JP2016003269A - Summer tire - Google Patents

Summer tire Download PDF

Info

Publication number
JP2016003269A
JP2016003269A JP2014123595A JP2014123595A JP2016003269A JP 2016003269 A JP2016003269 A JP 2016003269A JP 2014123595 A JP2014123595 A JP 2014123595A JP 2014123595 A JP2014123595 A JP 2014123595A JP 2016003269 A JP2016003269 A JP 2016003269A
Authority
JP
Japan
Prior art keywords
farnesene
mass
parts
less
summer tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014123595A
Other languages
Japanese (ja)
Other versions
JP6348348B2 (en
Inventor
顕哉 渡邊
Kenya Watanabe
顕哉 渡邊
馬渕 貴裕
Takahiro Mabuchi
貴裕 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014123595A priority Critical patent/JP6348348B2/en
Publication of JP2016003269A publication Critical patent/JP2016003269A/en
Application granted granted Critical
Publication of JP6348348B2 publication Critical patent/JP6348348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02T10/862

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a summer tire that offers an excellent balance of fuel economy, wet grip performance and handling ability, and has a low discoloration of a tire surface.SOLUTION: This invention relates to a summer tire having a tread made using a rubber composition wherein, based on the rubber component 100 mass%, the content of farnesene resin with a weight average molecular weight of 1000-500000 is 1-50 pts. mass, and the content of silica with a nitrogen adsorption specific surface area of 40-400 m2/g is 10-150 pts.

Description

本発明は、夏用タイヤに関する。 The present invention relates to a summer tire.

近年、省資源、環境保護の立場から、タイヤの転がり抵抗改善による燃費性能の向上が必要とされており、また、走行時の安全性向上のため、ウェットグリップ性能の改善も要求されている。 In recent years, from the standpoint of saving resources and protecting the environment, it has been required to improve fuel efficiency by improving rolling resistance of tires, and also to improve wet grip performance to improve safety during driving.

低燃費性向上にはヒステリシスロスが小さいこと、ウェットグリップ性能向上にはウェットスキッド抵抗性が高いことが要求される。しかしながら、低ヒステリシスロスと高いウェットスキッド抵抗性とは相反するものであり、低燃費性及びウェットグリップ性能をバランス良く改善することは困難である。 Hysteresis loss is required to improve fuel economy, and wet skid resistance is required to improve wet grip performance. However, low hysteresis loss and high wet skid resistance are contradictory, and it is difficult to improve the fuel economy and wet grip performance in a balanced manner.

低燃費性及びウェットグリップ性能をバランス良く改善する方法として、充填剤としてシリカを用いる方法が挙げられるが、シリカは自己凝集性が強く、分散が困難であるという点で改善の余地がある。 As a method for improving fuel economy and wet grip performance in a well-balanced manner, there is a method using silica as a filler. Silica has strong self-aggregation property and there is room for improvement in that it is difficult to disperse.

特許文献1では、窒素原子及びケイ素原子を含む特定の化合物で末端変性されたスチレンブタジエンゴムと脂肪族カルボン酸亜鉛塩などとを配合し、低燃費性及びウェットグリップ性能に優れたゴム組成物を得る方法が記載されているが、他の方法の提供も求められている。 In Patent Document 1, a styrene butadiene rubber terminal-modified with a specific compound containing a nitrogen atom and a silicon atom and an aliphatic carboxylic acid zinc salt are blended, and a rubber composition excellent in low fuel consumption and wet grip performance is obtained. Although the method of obtaining is described, the provision of other methods is also sought.

また、タイヤは走行中に発生する熱や空気中のオゾン、酸素、紫外線などによって劣化することが知られており、近年、工業化などの影響によりオゾン量は増加傾向にある。そのため、耐オゾン性を一層改善してゴムの劣化を抑制し、タイヤを長寿命化することが要求されている。 In addition, tires are known to deteriorate due to heat generated during running, ozone in the air, oxygen, ultraviolet rays, and the like, and in recent years, the amount of ozone has been increasing due to industrialization and the like. Therefore, it is required to further improve the ozone resistance, suppress the deterioration of the rubber, and extend the life of the tire.

耐オゾン性を高める方法として、老化防止剤やワックスなどを配合する方法が知られているが、かかる方法では老化防止剤及びワックスが移行してタイヤ表面が変色し、美観を損ねてしまう。このような美観の悪化は、サイドウォールにおいて特に問題となるが、トレッドにおいても走行頻度が少ない車両などでは問題となる。 As a method for enhancing ozone resistance, a method of blending an anti-aging agent or wax is known, but in such a method, the anti-aging agent and the wax are transferred to discolor the tire surface and impair the appearance. Such deterioration of aesthetics is a problem particularly in the sidewall, but it is also a problem in vehicles and the like that are less frequent in the tread.

特開2010−111754号公報JP 2010-111754 A

本発明は、前記課題を解決し、低燃費性、ウェットグリップ性能及びハンドリング性能のバランスに優れ、タイヤ表面の変色が少ない夏用タイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, and to provide a summer tire that is excellent in balance between fuel efficiency, wet grip performance and handling performance, and has less discoloration on the tire surface.

本発明は、ゴム成分100質量部に対して、重量平均分子量が1000〜500000のファルネセン系樹脂を1〜50質量部、窒素吸着比表面積が40〜400m/gのシリカを10〜150質量部含有するゴム組成物を用いて作製したトレッドを有する夏用タイヤに関する。 In the present invention, 1 to 50 parts by weight of farnesene resin having a weight average molecular weight of 1000 to 500,000 and 10 to 150 parts by weight of silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g with respect to 100 parts by weight of the rubber component. The present invention relates to a summer tire having a tread produced using the contained rubber composition.

前記ファルネセン系樹脂がファルネセンの単独重合体であることが好ましい。 The farnesene resin is preferably a farnesene homopolymer.

前記ファルネセン系樹脂がファルネセンとビニルモノマーとの共重合体であることが好ましい。 The farnesene resin is preferably a copolymer of farnesene and a vinyl monomer.

前記ビニルモノマーがスチレンであることが好ましい。 The vinyl monomer is preferably styrene.

前記ビニルモノマーがブタジエンであることが好ましい。 The vinyl monomer is preferably butadiene.

前記共重合体における前記ファルネセンと前記ビニルモノマーとの共重合比が、質量基準で、ファルネセン/ビニルモノマー=99/1〜25/75であることが好ましい。 The copolymerization ratio of the farnesene and the vinyl monomer in the copolymer is preferably farnesene / vinyl monomer = 99/1 to 25/75 on a mass basis.

前記共重合体の38℃における溶融粘度が1000Pa・s以下であることが好ましい。 The copolymer preferably has a melt viscosity at 38 ° C. of 1000 Pa · s or less.

前記ファルネセン系樹脂が、糖から誘導される炭素源を用いて微生物を培養することによって調製されたファルネセンを重合して得られるものであることが好ましい。 The farnesene resin is preferably obtained by polymerizing farnesene prepared by culturing microorganisms using a carbon source derived from sugar.

本発明によれば、重量平均分子量が特定の範囲内である特定のファルネセン系樹脂と、窒素吸着比表面積が特定の範囲内であるシリカとをそれぞれ所定量含有するゴム組成物を用いて作製したトレッドを有する夏用タイヤであるので、低燃費性、ウェットグリップ性能及びハンドリング性能のバランスに優れ、タイヤ表面の変色が少ない夏用タイヤを提供できる。 According to the present invention, a rubber composition containing a specific amount of a specific farnesene resin having a weight average molecular weight within a specific range and a silica having a nitrogen adsorption specific surface area within a specific range, respectively, was prepared. Since it is a summer tire having a tread, it is possible to provide a summer tire that is excellent in the balance of fuel efficiency, wet grip performance and handling performance and has less discoloration on the tire surface.

本発明の夏用タイヤは、重量平均分子量が特定の範囲内であるファルネセン系樹脂と、窒素吸着比表面積が特定の範囲内であるシリカとをそれぞれ所定量含有するゴム組成物を用いて作製したトレッドを有するものである。前記ファルネセン系樹脂を軟化剤として配合することで、シリカ表面近傍にファルネセン系樹脂の被膜が形成されシリカの分散性が向上する。そのことにより、ヒステリシスロスが低減され、良好な低燃費性を示すとともに、ウェットグリップ性能及びハンドリング性能も改善されたタイヤを得ることができる。同時にファルネセン系樹脂のブリードや、それに付随するオイル、老化防止剤、ワックスのブリードが抑制されるため、ゴム表面の変色(白色化、茶色化)を抑制できる。 The summer tire of the present invention was produced by using a rubber composition containing a predetermined amount of farnesene resin having a weight average molecular weight within a specific range and silica having a nitrogen adsorption specific surface area within a specific range. It has a tread. By blending the farnesene resin as a softening agent, a farnesene resin film is formed in the vicinity of the silica surface, and the dispersibility of the silica is improved. As a result, it is possible to obtain a tire with reduced hysteresis loss, good fuel economy, and improved wet grip performance and handling performance. At the same time, the bleeding of the farnesene resin and the accompanying oil, anti-aging agent, and wax bleeding are suppressed, so that discoloration (whitening, browning) of the rubber surface can be suppressed.

本発明に係るゴム組成物は、ゴム成分として、天然ゴム(NR)、ジエン系合成ゴムを使用でき、ジエン系合成ゴムとしては、例えば、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などが挙げられる。なかでも、低燃費性及びウェットグリップ性能をバランス良く示すことから、NR、BR、SBRが好ましい。これらのゴム成分は単独で用いてもよく、2種以上を組み合わせてもよい。
これらのゴム成分としては特に限定されず、タイヤ工業において一般的なものを使用できる。
The rubber composition according to the present invention can use natural rubber (NR) or diene synthetic rubber as a rubber component. Examples of the diene synthetic rubber include isoprene rubber (IR), butadiene rubber (BR), and styrene butadiene. Examples thereof include rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), and butyl rubber (IIR). Of these, NR, BR, and SBR are preferable because they exhibit a good balance between low fuel consumption and wet grip performance. These rubber components may be used alone or in combination of two or more.
These rubber components are not particularly limited, and those generally used in the tire industry can be used.

ゴム成分100質量%中のNRの含有量は、好ましくは5質量%以上、より好ましくは15質量%以上であり、また、好ましくは35質量%以下、より好ましくは25質量%以下である。この範囲内であれば、低燃費性及びウェットグリップ性能がよりバランス良く得られる。 The content of NR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 15% by mass or more, and preferably 35% by mass or less, more preferably 25% by mass or less. Within this range, low fuel consumption and wet grip performance can be obtained with a better balance.

BRのシス含量は、好ましくは90質量%以上、より好ましくは95質量%以上、特に好ましくは97質量%以上である。この範囲内であれば、本発明の効果が良好に得られる。
なお、本明細書において、シス含量は、赤外吸収スペクトル分析法によって測定できる。
The cis content of BR is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 97% by mass or more. If it is in this range, the effect of the present invention can be obtained satisfactorily.
In the present specification, the cis content can be measured by infrared absorption spectrum analysis.

ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは15質量%以上であり、また、好ましくは35質量%以下、より好ましくは25質量%以下、さらに好ましくは22質量%以下である。この範囲内であれば、低燃費性及びウェットグリップ性能がよりバランス良く得られる。 The content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 15% by mass or more, and preferably 35% by mass or less, more preferably 25% by mass or less, and still more preferably. 22% by mass or less. Within this range, low fuel consumption and wet grip performance can be obtained with a better balance.

SBRのスチレン含量は、好ましくは15質量%以上、より好ましくは22質量%以上、さらに好ましくは24質量%以上である。15質量%未満では、本発明の効果、特に、ウェットグリップ性能の改善効果が、充分に得られないおそれがある。また、該スチレン含有量は好ましくは40質量%以下、より好ましくは30質量%以下である。40質量%を超えると、低燃費性が著しく悪化するおそれがある。 The styrene content of SBR is preferably 15% by mass or more, more preferably 22% by mass or more, and further preferably 24% by mass or more. If it is less than 15% by mass, the effects of the present invention, particularly the wet grip performance improving effect, may not be sufficiently obtained. The styrene content is preferably 40% by mass or less, more preferably 30% by mass or less. If it exceeds 40% by mass, the fuel efficiency may be significantly deteriorated.

ゴム成分100質量%中のSBRの含有量は、好ましくは35質量%以上、より好ましくは45質量%以上、さらに好ましくは55質量%以上であり、また、好ましくは85質量%以下、より好ましくは75質量%以下、更に好ましくは65質量%以下である。この範囲内であれば、低燃費性及びウェットグリップ性能がよりバランス良く得られる。 The content of SBR in 100% by mass of the rubber component is preferably 35% by mass or more, more preferably 45% by mass or more, still more preferably 55% by mass or more, and preferably 85% by mass or less, more preferably It is 75 mass% or less, More preferably, it is 65 mass% or less. Within this range, low fuel consumption and wet grip performance can be obtained with a better balance.

本発明に係るゴム組成物は、ファルネセン系樹脂を含有する。ファルネセン系樹脂とは、ファルネセンをモノマー成分として重合して得られた重合体を意味する。ファルネセンには、α−ファルネセン((3E,7E)−3,7,11−トリメチル−1,3,6,10−ドデカテトラエン)やβ−ファルネセン(7,11−ジメチル−3−メチレン−1,6,10−ドデカトリエン)などの異性体が存在するが、以下の構造を有する(E)−β−ファルネセンが好ましい。

Figure 2016003269
The rubber composition according to the present invention contains a farnesene resin. The farnesene resin means a polymer obtained by polymerizing farnesene as a monomer component. Farnesene includes α-farnesene ((3E, 7E) -3,7,11-trimethyl-1,3,6,10-dodecatetraene) and β-farnesene (7,11-dimethyl-3-methylene-1). , 6,10-dodecatriene) and the like, (E) -β-farnesene having the following structure is preferred.
Figure 2016003269

本発明では、重量平均分子量が特定の範囲内であるファルネセン系樹脂を軟化剤として配合することにより、低燃費性、ウェットグリップ性能及びハンドリング性能のバランスに優れる。なお、ファルネセン系樹脂は、従来配合されているオイルなどの軟化剤に置き換えて配合することが好ましい。これにより、本発明の効果がより好適に得られる。 In the present invention, by blending a farnesene resin having a weight average molecular weight within a specific range as a softening agent, the fuel economy, wet grip performance and handling performance are excellent. In addition, it is preferable to mix | blend farnesene-type resin, replacing with softeners, such as the oil currently mix | blended conventionally. Thereby, the effect of this invention is acquired more suitably.

ファルネセン系樹脂は、ファルネセンの単独重合体(ファルネセン単独重合体)であってもよいし、ファルネセンとビニルモノマーとの共重合体(ファルネセン−ビニルモノマー共重合体)であってもよい。ビニルモノマーとしては、スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、α−メチルスチレン、2,4−ジメチルスチレン、2,4−ジイソプロピルスチレン、4−tert−ブチルスチレン、5−t−ブチル−2−メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert−ブトキシスチレン、ビニルベンジルジメチルアミン、(4−ビニルベンジル)ジメチルアミノエチルエーテル、N,N−ジメチルアミノエチルスチレン、N,N−ジメチルアミノメチルスチレン、2−エチルスチレン、3−エチルスチレン、4−エチルスチレン、2−t−ブチルスチレン、3−t−ブチルスチレン、4−t−ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルトルエン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレンなどの芳香族ビニル化合物や、ブタジエン、イソプレンなどの共役ジエン化合物などが挙げられる。なかでも、スチレン、ブタジエンが好ましい。すなわち、ファルネセン−ビニルモノマー共重合体としては、ファルネセンとスチレンとの共重合体(ファルネセン−スチレン共重合体)、ファルネセンとブタジエンとの共重合体(ファルネセン−ブタジエン共重合体)が好ましい。ファルネセン−スチレン共重合体を配合することで、ウェットグリップ性能の改善効果を高めることができ、ファルネセン−ブタジエン共重合体を配合することで、低燃費性及び耐摩耗性の改善効果を高めることができる。 The farnesene resin may be a farnesene homopolymer (farnesene homopolymer) or a copolymer of farnesene and a vinyl monomer (farnesene-vinyl monomer copolymer). Examples of vinyl monomers include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert-butylstyrene, 5- t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N-dimethylaminoethyl Styrene, N, N-dimethylaminomethyl styrene, 2-ethyl styrene, 3-ethyl styrene, 4-ethyl styrene, 2-t-butyl styrene, 3-t-butyl styrene, 4-t-butyl styrene, vinyl xylene, Vinyl naphthale , Vinyl toluene, vinyl pyridine, diphenylethylene, and aromatic vinyl compounds such as tertiary amino group-containing diphenylethylene, butadiene, and the like conjugated diene compound such as isoprene. Of these, styrene and butadiene are preferable. That is, the farnesene-vinyl monomer copolymer is preferably a copolymer of farnesene and styrene (farnesene-styrene copolymer) or a copolymer of farnesene and butadiene (farnesene-butadiene copolymer). By blending the farnesene-styrene copolymer, the effect of improving wet grip performance can be enhanced, and by blending the farnesene-butadiene copolymer, the effect of improving fuel economy and wear resistance can be enhanced. it can.

ファルネセン単独重合体のガラス転移温度(Tg)は、好ましくは−60℃以下、より好ましくは−70℃以下であり、好ましくは−120℃以上、より好ましくは−110℃以上である。前記範囲内であれば、タイヤ用軟化剤、および低燃費化剤として好適に使用できる。
同様の理由から、ファルネセン−スチレン共重合体のTgは、好ましくは−15℃以下、より好ましくは−30℃以下であり、好ましくは−80℃以上、より好ましくは−70℃以上である。
同様の理由から、ファルネセン−ブタジエン共重合体のTgは、好ましくは−60℃以下、より好ましくは−70℃以下であり、好ましくは−120℃以上、より好ましくは−110℃以上である。
なお、Tgは、JIS−K7121:1987に従い、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計(Q200)を用いて、昇温速度10℃/分の条件で測定した値である。
The glass transition temperature (Tg) of the farnesene homopolymer is preferably −60 ° C. or lower, more preferably −70 ° C. or lower, preferably −120 ° C. or higher, more preferably −110 ° C. or higher. If it is in the said range, it can be used conveniently as a tire softener and a fuel-consumption agent.
For the same reason, the Tg of the farnesene-styrene copolymer is preferably −15 ° C. or lower, more preferably −30 ° C. or lower, preferably −80 ° C. or higher, more preferably −70 ° C. or higher.
For the same reason, the Tg of the farnesene-butadiene copolymer is preferably −60 ° C. or lower, more preferably −70 ° C. or lower, preferably −120 ° C. or higher, more preferably −110 ° C. or higher.
Tg is a value measured according to JIS-K7121: 1987, using a differential scanning calorimeter (Q200) manufactured by TA Instruments Japan Co., under a temperature increase rate of 10 ° C./min. .

ファルネセン系樹脂の重量平均分子量(Mw)は、1000以上、好ましくは2000以上、より好ましくは3000以上、更に好ましくは5000以上、特に好ましくは8000以上である。1000未満では、ハンドリング性能、耐摩耗性が悪化する傾向がある。また、該Mwは、500000以下、好ましくは300000以下、より好ましくは150000以下、特に好ましくは100000以下である。500000を超えると、配合ゴムの粘度が上昇し加工性が悪化する傾向がある。Mwが前記範囲内のファルネセン系樹脂は、常温で液状であり、タイヤ用軟化剤、および低燃費化剤として好適に使用できる。 The weight average molecular weight (Mw) of the farnesene resin is 1000 or more, preferably 2000 or more, more preferably 3000 or more, still more preferably 5000 or more, and particularly preferably 8000 or more. If it is less than 1000, the handling performance and wear resistance tend to deteriorate. The Mw is 500,000 or less, preferably 300,000 or less, more preferably 150,000 or less, and particularly preferably 100,000 or less. If it exceeds 500,000, the viscosity of the compounded rubber tends to increase and the processability tends to deteriorate. The farnesene resin having Mw within the above range is in a liquid state at normal temperature and can be suitably used as a tire softener and a fuel economy agent.

ファルネセン単独重合体の溶融粘度は、好ましくは1000Pa・s以下、より好ましくは200Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.5Pa・s以上である。前記範囲内であれば、タイヤ用軟化剤、および低燃費化剤として好適に使用でき、かつ耐ブルーム性にも優れる。
同様の理由から、ファルネセン−ビニルモノマー共重合体の溶融粘度は、好ましくは1000Pa・s以下、より好ましくは650Pa・s以下、更に好ましくは200Pa・s以下であり、好ましくは1Pa・s以上、より好ましくは5Pa・s以上である。
なお、溶融粘度は、ブルックフィールド型粘度計(BROOKFIELD ENGINEERING LABS.INC.製)を用いて、38℃で測定した値である。
The melt viscosity of the farnesene homopolymer is preferably 1000 Pa · s or less, more preferably 200 Pa · s or less, preferably 0.1 Pa · s or more, more preferably 0.5 Pa · s or more. If it is in the said range, it can be used conveniently as a softener for tires and a fuel-saving agent, and it is excellent also in bloom resistance.
For the same reason, the melt viscosity of the farnesene-vinyl monomer copolymer is preferably 1000 Pa · s or less, more preferably 650 Pa · s or less, further preferably 200 Pa · s or less, preferably 1 Pa · s or more, more Preferably, it is 5 Pa · s or more.
The melt viscosity is a value measured at 38 ° C. using a Brookfield viscometer (manufactured by BROOKFIELD ENGINEERING LAB. INC.).

ファルネセン単独重合体において、モノマー成分100質量%中のファルネセンの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上であり、100質量%であってもよい。 In the farnesene homopolymer, the content of farnesene in 100% by mass of the monomer component is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.

ファルネセン−ビニルモノマー共重合体において、モノマー成分100質量%中のファルネセン及びビニルモノマーの合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上であり、100質量%であってもよい。また、ファルネセンとビニルモノマーとの共重合比は、質量基準で、ファルネセン:ビニルモノマー=99/1〜25/75であることが好ましく、ファルネセン:ビニルモノマー=80/20〜40/60であることがより好ましい。 In the farnesene-vinyl monomer copolymer, the total content of farnesene and vinyl monomer in 100% by mass of the monomer component is preferably 80% by mass or more, more preferably 90% by mass or more, even if it is 100% by mass. Good. The copolymerization ratio of farnesene and vinyl monomer is preferably farnesene: vinyl monomer = 99/1 to 25/75 on a mass basis, and farnesene: vinyl monomer = 80/20 to 40/60. Is more preferable.

ファルネセン系樹脂の合成は公知の手法により行うことができる。例えば、アニオン重合による合成の場合、充分に窒素置換した耐圧容器に、ヘキサンと、ファルネセンと、sec−ブチルリチウムと、必要に応じてビニルモノマーとを仕込んだ後、昇温させ、数時間撹拌することで行い、得られた重合溶液をクエンチ処理後、真空乾燥させることで、液状のファルネセン系樹脂を得ることができる。 The synthesis of the farnesene resin can be performed by a known method. For example, in the case of synthesis by anionic polymerization, hexane, farnesene, sec-butyllithium and, if necessary, a vinyl monomer are charged into a pressure-resistant container sufficiently substituted with nitrogen, and then heated and stirred for several hours. The liquid farnesene resin can be obtained by performing vacuum treatment after the quenching treatment of the obtained polymerization solution.

ファルネセン単独重合体を調製する際の重合において、重合手順は特に限定されず、例えば、すべてのモノマーを一度に重合させてもよいし、逐次、モノマーを加えて重合させてもよい。また、ファルネセン−ビニルモノマー共重合体を調製する際の共重合においても、重合手順は特に限定されず、例えば、すべてのモノマーを一度にランダム共重合させてもよいし、予め特定のモノマー(例えば、ファルネセンモノマーのみ、ブタジエンモノマーのみなど)を共重合させた後に、残りのモノマーを加えて共重合させてもよいし、特定のモノマー毎に予め共重合させたものをブロック共重合させてもよい。 In the polymerization for preparing the farnesene homopolymer, the polymerization procedure is not particularly limited. For example, all the monomers may be polymerized at once, or the monomers may be sequentially added and polymerized. In the copolymerization for preparing the farnesene-vinyl monomer copolymer, the polymerization procedure is not particularly limited. For example, all monomers may be randomly copolymerized at once, or a specific monomer (for example, , Farnesene monomer only, butadiene monomer only, etc.), then the remaining monomers may be added for copolymerization or block copolymerization of pre-copolymerized specific monomers. Also good.

ファルネセン系樹脂に使用するファルネセンは、石油資源から化学合成によって調製されたものであってもよいし、アリマキなどの昆虫やリンゴなどの植物から抽出したものであってもよいが、糖から誘導される炭素源を用いて微生物を培養することによって調製されたものであることが好ましい。該ファルネセンを使用することで、効率よくファルネセン系樹脂を調製できる。 The farnesene used in the farnesene resin may be prepared from petroleum resources by chemical synthesis, or may be extracted from insects such as aphids and plants such as apples, but is derived from sugar. It is preferably prepared by culturing a microorganism using a carbon source. By using the farnesene, a farnesene resin can be efficiently prepared.

糖としては、単糖、二糖、多糖のいずれであってもよく、これらを組み合わせて用いてもよい。単糖としては、グルコース、ガラクトース、マンノース、フルクトース、リボースなどが挙げられる。二糖としては、スクロース、ラクトース、マルトース、トレハロース、セロビオースなどが挙げられる。多糖としては、スターチ、グリコーゲン、セルロース、キチンなどが挙げられる。 The sugar may be a monosaccharide, a disaccharide, or a polysaccharide, or a combination thereof. Examples of monosaccharides include glucose, galactose, mannose, fructose, and ribose. Examples of the disaccharide include sucrose, lactose, maltose, trehalose, cellobiose and the like. Examples of the polysaccharide include starch, glycogen, cellulose, chitin and the like.

ファルネセンの製造に好適な糖は、多種多様な材料から得ることができ、例えば、サトウキビ、バガス、ミスカンタス、テンサイ、モロコシ、穀実用モロコシ、スイッチグラス、大麦、麻、ケナフ、ジャガイモ、サツマイモ、キャッサバ、ヒマワリ、果物、糖蜜、乳清、脱脂乳、トウモロコシ、ワラ、穀物、小麦、木、紙、麦わら、綿などが挙げられる。その他、セルロース廃棄物や、他のバイオマス材料も使用できる。なかでも、サトウキビ(Saccharum officinarum)などのSaccharum属に属する植物が好ましく、サトウキビがより好ましい。 Suitable sugars for the production of farnesene can be obtained from a wide variety of materials, such as sugar cane, bagasse, miscantas, sugar beet, sorghum, sorghum, switchgrass, barley, hemp, kenaf, potato, sweet potato, cassava , Sunflower, fruit, molasses, whey, skim milk, corn, straw, cereal, wheat, wood, paper, straw, cotton and the like. In addition, cellulose waste and other biomass materials can be used. Among them, plants belonging to the genus Saccharum such as sugar cane (Saccharum officinarum) are preferable, and sugar cane is more preferable.

微生物は、培養してファルネセンを製造できる微生物であれば特に限定されず、例えば、真核生物、細菌、古細菌などが挙げられる。真核生物としては、酵母、植物などが挙げられる。 The microorganism is not particularly limited as long as it can be cultured to produce farnesene, and examples thereof include eukaryotes, bacteria, archaea, and the like. Examples of eukaryotes include yeast and plants.

また、微生物は形質転換体であってもよい。形質転換体は、宿主となる微生物に、外来遺伝子を導入して得られる。外来遺伝子としては、特に限定されないが、ファルネセンの製造効率をより改善できるという理由から、ファルネセン産生に関与する外来遺伝子が好ましい。 The microorganism may be a transformant. A transformant is obtained by introducing a foreign gene into a host microorganism. The foreign gene is not particularly limited, but a foreign gene involved in farnesene production is preferable because the production efficiency of farnesene can be further improved.

培養条件は、微生物がファルネセンを製造できる条件であれば特に限定されない。微生物を培養する際に使用される培地としては、微生物の培養に通常使用される培地であればよい。具体的には、細菌の場合にはKB培地、LB培地が挙げられる。酵母の場合には、YM培地、KY培地、F101培地、YPD培地、YPAD培地が挙げられる。植物の場合には、Whiteの培地、Hellerの培地、SH培地(SchenkとHildebrandtの培地)、MS培地(MurashigeとSkoogの培地)、LS培地(LinsmaierとSkoogの培地)、Gamborg培地、B5培地、MB培地、WP培地(Woody Plant:木本類用)などの基本培地が挙げられる。 The culture conditions are not particularly limited as long as the microorganism can produce farnesene. The medium used for culturing microorganisms may be any medium that is usually used for culturing microorganisms. Specifically, in the case of bacteria, examples include KB medium and LB medium. In the case of yeast, YM medium, KY medium, F101 medium, YPD medium, and YPAD medium are exemplified. In the case of plants, White medium, Heller medium, SH medium (Schench and Hildebrandt medium), MS medium (Murashige and Skoog medium), LS medium (Linsmaier and Skoog medium), Gamburg medium, B5 medium, Examples include basic media such as MB media and WP media (Wood Plant: for wood).

培養温度は、微生物の種類によって異なるが、0〜50℃であることが好ましく、10〜40℃であることがより好ましく、20〜35℃であることが更に好ましい。pHは、pH3〜11であることが好ましく、4〜10であることがより好ましく、5〜9であることが更に好ましい。また、培養は、微生物の種類に応じて、嫌気的条件下、好気的条件下のいずれにおいても行うことができる。 Although culture | cultivation temperature changes with kinds of microorganisms, it is preferable that it is 0-50 degreeC, it is more preferable that it is 10-40 degreeC, and it is still more preferable that it is 20-35 degreeC. The pH is preferably from 3 to 11, more preferably from 4 to 10, and even more preferably from 5 to 9. Moreover, culture | cultivation can be performed on both anaerobic conditions and aerobic conditions according to the kind of microorganism.

微生物の培養は、バッチ式培養でも可能であり、また、バイオリアクターを用いた連続式培養でも可能である。具体的な培養方法として、振とう培養、回転培養などが挙げられる。ファルネセンは、微生物の細胞内に蓄積させることができ、また、培養上清中に生成蓄積させることもできる。 Microbial culture can be carried out by batch culture or continuous culture using a bioreactor. Specific culture methods include shaking culture, rotary culture, and the like. Farnesene can be accumulated in the cells of microorganisms and can also be produced and accumulated in the culture supernatant.

培養後の微生物からファルネセンを取得する場合、遠心分離により微生物を回収した後、微生物を破砕し、破砕液から1−ブタノールなどの溶剤を使用して抽出することができる。また、溶剤抽出法に、クロマトグラフィーなど公知の精製方法を適宜併用することもできる。ここで、微生物の破砕は、ファルネセンの変性・崩壊を防ぐために、例えば4℃などの低温で行うことが好ましい。微生物は、例えば、ガラスビーズを使用した物理的破砕などにより破砕することができる。 When obtaining farnesene from the cultured microorganism, the microorganism can be recovered by centrifugation, then the microorganism can be crushed and extracted from the crushed liquid using a solvent such as 1-butanol. In addition, a known purification method such as chromatography can be appropriately used in combination with the solvent extraction method. Here, the disruption of the microorganism is preferably performed at a low temperature such as 4 ° C. in order to prevent the denaturation / disintegration of farnesene. The microorganism can be crushed by, for example, physical crushing using glass beads.

培養上清からファルネセンを取得するには、遠心分離にて菌体を除去した後、得られた上清から、1−ブタノールなどの溶剤にて抽出すればよい。 In order to obtain farnesene from the culture supernatant, the cells are removed by centrifugation, and then extracted from the obtained supernatant with a solvent such as 1-butanol.

上述の微生物由来のファルネセンを使用して得られるファルネセン系樹脂は市販品として入手することができ、例えば、ファルネセン単独重合体としては、(株)クラレ製のKB−101、KB−107などが挙げられ、ファルネセン−スチレン共重合体としては、(株)クラレ製のFSR−221、FSR−242、FSR−251、FSR−262などが挙げられ、ファルネセン−ブタジエン共重合体としては、(株)クラレ製のFBR−746、FB−823、FB−884などが挙げられる。 The farnesene resin obtained by using the above-mentioned farnesene derived from microorganisms can be obtained as a commercial product. Examples of farnesene homopolymers include KB-101 and KB-107 manufactured by Kuraray Co., Ltd. Examples of the farnesene-styrene copolymer include FSR-221, FSR-242, FSR-251 and FSR-262 manufactured by Kuraray Co., Ltd., and farnesene-butadiene copolymers include Kuraray Co., Ltd. Examples thereof include FBR-746, FB-823, and FB-884.

ファルネセン系樹脂の含有量は、ゴム成分100質量部に対して、1質量部以上、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは8質量部以上、特に好ましくは15質量部以上である。1質量部未満では、ファルネセン系樹脂配合により得られる性能の改善効果が充分に得られない傾向がある。また、該含有量は、50質量部以下、好ましくは40質量部以下、より好ましくは30質量部以下である。50質量部を超えると、ハンドリング性能及び耐摩耗性が悪化する傾向がある。 The content of the farnesene resin is 1 part by mass or more, preferably 3 parts by mass or more, more preferably 5 parts by mass or more, still more preferably 8 parts by mass or more, particularly preferably 15 parts by mass with respect to 100 parts by mass of the rubber component. More than a part. If it is less than 1 part by mass, the effect of improving the performance obtained by blending the farnesene resin tends to be insufficient. Moreover, this content is 50 mass parts or less, Preferably it is 40 mass parts or less, More preferably, it is 30 mass parts or less. When it exceeds 50 parts by mass, handling performance and wear resistance tend to deteriorate.

本発明に係るゴム組成物は、シリカを含有する。前記ファルネセン系樹脂とともにシリカを配合することで、シリカを良好に分散させることができる。シリカとしては特に限定されず、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。シリカは単独で用いてもよく、2種以上組み合わせて用いてもよい。 The rubber composition according to the present invention contains silica. By blending silica with the farnesene resin, the silica can be dispersed well. The silica is not particularly limited, and examples thereof include dry method silica (anhydrous silica), wet method silica (hydrous silica) and the like, and wet method silica is preferable because of its large number of silanol groups. Silica may be used alone or in combination of two or more.

シリカの窒素吸着比表面積(NSA)は、40m/g以上、好ましくは50m/g以上、より好ましくは60m/g以上、更に好ましくは100m/g以上、特に好ましくは170m/g以上である。40m/g未満では、補強効果が小さく、耐摩耗性が低下する傾向がある。また、該NSAは、400m/g以下、好ましくは360m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下、特に好ましくは200m/g以下である。400m/gを超えると、シリカが分散しにくくなり、低燃費性や加工性が悪化する傾向がある。
なお、シリカのNSAは、ASTM D3037−81に準じて測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of silica is 40 m 2 / g or more, preferably 50 m 2 / g or more, more preferably 60 m 2 / g or more, still more preferably 100 m 2 / g or more, particularly preferably 170 m 2. / G or more. If it is less than 40 m 2 / g, the reinforcing effect is small and the wear resistance tends to decrease. Further, the N 2 SA is, 400 meters 2 / g or less, preferably 360 m 2 / g or less, more preferably 300 meters 2 / g or less, more preferably 250 meters 2 / g or less, particularly preferably at 200 meters 2 / g or less . When it exceeds 400 m < 2 > / g, it will become difficult to disperse | distribute a silica and there exists a tendency for low-fuel-consumption property and workability to deteriorate.
The N 2 SA of silica is a value measured according to ASTM D3037-81.

シリカの含有量は、ゴム成分100質量部に対して、10質量部以上、好ましくは30質量部以上、より好ましくは45質量部以上である。10質量部未満であると、シリカを配合した効果が充分に得られず、ウェットグリップ性能、ハンドリング性能及び耐摩耗性が悪化したり、タイヤ表面の変色を抑制できない傾向がある。また、該含有量は、150質量部以下、好ましくは100質量部以下である。150質量部を超えると、低燃費性及びハンドリング性能が悪化したり、タイヤ表面の変色を抑制できない傾向がある。 The content of silica is 10 parts by mass or more, preferably 30 parts by mass or more, more preferably 45 parts by mass or more with respect to 100 parts by mass of the rubber component. When the amount is less than 10 parts by mass, the effect of blending silica cannot be sufficiently obtained, and wet grip performance, handling performance, and wear resistance tend to deteriorate, or discoloration of the tire surface tends not to be suppressed. Moreover, this content is 150 mass parts or less, Preferably it is 100 mass parts or less. When it exceeds 150 parts by mass, fuel economy and handling performance tend to deteriorate or discoloration of the tire surface cannot be suppressed.

シリカを配合する際にシランカップリング剤を併用しても良い。シランカップリング剤としては、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィドなどが挙げられる。なかでも、補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)テトラスルフィド及び3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィドが好ましい。これらのシランカップリング剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A silane coupling agent may be used in combination with the silica. Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy). Silylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarb Moyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilyl Propyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide And dimethoxymethylsilylpropylbenzothiazole tetrasulfide. Of these, bis (3-triethoxysilylpropyl) tetrasulfide and 3-trimethoxysilylpropylbenzothiazole tetrasulfide are preferable from the viewpoint of reinforcing effect. These silane coupling agents may be used alone or in combination of two or more.

シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。1質量部未満では、未加硫ゴム組成物の粘度が高く、加工性が悪化する傾向がある。シランカップリング剤の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、コストの増加に見合った効果が得られない傾向がある。 The content of the silane coupling agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 1 part by mass, the viscosity of the unvulcanized rubber composition is high, and the processability tends to deteriorate. The content of the silane coupling agent is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. When it exceeds 20 parts by mass, there is a tendency that an effect commensurate with the increase in cost cannot be obtained.

添加剤としては、公知のものを用いることができ、硫黄などの加硫剤;チアゾール系加硫促進剤、チウラム系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤などの加硫促進剤;ステアリン酸、酸化亜鉛などの加硫活性化剤;有機過酸化物;カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどの充填剤;オイルなどの軟化剤;老化防止剤を例示することができる。 Known additives can be used, such as sulfur vulcanizing agents; thiazole vulcanization accelerators, thiuram vulcanization accelerators, sulfenamide vulcanization accelerators, guanidine vulcanization accelerators. Vulcanization accelerators such as stearic acid and zinc oxide; organic peroxides; fillers such as carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide, mica; oils, etc. Examples of softeners include anti-aging agents.

加硫促進剤としては、2−メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤をあげることができ、その使用量は、ゴム成分100質量部に対して0.1〜5質量部が好ましく、0.2〜3質量部がより好ましい。 Examples of the vulcanization accelerator include 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and thiazole vulcanization accelerators such as N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram monosulfide, tetramethylthiuram disulfide Thiuram vulcanization accelerators such as: N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxyethylene-2-benzothiazole sulfenamide, N- Sulfenamide vulcanization accelerators such as oxyethylene-2-benzothiazole sulfenamide and N, N′-diisopropyl-2-benzothiazole sulfenamide; diphenylguanidine, diortolylguanidine, orthotolylbiguanidine, etc. Can be mentioned guanidine vulcanization accelerator, its amount is preferably from 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component, more preferably 0.2 to 3 parts by weight.

カーボンブラックとしては、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCF及びECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FT及びMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPC及びCCのようなチャンネルブラック(チャンネルカーボンブラック);グラファイトなどをあげることができる。これらは1種又は2種以上組み合わせて用いることができる。 Carbon black includes furnace black (furnace carbon black) such as SAF, ISAF, HAF, MAF, FEF, SRF, GPF, APF, FF, CF, SCF and ECF; acetylene black (acetylene carbon black); FT and MT Thermal black (thermal carbon black) such as: Channel black (channel carbon black) such as EPC, MPC and CC; Graphite and the like. These can be used alone or in combination of two or more.

カーボンブラックの窒素吸着比表面積(NSA)は、通常、5〜200m/gであり、下限は好ましくは50m/g、より好ましくは80m/gであり、上限は好ましくは150m/g、より好ましくは120m/g、更に好ましくは100m/gである。また、カーボンブラックのジブチルフタレート(DBP)吸収量は、通常、5〜300ml/100gであり、下限は好ましくは80ml/100gであり、上限は好ましくは180ml/100g、より好ましくは150ml/100gである。カーボンブラックのNSAやDBP吸収量が前記範囲の下限未満では、補強効果が小さく耐摩耗性が低下する傾向があり、前記範囲の上限を超えると、分散性が悪く、ヒステリシスロスが増大し低燃費性が低下する傾向がある。該窒素吸着比表面積は、ASTM D4820−93に従って測定され、該DBP吸収量は、ASTM D2414−93に従って測定される。 Nitrogen adsorption specific surface area (N 2 SA) of carbon black is usually 5 to 200 m 2 / g, the lower limit is preferably 50 m 2 / g, more preferably 80 m 2 / g, the upper limit is preferably 150 meters 2 / G, more preferably 120 m 2 / g, still more preferably 100 m 2 / g. Carbon black has a dibutyl phthalate (DBP) absorption amount of usually 5 to 300 ml / 100 g, the lower limit is preferably 80 ml / 100 g, and the upper limit is preferably 180 ml / 100 g, more preferably 150 ml / 100 g. . If the N 2 SA or DBP absorption amount of the carbon black is less than the lower limit of the above range, the reinforcing effect tends to be small and the wear resistance tends to decrease. If the upper limit of the above range is exceeded, dispersibility is poor and hysteresis loss increases. There is a tendency for fuel efficiency to decrease. The nitrogen adsorption specific surface area is measured according to ASTM D4820-93, and the DBP absorption is measured according to ASTM D2414-93.

カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。1質量部未満では、充分な補強性が得られないおそれがある。また、該含有量は、好ましくは60質量部以下、より好ましくは30質量部以下、更に好ましくは15質量部以下、特に好ましくは10質量部以下である。60質量部を超えると、ゴムが硬くなりすぎて、ウェットグリップ性能が悪化する傾向がある。 The content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If the amount is less than 1 part by mass, sufficient reinforcement may not be obtained. The content is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less. If it exceeds 60 parts by mass, the rubber becomes too hard and the wet grip performance tends to deteriorate.

オイルとしては、アロマオイル(粘度比重恒数(V.G.C.値)0.900〜1.049)、ナフテンオイル(V.G.C.値0.850〜0.899)、パラフィンオイル(V.G.C.値0.790〜0.849)などがあげられ、必要に応じてブレンドして使用しても良い。 Examples of oils include aroma oil (viscosity specific gravity constant (VGC value) 0.900 to 1.049), naphthenic oil (VGC value 0.850 to 0.899), paraffin oil. (V.G.C. value 0.790 to 0.849) and the like may be used and may be blended if necessary.

上述のように、ファルネセン系樹脂は、従来軟化剤として配合されているオイルなどの一部又は全量と置き換えて配合することが好ましい。軟化剤100質量%中のファルネセン系樹脂の含有量は、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上、特に好ましくは60質量%以上、最も好ましくは80質量%以上であり、100質量%であってもよい。また、軟化剤の合計含有量(ファルネセン系樹脂の含有量を含む)は、ゴム成分100質量部に対して、好ましくは1〜100質量部、より好ましくは10〜80質量部、更に好ましくは15〜60質量部、特に好ましくは20〜40質量部である。 As described above, the farnesene-based resin is preferably blended by replacing part or all of oil or the like conventionally blended as a softening agent. The content of the farnesene resin in 100% by mass of the softening agent is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, particularly preferably 60% by mass or more, and most preferably 80%. It may be 100% by mass or more. Moreover, the total content of softeners (including the content of farnesene resin) is preferably 1 to 100 parts by mass, more preferably 10 to 80 parts by mass, and still more preferably 15 to 100 parts by mass of the rubber component. -60 mass parts, Especially preferably, it is 20-40 mass parts.

本発明に係るゴム組成物を製造する方法としては、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混錬する方法を用いることができる。 As a method for producing the rubber composition according to the present invention, a known method, for example, a method of kneading each component with a known mixer such as a roll or a banbury can be used.

混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50〜200℃であり、好ましくは80〜190℃であり、混練時間は、通常30秒〜30分であり、好ましくは1分〜30分である。 As kneading conditions, when additives other than the vulcanizing agent and the vulcanization accelerator are blended, the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30 seconds. -30 minutes, preferably 1-30 minutes.

加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温〜80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理を行って用いられる。加硫温度としては、通常120〜200℃、好ましくは140〜180℃である。 When blending a vulcanizing agent and a vulcanization accelerator, the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C. A composition containing a vulcanizing agent and a vulcanization accelerator is usually used after vulcanization treatment such as press vulcanization. The vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.

本発明に係るゴム組成物は、トレッド(キャップトレッド)に用いられる。 The rubber composition according to the present invention is used for a tread (cap tread).

本発明の夏用タイヤは、前記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合した前記ゴム組成物を、未加硫の段階でタイヤのトレッドの形状にあわせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、本発明の夏用タイヤを製造できる。 The summer tire of the present invention is produced by a usual method using the rubber composition. That is, the rubber composition blended with various additives as necessary, extruded according to the shape of the tread of the tire in the unvulcanized stage, and molded by a normal method on a tire molding machine, Bonding together with other tire members forms an unvulcanized tire. The unvulcanized tire can be heated and pressurized in a vulcanizer to produce the summer tire of the present invention.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下に、実施例及び比較例で用いた各種薬品について説明する。
NR:TSR20
BR:宇部興産(株)製のウベポールBR150B(シス含量:97質量%)
SBR:旭化成(株)製のアサプレン1205(スチレン含量:25質量%)
シリカ:デグッサ社製のウルトラシルVN3−G(NSA:175m/g)
シランカップリング剤:デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
カーボンブラック:三菱化学(株)製のダイアブラックN339(NSA:96m/g、DBP吸収量:124ml/100g)
オイル:(株)ジャパンエナジー製のX−140(アロマオイル)
老化防止剤:住友化学(株)製のアンチゲン3C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ワックス:大内新興化学工業(株)製のサンノックN
ファルネセン単独重合体1:(株)クラレ製のKB−101(Mw:10000、溶融粘度:0.7Pa・s、Tg:−72℃)
ファルネセン単独重合体2:(株)クラレ製のKB−107(Mw:135000、溶融粘度:69Pa・s、Tg:−71℃)
ファルネセン−スチレン共重合体1:(株)クラレ製のFSR−221(Mw:10000、質量基準の共重合比:ファルネセン/スチレン=77/23、溶融粘度:5.7Pa・s、Tg:−54℃)
ファルネセン−スチレン共重合体2:(株)クラレ製のFSR−242(Mw:10000、質量基準の共重合比:ファルネセン/スチレン=60/40、溶融粘度:59.2Pa・s、Tg:−35℃)
ファルネセン−ブタジエン共重合体1:(株)クラレ製のFBR−746(Mw:100000、質量基準の共重合比:ファルネセン/ブタジエン=60/40、溶融粘度:603Pa・s、Tg:−78℃)
ファルネセン−ブタジエン共重合体2:(株)クラレ製のFB−823(Mw:50000、質量基準の共重合比:ファルネセン/ブタジエン=80/20、溶融粘度:13Pa・s、Tg=−78℃)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:住友化学(株)製のソクシノールCZ
加硫促進剤2:住友化学(株)製のソクシノールD
Below, various chemical | medical agents used by the Example and the comparative example are demonstrated.
NR: TSR20
BR: Ubepol BR150B manufactured by Ube Industries, Ltd. (cis content: 97% by mass)
SBR: ASAPRENE 1205 manufactured by Asahi Kasei Corporation (styrene content: 25% by mass)
Silica: Ultrasil VN3-G (N 2 SA: 175 m 2 / g) manufactured by Degussa
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa
Carbon black: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 96 m 2 / g, DBP absorption: 124 ml / 100 g)
Oil: X-140 (Aroma Oil) manufactured by Japan Energy Co., Ltd.
Anti-aging agent: Antigen 3C manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate Zinc oxide: Zinc flower No. 1 manufactured by Mitsui Kinzoku Mining Co., Ltd. Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Co., Ltd.
Farnesene homopolymer 1: KB-101 manufactured by Kuraray Co., Ltd. (Mw: 10,000, melt viscosity: 0.7 Pa · s, Tg: −72 ° C.)
Farnesene homopolymer 2: KB-107 manufactured by Kuraray Co., Ltd. (Mw: 135000, melt viscosity: 69 Pa · s, Tg: −71 ° C.)
Farnesene-styrene copolymer 1: FSR-221 manufactured by Kuraray Co., Ltd. (Mw: 10,000, copolymerization ratio based on mass: farnesene / styrene = 77/23, melt viscosity: 5.7 Pa · s, Tg: −54 ℃)
Farnesene-styrene copolymer 2: FSR-242 manufactured by Kuraray Co., Ltd. (Mw: 10000, copolymerization ratio based on mass: farnesene / styrene = 60/40, melt viscosity: 59.2 Pa · s, Tg: −35 ℃)
Farnesene-butadiene copolymer 1: FBR-746 manufactured by Kuraray Co., Ltd. (Mw: 100,000, copolymerization ratio based on mass: farnesene / butadiene = 60/40, melt viscosity: 603 Pa · s, Tg: −78 ° C.)
Farnesene-butadiene copolymer 2: FB-823 manufactured by Kuraray Co., Ltd. (Mw: 50000, copolymerization ratio based on mass: farnesene / butadiene = 80/20, melt viscosity: 13 Pa · s, Tg = −78 ° C.)
Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Soxinol CZ manufactured by Sumitomo Chemical Co., Ltd.
Vulcanization accelerator 2: Soxinol D manufactured by Sumitomo Chemical Co., Ltd.

(実施例及び比較例)
表1〜3に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で12分間加硫し、試験用タイヤ(サイズ:195/65R15)を製造した。
(Examples and Comparative Examples)
In accordance with the composition shown in Tables 1 to 3, materials other than sulfur and a vulcanization accelerator were kneaded for 5 minutes at 150 ° C. using a 1.7 L Banbury mixer manufactured by Kobe Steel, Ltd., and mixed. A kneaded paste was obtained. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 5 minutes under the condition of 80 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm thick mold at 170 ° C. for 12 minutes to obtain a vulcanized rubber composition. Further, the obtained unvulcanized rubber composition is molded into a tread shape and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, which is vulcanized at 170 ° C. for 12 minutes, and tested. Tires (size: 195 / 65R15) were manufactured.

得られた加硫ゴム組成物及び試験用タイヤについて下記の評価を行った。結果を表1〜3に示す。 The following evaluation was performed about the obtained vulcanized rubber composition and the tire for a test. The results are shown in Tables 1-3.

<試験項目及び試験方法> <Test items and test methods>

(低燃費性指数)
シート状の加硫ゴム組成物を粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み1%の条件下で各配合のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が大きいほど低燃費性が優れる。
(低燃費性指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(Low fuel consumption index)
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), a sheet-like vulcanized rubber composition was measured for tan δ of each formulation under conditions of a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 1%. The tan δ of Comparative Example 1 was taken as 100, and the index was expressed by the following formula. The higher the index, the better the fuel efficiency.
(Low fuel consumption index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100

(ウェットグリップ性能指数)
シート状の加硫ゴム組成物を粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、周波数10Hz、動歪み0.1%、温度0℃の条件下で各配合のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が大きいほどウェットグリップ性能に優れる。
(ウェットグリップ性能指数)=(各配合のtanδ)/(比較例1のtanδ)×100
(Wet grip performance index)
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), a sheet-like vulcanized rubber composition was measured for tan δ of each formulation under the conditions of frequency 10 Hz, dynamic strain 0.1%, and temperature 0 ° C. The tan δ of Comparative Example 1 was taken as 100, and the index was expressed by the following formula. The larger the index, the better the wet grip performance.
(Wet grip performance index) = (tan δ of each formulation) / (tan δ of Comparative Example 1) × 100

(黒色度)
オゾン50pphm、40℃で1週間放置した後の試験用タイヤについて、色差計を用いて黒色度を測定し、タイヤ表面の変色(白変及び茶変)を下記基準で評価した。
5:変色なし
4:若干変色
3:変色部位が全体の半分未満
2:変色部位が全体の半分以上
1:全面的に変色
(Blackness)
About the tire for a test after leaving to stand at ozone 50ppph and 40 degreeC for 1 week, the blackness was measured using the color difference meter, and the discoloration (white discoloration and brown discoloration) of the tire surface was evaluated on the following reference | standard.
5: No discoloration 4: Slight discoloration 3: Discolored part is less than half of the whole 2: Discolored part is more than half of the whole 1: Discolored entirely

(ハンドリング性能指数)
上記試験用タイヤを排気量2500ccの乗用車に装着し、1周3kmのコースを蛇行しながら走行し、ハンドリング性能を以下に示す基準で官能評価した。
5点を基準とし、
6.5点:明らかに感知できる程度良い
6点:十分に感知できる程度良い
5.5点:わずかに感知できる程度良い
4.5点:わずかに感知できる程度悪い
4点:十分に感知できる程度悪い
3.5点:明らかに感知できる程度悪い
(Handling performance index)
The test tire was mounted on a passenger car with a displacement of 2500 cc, and it traveled while meandering a course of 3 km per lap, and the handling performance was sensory evaluated according to the following criteria.
Based on 5 points,
6.5 points: good enough to detect clearly 6 points: good enough to detect enough 5.5 points: good enough to detect slightly 4.5 points: slightly perceptible bad 4 points: enough to detect Bad 3.5: Bad enough to be clearly detected

(耐摩耗性指数)
ランボーン型摩耗試験機を用いて、室温、負荷荷重1.0kgf、スリップ率30%の条件で摩耗量を測定した。摩耗量の逆数を、比較例1を100として指数表示をした。数値が大きいほど耐摩耗性が高いことを示す。
(Abrasion resistance index)
The amount of wear was measured at room temperature, a load of 1.0 kgf, and a slip rate of 30% using a Lambone-type wear tester. The reciprocal of the amount of wear was displayed as an index with Comparative Example 1 as 100. The larger the value, the higher the wear resistance.

Figure 2016003269
Figure 2016003269

Figure 2016003269
Figure 2016003269

Figure 2016003269
Figure 2016003269

表1〜3より、窒素吸着比表面積が特定の範囲内であるシリカと、重量平均分子量が特定の範囲内であるファルネセン系樹脂とをそれぞれ所定量配合した実施例は、低燃費性、ウェットグリップ性能及びハンドリング性能のバランスに優れるとともに、タイヤ表面の変色も抑制された。また、特に、ファルネセン系樹脂としてファルネセン−ブタジエン共重合体を配合した場合、耐摩耗性も改善された。 From Tables 1 to 3, the examples in which a predetermined amount of silica having a nitrogen adsorption specific surface area within a specific range and a farnesene resin having a weight average molecular weight within a specific range are combined. In addition to excellent balance between performance and handling performance, discoloration of the tire surface was also suppressed. In particular, when a farnesene-butadiene copolymer was blended as the farnesene resin, the wear resistance was also improved.

Claims (8)

ゴム成分100質量部に対して、重量平均分子量が1000〜500000のファルネセン系樹脂を1〜50質量部、窒素吸着比表面積が40〜400m/gのシリカを10〜150質量部含有するゴム組成物を用いて作製したトレッドを有する夏用タイヤ。 A rubber composition containing 1 to 50 parts by mass of a farnesene resin having a weight average molecular weight of 1000 to 500,000 and 10 to 150 parts by mass of silica having a nitrogen adsorption specific surface area of 40 to 400 m 2 / g with respect to 100 parts by mass of the rubber component. A summer tire having a tread made from a product. 前記ファルネセン系樹脂がファルネセンの単独重合体である請求項1記載の夏用タイヤ。 The summer tire according to claim 1, wherein the farnesene resin is a homopolymer of farnesene. 前記ファルネセン系樹脂がファルネセンとビニルモノマーとの共重合体である請求項1記載の夏用タイヤ。 The summer tire according to claim 1, wherein the farnesene resin is a copolymer of farnesene and a vinyl monomer. 前記ビニルモノマーがスチレンである請求項3記載の夏用タイヤ。 The summer tire according to claim 3, wherein the vinyl monomer is styrene. 前記ビニルモノマーがブタジエンである請求項3記載の夏用タイヤ。 The summer tire according to claim 3, wherein the vinyl monomer is butadiene. 前記共重合体における前記ファルネセンと前記ビニルモノマーとの共重合比が、質量基準で、ファルネセン/ビニルモノマー=99/1〜25/75である請求項3〜5のいずれかに記載の夏用タイヤ。 The summer tire according to any one of claims 3 to 5, wherein a copolymerization ratio of the farnesene and the vinyl monomer in the copolymer is farnesene / vinyl monomer = 99/1 to 25/75 on a mass basis. . 前記共重合体の38℃における溶融粘度が1000Pa・s以下である請求項3〜6のいずれかに記載の夏用タイヤ。 The summer tire according to any one of claims 3 to 6, wherein the copolymer has a melt viscosity at 38 ° C of 1000 Pa · s or less. 前記ファルネセン系樹脂が、糖から誘導される炭素源を用いて微生物を培養することによって調製されたファルネセンを重合して得られるものである請求項1〜7のいずれかに記載の夏用タイヤ。 The summer tire according to any one of claims 1 to 7, wherein the farnesene resin is obtained by polymerizing farnesene prepared by culturing microorganisms using a carbon source derived from sugar.
JP2014123595A 2014-06-16 2014-06-16 Summer tires Active JP6348348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123595A JP6348348B2 (en) 2014-06-16 2014-06-16 Summer tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123595A JP6348348B2 (en) 2014-06-16 2014-06-16 Summer tires

Publications (2)

Publication Number Publication Date
JP2016003269A true JP2016003269A (en) 2016-01-12
JP6348348B2 JP6348348B2 (en) 2018-06-27

Family

ID=55222808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123595A Active JP6348348B2 (en) 2014-06-16 2014-06-16 Summer tires

Country Status (1)

Country Link
JP (1) JP6348348B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131501A (en) * 2017-02-14 2018-08-23 株式会社クラレ Rubber composition for high grip tire tread
JP2018131502A (en) * 2017-02-14 2018-08-23 株式会社クラレ Rubber composition for tread of passenger car summer tire
EP3461656A1 (en) * 2017-09-29 2019-04-03 Sumitomo Rubber Industries, Ltd. Tire
JP2019108450A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP2019131648A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP2020523441A (en) * 2017-06-07 2020-08-06 フィナ テクノロジー,インコーポレイティド Silane-functionalized poly(farnesene) and rubber compound containing it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502136A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Farnesene copolymer
JP2013231196A (en) * 2012-04-04 2013-11-14 Kuraray Co Ltd Copolymer, and rubber composition and tire using the same
JP2013241609A (en) * 2012-02-24 2013-12-05 Kuraray Co Ltd Rubber composition and tire
JP2014058666A (en) * 2012-04-04 2014-04-03 Kuraray Co Ltd Copolymer, rubber composition using the same, and tire
JP2015218255A (en) * 2014-05-16 2015-12-07 横浜ゴム株式会社 Rubber composition for tire tread

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502136A (en) * 2008-09-04 2012-01-26 アムイリス ビオテクフノロジエス,インコーポレイテッド Farnesene copolymer
JP2013241609A (en) * 2012-02-24 2013-12-05 Kuraray Co Ltd Rubber composition and tire
JP2013231196A (en) * 2012-04-04 2013-11-14 Kuraray Co Ltd Copolymer, and rubber composition and tire using the same
JP2014058666A (en) * 2012-04-04 2014-04-03 Kuraray Co Ltd Copolymer, rubber composition using the same, and tire
JP2015218255A (en) * 2014-05-16 2015-12-07 横浜ゴム株式会社 Rubber composition for tire tread

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018131501A (en) * 2017-02-14 2018-08-23 株式会社クラレ Rubber composition for high grip tire tread
JP2018131502A (en) * 2017-02-14 2018-08-23 株式会社クラレ Rubber composition for tread of passenger car summer tire
JP2020523441A (en) * 2017-06-07 2020-08-06 フィナ テクノロジー,インコーポレイティド Silane-functionalized poly(farnesene) and rubber compound containing it
JP7185645B2 (en) 2017-06-07 2022-12-07 フィナ テクノロジー,インコーポレイティド Silane-functionalized poly(farnesene) and rubber compounds containing same
EP3461656A1 (en) * 2017-09-29 2019-04-03 Sumitomo Rubber Industries, Ltd. Tire
JP2019065270A (en) * 2017-09-29 2019-04-25 住友ゴム工業株式会社 tire
JP7225620B2 (en) 2017-09-29 2023-02-21 住友ゴム工業株式会社 tire
JP2019108450A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP7069688B2 (en) 2017-12-18 2022-05-18 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP2019131648A (en) * 2018-01-29 2019-08-08 住友ゴム工業株式会社 Tire rubber composition and tire
JP7331332B2 (en) 2018-01-29 2023-08-23 住友ゴム工業株式会社 Tire rubber composition and tire

Also Published As

Publication number Publication date
JP6348348B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6084911B2 (en) Pneumatic tire
JP6021734B2 (en) Rubber composition and pneumatic tire
JP6352691B2 (en) Truck / Bus Tire
EP2783880B1 (en) Studless winter tire
JP6348348B2 (en) Summer tires
WO2016098505A1 (en) Pneumatic tire
JP6300490B2 (en) Rubber composition and pneumatic tire
JP6329187B2 (en) Tire and manufacturing method thereof
JP7225620B2 (en) tire
JP6360107B2 (en) Rubber composition and pneumatic tire
US20190100643A1 (en) Tire
US9873775B2 (en) Rubber composition and pneumatic tire formed from said rubber composition
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
JP6348347B2 (en) Pneumatic tire
JP6332903B2 (en) Rubber composition for tire and pneumatic tire
JP2017206710A (en) Rubber composition and pneumatic tire
JP4272289B2 (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180531

R150 Certificate of patent or registration of utility model

Ref document number: 6348348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250