパワーコンディショナ22の出力電圧を上げて需要家11から余剰電力の売電を行う。   The server 4 transmits a power sale permission by communication to the control unit 27 of the customer 11 during the first communication period (time t1 to t2) in FIG. At this time, since the control unit 27 of the consumer 11 is in a state where power can be sold (with surplus power), the control unit 27 returns permission acceptance to the server 4 and power condition during the power sale period (time t2 to t3) immediately after that. The output voltage of the na 22 is increased and surplus power is sold from the consumer 11.

需要家11からの売電を行う売電期間が終了すると、サーバ4は、その直後の通信期間(時刻t3〜t4)に次の需要家12の制御部27に対して売電許可を通信により送信する。このとき、需要家12の制御部27は、売電不可の状態(余剰電力なし)にあるため、許可辞退をサーバ4に返信する。許可辞退の返信を受けたサーバ4は、同通信期間(時刻t3〜t4)に次の需要家13の制御部27に対して売電許可を通信により送信する。このとき、需要家13の制御部27は、売電可能な状態(余剰電力あり)にあるため、許可受諾をサーバ4に返信するとともに、直後の売電期間(時刻t4〜t5)にパワーコンディショナ22の出力電圧を上げて需要家13から余剰電力の売電を行う。   When the power sale period for selling power from the consumer 11 is completed, the server 4 communicates a power sale permission to the control unit 27 of the next consumer 12 by communication in the communication period (time t3 to t4) immediately after that. Send. At this time, the control unit 27 of the customer 12 returns a permission decline to the server 4 because the power is not sold (no surplus power). The server 4 that has received a reply of permission decline transmits a power sale permission by communication to the control unit 27 of the next consumer 13 during the same communication period (time t3 to t4). At this time, since the control unit 27 of the consumer 13 is in a state in which power can be sold (with surplus power), it returns a permission acceptance to the server 4 and power condition during the power sale period immediately after (time t4 to t5). The output voltage of the N 22 is increased and surplus power is sold from the consumer 13.

需要家13からの売電を行う売電期間が終了すると、サーバ4は、その直後の通信期間(時刻t5〜t6)に次の需要家11の制御部27に対して売電許可を通信により送信する。このとき、需要家11の制御部27は、売電不可(余剰電力なし)の状態にあるため、許可辞退をサーバ4に返信する。許可辞退の返信を受けたサーバ4は、同通信期間(時刻t5〜t6)に次の需要家12の制御部27に対して売電許可を通信により送信する。このとき、需要家12の制御部27は、売電可能な状態(余剰電力あり)にあるため、許可受諾をサーバ4に返信するとともに、直後の売電期間(時刻t6〜t7)にパワーコンディショナ22の出力電圧を上げて需要家12から余剰電力の売電を行う。   When the power sale period for selling power from the consumer 13 ends, the server 4 communicates power sale permission to the control unit 27 of the next consumer 11 by communication in the communication period (time t5 to t6) immediately after that. Send. At this time, since the control unit 27 of the customer 11 is in a state where power sale is not possible (no surplus power), it returns a permission decline to the server 4. The server 4 that has received a reply of permission decline transmits a power sale permission by communication to the control unit 27 of the next consumer 12 during the same communication period (time t5 to t6). At this time, since the control unit 27 of the customer 12 is in a state in which power can be sold (with surplus power), the control unit 27 returns permission acceptance to the server 4 and power condition during the immediately subsequent power selling period (time t6 to t7). The output voltage of the power supply 22 is increased to sell surplus power from the customer 12.

以上説明した構成によれば、同一バンクの複数の需要家(変圧器31共通の需要家)1には、余剰電力を売電するための売電期間が、サーバ4により所定の長さで区切って順次割り当てられることになる。要するに、同一バンク内の複数の需要家1は、変圧器31との位置関係によらずに、サーバ4からの売電許可を制御部27で受けることにより、余剰電力を売電する機会が与えられることになる。したがって、同一バンクの複数の需要家1にそれぞれ太陽電池20が設置されている場合でも、これら複数の需要家1間で売電の機会にばらつきを生じることなく、これら複数の需要家1に対して売電の機会が均等に与えられることになる。   According to the configuration described above, a plurality of customers (customers common to the transformer 31) 1 in the same bank have a power sale period for selling surplus power separated by the server 4 by a predetermined length. Will be assigned sequentially. In short, a plurality of consumers 1 in the same bank receive an opportunity to sell surplus power by receiving the power sale permission from the server 4 by the control unit 27 regardless of the positional relationship with the transformer 31. Will be. Therefore, even when the solar cells 20 are installed in the plurality of consumers 1 in the same bank, the plurality of consumers 1 can be distributed to the plurality of consumers 1 without any variation in the opportunities for selling power. This will give equal opportunities to sell electricity.

