JP2016006716A - 磁気ヘッド、磁気センサ、および磁気記録再生装置 - Google Patents
磁気ヘッド、磁気センサ、および磁気記録再生装置 Download PDFInfo
- Publication number
- JP2016006716A JP2016006716A JP2015203722A JP2015203722A JP2016006716A JP 2016006716 A JP2016006716 A JP 2016006716A JP 2015203722 A JP2015203722 A JP 2015203722A JP 2015203722 A JP2015203722 A JP 2015203722A JP 2016006716 A JP2016006716 A JP 2016006716A
- Authority
- JP
- Japan
- Prior art keywords
- ferromagnetic layer
- layer
- magnetic
- ferromagnetic
- magnetic head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Magnetic Heads (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Abstract
【課題】高出力、高Q値で且つ、膜厚が薄いSTOを備えた磁気ヘッド、磁気センサ、および磁気記録再生装置を提供する。【解決手段】一実施形態の磁気ヘッドは、スピントルク発振素子を備え、前記スピントルク発振素子は、第1および第2電極と、前記第1電極と前記第2電極との間に設けられた第1強磁性層と、前記第1強磁性層と前記第2電極との間に設けられた第2強磁性層と、前記第2強磁性層と前記第2電極との間に設けられた第3強磁性層と、前記第1強磁性層と前記第2強磁性層との間に設けられた第1非磁性層と、前記第2強磁性層と前記第3強磁性層との間に設けられた第2非磁性層と、を備え、前記第2強磁性層と前記第3強磁性層は、前記第2非磁性層を介して反強磁性結合をし、前記第1および第2電極間に電流を流さない場合に前記第1強磁性層と前記第2強磁性層の磁化の向きが反平行配置であり、前記第3強磁性層の磁気モーメントが前記第2強磁性層の磁気モーメントより大きい。【選択図】図1
Description
本発明の実施形態は、磁気ヘッド、磁気センサ、および磁気記録再生装置に関する。
磁気ハードディスクドライブ(以下、HDDともいう)は,記録媒体である回転磁気ディスクと、サスペンションアームによって支持された記録および再生ヘッドと、サスペンションアームを動作させるためのアクチュエータとを有している。磁気ディスクに記録された磁気情報は、再生ヘッド内の磁気センサによって読み取られる。再生ヘッド用磁気センサとして、従来から、GMRセンサあるいはTMRセンサといった磁気抵抗効果センサが用いられている。
HDDにおける磁気記録密度は、年々増加している。現在、製品化されているHDDの最大面記録密度は,約600Gbit/in2である。HDDの技術ロードマップによれば,面記録密度は,2013年頃に1Tbit/in2、2015年頃に2Tbit/in2に達するとされる。
面記録密度を大きくすることは、磁気ディスク内の記録ビットのサイズを小さくすることであり、磁気抵抗効果センサのサイズもそれに適合するように小さくすることが必要である。そのため、磁気抵抗効果センサのトラック幅やシールド間ギャップの狭小化がなされる。しかしながら、今後、磁気抵抗効果センサのサイズをますます小さくしていった場合、磁性体の磁化の熱による揺らぎに起因するノイズ、熱的マグノイズが増大し、再生信号の実用的なSN比(Signal-to-Noise ratio)を確保できなくなると考えられている。
熱的マグノイズの問題を回避するべく、スピントルク発振素子を有する再生ヘッドが知られている。
熱的マグノイズの問題を回避するべく、スピントルク発振素子を有する再生ヘッドが知られている。
スピントルク発振素子(Spin-Torque Oscillator(STO)ともいう)は、フリー層と、非磁性スペーサ層と、ピン層(磁化固着層)が積層された積層膜を基本構造に持つ。STOに通電することで、フリー層の磁化はスピン偏極された電流による定常な振動状態を示す。上記の基本膜構造は、CPP(Current Perpendicular to Plane)−GMR(Giant Magneto-Resistive)ヘッド、TMR(Tunnel Magneto-Resistive)ヘッドと同一であり、STOの出力は磁気抵抗効果に由来する。そのため、STOは、フリー層の磁化の振動に応じた高周波信号を出力する。すなわち、STOはフリー層の磁化の振動に由来した振動電圧を出力する発振器である。このため、STOのフリー層は発振層とも呼ばれる。
スピントルク発振素子を有する再生ヘッド(以下、STO再生ヘッドともいう)では,STOを磁気センサとして用いる。STOにおけるフリー層の磁化振動の振幅や周波数が、STOに作用する外部磁場に依存することを利用し、媒体ビットからの媒体磁場による磁化振動の振幅、あるいは周波数または位相の変化を検出する方式であり、磁気情報の読み取りがなされる。STOの磁化振動は通電によって励起される。このため、STOの磁化振動エネルギーが熱的エネルギーよりも十分大きければ、磁化の熱による揺らぎが相対的に抑制され、従来の磁気抵抗効果センサを用いた再生方式よりも十分大きなSN比が得られると考えられている。なお,振動振幅の変化を検出するよりも周波数または位相変化を検出する場合のほうが、高SN比、高速再生に向いているという技術が知られている。このように、STOを磁気センサとして用いる場合、熱的マグノイズの問題を回避できると考えられている。
高記録密度化の課題は、上述の熱的マグノイズ以外に、高分解能化がある。情報を読み取りたいビット(ターゲットビット)に再生ヘッドがアクセスした際に、ターゲットビットからの磁場だけでなく、周囲の隣接媒体ビットからの磁場も再生ヘッドに作用してしまうと、情報を正確に読めなくなる。このため、磁気抵抗効果センサを用いた再生ヘッドでは、磁気シールド間のギャップを狭くすることで、ビット間の干渉を抑制し高分解能を実現している。この対策は、STO再生ヘッドにおいても有効であると考えられ、STOを一対のシールド膜で挟んだ構造の再生ヘッドが知られている。
しかしながら、従来のSTO再生ヘッドでは、STOの基本膜構成はCPP−GMRヘッドやTMRヘッドと同一であり、STOの膜厚の要請からシールド間ギャップを15nm以下にすることが困難となる。このため、分解能の点で4Tbit/in2以上の媒体には適用が困難であると考えられている。なお、STOの膜厚の要請とは、例えば、膜厚の大部分を占める、ピン層の磁化を固着するための反強磁性層の膜厚が5nm以下になると一方向磁気異方性定数が急激に低下し、ピン層の磁化が固着されなくなるため、反強磁性層の膜厚を5nmより厚くする必要があることである。
STOを磁気センサとして用いる場合,従来のCPP−GMRヘッドやTMRヘッドに比べ、素子の微細化に伴う熱的マグノイズの問題を回避できるが、高分解能の点では、従来のCPP−GMRヘッドやTMRヘッドと同様の課題があり、高記録密度磁気記録再生に好適な、高出力、高Q値で且つ、膜厚が薄いSTOが求められている。
