JP2016005198A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2016005198A
JP2016005198A JP2014125726A JP2014125726A JP2016005198A JP 2016005198 A JP2016005198 A JP 2016005198A JP 2014125726 A JP2014125726 A JP 2014125726A JP 2014125726 A JP2014125726 A JP 2014125726A JP 2016005198 A JP2016005198 A JP 2016005198A
Authority
JP
Japan
Prior art keywords
optical fiber
imaging
optical
optical system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014125726A
Other languages
English (en)
Inventor
石原 圭一郎
Keiichiro Ishihara
圭一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014125726A priority Critical patent/JP2016005198A/ja
Priority to US14/741,593 priority patent/US20150370012A1/en
Publication of JP2016005198A publication Critical patent/JP2016005198A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Studio Devices (AREA)

Abstract

【課題】 撮像素子での結像効率を向上した撮像装置を提供することを目的とする。【解決手段】 光ファイバ3cは、コア部3coとクラッド部3clとを有し、光ファイバ3cの光入射面3caのコア部3coの径よりも光ファイバ3cの光射出面3cbのコア部3coの径の方が大きく、撮像光学系3の光軸AXから離れた光ファイバ3cは特定の式を満たす。【選択図】 図1

Description

本発明は、撮像装置に関する。
複数の光ファイバ(光導波路部材)により構成された光ファイバ束(光導波体)を備え、光ファイバを介して撮像光が撮像素子(撮像手段)に入射する撮像装置が開発されている。
特許文献1には、光導波体を構成する光導波路部材として、光入射面と光射出面の大きさが異なる光導波路部材を用いた撮像装置が開示されている。この撮像装置では、光導波体の小さい側の端面を光入射面とし、光射出面である光導波体の大きい側の端面に撮像手段を備えている。
特開平7−087371号公報
特許文献1では以下のような問題が生じる。すなわち、光導波路部材へ入射する撮像光の入射角よりも光軸に対する光導波路部材の軸の傾斜角が大きい場合には、光導波路部材から射出する撮像光の出射角を入射角よりも小さくすることはできない。このため、撮像光の撮像素子への入射角が大きくなり、撮像光と撮像素子の画素との結像効率が低下する。特に、撮像光の入射角が大きくなる撮像素子の周辺部では、結像効率の低下が顕著に表れる。
本発明は、撮像素子での結像効率を向上した撮像装置を提供することを目的とする。
本発明は、撮像光学系と、撮像素子と、前記撮像光学系からの光を前記撮像素子へと導く複数の光ファイバにより構成される光ファイバ束と、を有する撮像装置であって、前記光ファイバは、コア部と前記コア部の周りに配置されたクラッド部とを有し、前記光ファイバの光入射面のコア部の径よりも前記光ファイバの光射出面のコア部の径の方が大きく、前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする。
0≦α<ω
ただし、αは、前記光入射面における前記撮像光学系の光軸から離れた光ファイバの傾斜角、ωは、前記撮像光学系の光軸から離れた光ファイバに入射する前記撮像光学系からの主光線の入射角である。
本発明によれば、撮像素子での結像効率を向上した撮像装置を提供することができる。
実施形態1に係る撮像装置の一例を示す模式図 本発明に用いられる光ファイバの構成の一例を示す図 実施形態1の光ファイバ束を構成する光ファイバ内を伝搬する光について説明する図 実施形態2に係る撮像装置の一例を示す模式図 実施形態3に係る撮像装置の一例を示す模式図 実施形態4に係る撮像装置の一例を示す模式図
本発明について、実施形態、図面を用いて詳細に説明するが、本発明は各実施形態の構成に限らない。
(実施形態1)
図1(a)は、本実施形態に係る撮像装置の一例を示す模式図である。本実施形態の撮像装置1は、撮像光学系(結像光学系)2、像伝送手段である光ファイバ束3、撮像素子であるセンサ4を有している。そして、撮像光学系2の像を光ファイバ束3によってセンサ4に伝送するように、撮像光学系2と光ファイバ束3とセンサ4が配置されている。光ファイバ束3は、撮像光学系2からの光をセンサ4へと導く複数の光ファイバ3cにより構成されている。具体的には、各光ファイバ3cが、撮像光BMを撮像光学系2を介して受光し、光ファイバ3c内を伝搬させて、撮像光BMをセンサ4の各画素へと導いている。撮像光BMには、撮像光学系2の射出瞳の中心を通る主光線PRや、上側マージナル線NR、下側マージナル線MRが含まれる。
光ファイバ束3の光入射面3a、光射出面3bはともに平面形状である。また、光ファイバ束3は、その光射出面3bとセンサ4の光入射面とが密着するように配置されている。
光ファイバ束3の周辺部にある各光ファイバ3cは、その軸が撮像光学系2の光軸AXに対して傾斜した構成となっている。その傾斜角は、その光ファイバ3cに入射する撮像光BMが光ファイバ3c内で全反射する条件を満たすように設定されている。この構成により、光ファイバ束3の周辺部の光ファイバ3cの透過率の低下が抑制される。
なお、撮像光学系2の光軸AXは、撮像光学系2の射出瞳の中心を通り、センサ4の受光面に垂直な直線のことである。また、光軸AXは、光ファイバ束3の光入射面3aの中心を通っている。つまり、撮像光学系2の射出瞳の中心と光ファイバ束3の光入射面3aの中心とを結ぶ直線は光軸AXと一致している。
また、図1(b)は、センサ4の受光面に平行な、光ファイバ束3の断面の一部である。この断面内で、コア部3coは三角格子状に配置されており、コア部3coの間にクラッド部3clが配置されている。このように、各光ファイバ3cは、コア部3coとコア部3coの周りに配置されたクラッド部3clとで構成されている。なお、図1(b)では、コア部3coは三角格子状に配置されているが、これに限定されるものではない。例えば、コア部3coは正方格子状や斜方格子状など任意の格子状に配置されていてもよい。また、クラッド部3clがコア部3coの間に配置されていれば、コア部3coはランダムに配置されていてもよい。さらに、コア部3coが格子状に配置された領域とコア部3coがランダムに配置された領域とが混在する光ファイバ束を用いることも可能である。
光ファイバ束3の各光ファイバ3cは、センサ4の各画素と1対1で対応していてもよいし、そうでなくてもよい。例えば、光ファイバ3cを伝搬する撮像光BMの一部の光は、センサ4のある画素で受光され、それ以外の光が別の画素で受光される構成であってもよい。また、センサ4のある画素が、複数の光ファイバ3cをそれぞれ伝搬した撮像光BMを受光する構成であってもよい。
また、本実施形態の光ファイバ3cは、その光入射面3caにおける光ファイバ3cの傾斜角と光射出面3cbにおける光ファイバ3cの傾斜角とが一致している。光入射面3caにおける光ファイバ3cの傾斜角とは、図2(a)で示すように、光入射面3caにおける光ファイバ3cの軸VFと光軸AXとのなす、0.0[deg]以上90.0[deg]未満の角度αである。軸VFは、以下のように定義する。すなわち、軸VFは、光ファイバ3cの光入射面3caにあるコア部3coの断面の中心Aと中心Aから光ファイバ3cの光入射面3caのコア部3coの径の大きさLだけコア部3coの内部にあるコア部3coの断面SBの中心点Bとを結ぶ直線とする。
一方、光射出面3cbにおける光ファイバ3cの傾斜角とは、図2(b)で示すように、光射出面3cbにおける光ファイバ3cの軸VEと光軸AXとのなす、0.0以上90.0[deg]未満の角度αである。軸VEは、以下のように定義する。すなわち、軸VEは、光ファイバ3cの光射出面3cbにあるコア部3coの断面の中心Cと中心Cから光ファイバ3cの光射出面3cbのコア部3coの径の大きさTだけコア部3coの内部にあるコア部3coの断面SDの中心点Dとを結ぶ直線とする。本実施形態の光ファイバ3cは、傾斜角αと傾斜角αとが等しい。つまり、α=αである。
図2(c)は、光ファイバ束3を構成する光ファイバ3cの中を光が伝搬する様子を示す。ただし、図2(c)では、光軸AX上に配置された光ファイバ3cについて図示されており、光ファイバ3cの光入射面3caにおける傾斜角αと光入射面3caにおける傾斜角αとがともに0である。入射角θで入射する光BMは、コア部3coとクラッド部3clとの界面で全反射されることで、コア部3co内を伝搬する。この光ファイバ3cは、光入射面3caにおけるコア部3coの径Dよりも光射出面3cbにおけるコア部3coの径Dが大きくなる構成である。ここで、D/Dを、光ファイバ3cのテーパー比Rという。図2(c)で示すように、本実施形態では、各光ファイバ3cのテーパー比Rは1より大きい。
上述した構成の光ファイバ3c内を伝搬する光は、入射角θよりも小さい射出角θに変換されて射出光BMとして射出される。射出角θは、テーパー比Rと入射角θを用いて、以下の式1で表される。
sin(θ)=sin(θ)/R ・・・式1
図3は、本実施形態における光ファイバ束3の光軸AXから離れた光ファイバ3cを伝搬する光の様子を示している。撮像光学系2の射出瞳の中心PEから射出され、光ファイバ3cの光入射面3caへ入射する入射光BMの入射角をωとする。ここで、光BMとは、図1(a)に示した撮像光BMの主光線PRを指す。また、この入射光BMが光ファイバ3cを伝搬し、光射出面3cbから射出される射出光BMの射出角をωとする。
本実施形態において、光入射面3caにおける光ファイバ3cの軸VFと光軸AXとの交点PFは、撮像光学系2の射出瞳の中心PEよりも物体側に配置されている。つまり、光ファイバ3cの光入射面3caにおける傾斜角αはωよりも小さい。式で表すと、0≦α<ωである。光軸AX上の光ファイバ3cが、α=0に対応している。それ以外の、光軸AXから離れた位置にある光ファイバ3cは、0<α<ωを満たしている。このため、入射光BMは、光ファイバ3c内を伝搬し、射出角ωに変換され、射出光BMとして射出される。射出角ωは、下記の式2で表される。
Figure 2016005198
ただし、αは、光入射面3caにおける撮像光学系2の光軸AXから離れた位置にある光ファイバ3cの傾斜角である。ωは、撮像光学系2の射出瞳の中心PEを通る主光線の、光ファイバ3cの光入射面3caに入射する、0.0以上90.0[deg]未満の角度の入射角である。Rは、光ファイバ3cの光射出面3cbのコア部3coの径の光ファイバ3cの光入射面3caのコア部3coの径に対する比の値(テーパー比の値)である。
式2から分かるように、テーパー比の値Rは1より大きいため、射出角ωは、傾斜角αに近づく。上述したように、α<ωであるためα<ω<ωのようになり、射出角ωは入射角ωよりも小さい角度に変換される。センサ4の受光面が光軸AXと垂直に設けられているため、この射出角ωで光ファイバ3cから射出された光は、センサ4の受光面に垂直な方向に対して入射角ωの光としてセンサ4の受光面に入射する。
一般的に、CMOSなどを用いたセンサ4では、受光面に垂直な方向からの入射光に対する受光感度が最も高く、その方向からの傾いた角度が大きくなるほど入射光に対する受光感度が落ちてしまう。本実施形態の光ファイバ束3を用いれば、光ファイバ束3がない場合に比べて、センサ4の受光面に入射する光の入射角を小さくすることができる。このため、本実施形態の光ファイバ束3によって、撮像光BMとセンサ4の各画素の結合効率を向上させることができる。
一方、α>ωの場合を考える。この場合も射出角ωは傾斜角αに近づく。すると、α>ωであるためα>ω>ωのようになり、射出角ωは入射角ωよりも大きい角度に変換されることになる。このため、α>ωである光ファイバ束を用いると、光ファイバ束がない場合に比べて、センサの受光面に入射する光の入射角が大きくなってしまう。この結果、撮像光とセンサの各画素の結合効率が低下してしまう。
一般的なセンサ4では、センサ4への入射光の入射角が0.0[deg]で最大の受光感度となり、±15.0[deg]で最大受光感度の80%程度、±20.0[deg]で最大受光感度の50%程度、±30.0[deg]で最大受光感度の10%程度となる。すなわち、センサ4で効率良く撮像するためには、センサ4への入射角、つまり、光ファイバ3cの光射出面3cbからの射出角ωは、30.0[deg]以内であることが好ましく、20.0[deg]以内であることがより好ましい。さらには、射出角ωは、15.0[deg]以内であることが最適である。つまり、光軸から離れた光ファイバ3cが、以下の式3乃至式5のいずれかを満たすことが好ましい。
Figure 2016005198
なお、センサ4の受光感度が最大受光感度の10%となるセンサ4への入射角をθとする。また、センサ4の受光感度が最大受光感度の50%となるセンサ4への入射角をθとする。また、センサ4の受光感度が最大受光感度の80%となるセンサ4への入射角をθとする。この場合、光軸から離れた光ファイバ3cが、式6乃至8のいずれかを満たすようにしてもよい。
Figure 2016005198
例えば、最も光軸AXから離れた光ファイバ3cにおいて、撮像光の主光線の入射角ωが40.0[deg]とする。この場合、傾斜角αが20.0[deg]、テーパー比の値Rが2.0とすれば、式2から射出角ωは、29.8[deg]となり、最も光軸AXから離れた光ファイバ3cでも、式3、式6を満たす。
このように、光軸AXから離れた光ファイバ3cにおいて、その傾斜角α、テーパー比の値Rを適宜設定することで、式3乃至8のいずれかを満たすことができる。なお、光軸AX上にある光ファイバ3cでは、α、ωがともに0であるため、ωは0となる。
また、テーパー比の値Rが2.0以上とすることで、射出角ωをより小さくすることができる。光ファイバ3cの位置によってテーパー比の値Rを変える場合は、光ファイバ3cの光入射面3caのコア部の径Dのみを変えてもよいし、光ファイバ3cの光射出面3cbのコア部の径Dのみを変えてもよいし、その両方を変えてもよい。
テーパーの比の値Rは、全ての光ファイバ3cで共通でもよいし、個別に変えられていてもよい。特に光ファイバ束3の周辺部にある光ファイバ3cでは入射角ωが大きくなるため、光軸AXに相対的に近い位置にある光ファイバ3cに比べて光軸AXから相対的に遠い位置にある光ファイバ3cの方が、テーパーの比の値Rが大きいことが好ましい。これにより、光ファイバ束3の周辺部にある光ファイバ3cに対応するセンサ4の画素と撮像光との結合効率をより向上させることができる。さらには、光ファイバ3cの位置が光軸AXから離れるほど、光ファイバ3cのテーパー比の値Rが大きくなることが好ましい。
また、傾斜角αは全ての光ファイバ3cで共通でもよいし、個別に変えられていてもよい。特に、光軸AXに相対的に近い位置にある光ファイバ3cに比べて光軸AXから相対的に遠い位置にある光ファイバ3cの方が、傾斜角αが小さくなるように光ファイバ束3を構成することが好ましい。これにより、光ファイバ束3の周辺部にある光ファイバ3cに対応するセンサ4の画素と撮像光との結合効率をより向上させることができる。さらには、光ファイバ3cの位置が光軸AXから離れるほど、光ファイバ3cの傾斜角αが小さくなることがより好ましい。
また、センサ4の中央部と周辺部で、撮像光と画素との結合効率の差が小さくなるように、各光ファイバ3cのテーパーの比の値R及び傾斜角αを適宜設定されていることが好ましい。
(実施形態2)
図4(a)には、本実施形態の撮像装置11の一例を示す模式図が示されている。本実施形態は、実施形態1とは、光ファイバ束の構成が異なっており、それ以外は実施形態1と同じである。具体的には、撮像装置11の光ファイバ束13は、光ファイバ13cの光入射面13caにおける傾斜角αと光ファイバ13cの光射出面13cbにおける傾斜角αとが異なっている。より具体的には、傾斜角αは、傾斜角αより小さい。つまり、α<αである。
図4(b)に、本実施形態における光ファイバ13c内の光の伝搬の様子が示されている。実施形態1と同様に、撮像光学系2の射出瞳の中心PEから射出され、光ファイバ13cの光入射面13caへ入射する入射光BMの入射角をωとする。また、この入射光BMが光ファイバ13cを伝搬し、光射出面13cbから射出される射出光BMの射出角をωとする。射出角ωは、下記の式9で表される。
Figure 2016005198
ただし、αは、光入射面13caにおける撮像光学系2の光軸AXから離れた位置にある光ファイバ13cの傾斜角である。αは、光射出面3cbにおける撮像光学系2の光軸AXから離れた位置にある光ファイバ13cの傾斜角である。ωは、撮像光学系2の射出瞳の中心PEを通る主光線の、光ファイバ13cの光入射面3caに入射する入射角である。Rは、光ファイバ13cのテーパー比の値である。
式9から分かるように、テーパー比の値Rは1より大きいため、射出角ωは、傾斜角αに近づく。実施形態1と同様にα<ωであり、上述したようにα<αであるため、α<ω<ωのようになり、射出角ωは入射角ωよりも小さい角度に変換される。よって、本実施形態の光ファイバ束13を用いれば、光ファイバ束13がない場合に比べて、センサ4の受光面に入射する光の入射角を小さくすることができる。このため、本実施形態の光ファイバ束13によって、撮像光BMとセンサ4の各画素の結合効率を向上させることができる。
実施形態1でも述べたように、一般的なセンサ4では、入射角が0.0[deg]で最大の受光感度となり、±15.0[deg]で最大受光感度の80%程度、±20.0[deg]で最大受光感度の50%程度、±30.0[deg]で最大受光感度の10%程度となる。すなわち、センサ4で効率良く撮像するためには、センサ4への入射角、つまり、光ファイバ13cの光射出面13cbからの射出角ωは、30.0[deg]以内であることが好ましく、20.0[deg]以内であることがより好ましい。さらには、射出角ωは、15.0[deg]以内であることが最適である。つまり、光軸から離れた光ファイバ13cが、以下の式10乃至式12のいずれかを満たすことが好ましい。
Figure 2016005198
なお、センサ4の受光感度が最大受光感度の10%となるセンサ4への入射角をθとする。また、センサ4の受光感度が最大受光感度の50%となるセンサ4への入射角をθとする。また、センサ4の受光感度が最大受光感度の80%となるセンサ4への入射角をθとする。この場合、光軸から離れた光ファイバ13cが、式13乃至15のいずれかを満たすようにしてもよい。
Figure 2016005198
例えば、最も光軸AXから離れた光ファイバ13cにおいて、撮像光BMの主光線の入射角ωが40.0[deg]とする。この場合、傾斜角αを20.0[deg]、テーパー比の値Rを2.0とすると、式9から射出角ωは9.8[deg]となる。これは、式10乃至式15のすべてを満たすことができる。また、上述した数値例に対して、傾斜角αを0.0[deg]から10.0[deg]に変えると、射出角ωは19.8[deg]となる。これは、式10、式11、式13、式14を満たすことができる。また、入射角ωが60.0[deg]のような大きな値であっても、例えば、傾斜角αを35.0[deg]、傾斜角αを7.0[deg]、テーパー比の値Rを2.0とすると、射出角ωは19.2[deg]となる。これは、式10、式11、式13、式14を満たすことができる。
このように、傾斜角α、傾斜角α、テーパー比の値Rを適宜設定することで、センサ4への入射角を垂直方向に近づけることができる。傾斜角α、テーパー比の値Rは、実施形態1で述べたように、光ファイバ束13の中の各光ファイバ13cの位置に応じて設定することが望ましい。なお、傾斜角αも傾斜角αと同様に、光ファイバ束13の中の各光ファイバ13cの位置に応じて設定することが望ましい。また、傾斜角αは小さいほど、光ファイバ13cからの射出光の射出角ωが小さくなる。このため、光軸AXに相対的に近い位置にある光ファイバ13cに比べて光軸AXから相対的に遠い位置にある光ファイバ13cの方が、傾斜角αが小さいことが好ましい。さらには、光ファイバ13cの位置が光軸AXから離れるほど、光ファイバ13cの傾斜角αが小さくなることがより好ましい。
なお、実施形態1の式2の右辺と本実施形態の式9の右辺とは、それぞれの第1項が異なる。しかし、式2は、式9において、α=αの特別な場合である考えれば、同じ式を表している。上述したように、本実施形態では、光射出面13cbにおける光ファイバ13cの傾斜角αを、光入射面13caにおける光ファイバ13cの傾斜角αよりも小さく設定したが、本発明では0≦α≦αを満たすと考えればよい。実施形態1では、α=αの場合を例示している。
(実施形態3)
図5は、本実施形態の撮像装置21の一例を示す模式図である。本実施形態は、実施形態2とは、撮像光学系と光ファイバ束の構成が異なっており、それ以外は、実施形態2と同じである。
本実施形態の撮像光学系22は、点対称性を有するボールレンズである。ボールレンズは絞り22cを有している。撮像光学系22の射出瞳の中心PEはボールレンズの中心にある。また、撮像光学系22の射出瞳の中心PEは、絞り22cの開口部の中心に位置している。撮像光学系22の結像面は射出瞳の中心PEを曲率中心とした曲面形状となる。そのため、光ファイバ束23の光入射面23aの形状を、撮像光学系22の結像面と等しい曲面形状としている。より具体的には、ボールレンズの結像面とほぼ同形状の凹面形状である。光ファイバ束23の光入射面23aは、ガラスレンズと同様の球面研磨加工によって滑らかな光学面が形成される。この加工技術により光入射面23aの表面で発生する散乱を抑えることができる。一方、光ファイバ束23の光射出面23bは平面形状である。そして、光ファイバ束23は、その光射出面23bとセンサ4の光入射面とが密着するように配置されている。光ファイバ束23の光射出面23bも、光入射面23aと同様に平面研磨加工により光学面が形成され、撮像素子への密着性が向上している。
また、光ファイバ束23の光軸AXにおける厚みを小さくしており、撮像装置21の小型化を実現している。また、光ファイバ束3の光射出面23bにおける光ファイバ23cの傾斜角αは、光軸AX以外の位置では0ではない値を採る。
なお、本実施形態においても、光入射面23caにおける光ファイバ23cの傾斜角α、光射出面23cbにおける光ファイバ23cの傾斜角αの定義は、実施形態1で用いたものと同じである。さらに、本実施形態でも、16乃至式18を満たしている。また、本実施形態でも、式10乃至式15のいずれかを満たすことが好ましい。
例えば、最も光軸AXから離れた光ファイバ23cにおいて、撮像光の主光線の入射角ωを60.0[deg]とする。この場合、傾斜角αを35.0[deg]、傾斜角αを10.0[deg]、テーパー比の値Rを1.5とすると、式9から射出角ωは26.4[deg]となる。これは、式10、式13を満たすことができる。
このように、光ファイバ束23の光入射面23aが曲面形状であっても、光ファイバ束23から射出した光の射出角を小さくすることができる。ゆえに、光ファイバ束23から射出した光のセンサ4への入射角度を高効率な受光感度が得られる入射角条件に設定でき、センサ4における周辺部の光量落ちを低減することができる。
本実施形態では、光ファイバ束23の光入射面23aを球面形状としたが、これに限ったものではなく、放物面や非球面でもよい。その面の曲率中心を算出する際は、ベース球面若しくは近軸の曲率半径を用いればよい。
また、撮像光学系22は点対称性を有するボールレンズでなくてもよい。例えば、撮像光学系22が、絞りと、絞りより光入射側に配置された前群レンズと、前記絞りより光射出側に配置された後群レンズと、を有する複数のレンズ群で構成されていてもよい。さらに、その前群レンズとして、前群レンズの最強パワーを有するレンズ面の曲率中心が絞りの中心近傍に位置する光学系を用いてもよい。また、後群レンズとして、後群レンズの最強パワーを有するレンズ面の曲率中心が前記絞りの中心近傍に位置する光学系を用いてもよい。なお、絞りの中心近傍とは、絞りの中心から主光線の波長の長さを半径とした球内に含まれる範囲をいう。また、前群レンズ、後群レンズはそれぞれ、一つのレンズでもよいし、複数のレンズで構成されていてもよい。
(実施形態4)
図6は、本実施形態の撮像装置31の一例を示す模式図である。本実施形態と実施形態1との相違点は、光ファイバ束の構成と、光ファイバ束の直前にレンズアレイを有する点である。それ以外については、本実施形態と実施形態1とは同じである。
具体的には、光入射面33caにおける光ファイバ33cの傾斜角α、光射出面33cbにおける光ファイバ33cの傾斜角αはともに0である。この様に配置した場合、光ファイバ束33の光入射面33aにおいて光ファイバ33cのコア部と隣の光ファイバ33cのコア部との間に隙間が空いてしまう。この隙間に入射した光は、センサ4で受光することができず、受光感度の低下を招く。そこで、本実施形態では、光ファイバ束33の光入射面33aの直前にレンズアレイ5を配置している。このレンズアレイ5を介して、撮像光学系2から射出された光が光ファイバ束33の光入射面33aに入射される。
レンズアレイ5は、光ファイバ束33の光入射面33aにおける光ファイバ33cのピッチと同程度の口径を有するレンズが、光ファイバ33cとほぼ同数並べて構成されている。レンズアレイ5は、撮像光学系2の結像面に配置されており、撮像光学系2からの撮像光を集めて光ファイバ33cに導光する機能を有している。この構成により、光ファイバ束33の光入射面33aにおける光ファイバ3cのコア部の間の隙間に到達する撮像光をレンズを介して光ファイバ33cへ入射させることができる。
また、レンズアレイ5の各レンズのピッチは、光ファイバ束33の光入射面33aにおける光ファイバ33cのコア部のピッチよりも小さく設定している。これにより、入射角ωが大きい撮像光であっても光ファイバへの結合効率を向上させることができる。なお、コア部のピッチとはコア部の中心とコア部の中心とを結んだ線分の長さである。
なお、本実施形態においても、光入射面33caにおける光ファイバ33cの傾斜角α、光射出面33cbにおける光ファイバ33cの傾斜角αの定義は、実施形態1で用いたものと同じである。さらに、本実施形態でも、16乃至式18を満たしている。また、本実施形態でも、式10乃至式15のいずれかを満たすことが好ましい。
例えば、最も光軸AXから離れた光ファイバ33cにおいて、撮像光の主光線の入射角ωを40.0[deg]とする。この場合、傾斜角αが0.0[deg]、傾斜角αが0[deg]、テーパー比の値Rを2.0とすると、式9から射出角ωは18.7[deg]となる。これは、式10、式11、式13、式14を満たすことができる。
これにより、センサ4の周辺部の結合効率に伴う光量落ちを低減することができる。
なお、本実施形態では、α=α=0で説明したが、この構成に限らない。光ファイバ33の光入射面33aにおいて、光ファイバ33cのコア部の間の間隔が、光ファイバ33cの光入射面33caのコア部の径の半分の長さより大きい場合であれば、本実施形態を適用することができる。
本発明の撮像装置は、デジタルカメラやデジタルビデオカメラ、携帯電話用カメラ、監視カメラ、ファイバースコープなどに利用可能である。
1、11、21、31 撮像装置
2、22 撮像光学系
3、13、23、33 光ファイバ束
4 撮像素子

Claims (25)

  1. 撮像光学系と、撮像素子と、前記撮像光学系からの光を前記撮像素子へと導く複数の光ファイバにより構成される光ファイバ束と、を有する撮像装置であって、
    前記光ファイバは、コア部と前記コア部の周りに配置されたクラッド部とを有し、
    前記光ファイバの光入射面のコア部の径よりも前記光ファイバの光射出面のコア部の径の方が大きく、
    前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする撮像装置。
    0≦α<ω
    ただし、αは前記光入射面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、ωは前記光ファイバに入射する前記撮像光学系からの主光線の、前記撮像光学系の光軸に対する角度である。
  2. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項1に記載の撮像装置。
    0≦α≦α
    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角である。
  3. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項1又は2に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値、θは前記撮像素子の受光感度が最大受光感度の10%となる前記撮像素子への入射角である。
  4. 前記光ファイバは、下記の式を満たすことを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値、θは前記撮像素子の受光感度が最大受光感度の50%となる前記撮像素子への入射角である。
  5. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値、θは前記撮像素子の受光感度が最大受光感度の80%となる前記撮像素子への入射角である。
  6. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項1又は2に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値である。
  7. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項6に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値である。
  8. 前記撮像光学系の光軸から離れた光ファイバは、下記の式を満たすことを特徴とする請求項7に記載の撮像装置。
    Figure 2016005198

    ただし、αは前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角、Rは前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値である。
  9. 前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値Rは、2.0以上であることを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
  10. 前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値Rは、前記撮像光学系の光軸から相対的に遠い光ファイバの方が前記撮像光学系の光軸から相対的に近い光ファイバよりも大きいことを特徴とする請求項1乃至9のいずれか1項に記載の撮像装置。
  11. 前記撮像光学系の光軸から離れた位置にある光ファイバほど、前記光ファイバの光射出面のコア部の径の前記光ファイバの光入射面のコア部の径に対する比の値Rが大きくなることを特徴とする請求項1乃至10のいずれか1項に記載の撮像装置。
  12. 前記撮像光学系の光軸から離れた光ファイバの前記光入射面における傾斜角αは、前記撮像光学系の光軸から相対的に遠い光ファイバの方が前記撮像光学系の光軸から相対的に近い光ファイバよりも小さいことを特徴とする請求項1乃至11のいずれか1項に記載の撮像装置。
  13. 前記撮像光学系の光軸から離れた位置にある光ファイバほど、前記撮像光学系の光軸から離れた光ファイバの前記光入射面における傾斜角αが小さくなることを特徴とする請求項1乃至12のいずれか1項に記載の撮像装置。
  14. 前記撮像光学系の光軸から離れた光ファイバの前記光射出面における傾斜角αは、前記撮像光学系の光軸から相対的に遠い光ファイバの方が前記撮像光学系の光軸から相対的に近い光ファイバよりも小さいことを特徴とする請求項1乃至13のいずれか1項に記載の撮像装置。
  15. 前記撮像光学系の光軸から離れた位置にある光ファイバほど、前記撮像光学系の光軸から離れた光ファイバの前記光射出面における傾斜角αが小さくなることを特徴とする請求項1乃至14のいずれか1項に記載の撮像装置。
  16. 前記光ファイバ束の光入射面は、前記撮像光学系に対して凹面であることを特徴とする請求項1乃至15のいずれか1項に記載の撮像装置。
  17. 前記撮像光学系は、絞りと、前記絞りより光入射側に配置された前群レンズと、前記絞りより光射出側に配置された後群レンズと、を有し、
    前記前群レンズの最強パワーを有するレンズ面の曲率中心が前記絞りの中心近傍に位置していることを特徴とする請求項16に記載の撮像装置。
  18. 前記後群レンズの最強パワーを有するレンズ面の曲率中心が前記絞りの中心近傍に位置していることを特徴とする請求項17に記載の撮像装置。
  19. 前記撮像光学系は、点対称性を有することを特徴とする請求項16乃至18のいずれか1項に記載の撮像装置。
  20. 前記光ファイバ束の光入射面に前記撮像光学系から射出された光を入射させるための複数のレンズを有するレンズアレイを有することを特徴とする請求項1乃至19のいずれか1項に記載の撮像装置。
  21. 前記複数のレンズのピッチが、前記光ファイバのコア部のピッチよりも小さいことを特徴とする請求項20に記載の撮像装置。
  22. 前記光入射面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角と前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角とが等しいことを特徴とする請求項1乃至21のいずれか1項に記載の撮像装置。
  23. 前記光入射面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角とは、前記光ファイバの光入射面にあるコア部の中心と前記中心から前記光ファイバの光入射面のコア部の径の大きさだけコア部の内部にあるコア部の断面の中心とを結ぶ直線と前記撮像光学系の光軸とがなす、0.0以上90.0[deg]未満の角度である請求項1乃至22のいずれか1項に記載の撮像装置。
  24. 前記光射出面における前記光ファイバの前記撮像光学系の光軸に対する傾斜角とは、前記光ファイバの光射出面にあるコア部の中心と前記中心から前記光ファイバの光射出面のコア部の径の大きさだけコア部の内部にあるコア部の断面の中心とを結ぶ直線と前記撮像光学系の光軸とがなす、0.0以上90.0[deg]未満の角度である請求項2乃至8のいずれか1項に記載の撮像装置。
  25. 前記光ファイバに入射する前記撮像光学系からの主光線の、前記撮像光学系の光軸に対する角度とは、前記撮像光学系の射出瞳の中心点と前記光ファイバの光入射面にあるコア部の中心とを結ぶ直線と前記撮像光学系の光軸とのなす、0.0以上90.0[deg]未満の角度である請求項1乃至24のいずれか1項に記載の撮像装置。
JP2014125726A 2014-06-18 2014-06-18 撮像装置 Pending JP2016005198A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014125726A JP2016005198A (ja) 2014-06-18 2014-06-18 撮像装置
US14/741,593 US20150370012A1 (en) 2014-06-18 2015-06-17 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125726A JP2016005198A (ja) 2014-06-18 2014-06-18 撮像装置

Publications (1)

Publication Number Publication Date
JP2016005198A true JP2016005198A (ja) 2016-01-12

Family

ID=54869469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125726A Pending JP2016005198A (ja) 2014-06-18 2014-06-18 撮像装置

Country Status (2)

Country Link
US (1) US20150370012A1 (ja)
JP (1) JP2016005198A (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298834B2 (en) 2006-12-01 2019-05-21 Google Llc Video refocusing
US9858649B2 (en) 2015-09-30 2018-01-02 Lytro, Inc. Depth-based image blurring
US10334151B2 (en) 2013-04-22 2019-06-25 Google Llc Phase detection autofocus using subaperture images
JP6338467B2 (ja) * 2014-06-18 2018-06-06 キヤノン株式会社 撮像装置
US10440407B2 (en) 2017-05-09 2019-10-08 Google Llc Adaptive control for immersive experience delivery
US10341632B2 (en) 2015-04-15 2019-07-02 Google Llc. Spatial random access enabled video system with a three-dimensional viewing volume
US10275898B1 (en) 2015-04-15 2019-04-30 Google Llc Wedge-based light-field video capture
US11328446B2 (en) 2015-04-15 2022-05-10 Google Llc Combining light-field data with active depth data for depth map generation
US20160309065A1 (en) * 2015-04-15 2016-10-20 Lytro, Inc. Light guided image plane tiled arrays with dense fiber optic bundles for light-field and high resolution image acquisition
US10546424B2 (en) 2015-04-15 2020-01-28 Google Llc Layered content delivery for virtual and augmented reality experiences
US10469873B2 (en) 2015-04-15 2019-11-05 Google Llc Encoding and decoding virtual reality video
US10565734B2 (en) 2015-04-15 2020-02-18 Google Llc Video capture, processing, calibration, computational fiber artifact removal, and light-field pipeline
US10412373B2 (en) 2015-04-15 2019-09-10 Google Llc Image capture for virtual reality displays
US10540818B2 (en) 2015-04-15 2020-01-21 Google Llc Stereo image generation and interactive playback
US10444931B2 (en) 2017-05-09 2019-10-15 Google Llc Vantage generation and interactive playback
US10567464B2 (en) 2015-04-15 2020-02-18 Google Llc Video compression with adaptive view-dependent lighting removal
US10419737B2 (en) 2015-04-15 2019-09-17 Google Llc Data structures and delivery methods for expediting virtual reality playback
US9979909B2 (en) 2015-07-24 2018-05-22 Lytro, Inc. Automatic lens flare detection and correction for light-field images
US10275892B2 (en) 2016-06-09 2019-04-30 Google Llc Multi-view scene segmentation and propagation
US10679361B2 (en) 2016-12-05 2020-06-09 Google Llc Multi-view rotoscope contour propagation
US10594945B2 (en) 2017-04-03 2020-03-17 Google Llc Generating dolly zoom effect using light field image data
US10474227B2 (en) 2017-05-09 2019-11-12 Google Llc Generation of virtual reality with 6 degrees of freedom from limited viewer data
US10354399B2 (en) 2017-05-25 2019-07-16 Google Llc Multi-view back-projection to a light-field
US10545215B2 (en) 2017-09-13 2020-01-28 Google Llc 4D camera tracking and optical stabilization
US10965862B2 (en) 2018-01-18 2021-03-30 Google Llc Multi-camera navigation interface
EP3518017B1 (de) * 2018-01-24 2020-06-17 Technische Universität Dresden Verfahren und faseroptisches system zur beleuchtung und detektion eines objekts mit licht
FR3079325B1 (fr) * 2018-03-21 2020-04-10 Valeo Comfort And Driving Assistance Interface pour vehicule automobile
FR3079326B1 (fr) * 2018-03-21 2020-04-10 Valeo Comfort And Driving Assistance Interface pour vehicule automobile
US11247421B1 (en) * 2019-08-20 2022-02-15 Apple Inc. Single-step extrusion of fiber optic plates for electronic devices
EP4324120A1 (en) 2021-04-13 2024-02-21 Signify Holding B.V. An optical detector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004328A (en) * 1986-09-26 1991-04-02 Canon Kabushiki Kaisha Spherical lens and imaging device using the same
US6097545A (en) * 1999-05-21 2000-08-01 Photobit Corporation Concentric lens with aspheric correction
US7366382B2 (en) * 2003-10-01 2008-04-29 Photon, Inc. Optical beam diagnostic device and method
US8488257B2 (en) * 2011-11-09 2013-07-16 Daniel Lee Stark Two Pi solid angle high resolution optical system
WO2014074202A2 (en) * 2012-08-20 2014-05-15 The Regents Of The University Of California Monocentric lens designs and associated imaging systems having wide field of view and high resolution
JP6338467B2 (ja) * 2014-06-18 2018-06-06 キヤノン株式会社 撮像装置
US9398202B2 (en) * 2014-06-18 2016-07-19 Canon Kabushiki Kaisha Imaging device
JP6376857B2 (ja) * 2014-06-20 2018-08-22 キヤノン株式会社 撮像装置

Also Published As

Publication number Publication date
US20150370012A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP2016005198A (ja) 撮像装置
JP6338467B2 (ja) 撮像装置
US11921352B2 (en) Optical system
TWI611209B (zh) 光學成像鏡頭
JP2016005197A5 (ja)
CN105473047A (zh) 用于内窥镜的照明光学系统
JP6376857B2 (ja) 撮像装置
JP2010117584A (ja) 結像光学系及びそれを用いた撮像装置
TW202020499A (zh) 鏡片系統、投射裝置、感測模組及電子裝置
TW201723562A (zh) 光學成像鏡頭
JP2016008979A5 (ja)
US9398202B2 (en) Imaging device
JP6097426B2 (ja) 接合レンズ
JP5790428B2 (ja) 結合光学系、ファイバ光学系
JP2005338341A (ja) 広角レンズ装置、カメラおよびプロジェクタ
JP2017016148A (ja) 接合レンズ
JP6109427B2 (ja) 光伝送コネクタ装置
CN111381246A (zh) 激光雷达接收组件及激光雷达系统
JP2017015906A5 (ja)
JP6598535B2 (ja) 撮像装置
JP5925372B2 (ja) 接合レンズ
CN209842063U (zh) 激光雷达接收组件及激光雷达系统
JP6585253B2 (ja) 接合レンズ
JP2012203119A (ja) 撮像光学系および撮像装置
JP6596744B2 (ja) 光学素子