ところで、電力制御システム10は、上述したように複数の需要家1について売電の機会を1軒ずつ与える構成に限らず、サーバ4が、系統電圧を監視し、系統電圧の大きさに応じて同時に売電の機会を与える需要家1の軒数を決定する構成であってもよい。   By the way, the power control system 10 is not limited to the configuration in which each of the plurality of consumers 1 has an opportunity to sell power one by one as described above, but the server 4 monitors the system voltage, and according to the magnitude of the system voltage. The structure which determines the number of the houses of the consumer 1 which gives the opportunity of power sale simultaneously may be sufficient.

すなわち、系統電圧が高くパワーコンディショナ22の出力上限に近い場合には、複数軒の需要家1が一斉に売電すると、変圧器31の二次側の電圧が上昇して売電できなくなるが、系統電圧が低ければ複数軒の需要家1が一斉に売電することも可能である。この点に着眼し、サーバ4は、系統電圧が低くなる程、同時に売電の機会を与える需要家1の軒数が多くなるように、同時に売電許可を出す需要家1の軒数を系統電圧の大きさに応じて決定してもよい。具体的には、系統電圧が所定範囲(たとえば101±6Vの範囲)で変動する場合、サーバ4は、図7に示すように系統電圧が上限値(ここでは107V)から低くなるに従って、同時に売電許可を出す需要家1の軒数を増やす。   That is, when the system voltage is high and close to the output upper limit of the power conditioner 22, if a plurality of consumers 1 sells power all at once, the voltage on the secondary side of the transformer 31 rises, making it impossible to sell power. If the system voltage is low, a plurality of customers 1 can sell power all at once. Focusing on this point, the server 4 determines the number of customer 1s that are allowed to sell power at the same time as the grid voltage decreases, so that the number of customer 1s that give an opportunity to sell power increases at the same time. You may determine according to a magnitude | size. Specifically, when the system voltage fluctuates within a predetermined range (for example, a range of 101 ± 6V), the server 4 sells simultaneously as the system voltage becomes lower than the upper limit value (here, 107V) as shown in FIG. Increase the number of customers 1 that give out electric permission.

この構成によれば、同一バンク内の需要家1であっても、系統電圧が低い時間帯には複数軒ずつ売電の機会が与えられるので、各需要家1に与えられる売電の機会を増やすことができ、売電の効率が向上するという利点がある。   According to this configuration, even in the case of the consumer 1 in the same bank, the opportunity for selling power is given to each house 1 at a time when the system voltage is low. There is an advantage that it can be increased and the efficiency of power sale is improved.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

ところで、上記各実施形態では、各需要家1の制御部27(あるいは制御部27およびサーバ4)が通信系のノードを構成しているので、この通信系を利用することにより、商用電力系統の停電時に太陽電池20の単独運転を確実に防止することができる。   By the way, in each said embodiment, since the control part 27 (or control part 27 and the server 4) of each consumer 1 comprises the node of a communication system, by utilizing this communication system, of the commercial electric power system | strain The single operation of the solar cell 20 can be reliably prevented during a power failure.

すなわち、各需要家1には、上述のように単独運転を防止する保護装置がそれぞれ設けられているものの、同一バンクの複数の需要家1にそれぞれ太陽電池20が設置されている場合、パワーコンディショナ22同士が互いを商用電力系統と誤認する可能性がある。要するに、商用電力系統の停電時、ある需要家1のパワーコンディショナ22が、他の需要家1のパワーコンディショナ22の出力を商用電力系統と誤って認識し、これにより、商用電力系統は停電していない、という誤った判断をする可能性がある。この場合には、インバータ回路は停止しないので、変圧器31の二次側に給電された状態となる。   That is, when each consumer 1 is provided with a protection device for preventing independent operation as described above, when solar cells 20 are installed in a plurality of consumers 1 in the same bank, the power condition is set. There is a possibility that the two terminals 22 misidentify each other as a commercial power system. In short, at the time of a power failure in the commercial power system, the power conditioner 22 of a certain consumer 1 mistakenly recognizes the output of the power conditioner 22 of another customer 1 as a commercial power system, and this causes the commercial power system to fail. There is a possibility of making a false decision that the user has not done so. In this case, since the inverter circuit does not stop, power is supplied to the secondary side of the transformer 31.