本実施形態は、高出力、高Q値で且つ、膜厚が薄いSTOを備えた磁気ヘッド、磁気センサ、および磁気記録再生装置を提供する。
本実施形態の磁気ヘッドは、スピントルク発振素子を備え、前記スピントルク発振素子は、第1および第2電極と、前記第1電極と前記第2電極との間に設けられた第1強磁性層と、前記第1強磁性層と前記第2電極との間に設けられた第2強磁性層と、前記第2強磁性層と前記第2電極との間に設けられた第3強磁性層と、前記第1強磁性層と前記第2強磁性層との間に設けられた第1非磁性層と、前記第2強磁性層と前記第3強磁性層との間に設けられた第2非磁性層と、を備え、前記第2強磁性層と前記第3強磁性層は、前記第2非磁性層を介して反強磁性結合をし、前記第1および第2電極間に電流を流さない場合に前記第1強磁性層と前記第2強磁性層の磁化の向きが反平行配置であり、前記第3強磁性層の磁気モーメントが前記第2強磁性層の磁気モーメントより大きい。
以下に、実施形態について、図面を参照しつつ説明する。なお、実施形態や実施例を通して共通の構成には同一符号を付すものとし、重複する説明は省略する。また、各図は発明の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際と異なる箇所もあるが、それらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
(第1実施形態)
第1実施形態による磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図1に、第1実施形態に係るスピントルク発振素子10を示す。
第1実施形態による磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図1に、第1実施形態に係るスピントルク発振素子10を示す。
スピントルク発振素子10は、第1強磁性層11と、第2強磁性層13と、第2強磁性層13に対して第1強磁性層11と反対側に設けられた第3強磁性層15と、第1強磁性層11と第2強磁性層13との間に設けられた第1非磁性層12と、第2強磁性層13と第3強磁性層15との間に設けられた第2非磁性層14と、を有する積層膜を備えている。そして、スピントルク発振素子10は、上記積層膜を挟むように設けられ膜面に対して垂直に電流を通電する一対の電極31、32を更に備えている。なお、膜面とは、積層膜の積層方向に垂直な面を意味する。第2強磁性層13と第3強磁性層15は第2非磁性層14を介して反強磁性結合するように構成される。すなわち、第2強磁性層13と、第2非磁性層14と、第3強磁性層15とは、反強磁性結合膜17を構成する。なお、本実施形態においては、第1乃至第3強磁性層11、13、15はそれぞれ、磁化の方向が膜面にほぼ平行となっている。また、図1においては、上記積層膜は、第1強磁性層11が上に配置された構成、すなわち、第3強磁性層15、第2非磁性層14、第2強磁性層13、第1非磁性層12、第1強磁性層11が、この順序で積層された構成となっている。しかし、上記積層膜の積層の順番は、上下逆でもよい。すなわち、上記積層膜は、第1強磁性層11、第1非磁性層12、第2強磁性層13、第2非磁性層14、第3強磁性層15が、この順序で積層された構成であってもよい。
スピントルク発振素子10は、電極31、32を介して上記積層膜に通電することにより、スピントルクトランスファー効果により、全ての強磁性層、すなわち第1乃至第3強磁性層においてそれぞれ、磁化の歳差運動が誘起される。そして、これらの歳差運動の周波数(磁気共鳴周波数)を有する回転磁場が各強磁性層から出力される。なお、この磁気共鳴周波数は、強磁性層に印加される外部磁場の大きさおよび向きによって変化する。そして、主に第1強磁性層11と第2強磁性層13との磁化の相対角度が変化することで抵抗が変化する。したがって、スピントルク発振素子10を構成する第1乃至第3強磁性層11、13、15は、それぞれフリー層となる。このスピントルク発振素子10の厚さは、反強磁性層を有していないので、電極を除いて13nm以下に設計することが可能となる。
電極31、32は、導電性材料から形成される。なお、導電材料として、磁気シールドとなる導電性材料、例えば軟磁性体を用いることも可能である。この場合、磁気記録媒体の再生しようとするビット以外のビットからの磁気情報を遮蔽することが可能となる。
第1乃至第3強磁性層11、13、15はそれぞれ、例えば、Co、Ni、またはFeを含む強磁性体、あるいはそれらを含む合金である。また、第1乃至第3強磁性層11、13、15はそれぞれ、磁気特性の微調整や、MR効果の増大のために、複数の強磁性体の積層膜から構成されていても良い。
非磁性層12はCu、Ag、またはCrの非磁性体、あるいはそれらを含んだ非磁性合金であってもよい。本実施形態では、非磁性層12としてCu層を用いた。また、MgO、Al2O3(アルミニウム酸化膜)等からなる絶縁膜であってもよい。また、絶縁膜中に金属の電流パスが存在していてもよい。
反強磁性結合膜17は、二つの強磁性層13、15の磁気モーメントが同じ人工反強磁性膜もしくは、どちらかの磁気モーメントが大きい人工フェリ膜にすることができる。この場合、結晶異方性や形状異方性による容易軸方向に磁場を印加した場合、単層膜に比べ広い磁場範囲で磁化反転しないため、第2強磁性層13の磁化の向きと反平行方向の外部磁場をスピントルク発振素子10に印加すると、第1強磁性層11磁化の方向を外部磁場の方向に向かせることができ、広い磁場範囲で第1強磁性層11と第2強磁性層13の磁化の方向がほぼ反平行の状態(反平行配置)にすることができる。
第2強磁性層13の磁化と反平行となる外部磁場をスピントルク発振素子10に印加し、第1強磁性層11と第2強磁性層13の磁化の方向を反平行配置にする。この状態において、電流を流した場合における第1強磁性層11および反強磁性結合膜17の本来の磁気共鳴周波数(点線)f1およびf2と、相互的なスピントルクやダイポール相互作用によって結合した振動モード(実線)の周波数の外部磁場依存特性を図2に示す。第1強磁性層11の磁気共鳴周波数f1の外部磁場依存特性は、磁化と同じ方向に外部磁場が印加されているために、外部磁場の増加に伴い、磁気共鳴周波数は増加する。一方、反強磁性結合膜17の磁気共鳴周波数f2の外部磁場依存特性は、反強磁性結合膜17の第1強磁性層11に最も近い強磁性層、すなわち第2強磁性層13の磁化方向が、外部磁場と反対となるため、外部磁場の増加に伴い磁気共鳴周波数は減少する。このため、第1強磁性層11と反強磁性結合膜17を有するスピントルク発振素子10は、ある外部磁場H0の印加下で、磁気共鳴周波数f1、f2が交差するように構成することができる。
このように構成したスピントルク発振素子10に、第1強磁性層11と第2強磁性層13の磁化方向が反平行配置となるように外部磁場を印加し、電流を流すと、相互的なスピントルクトランスファー効果およびダイポール相互作用により、第1強磁性層11と反強磁性結合膜17が結合することにより、第1乃至第3強磁性層11、13、15の磁化がそれぞれ発振し、外部磁場に対して図2に示す実線で示したように、磁気共鳴周波数での発振が励起され、回転磁場が各強磁性層11、13、15から発生される。ここで、反平行配置とは、第1強磁性層11の磁化方向は、第2強磁性層の磁化方向に対して完全に180°である必要はなく、発振が励起できれば、数10度以内のズレは許容する。ただし、従来の磁気抵抗効果素子のように、第1および第2強磁性層の磁化方向を90度配置にすると、発振閾値電流が非常に高くなり、発振させることが非常に困難になる。
スピントルク発振素子10の結合発振モードは、周波数の低い音響モードと周波数の高い光学モードがあり、電流の向きと外部磁場の大きさでどちらのモードが励起されるか決定される。フリー層と、ピン層と、それらの間に設けられた非磁性層とを有し、フリー層が発振する従来のスピントルク発振素子に比べ、本実施形態のスピントルク発振素子10は、第1乃至第3強磁性層11、13、15が発振に寄与するため、熱エネルギーに対する磁化の振動エネルギーが大きく周波数安定性が高い。また、全ての強磁性層11、13、15が振動するために、高出力且つ高Q値の発振を実現できる。したがって、本実施形態のスピントルク発振素子10は、高出力、高Q値の発振を得ることができる。
また、図2に示すように、発振周波数が交差する、外部磁場がH0近傍の領域においては、2つのモードが同時に励起されやすく、安定な発振は得られず、発振出力が極端に低下する、但し、このH0近傍の領域を除いた外部磁場下では、非常に強く発振し、外部磁場の大きさが値H0を跨ぐと発振周波数に飛びが生じる。このような特徴を本実施形態のスピントルク発振素子は有しているので、設計次第で同じ磁場環境下においても、電流の向きを変えるだけで、異なる周波数の発振もしくは、異なる磁場環境下において電流の向きを変えることにより、同じ周波数の発振を得ることができる。また、本実施形態において特異的な外部磁場H0を利用した、超高感度な磁気センサへの応用も可能である。
更に、本実施形態のスピントルク発振素子10は、それぞれの発振モードにおいて、発振周波数が異なるだけなく、第1強磁性層11および反強磁性結合膜17の発振の位相差が180°異なっており、またスピントルク発振素子10から発生されるダイポールによる高周波磁場の空間分布が異なっている。このため、本実施形態のスピントルク発振素子10は、高周波磁場を発生して磁気記録アシストする素子にも適応できる。
このように、スピントルク発振素子10は、厚さを薄くでき、且つ高出力、高Q値の発振を得ることができる。
なお、スピントルク発振素子の膜厚を薄くするだけなら、非磁性体を2つの強磁性体で挟んだ3層構造にすることで達成可能である。しかし、この場合、外部磁場により反平行状態を維持できる範囲が狭いため、上述のような高出力、高Q値の発振を得ることができない。
(第2実施形態)
次に、第2実施形態による磁気ヘッドについて説明する。第2実施形態の磁気ヘッドは、第1実施形態と同様に、スピントルク発振素子を備えている。第2実施形態に係るスピントルク発振素子を図3に示す。この第2実施形態に係るスピントルク発振素子10Aは、図1に示すスピントルク発振素子10の第1強磁性層11と電極31との間、または第3強磁性層15と電極32との間の少なくとも一方に、調整層16を設けた構成となっている。なお、図3においては、第3強磁性層15と電極32との間に設けられている。電極31、32は磁気シールドであり、電極31、32間がシールドギャップとなるので、調整層16を設けることにより、スピントルク発振素子10の積層膜の厚さと、独立にシールドギャップを調整することが可能となる。また、調整層16は、シード層やキャップ層としての役割も果たすことも可能である。
次に、第2実施形態による磁気ヘッドについて説明する。第2実施形態の磁気ヘッドは、第1実施形態と同様に、スピントルク発振素子を備えている。第2実施形態に係るスピントルク発振素子を図3に示す。この第2実施形態に係るスピントルク発振素子10Aは、図1に示すスピントルク発振素子10の第1強磁性層11と電極31との間、または第3強磁性層15と電極32との間の少なくとも一方に、調整層16を設けた構成となっている。なお、図3においては、第3強磁性層15と電極32との間に設けられている。電極31、32は磁気シールドであり、電極31、32間がシールドギャップとなるので、調整層16を設けることにより、スピントルク発振素子10の積層膜の厚さと、独立にシールドギャップを調整することが可能となる。また、調整層16は、シード層やキャップ層としての役割も果たすことも可能である。
調整層16としては、非磁性材料例えばTa、Ru、Cu等の金属あるいはそれらを含んだ合金、及びそれらの積層構造が用いられる。調整層16には、厚さを薄くすることで、IrMn等の反強磁性材料も用いることが可能である。この場合、反強磁性材料は、強磁性層の磁化を固着しない程度の厚さとすることが好ましく、具体的には、5nm以下であることが好ましく、2nm以下であることが更に好ましい。
この第2実施形態の磁気ヘッドも第1実施形態と同様に、膜厚を薄くでき、且つ高出力、高Q値の発振を得ることができる。
(第3実施形態)
第3実施形態による磁気ヘッドについて説明する。第3実施形態の磁気ヘッドは、第1または第2実施形態の磁気ヘッドに係るスピントルク発振素子の非磁性層12として、MgOやAl2O3(アルミニウム酸化膜)等の絶縁体を用いた構成となっている。特に、非磁性層12としてMgOを用いたスピントルク発振素子は、MR比が大きいため、第1または第2実施形態に比べて出力が大きくすることができる。
第3実施形態による磁気ヘッドについて説明する。第3実施形態の磁気ヘッドは、第1または第2実施形態の磁気ヘッドに係るスピントルク発振素子の非磁性層12として、MgOやAl2O3(アルミニウム酸化膜)等の絶縁体を用いた構成となっている。特に、非磁性層12としてMgOを用いたスピントルク発振素子は、MR比が大きいため、第1または第2実施形態に比べて出力が大きくすることができる。
この第3実施形態も第1または第2実施形態と同様に、膜厚を薄くでき、且つ高Q値の発振を得ることができる。
(第4実施形態)
次に、第4実施形態による磁気ヘッドについて説明する。第4実施形態の磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図4に、第4実施形態に係るスピントルク発振素子10Bを示す。このスピントルク発振素子10Bは、図1に示す第1実施形態に係るスピントルク発振素子10において、第1強磁性層11、第1非磁性層12、第2強磁性層13、第2非磁性層14、および第3強磁性層15からなる積層膜を微細加工してピラー形状とした構成となっている。したがって、上記積層膜のサイズを第1実施形態のスピントルク発振素子の積層膜のサイズに比べて小さくした構成となっている。ここで、積層膜のサイズとは、積層膜を構成する各層のサイズの平均を意味し、層のサイズとは層の直径を意味する。層の直径とは、各層の積層方向に直交または略直交する平面の形状において周辺の2点間の最大距離を意味する。例えば、層の平面形状が長方形の場合には対角線の長さ、円形の場合には直径、楕円形状の場合は長軸の長さを意味する。
次に、第4実施形態による磁気ヘッドについて説明する。第4実施形態の磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図4に、第4実施形態に係るスピントルク発振素子10Bを示す。このスピントルク発振素子10Bは、図1に示す第1実施形態に係るスピントルク発振素子10において、第1強磁性層11、第1非磁性層12、第2強磁性層13、第2非磁性層14、および第3強磁性層15からなる積層膜を微細加工してピラー形状とした構成となっている。したがって、上記積層膜のサイズを第1実施形態のスピントルク発振素子の積層膜のサイズに比べて小さくした構成となっている。ここで、積層膜のサイズとは、積層膜を構成する各層のサイズの平均を意味し、層のサイズとは層の直径を意味する。層の直径とは、各層の積層方向に直交または略直交する平面の形状において周辺の2点間の最大距離を意味する。例えば、層の平面形状が長方形の場合には対角線の長さ、円形の場合には直径、楕円形状の場合は長軸の長さを意味する。
また、スピントルク発振素子10Bは、ABS(Air Bearing Surface)面となる側面を有している。すなわち、積層膜の積層方向に沿った一つ側面がABS面となり、上記側面がほぼ平坦となっている。ABS面は磁気記録媒体の上面に対向する。
スピントルク発振素子は、一般に積層膜を微細加工しないポイントコンタクト型と、積層膜を微細加工するピラー型がある。第1非磁性層12に、MgO等の絶縁体を用いた場合、高MR比を得られる利点を持つ。しかし、非磁性金属を用いた場合に比べ、流せる電流密度が低い上に、スピントルク効率の非対称性より、第1強磁性層11と第2強磁性層13との相互的なスピントルクによる結合が弱い。そこで、図4に示す第4実施形態のように、少なくとも第1強磁性層11と第2強磁性層13とを微細加工したピラー型のスピントルク発振素子にすることで第1強磁性層11と第2強磁性層13とのダイポール相互作用による結合が強くなり、第1強磁性層11と反強磁性結合膜17との結合発振モードを効率良く励起できる。なお、結合発振モードを効率良く励起するために、スピントルク発振素子10Bの積層膜のサイズは200nm以下であることが好ましく、50nm以下であることがより好ましい。
なお、第2実施形態のスピントルク発振素子に対して第4実施形態のように、第1強磁性層11、第1非磁性層12、第2強磁性層13、第2非磁性層14、第3強磁性層15および調整層16からなる積層膜を微細加工してピラー形状とした構成としてもよい。
この第4実施形態も第1実施形態と同様に、膜厚を薄くでき、且つ高出力、高Q値の発振を得ることができる。
(第5実施形態)
第5実施形態による磁気ヘッドについて説明する。第5実施形態の磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図5に、第5実施形態に係るスピントルク発振素子10Cを示す。このスピントルク発振素子10Cは、図1に示す第1実施形態に係るスピントルク発振素子10において、第2強磁性層13に外部磁場を印加するハードバイアス膜41を設けた構成となっている。なお、図5に示す第5実施形態においては、電極31と第1強磁性層11との間に調整層16aが設けられ、電極32と第3強磁性層15との間に調整層16bが設けられている。
第5実施形態による磁気ヘッドについて説明する。第5実施形態の磁気ヘッドは、スピントルク発振素子を有し、このスピントルク発振素子は磁気センサとして用いられる。図5に、第5実施形態に係るスピントルク発振素子10Cを示す。このスピントルク発振素子10Cは、図1に示す第1実施形態に係るスピントルク発振素子10において、第2強磁性層13に外部磁場を印加するハードバイアス膜41を設けた構成となっている。なお、図5に示す第5実施形態においては、電極31と第1強磁性層11との間に調整層16aが設けられ、電極32と第3強磁性層15との間に調整層16bが設けられている。
スピントルク発振素子10Cは、ABS面となる側面を有している。すなわち、積層膜の積層方向に沿った一つ側面がABS面となり、上記側面がほぼ平坦となっている。そして、図5に示す第5実施形態においては、ハードバイアス膜41は、スピントルク発振素子10Cの、ABS面に対向する側面の近傍に設けられている。なお、ハードバイアス膜41は、スピントルク発振素子10Cの、ABS面に対向する側面、図5の紙面の手前側の側面、または図5の紙面の奥行き側の側面のうちのいずれか一つの側面の近傍に設けてもよい。なお、ハードバイアス膜41と第1乃至第3強磁性層との間、およびハードバイアス膜41と電極31,32との間には図示しない絶縁体が設けられる。
ハードバイアス膜41は、第2強磁性層13の磁化と反平行となる方向に磁場を印加するように配置される。すなわち、ハードバイアス膜41からの磁場は、ABS面に対して垂直に印加され、その磁場の方向がABS面に向かう方向またはその逆方向であっても良い。また、ハードバイアス膜41からの磁場の大きさは、磁気記録媒体の磁場の大きさを考慮して、磁気共鳴周波数が交差する磁場H0を跨がないように設計する。
なお、ハードバイアス膜41としては、例えば、Co、Cr、またはPtなどの合金膜、CoCrPtからなる硬磁性膜が用いられる。なお、CoCrPt以外にも、必要な磁場が印加することが可能な硬磁性材料を用いることができる。
第5実施形態も第1実施形態と同様に、膜厚を薄くでき、且つ高出力、高Q値の発振を得ることができる。
第5実施形態においては、第1強磁性層11と第2強磁性層13の磁化の方向が反平行となる配置で発振させることが重要である。そして、反強磁性結合膜17において第2強磁性層13の磁気モーメント(磁化の大きさ)より第3強磁性層15の磁気モーメントを大きくする構成、すなわち、反強磁性結合膜17を例えば人工フェリ膜とすることにより、第2強磁性層13の磁化の向きが、外部磁場の向きと反対方向を向きやすくすることができる。
そして、第1強磁性層11から第2強磁性層13に向かう方向に電流を流す、すなわち電子を第2強磁性層13から第1強磁性層11に向かう方向へ流すと、図6に示すように、第1強磁性層11が磁気共鳴周波数f1で主として振動する結合発振モードを励起できる。このモードの発振は、外部磁場による周波数依存性が大きい。この発振モードを用いることにより、磁場感度の高い磁気ヘッドを実現できる。
これに対して、第2強磁性層13から第1強磁性層11に向かう方向に電流を流すと、すなわち電子を第1強磁性層11から第2強磁性層13に向かう方向に流すと、図7に示すように、人工フェリ膜である反強磁性結合膜17が磁気共鳴周波数f2で主として振動する結合発振モードを励起できる。このモードの発振は、外部磁場による周波数依存性が比較的小さく、非常に周波数安定な発振が得られる。この発振モードを用いることで、大きな磁場変化や磁場勾配のあるような磁場環境でも、安定性の高い再生が可能である。
なお、ハードバイアス膜は、第5実施形態のように、第2実施形態の磁気ヘッドに対しても設けても第5実施形態と同様の効果を得ることができる。
(第6実施形態)
第6実施形態による磁気センサについて説明する。この第6実施形態による磁気センサを図8に示す。この第6実施形態の磁気センサは、図1に示す第1実施形態の磁気ヘッドに用いられたスピントルク発振素子10と、高周波フィルタ110と、遅延検波回路120と、遅延回路121と、ミキサー122と、ローパスフィルタ130と、電圧計140とを備えている。
第6実施形態による磁気センサについて説明する。この第6実施形態による磁気センサを図8に示す。この第6実施形態の磁気センサは、図1に示す第1実施形態の磁気ヘッドに用いられたスピントルク発振素子10と、高周波フィルタ110と、遅延検波回路120と、遅延回路121と、ミキサー122と、ローパスフィルタ130と、電圧計140とを備えている。
次に、第6実施形態による磁気センサの動作を説明する。スピントルク発振素子10に直流電流Iを流すことで、磁化の歳差運動が励起され、磁気抵抗効果により高周波磁場が発生する。この高周波成分が高周波フィルタ110において取り出され、この取り出した信号112が2つの信号に分波される。分波された信号112の一つは遅延回路121において位相が遅延された遅延信号となり、この遅延信号と、元の信号112がミキサー122において重ね合わせられる。この重ね合わされた信号は、ローパスフィルタ130において、余分な高周波成分がカットされる。そして、ローパスフィルタ130の出力を電圧計140においてモニターすることで、高周波信号の位相変化を知ることができる。
外部磁場の変化により、磁化の歳差運動の周波数は変化するため、スピントルク発振素子10からの高周波磁場も周波数が変化する。この周波数の変化を第6実施形態の磁気センサにより位相の変化として検出することで、外部磁場の変化を検出できる。すなわち、第6実施形態の磁気センサは、磁気ヘッドに通電することによって誘起される第1および第2強磁性層11、12のうち少なくとも一方の磁化の歳差運動に起因して第1および第2電極31、32間に発生する高周波発振電圧の振幅または発振周波数の外部磁場による変化をモニターするモニター装置を備えている。本方式は、高速に磁気記録を読み出せる点で優れている。しかし、外部磁場の変化による高周波の周波数変化若しくは振幅変化をモニターできれば、モニター装置としては、上記方式に限らない。
以上説明したように、第6実施形態も第1実施形態と同様に、高出力、高Q値の発振を得ることができる。
また、第6実施形態の磁気センサは、スピントルク発振素子として、第1実施形態に係るスピントルク発振素子を用いたが、第2乃至第5実施形態に係るスピントルク発振素子を用いても同様の効果を得ることができる。
(第7実施形態)
第7実施形態による磁気記録再生装置について説明する。
第7実施形態による磁気記録再生装置について説明する。
上述した第1乃至第5実施形態のいずれかに記載の磁気ヘッドは、例えば、記録再生一体型の磁気ヘッドアセンブリに組み込まれ、磁気記録再生装置に搭載することができる。なお、本実施形態による磁気記録再生装置は、再生機能を有することもできるし、記録機能と再生機能の両方を有することもできる。
図9は、第7実施形態による磁気記録再生装置の構成を例示する模式的斜視図である。図9に示すように、本実施形態による磁気記録装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、記録用媒体ディスク180は、スピンドルモータ152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。本実施形態に係る磁気記録再生装置150は、複数の記録用媒体ディスク180を備えたものとしても良い。
記録用媒体ディスク180に格納する情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ここで、ヘッドスライダ153は、例えば、前述した実施形態のいずれかによる磁気ヘッドを、磁気シールドとともに、その先端付近に搭載している。
記録用媒体ディスク180が回転すると、ヘッドスライダ153の媒体対向面(ABS)は、記録用媒体ディスク180の表面から所定の浮上量をもって保持される。なお、ヘッドスライダ153が記録再生用媒体ディスク180と接触するいわゆる「接触走行型」としても良い。
サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石及び対向ヨークからなる磁気回路とから構成することができる。
アクチュエータアーム155は、軸受部157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
図10は、本実施形態に係る磁気記録再生装置の一部の構成を例示しており、アクチュエータアーム155から先の磁気ヘッドアセンブリ160をディスク側から眺めた拡大斜視図である。図10に示したように、磁気ヘッドアセンブリ160は、軸受部157と、この軸受部157から延出したヘッドジンバルアセンブリ(以下、HGAと称する)158と、軸受部157からHGAと反対方向に延出しているとともにボイスコイルモータのコイルを支持した支持フレームを有している。HGAは、軸受部157から延出したアクチュエータアーム155と、アクチュエータアーム155から延出したサスペンション154と、を有する。
サスペンション154の先端には、既に説明した第1乃至第5実施形態のいずれかによる磁気ヘッドを具備するヘッドスライダ153が取り付けられている。
すなわち、本実施形態に係る磁気ヘッドアセンブリ160は、第1乃至第5実施形態のいずれかによる磁気ヘッドと、磁気ヘッドを一端に搭載するサスペンション154と、サスペンション154の他端に接続されたアクチュエータアーム155と、を備えている。
サスペンション154は信号の書き込み及び読み取り用のリード線(図示しない)を有し、このリード線とヘッドスライダ153に組み込まれた磁気記録ヘッドの各電極とが電気的に接続されている。また、図示しない電極パッドが、磁気ヘッドアセンブリ160に設けられる。本実施形態においては、電極パッドは6個設けられる。すなわち、主磁極のコイル用の電極パッドが2つ、磁気再生素子(即ち、スピントルク発振素子10)用の電極パッドが2つ、DFH(ダイナミックフライングハイト)用の電極パッドが2つ、設けられる。
そして、磁気記録ヘッドを用いて磁気記録媒体への信号の書き込みと読み出しを行う、図示しない信号処理部190が設けられる。信号処理部190は、例えば、図9に示した磁気記録装置150の図面中の背面側に設けられる。信号処理部190の入出力線は、電極パッドに接続され、磁気記録ヘッドと電気的に結合される。
このように、本実施形態に係る磁気記録再生装置150は、磁気記録媒体と、第1乃至第5実施形態のいずれかによる磁気ヘッドと、磁気記録媒体と磁気ヘッドとを離間させ、または、接触させた状態で対峙させながら相対的に移動可能とした可動部と、磁気ヘッドを磁気記録媒体の所定記録位置に位置合せする位置制御部と、磁気ヘッドを用いて磁気記録媒体への信号の書き込みと読み出しを行う信号処理部と、を備える。すなわち、上記の磁気記録媒体として、記録用媒体ディスク180が用いられる。上記の可動部は、ヘッドスライダ153を含むことができる。また、上記の位置制御部は、磁気ヘッドアセンブリ160を含むことができる。
磁気ディスク180を回転させ、ボイスコイルモータ156にアクチュエータアーム155を回転させてヘッドスライダ153を磁気ディスク180上にロードすると、磁気ヘッドに搭載したヘッドスライダ153の媒体対向面(ABS)が磁気ディスク180の表面から所定の浮上量をもって保持される。この状態で、上述したような原理に基づいて、磁気ディスク180に記録された情報を読み出すことができる。
以上説明したように、第7実施形態も第1実施形態と同様に、高出力、高Q値の発振を得ることができる。
(実施例1)
実施例1では、スピントルク発振素子を作製して、その発振特性を測定した結果について説明する。成膜は、スパッタリング装置を用いて行った。上部電極および下部電極は、フォトリソグラフィーとイオンミリングにより形成し、スピントルク発振素子の積層膜は、電子線リソグラフィーとイオンミリングにより加工した。
実施例1では、スピントルク発振素子を作製して、その発振特性を測定した結果について説明する。成膜は、スパッタリング装置を用いて行った。上部電極および下部電極は、フォトリソグラフィーとイオンミリングにより形成し、スピントルク発振素子の積層膜は、電子線リソグラフィーとイオンミリングにより加工した。
図11に、作製したスピントルク発振素子10Dの断面図を示す。このスピントルク発振素子10Dは基板1上に形成される。そして、下部電極32と、調整層16bと、第3強磁性層15と、第2非磁性層14と、第2強磁性層13と、第1非磁性層12と、第1強磁性層11と、調整層16aと、上部電極31とが、この順序で基板1上に積層された積層構造を有している。また、調整層16b、第3強磁性層15、第2非磁性層14、第2強磁性層13、第1非磁性層12、第1強磁性層11、および調整層16aは、一体で加工された柱状形状の積層膜を構成し、この積層膜の周囲には絶縁膜34が設けられている。
第1強磁性層11は厚さが2nmのCoFeBであり、第1非磁性体層12は厚さが0.7nmのMgOであり、第2強磁性層13は厚さが3nmのCoFeBであり、第2非磁性層14は厚さが0.85nmのRuであり、第3強磁性層15は厚さが2.5nmのCoFeである。そして、第2強磁性層11と第3強磁性層は、第2非磁性層14を介して反強磁性結合した反強磁性結合膜(人工フェリ膜)17を構成する。なお、調整層16a、16bはそれぞれ、厚さが2nmのTaである。スピントルク発振素子10Dの上部電極31、下部電極32、および調整層16a、16bを除いた厚さは11nm以下となる。
下部電極32には、Ta/Cu/Taを用い、上部電極31には、Au/Ta/Cu/Taを用いた。本明細書では、記号「X/Y」は、Xが上層でYが下層であることを意味する。絶縁膜34としてSiO2を用いた。電流を流すことで、第2磁性体層13であるCoFeBの磁化の歳差運動が誘起される。
スピントルク発振素子10Dの積層膜の平面形状は楕円であって、短軸の長さが約70nm、長軸の長さが120nmである。このスピントルク発振素子10Dには、形状異方性により一軸異方性を付与した。すなわち楕円の長軸が磁化容易軸で、短軸が磁化困難軸となっている。このスピントルク発振素子10Dの素子抵抗は170Ωであり、MR比(ΔR/R)は約26.5%であった。なお、スピントルク発振素子10Dの上部電極31のリードと下部電極32のリードは特性インピーダンスが50Ωのコプレナーガイド(導波路)になるように設計した。
図12に、スピントルク発振素子10Dの磁化容易軸方向に磁場を印加した場合と、磁化困難軸方向に磁場を印加した場合の抵抗磁場曲線を示す。グラフg1が磁化容易軸方向に磁場を印加した場合の抵抗磁場曲線であり、グラフg2が磁化困難軸方向に磁場を印加した場合の抵抗磁場曲線である。グラフg1に示すように、磁化容易軸方向に磁場を印加した場合、磁場を2000Oe以上印加しても、第2磁性体層であるCoFeBの磁化の向きが反転しておらず、本構造では、広い磁場範囲で反平行状態を維持できることが分かる。
次に、実施例1のスピントルク発振素子10Dの発振パワースペクトルを測定した。この発振パワースペクトルの測定は、図13に示す測定系を用いた。この測定系は、スピントルク発振素子10Dから発生された高周波発振信号を導波路101介して高周波プローブ111に伝送し、高周波発振信号を検出する。この検出された高周波発振信号は、バイアスティー112を介して増幅器114に送られ、増幅される。増幅された信号をスペクトルアナライザー115で検出する。なお、バイアスティー112には、直流電源113が接続されている。スピントルク発振素子10Dには、外部磁場Hを膜面に平行な方向において磁化容易軸方向から数度傾けた方向に印加した。
実施例1のスピントルク発振素子10Dに、第2強磁性層13の磁化とほぼ逆向きの磁場を印加し、第1強磁性層11と第2強磁性層13の磁化の向きがほぼ反平行配置になるように外部磁化を印加する。そして、第1強磁性層11から第2強磁性層13に向かう方向に電流を流し、第1強磁性層11を主に発振させた時のパワースペクトルを図13に示す測定系で測定した結果を図14(a)、14(b)に示す。第1強磁性層11と人工フェリ層17の磁気共鳴周波数が交差する外部磁場(約1450O、約900Oe)の前後の磁場範囲で、高Q値、出力で、高出力の発振が得られた。外部磁場の大きさHが900Oe、第1強磁性層11と第2強磁性層13の磁化がなす角度が190度、電流を0.8mA流した時、発振線幅が9MHz、出力が3nWの発振が得られた(図14(a))。また、外部磁場の大きさHが1500Oe、第1強磁性層11と第2強磁性層13の磁化がなす角度が185度、電流を1.0mA流した時、発振線幅が4MHz、出力が6nWの発振が得られた(図14(b))。
(実施例2)
実施例2では、スピントルク発振素子を作製して、その発振特性を測定した結果について説明する。成膜はスパッタリング装置を用いて行った。上部電極および下部電極は、フォトリソグラフィーとイオンミリングにより形成し、スピントルク発振素子の積層膜は、電子線リソグラフィーとイオンミリングにより加工した。
実施例2では、スピントルク発振素子を作製して、その発振特性を測定した結果について説明する。成膜はスパッタリング装置を用いて行った。上部電極および下部電極は、フォトリソグラフィーとイオンミリングにより形成し、スピントルク発振素子の積層膜は、電子線リソグラフィーとイオンミリングにより加工した。
図15に、作製したスピントルク発振素子10Eの断面図を示す。このスピントルク発振素子10Eは基板1上に形成される。そして、下部電極32と、反強磁性材料層18と、第3強磁性層15と、第2非磁性層14と、第2強磁性層13と、第1非磁性層12と、第1強磁性層11と、調整層16aと、上部電極31とが、この順序で基板1上に積層された積層構造を有している。なお、第2強磁性層11と第3強磁性層は、第2非磁性層14を介して反強磁性結合した反強磁性結合膜(人工フェリ膜)17を構成する。反強磁性材料層18、第3強磁性層15、第2非磁性層14、第2強磁性層13、第1非磁性層12、第1強磁性層11、および調整層16aは、一体で加工された柱状形状の積層膜を構成し、この積層膜の周囲には絶縁膜34が設けられている。
第1強磁性層11は厚さが2nmのCoFeBであり、第1非磁性体層12は厚さが0.7nmのMgOであり、第2強磁性層13は厚さが3nmのCoFeBであり、第2非磁性層14は厚さが0.85nmのRuであり、第3強磁性層15は厚さが2.5nmのCoFeであり、反強磁性材料層18は厚さが2nmのIrMnである。なお、調整層16aは、厚さが2nmのTaである。スピントルク発振素子10Eの上部電極31、下部電極32、および調整層16aを除いた膜厚は13nm以下となる。
下部電極32には、Ta/Cu/Taを用い、上部電極31には、Au/Ta/Cu/Taを用いた。本明細書では、記号「X/Y」は、Xが上層でYが下層であることを意味する。絶縁膜34としてSiO2を用いた。電流を流すことで、第2磁性体層13であるCoFeBの磁化の歳差運動が誘起される。
スピントルク発振素子10Eの積層膜の平面形状は楕円であって、短軸の長さが約70nm、長軸の長さが120nmである。このスピントルク発振素子10Eには、形状異方性により一軸異方性を付与した。
このスピントルク発振素子10Eの素子抵抗は180Ωであり、MR比(ΔR/R)は約25%であった。
実施例2のスピントルク発振素子10Eに、第2強磁性層13の磁化とほぼ逆向きの磁場を印加し、第1強磁性層11と第2強磁性層13の磁化の向きがほぼ反平行配置になるように外部磁化を印加する。そして、第1強磁性層11から第2強磁性層13に向かう方向に電流を流し、第1強磁性層11を主に発振させた時のパワースペクトルを図13に示す測定系で測定した。第1強磁性層11と人工フェリ層17の磁気共鳴周波数が交差する外部磁場(約900Oe)の前後の磁場範囲で、高Q値、出力で、高出力の発振が得られた。外部磁場の大きさHが900Oe、第1強磁性層11と第2強磁性層13の磁化がなす角度が190度、電流を0.8mA流した時、発振線幅が16MHz、出力が4nWの発振が得られた。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 基板
10、10A〜10E スピントルク発振素子
11 第1強磁性層
12 第1非磁性層
13 第2強磁性層
14 第2非磁性層
15 第3強磁性層
16、16a、16b 調整層
17 反強磁性結合膜(人工フェリ膜)
18 反強磁性材料層
31 上部電極
32 下部電極
10、10A〜10E スピントルク発振素子
11 第1強磁性層
12 第1非磁性層
13 第2強磁性層
14 第2非磁性層
15 第3強磁性層
16、16a、16b 調整層
17 反強磁性結合膜(人工フェリ膜)
18 反強磁性材料層
31 上部電極
32 下部電極
Claims (12)
- スピントルク発振素子を備え、
前記スピントルク発振素子は、
第1および第2電極と、
前記第1電極と前記第2電極との間に設けられた第1強磁性層と、
前記第1強磁性層と前記第2電極との間に設けられた第2強磁性層と、
前記第2強磁性層と前記第2電極との間に設けられた第3強磁性層と、
前記第1強磁性層と前記第2強磁性層との間に設けられた第1非磁性層と、
前記第2強磁性層と前記第3強磁性層との間に設けられた第2非磁性層と、
を備え、
前記第2強磁性層と前記第3強磁性層は、前記第2非磁性層を介して反強磁性結合をし、前記第1および第2電極間に電流を流さない場合に前記第1強磁性層と前記第2強磁性層の磁化の向きが反平行配置であり、前記第3強磁性層の磁気モーメントが前記第2強磁性層の磁気モーメントより大きい、磁気ヘッド。 - スピントルク発振素子を備え、
前記スピントルク発振素子は、
第1および第2電極と、
前記第1電極と前記第2電極との間に設けられた第1強磁性層と、
前記第1強磁性層と前記第2電極との間に設けられた第2強磁性層と、
前記第2強磁性層と前記第2電極との間に設けられた第3強磁性層と、
前記第1強磁性層と前記第2強磁性層との間に設けられた第1非磁性層と、
前記第2強磁性層と前記第3強磁性層との間に設けられた第2非磁性層と、
を備え、
前記第2強磁性層と前記第3強磁性層は、前記第2非磁性層を介して反強磁性結合をし、前記第1および第2電極間に電流を流さない場合に前記第1強磁性層と前記第2強磁性層の磁化の向きが反平行配置であり、前記第1乃至第3強磁性層はフリー層である磁気ヘッド。 - 前記第3強磁性層の磁気モーメントが前記第2強磁性層の磁気モーメントより大きい請求項2記載の磁気ヘッド。
- 前記第1強磁性層および前記第2強磁性層のサイズが50nm以下である請求項1乃至3のいずれかに記載の磁気ヘッド。
- 前記第1強磁性層と前記第2強磁性層の磁化方向が反平行配置となるように磁場を印加するハードバイアス膜を更に備えている請求項1乃至4のいずれかに記載の磁気ヘッド。
- 前記第1強磁性層から前記第2強磁性層へ電流を流す請求項1乃至5のいずれかに記載の磁気ヘッド。
- 前記第2強磁性層から前記第1強磁性層へ電流を流す請求項1乃至5のいずれかに記載の磁気ヘッド。
- 前記第1非磁性層は絶縁層である請求項1乃至7のいずれかに記載の磁気ヘッド。
- 前記第1および第2電極は磁場を遮蔽するシールド材料から形成され、前記第1電極と前記第1強磁性層との間、および前記第2電極と前記第3強磁性層との間の少なくとも一方に調整層が設けられている請求項1乃至8のいずれかに記載の磁気ヘッド。
- 前記第1および第2電極間に電流を流すと、前記第1乃至第3強磁性層においてそれぞれ、磁化の歳差運動が誘起される請求項1乃至9のいずれかに記載の磁気ヘッド。
- 請求項10記載の磁気ヘッドと、前記磁気ヘッドに通電することによって誘起される前記第1乃至第3強磁性層の磁化の歳差運動に起因して前記第1および第2電極間に発生する高周波発振電圧の振幅または発振周波数の外部磁場による変化をモニターするモニター装置と、備えていることを特徴とする磁気センサ。
- 磁気記録媒体と、
請求項1乃至10のいずれかに記載の磁気ヘッドと、
前記磁気記録媒体と前記磁気ヘッドとが浮上または接触の状態で対峙しながら相対的に移動するように制御する移動制御部と、
前記磁気ヘッドを前記磁気記録媒体の所定記録位置に位置するように制御する位置制御部と、
前記磁気ヘッドを用いて前記磁気記録媒体への書き込み信号および前記磁気記録媒体からの読み出し信号を処理する信号処理手段と、
を備える磁気記録再生装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015203722A JP2016006716A (ja) | 2015-10-15 | 2015-10-15 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015203722A JP2016006716A (ja) | 2015-10-15 | 2015-10-15 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011237383A Division JP5892767B2 (ja) | 2011-10-28 | 2011-10-28 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016006716A true JP2016006716A (ja) | 2016-01-14 |
Family
ID=55225055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015203722A Pending JP2016006716A (ja) | 2015-10-15 | 2015-10-15 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016006716A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170125418A (ko) * | 2008-10-03 | 2017-11-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 |
JP2017220273A (ja) * | 2016-06-06 | 2017-12-14 | 株式会社東芝 | 磁気記録再生装置、磁気ヘッド、及び、磁気記録媒体 |
CN112735729A (zh) * | 2020-12-29 | 2021-04-30 | 中国船舶重工集团有限公司第七一0研究所 | 一种圆柱形径向开口的无矩线圈 |
CN114730570A (zh) * | 2020-05-29 | 2022-07-08 | 西部数据技术公司 | 具有反铁磁耦合辅助层的自旋扭矩振荡器及其操作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011124574A (ja) * | 2009-12-11 | 2011-06-23 | Hitachi Global Storage Technologies Netherlands Bv | スピントルク発振子センサ |
JP2011198456A (ja) * | 2010-03-19 | 2011-10-06 | Seagate Technology Llc | 磁気抵抗センサおよび装置 |
JP5892767B2 (ja) * | 2011-10-28 | 2016-03-23 | 株式会社東芝 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
-
2015
- 2015-10-15 JP JP2015203722A patent/JP2016006716A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011124574A (ja) * | 2009-12-11 | 2011-06-23 | Hitachi Global Storage Technologies Netherlands Bv | スピントルク発振子センサ |
JP2011198456A (ja) * | 2010-03-19 | 2011-10-06 | Seagate Technology Llc | 磁気抵抗センサおよび装置 |
JP5892767B2 (ja) * | 2011-10-28 | 2016-03-23 | 株式会社東芝 | 磁気ヘッド、磁気センサ、および磁気記録再生装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170125418A (ko) * | 2008-10-03 | 2017-11-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 표시장치 |
JP2017220273A (ja) * | 2016-06-06 | 2017-12-14 | 株式会社東芝 | 磁気記録再生装置、磁気ヘッド、及び、磁気記録媒体 |
CN114730570A (zh) * | 2020-05-29 | 2022-07-08 | 西部数据技术公司 | 具有反铁磁耦合辅助层的自旋扭矩振荡器及其操作方法 |
CN112735729A (zh) * | 2020-12-29 | 2021-04-30 | 中国船舶重工集团有限公司第七一0研究所 | 一种圆柱形径向开口的无矩线圈 |
CN112735729B (zh) * | 2020-12-29 | 2023-05-26 | 中国船舶重工集团有限公司第七一0研究所 | 一种圆柱形径向开口的无矩线圈 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5892767B2 (ja) | 磁気ヘッド、磁気センサ、および磁気記録再生装置 | |
US8755153B2 (en) | Reproducing head with spin-torque oscillator, and magnetic recording and reproducing apparatus | |
US8564904B2 (en) | Magnetic head with stacked magnetic layers, magnetic head assembly, and magnetic recording/reproducing apparatus | |
KR101007759B1 (ko) | 자기 발진 소자, 자기 발진 소자를 포함한 자기 헤드 그리고 자기 기록 및 재생 장치 | |
JP5142923B2 (ja) | 磁性発振素子、磁気センサ及び磁気記録再生装置 | |
JP4585353B2 (ja) | 磁性発振素子、磁気センサ、磁気ヘッドおよび磁気再生装置 | |
US9589581B2 (en) | Microwave-assisted magnetic recording head and magnetic recording apparatus including the same | |
US20110228423A1 (en) | Magnetic recording head, magnetic head assembly, and magnetic recording/reproducing apparatus | |
JP2014232563A (ja) | 磁気抵抗マルチセンサアレイ | |
KR20080108016A (ko) | 자기 기록 헤드 및 자기 기록 장치 | |
JP5550594B2 (ja) | 磁気ヘッド | |
JP2013058756A (ja) | 熱マグノンによるスピントルク発振素子(sto) | |
US9112140B2 (en) | Magnetoresistive effect element with an oscillation layer | |
JP2016006716A (ja) | 磁気ヘッド、磁気センサ、および磁気記録再生装置 | |
US20240135961A1 (en) | Magnetic sensor, magnetic head, and magnetic recording device | |
US9070389B2 (en) | Magnetic recording and reproducing apparatus | |
JP6437265B2 (ja) | 磁気ヘッド、磁気記録再生装置、および磁気ヘッドの製造方法 | |
JP2008090877A (ja) | 磁気ヘッド及び磁気記録装置 | |
JP5863853B2 (ja) | 磁気ヘッド及び磁気記録媒体から情報を読み出す方法 | |
JP2017188179A (ja) | 磁気記録再生装置および磁気記録再生方法 | |
JP5305547B2 (ja) | 磁気ヘッド及び磁気記憶装置 | |
JP5322559B2 (ja) | 磁気ヘッドおよび磁気記録再生装置 | |
JP2008108980A (ja) | 磁気抵抗効果素子の製造方法 | |
JP2005286223A (ja) | 磁気抵抗効果素子および再生ヘッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160909 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170509 |