これに対し、上記各実施形態の電力制御システム10では、商用電力系統が停電した場合、同一バンク内の全ての需要家1に対して停電を通知する通知部(図示せず)を設けることにより、太陽電池20の単独運転を確実に防止することができる。通知部は、各需要家1の制御部27とサーバ4との少なくとも1つに設けられる。制御部27は、通知部から停電の通知を受けると、保護装置に対して商用電力系統の停電を通知することにより、単独運転を防止する。   On the other hand, in the power control system 10 of each of the embodiments described above, by providing a notification unit (not shown) for notifying all customers 1 in the same bank of the power failure when the commercial power system fails. In addition, single operation of the solar cell 20 can be reliably prevented. The notification unit is provided in at least one of the control unit 27 and the server 4 of each customer 1. When the control unit 27 receives a power failure notification from the notification unit, the control unit 27 notifies the protection device of a power failure of the commercial power system, thereby preventing an isolated operation.

1,11,12,13 需要家
4 サーバ
10 電力制御システム
20 太陽電池(分散電源)
22 パワーコンディショナ
25 電力メータ
23 蓄電池(蓄電部)
27 制御部
28 送受信回路部
31 変圧器
1, 11, 12, 13 Consumer 4 Server 10 Power control system 20 Solar cell (distributed power supply)
22 Power conditioner 25 Power meter 23 Storage battery (power storage unit)
27 Control Unit 28 Transmission / Reception Circuit Unit 31 Transformer

Claims (3)

共通の変圧器から商用電力系統の引き込みを行う複数の需要家からなり、電力を生成する分散電源と、前記分散電源で生成された電力を負荷回路に供給可能な電力に変換するとともに、前記分散電源で生成された電力中に余剰電力がある場合に当該余剰電力を商用電力系統に逆潮流することにより売電を行うパワーコンディショナとを複数の需要家の各々に備えた需要家群に用いられる電力制御システムであって、
前記パワーコンディショナを制御して所定長さの売電期間に亘って売電を行わせる制御部を前記複数の前記需要家の各々に備え、
前記複数の前記制御部の各々と通信可能に構成されたサーバを備え、
前記サーバは、前記商用電力系統の電圧の大きさに応じて、前記複数の前記制御部の各々に前記売電期間を割り当てることを特徴とする電力制御システム。
Consisting of a plurality of consumers that pull in the commercial power system from a common transformer, the distributed power source that generates power, and the power generated by the distributed power source is converted into power that can be supplied to a load circuit, and the distributed When there is surplus power in the power generated by the power source, a power conditioner that sells power by flowing the surplus power back to the commercial power system is used for a consumer group equipped with each of a plurality of consumers Power control system,
Each of the plurality of consumers includes a control unit that controls the power conditioner to perform power sale over a predetermined length of power sale period,
A server configured to be able to communicate with each of the plurality of the control units;
The power control system, wherein the server allocates the power selling period to each of the plurality of control units according to a voltage level of the commercial power system.
前記サーバは、前記商用電力系統の電圧の大きさが上限値から低くなるに従って、同時に売電許可を出す前記制御部の数を増やすことを特徴とする請求項1に記載の電力制御システム。   2. The power control system according to claim 1, wherein the server increases the number of the control units that issue power sale permission at the same time as the voltage of the commercial power system decreases from an upper limit value. 請求項1または2に記載の電力制御システムに用いられることを特徴とするサーバ。   A server used for the power control system according to claim 1 or 2.
JP2015161845A 2011-02-21 2015-08-19 Power control system and server Expired - Fee Related JP6161012B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011035027A JP5873984B2 (en) 2011-02-21 2011-02-21 Power control system and control device
PCT/JP2011/080413 WO2012114642A1 (en) 2011-02-21 2011-12-28 Power control system
JP2015161845A JP6161012B2 (en) 2011-02-21 2015-08-19 Power control system and server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011035027A JP5873984B2 (en) 2011-02-21 2011-02-21 Power control system and control device
JP2015161845A JP6161012B2 (en) 2011-02-21 2015-08-19 Power control system and server

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011035027A Division JP5873984B2 (en) 2011-02-21 2011-02-21 Power control system and control device

Publications (2)

Publication Number Publication Date
JP2016007133A true JP2016007133A (en) 2016-01-14
JP6161012B2 JP6161012B2 (en) 2017-07-12

Family

ID=59410622

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011035027A Expired - Fee Related JP5873984B2 (en) 2011-02-21 2011-02-21 Power control system and control device
JP2015161845A Expired - Fee Related JP6161012B2 (en) 2011-02-21 2015-08-19 Power control system and server

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011035027A Expired - Fee Related JP5873984B2 (en) 2011-02-21 2011-02-21 Power control system and control device

Country Status (2)

Country Link
JP (2) JP5873984B2 (en)
WO (1) WO2012114642A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578588B1 (en) * 2013-03-06 2014-08-27 中国電力株式会社 Recovery support system
NZ714122A (en) 2013-04-13 2018-09-28 Honey Badger Int Pty Ltd Energy generation load compensation
JP6163445B2 (en) * 2014-03-13 2017-07-12 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6163444B2 (en) * 2014-03-13 2017-07-12 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6190741B2 (en) * 2014-03-13 2017-08-30 株式会社Nttファシリティーズ Power interchange system and power interchange method
JP6426010B2 (en) * 2015-01-14 2018-11-21 株式会社Nttドコモ Control device of power supply system, control method and program
JP6444209B2 (en) * 2015-02-20 2018-12-26 三菱電機株式会社 Energy management equipment
JP6147815B2 (en) * 2015-07-14 2017-06-14 大和ハウス工業株式会社 Electricity interchange system and residential area equipped with the same
JP6384502B2 (en) * 2016-02-25 2018-09-05 オムロン株式会社 Power sale timing optimum control system, power sale timing optimum control method, and power sale timing optimum control program
EP3477815A4 (en) * 2016-06-28 2019-12-18 Kyocera Corporation Management method, management device, distributed power supply, and management system
JP6820677B2 (en) * 2016-06-29 2021-01-27 積水化学工業株式会社 Power management equipment and programs
JP2021121151A (en) * 2020-01-30 2021-08-19 パナソニックIpマネジメント株式会社 Power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system
JP2010200539A (en) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd Grid interconnection device and power control system
JP4743351B2 (en) * 2009-12-02 2011-08-10 コニカミノルタホールディングス株式会社 Power sale management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005128512A (en) * 2003-02-13 2006-02-10 Впек, Инк. (Jp) POWER SUPPLY SYSTEM
JP4498247B2 (en) * 2005-09-08 2010-07-07 財団法人電力中央研究所 Distribution system voltage control method, apparatus, and program
JP4942454B2 (en) * 2006-10-31 2012-05-30 三洋電機株式会社 Grid interconnection device and grid interconnection system
JP4944578B2 (en) * 2006-11-14 2012-06-06 財団法人電力中央研究所 Self-sustaining operation method of low-voltage system and self-sustaining operation system of low-pressure system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352682A (en) * 2000-06-09 2001-12-21 Sharp Corp Inverter device and method for reversing power flow to direct it to commercial system
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system
JP2010200539A (en) * 2009-02-26 2010-09-09 Sanyo Electric Co Ltd Grid interconnection device and power control system
JP4743351B2 (en) * 2009-12-02 2011-08-10 コニカミノルタホールディングス株式会社 Power sale management system

Also Published As

Publication number Publication date
JP2012175795A (en) 2012-09-10
WO2012114642A1 (en) 2012-08-30
JP5873984B2 (en) 2016-03-01
JP6161012B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6161012B2 (en) Power control system and server
JP7460701B2 (en) Power supply system and power supply method
US11050259B2 (en) Power supply device and control device
US11757304B2 (en) Versatile site energy router
US8319370B2 (en) Grid interconnection device and power control system
JP5872571B2 (en) Power management system, power management method, and network server
JP6256844B2 (en) Power management apparatus, power management system, and power management method
CN103066639A (en) System, charging device, and method of charging power storage device
JP2019009999A (en) Power management system, power management method and program
JP6316715B2 (en) Power demand management apparatus and power demand management method
JPWO2013047116A1 (en) Power management system, power management method and host power management apparatus
WO2015001701A1 (en) Power management system and control device
Rongali et al. iPlug: Decentralised dispatch of distributed generation
KR20210121064A (en) Power Managed Electric Vehicle Charging Station
Daburi Farimani et al. Demand dispatch on dispatchable prosumer PEVs in a smart microgrid: A comprehensive framework
JP2020010542A (en) Power control device and power control method
WO2019117071A1 (en) Group management system, power control device, transmission method, and program
WO2019117070A1 (en) Group management system, power control device, transmission method, and program
JP7117546B2 (en) Power control device, power control method
JP5923100B2 (en) Power management system, power management method and host power management apparatus
WO2018225455A1 (en) Power management system, power storage system, transmission method, and program
WO2018088568A1 (en) Electric power converting device, electric power converting system, and electric power converting method
WO2018052117A1 (en) Electric power management method, electric power management server, local control device, and electric power management system
WO2019131228A1 (en) Power control device, power control method, program
JP2020099173A (en) Power management system and power management method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6161012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees