JP2016001288A - Variable focus lens - Google Patents

Variable focus lens Download PDF

Info

Publication number
JP2016001288A
JP2016001288A JP2014121863A JP2014121863A JP2016001288A JP 2016001288 A JP2016001288 A JP 2016001288A JP 2014121863 A JP2014121863 A JP 2014121863A JP 2014121863 A JP2014121863 A JP 2014121863A JP 2016001288 A JP2016001288 A JP 2016001288A
Authority
JP
Japan
Prior art keywords
light
single crystal
focus lens
variable focus
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121863A
Other languages
Japanese (ja)
Other versions
JP6259360B2 (en
Inventor
宗範 川村
Munenori Kawamura
宗範 川村
小林 潤也
Junya Kobayashi
潤也 小林
坂本 尊
Takashi Sakamoto
尊 坂本
今井 欽之
Kaneyuki Imai
欽之 今井
純 宮津
Jun Miyatsu
純 宮津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014121863A priority Critical patent/JP6259360B2/en
Publication of JP2016001288A publication Critical patent/JP2016001288A/en
Application granted granted Critical
Publication of JP6259360B2 publication Critical patent/JP6259360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable focus lens having higher performance, while improving a variable focal length, and maintaining high-speed response, by the same degree of a voltage as an applied voltage to a conventional variable focus lens.SOLUTION: A variable focus lens includes: a single crystal substrate 11 having an electrooptic effect; a first electrode pair 12a, 12b formed on a surface entered by light, a first surface which is orthogonal to the surface entered by light, and a second surface facing to the first surface; and a second electrode pair 13a, 13b formed on a surface from which light is emitted, and a first surface and a second surface which are orthogonal to the surface from which light is emitted.

Description

本発明は、可変焦点レンズに関し、より詳細には、電気光学効果を有する物質の単結晶を用いた可変焦点レンズにおいて、焦点距離を変更可能とした可変焦点レンズに関する。   The present invention relates to a variable focus lens, and more particularly, to a variable focus lens in which a focal length can be changed in a variable focus lens using a single crystal of a substance having an electro-optic effect.

光学レンズ、プリズムといった光学部品は、カメラ、顕微鏡、望遠鏡などの光学機器、プリンタ、コピー機など電子写真方式の記録装置、DVDなどの光記録装置、通信用、工業用の光デバイスなどに用いられている。通常の光学レンズは、焦点距離が固定されているため、上記の機器、装置の中には、状況に応じて焦点距離を調整することのできるレンズ、いわゆる可変焦点レンズを用いる場合がある。従来の可変焦点レンズは、複数のレンズを組み合わせて、機械的に焦点距離を調整する。しかしながら、このような機械式の可変焦点レンズは、応答速度・製造コスト・小型化・消費電力などの点から適用範囲を広げることには限界があった。   Optical parts such as optical lenses and prisms are used in optical equipment such as cameras, microscopes, and telescopes, electrophotographic recording devices such as printers and copiers, optical recording devices such as DVDs, optical devices for communication, and industrial use. ing. Since a normal optical lens has a fixed focal length, a lens that can adjust the focal length according to the situation, a so-called variable focus lens, may be used in the above devices and apparatuses. The conventional variable focus lens mechanically adjusts the focal length by combining a plurality of lenses. However, there is a limit to extending the application range of such a mechanical variable focus lens in terms of response speed, manufacturing cost, miniaturization, power consumption, and the like.

そこで、特許文献1に記載されているように、光学レンズを構成する透明媒質に、屈折率を可変できる物質を使用した可変焦点レンズが知られている。また、非特許文献1に記載されているように、機械的に光学レンズの形状を変形させる可変焦点レンズが提案されている。しかしながら、このような可変焦点レンズは、いずれも、焦点距離を変化させるのに要する応答時間に限界があり、1ms以下の高速応答に適用することができないという問題があった。   Therefore, as described in Patent Document 1, a variable focus lens using a material capable of changing a refractive index for a transparent medium constituting an optical lens is known. Also, as described in Non-Patent Document 1, a variable focus lens that mechanically deforms the shape of an optical lens has been proposed. However, any of these variable focus lenses has a problem in that the response time required to change the focal length is limited and cannot be applied to a high-speed response of 1 ms or less.

そこで、特許文献2に記載されているように、電気光学効果を有する光学材料を用いた可変焦点レンズが提案され、1ms以下の高速応答を実現している。   Therefore, as described in Patent Document 2, a variable focus lens using an optical material having an electro-optic effect has been proposed, and a high-speed response of 1 ms or less is realized.

特開平11−064817号公報Japanese Patent Laid-Open No. 11-064817 特開2014−026229号公報JP 2014-026229 A

金子卓他、「可変焦点レンズを用いた長焦点深度視覚機構」、デンソーテクニカルレビュー、Vol.3, No.1, p.52-58, 1998.Takashi Kaneko et al., "Long focal depth visual mechanism using variable focus lens", Denso Technical Review, Vol.3, No.1, p.52-58, 1998.

しかしながら、特許文献2に記載の可変焦点レンズにおいて、焦点距離をさらに短くするためには、さらに、大きな電圧を印加する必要がある。しかし、印加電圧が大きくなるほど、高速動作は難しくなる。また、レンズの性能として重要な波面収差は、印加電圧の増大に伴い劣化するという問題があった。このため、特許文献2に記載の可変焦点レンズにおいて使用される印加電圧において、レンズとしての性能、具体的には焦点距離を改善することができれば、高速応答を維持しながら、より高性能のレンズを実現することができる。   However, in the variable focal length lens described in Patent Document 2, it is necessary to apply a larger voltage in order to further shorten the focal length. However, the higher the applied voltage, the more difficult the high speed operation. Further, there is a problem that wavefront aberration, which is important for lens performance, deteriorates as the applied voltage increases. For this reason, if the applied voltage used in the variable focus lens described in Patent Document 2 can improve the performance as a lens, specifically the focal length, a higher performance lens while maintaining a high-speed response. Can be realized.

本発明の目的は、従来の可変焦点レンズの印加電圧と同程度の電圧により、可変焦点距離を改善し、高速応答を維持しながら、より高性能の可変焦点レンズを提供することにある。   An object of the present invention is to provide a variable focus lens with higher performance while improving the variable focal length and maintaining a high-speed response with a voltage comparable to the applied voltage of a conventional variable focus lens.

本発明は、このような目的を達成するために、可変焦点レンズの一実施態様は、電気光学効果を有する単結晶基板と、該単結晶基板に光が入射する面、前記光が入射する面と直交する第1の面、および該第1の面に対向する第2の面とに形成された第1の電極対であって、第1の陽極は、前記第1の面と前記光が入射する面とが接する辺をまたいで前記第1の面と前記光が入射する面とに形成され、第1の陰極は、前記第2の面と前記光が入射する面とが接する辺をまたいで前記第2の面と前記光が入射する面とに形成された第1の電極対と、前記単結晶基板から光が出射する面、前記光が出射する面と直交する前記第1の面および前記第2の面とに形成された第2の電極対であって、第2の陽極は、前記第2の面と前記光が出射する面とが接する辺をまたいで前記第2の面と前記光が出射する面とに形成され、第2の陰極は、前記第1の面と前記光が出射する面とが接する辺をまたいで前記第1の面と前記光が出射する面とに形成された第2の電極対とを備え、前記第1および第2の電極対の間の印加電圧を変えることにより、前記単結晶基板を透過する光の焦点を可変することを特徴とする。   In order to achieve such an object, one embodiment of the variable focus lens according to the present invention includes a single crystal substrate having an electro-optic effect, a surface on which light is incident on the single crystal substrate, and a surface on which the light is incident. A first electrode pair formed on a first surface orthogonal to the first surface and a second surface opposite to the first surface, wherein the first anode has the first surface and the light The first cathode and the light incident surface are formed across the side where the incident surface is in contact, and the first cathode has a side where the second surface and the light incident surface are in contact with each other. A first electrode pair formed on the second surface and the surface on which the light is incident, a surface on which light is emitted from the single crystal substrate, and the first surface orthogonal to the surface on which the light is emitted. A second electrode pair formed on the surface and the second surface, wherein the second anode has the second surface and a surface from which the light is emitted. The second cathode is formed on the second surface and the surface from which the light is emitted. The second cathode straddles the first surface across the side where the first surface and the surface from which the light is emitted. And a second electrode pair formed on the surface from which the light is emitted, and light transmitted through the single crystal substrate by changing an applied voltage between the first and second electrode pairs. It is characterized by changing the focus of the lens.

本発明によれば、電気光学効果を有する単結晶材料を用いた可変焦点レンズにおいて、光の入射面および出射面の一部にも連続して電極を形成したことにより、従来の可変焦点レンズと比較して、同じ印加電圧でありながら、結晶内部の屈折率変化を大きくすることができるので、焦点距離をより小さくすることができる。   According to the present invention, in a variable focus lens using a single crystal material having an electro-optic effect, electrodes are continuously formed on a part of the light incident surface and the light output surface. In comparison, since the change in the refractive index inside the crystal can be increased with the same applied voltage, the focal length can be further reduced.

従来の可変焦点レンズの構成を示す図である。It is a figure which shows the structure of the conventional variable focus lens. 従来の可変焦点レンズ内部の電気力線と屈折率変調量を示す図である。It is a figure which shows the electric force line and refractive index modulation amount inside the conventional variable focus lens. 本発明の一実施形態にかかる可変焦点レンズの構成を示す図である。It is a figure which shows the structure of the variable focus lens concerning one Embodiment of this invention. 本実施形態の可変焦点レンズ内部の電気力線と屈折率変調量を示す図である。It is a figure which shows the electric force line and refractive index modulation amount inside the variable focus lens of this embodiment. 焦点距離と電極間距離との相関を比較した図である。It is the figure which compared the correlation with a focal distance and the distance between electrodes. 本実施形態の可変焦点レンズの焦点距離と電極間距離との相関を示す図である。It is a figure which shows the correlation with the focal distance of the variable focus lens of this embodiment, and the distance between electrodes. 本実施形態の可変焦点レンズの波面収差と電極間距離との相関を示す図である。It is a figure which shows the correlation with the wavefront aberration of the variable focus lens of this embodiment, and the distance between electrodes.

はじめに、電気光学効果と光路長変調について説明し、次に、本発明の実施形態について詳細に説明する。   First, an electro-optic effect and optical path length modulation will be described, and then an embodiment of the present invention will be described in detail.

図1に、従来の可変焦点レンズの構成を示す。直方体に切り出された電気光学効果を有する単結晶基板1において、光4が入射する面および出射する面と直交する面のうち、x軸およびy軸に平行な対向する2面に、2対の電極対が間隔をあけて形成されている。光の入射側に第1の電極対2a,2b、光の出射側に第2の電極対3a,3bが形成されており、電極2a,3aが陽極、電極2b,3bが陰極である。   FIG. 1 shows a configuration of a conventional variable focus lens. In the single crystal substrate 1 having an electro-optic effect cut out to a rectangular parallelepiped, two pairs of two surfaces parallel to the x-axis and the y-axis are opposed to each other among the surface on which the light 4 is incident and the surface orthogonal to the surface from which the light 4 is emitted. Electrode pairs are formed at intervals. A first electrode pair 2a, 2b is formed on the light incident side, and a second electrode pair 3a, 3b is formed on the light emission side. The electrodes 2a, 3a are anodes and the electrodes 2b, 3b are cathodes.

図2に、従来の可変焦点レンズ内部の電気力線と屈折率変調量を示す。単結晶基板1をy軸方向から見たときの結晶内部の電気力線の形状を示し、その右側に、z軸方向の屈折率変調量Δnを、模式的に示す。   FIG. 2 shows the lines of electric force and the amount of refractive index modulation inside the conventional variable focus lens. The shape of the electric lines of force inside the crystal when the single crystal substrate 1 is viewed from the y-axis direction is shown, and the refractive index modulation amount Δn in the z-axis direction is schematically shown on the right side thereof.

(電気光学効果)
電気光学効果については、特許文献2に記載の通り、いくつかの次数が異なる電気光学効果が含まれる。可変焦点レンズには、一般的、1次の電気光学効果(以下、ポッケルス効果という)、または、2次の電気光学効果(以下、カー効果という)を示す単結晶材料が用いられる。ポッケルス効果を利用する場合、屈折率変化は印加した電界に比例する。そのため、図1に示した単結晶基板1に、ポッケルス効果を有する物質を用いた場合、電気力線の向きが逆のため、屈折率変化は相殺されて、レンズとしての機能を果たさない。
(Electro-optic effect)
As for the electro-optic effect, as described in Patent Document 2, several electro-optic effects having different orders are included. For the variable focus lens, a single crystal material that generally exhibits a primary electro-optic effect (hereinafter referred to as Pockels effect) or a secondary electro-optic effect (hereinafter referred to as Kerr effect) is used. When utilizing the Pockels effect, the refractive index change is proportional to the applied electric field. Therefore, when a material having the Pockels effect is used for the single crystal substrate 1 shown in FIG. 1, the direction of the electric lines of force is reversed, so that the change in refractive index is canceled and the function as a lens is not achieved.

一方、カー効果を利用する場合、屈折率変化は印加した電界の二乗に比例する。したがって、電気力線の向きが逆であっても、屈折率変化は等しくなり、レンズとして機能する。図2に示すように、電気力線の曲率が電気光学結晶中の場所によって異なるため、結晶内部に電界の分布が発生し、これによって屈折率変化の分布が発生し、レンズとして機能する。この屈折率分布は、z−x平面において放物線を描き、放物線が上に凸のとき、凸レンズとして機能し、下に凸のとき、凹レンズとして機能する。図2には、単結晶基板1に入射される光4の電界振幅の向きがz軸方向の場合における、z−x平面における屈折率変化Δnを模式的に示している。各電極対に印加される電圧が0のときは、屈折率変化は0であり、電圧を印加した際の屈折率変化は放物線を描き、レンズとして機能する。   On the other hand, when the Kerr effect is used, the refractive index change is proportional to the square of the applied electric field. Therefore, even if the direction of the lines of electric force is reversed, the refractive index changes are equal and function as a lens. As shown in FIG. 2, the curvature of the electric lines of force varies depending on the location in the electro-optic crystal, so that an electric field distribution is generated inside the crystal, thereby generating a refractive index change distribution and functioning as a lens. This refractive index distribution draws a parabola in the zx plane, and functions as a convex lens when the parabola is convex upward, and functions as a concave lens when convex downward. FIG. 2 schematically shows the refractive index change Δn in the zx plane when the direction of the electric field amplitude of the light 4 incident on the single crystal substrate 1 is the z-axis direction. When the voltage applied to each electrode pair is 0, the refractive index change is 0, and when the voltage is applied, the refractive index change draws a parabola and functions as a lens.

カー効果を有する物質として、ぺロブスカイト構造を有する単結晶材料があり、使用温度を適切に選択すれば、カー効果を発現する立方晶相に相転移させることが可能である。例えば、チタン酸バリウム(BaTiO)は、120℃付近において正方晶相から、カー効果を発現する立方晶相へと相転移する。また、タンタル酸ニオブ酸カリウム(KTN:KTa1−xNb、0<x<1)を主成分とする単結晶材料は、電気光学効果を利用した素子の観点から、チタン酸バリウム(BaTiO)よりも好適な特徴を有する。 As a substance having a Kerr effect, there is a single crystal material having a perovskite structure. If a use temperature is appropriately selected, a phase transition to a cubic phase that exhibits a Kerr effect can be achieved. For example, barium titanate (BaTiO 3 ) undergoes a phase transition from a tetragonal phase to a cubic phase that exhibits the Kerr effect at around 120 ° C. In addition, a single crystal material mainly composed of potassium tantalate niobate (KTN: KTa 1-x Nb x O 3 , 0 <x <1) is made of barium titanate (from the viewpoint of an element utilizing the electro-optic effect). It has more preferable characteristics than BaTiO 3 ).

チタン酸バリウム(BaTiO)は、相転移温度が決まっているのに対し、KTNはタンタルとニオブの組成比、つまり化学式におけるxの値により、相転移温度を選択することができる。KTNは、相転移温度よりも高い温度であれば、大きなカー効果を発現する立方晶相となり、また、相転移温度に近いほどカー効果は大きくなる。このため、タンタルとニオブの組成比を変えることで、相転移温度を室温付近に選択することにより、大きなカー効果を簡便に発現させることができる。 While barium titanate (BaTiO 3 ) has a predetermined phase transition temperature, KTN can select the phase transition temperature based on the composition ratio of tantalum and niobium, that is, the value of x in the chemical formula. If KTN is a temperature higher than the phase transition temperature, it becomes a cubic phase exhibiting a large Kerr effect, and the Kerr effect becomes larger as it is closer to the phase transition temperature. Therefore, by changing the composition ratio of tantalum and niobium, a large Kerr effect can be easily expressed by selecting the phase transition temperature near room temperature.

また、KTNに関連する単結晶材料として、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含む材料を用いることができる。さらに、添加不純物としてカリウムを除く周期律表Ia族、例えばリチウム、またはIIa族の1または複数種を含むこともできる。例とば、立方晶のKLTN(K1−yLiTa1−xNb、0<x<1、0<y<1)結晶を用いることもできる。 In addition, as a single crystal material related to KTN, the main component of the crystal is composed of periodic group Ia group and Va group, group Ia is potassium, and group Va includes at least one of niobium and tantalum. Materials can be used. Furthermore, it is possible to include one or more members of Group Ia of the periodic table excluding potassium as an additive impurity, for example, lithium, or Group IIa. For example, cubic KLTN (K 1-y Li y Ta 1-x Nb x O 3 , 0 <x <1, 0 <y <1) crystal may be used.

(光路長変調)
図2において、レンズの特性は、下記の式のように、屈折率変調量Δnを光の進行経路(長さL)にわたって積分した光路長変調Δsによって評価する。
(Optical path length modulation)
In FIG. 2, the characteristic of the lens is evaluated by optical path length modulation Δs obtained by integrating the refractive index modulation amount Δn over the light traveling path (length L) as in the following equation.

Figure 2016001288
Figure 2016001288

ただし、偏光は、光電界の向きがy軸方向の場合と、z軸方向の場合の2種類があり、それぞれの場合に、光が感じる屈折率変調Δnは異なるので、光路長変調Δsも異なる。 However, there are two types of polarized light, when the direction of the optical electric field is in the y-axis direction and in the z-axis direction. In each case, the refractive index modulation Δn that the light senses is different, so the optical path length modulation Δs is also different. .

(本発明の実施形態)
図3に、本実施形態の可変焦点レンズ内部の電気力線と屈折率変調量を示す。直方体に切り出された電気光学効果を有する単結晶基板11において、光14が入射する面および出射する面と直交する面のうち、x軸およびy軸に平行な第1の面と、第1の面に対向する第2の面とに、2対の電極対が間隔をあけて、それぞれ向かい合う位置に形成されている。光の入射側に第1の電極対12a,12b、光の出射側に第2の電極対13a,13bが形成されており、電極12a,13aが陽極、電極12b,13bが陰極である。
(Embodiment of the present invention)
FIG. 3 shows the lines of electric force and the amount of refractive index modulation inside the variable focus lens of this embodiment. In the single crystal substrate 11 having an electro-optic effect cut out in a rectangular parallelepiped, a first surface parallel to the x-axis and the y-axis among the surface on which the light 14 is incident and the surface orthogonal to the surface to be emitted; Two electrode pairs are formed at positions facing each other at a distance from the second surface facing the surface. The first electrode pair 12a, 12b is formed on the light incident side, and the second electrode pair 13a, 13b is formed on the light emission side. The electrodes 12a, 13a are anodes and the electrodes 12b, 13b are cathodes.

第1の電極対12a,12bは、光14が入射する面にも連続して形成されており、第2の電極対13a,13bは、光が出射する面にも連続して形成されている。すなわち、第1の電極対12a,12bは、光が入射する面、光が入射する面と直交する第1の面、および第1の面に対向する第2の面とに形成され、第1の陽極12aは、第1の面と光が入射する面とが接する辺をまたいで第1の面と光が入射する面とに形成され、第1の陰極12bは、第2の面と光が入射する面とが接する辺をまたいで第2の面と光が入射する面とに形成されている。   The first electrode pairs 12a and 12b are also formed continuously on the surface on which the light 14 is incident, and the second electrode pairs 13a and 13b are formed continuously on the surface from which the light is emitted. . That is, the first electrode pair 12a, 12b is formed on a surface on which light is incident, a first surface orthogonal to the surface on which light is incident, and a second surface opposite to the first surface. The anode 12a is formed on the first surface and the light incident surface across the side where the first surface and the light incident surface are in contact with each other, and the first cathode 12b is formed on the second surface and the light incident surface. The second surface and the light incident surface are formed across the side where the surface where the light enters is in contact.

第2の電極対13a,13bは、光が出射する面と、光が出射する面と直交する第1の面および第2の面とに形成され、第2の陽極13aは、第2の面と光が出射する面とが接する辺をまたいで第2の面と光が出射する面とに形成され、第2の陰極13bは、第1の面と光が出射する面とが接する辺をまたいで第1の面と光が出射する面とに形成されている。   The second electrode pairs 13a and 13b are formed on a surface from which light is emitted and a first surface and a second surface orthogonal to the surface from which light is emitted, and the second anode 13a is formed on the second surface. The second cathode 13b has a side where the first surface and the surface from which the light is emitted are in contact with each other. In addition, the first surface and the surface from which light is emitted are formed.

図4に、従来の可変焦点レンズ内部の電気力線と屈折率変調量を示す。単結晶基板11をy軸方向から見たときの結晶内部の電気力線の形状を示し、その右側に、z軸方向の屈折率変調量Δnを、模式的に示す。第1および第2の電極対は、y軸方向から見た断面電形状がL字型になっており、単結晶基板11の四隅を囲った構造になっている。   FIG. 4 shows the lines of electric force and the amount of refractive index modulation inside the conventional variable focus lens. The shape of the electric lines of force inside the crystal when the single crystal substrate 11 is viewed from the y-axis direction is shown, and the refractive index modulation amount Δn in the z-axis direction is schematically shown on the right side thereof. The first and second electrode pairs have an L-shaped cross-sectional shape as viewed from the y-axis direction, and have a structure that surrounds the four corners of the single crystal substrate 11.

レンズ機能の原理は、従来の可変焦点レンズと同じである。図2と図4とを比較すると、電気力線の曲率が、本実施形態の可変焦点レンズの方が大きいことがわかる。電気力線の曲率が大きくなると、結晶内部の電界分布が大きくなり、その結果、光入射面の中心部の屈折率変化に比べて、電極付近の屈折率変化が大きくなる。つまり、z−x平面において、z=0での屈折率変化と電極付近の屈折率変化との差が大きくなる。その結果として、放物線の曲率が従来と比較して大きくなり、より大きなレンズ効果を発現する。   The principle of the lens function is the same as that of a conventional variable focus lens. Comparing FIG. 2 and FIG. 4, it can be seen that the curvature of the electric lines of force is larger in the variable focus lens of the present embodiment. When the curvature of the electric lines of force increases, the electric field distribution inside the crystal increases, and as a result, the refractive index change near the electrode becomes larger than the refractive index change at the center of the light incident surface. That is, in the zx plane, the difference between the refractive index change at z = 0 and the refractive index change in the vicinity of the electrode becomes large. As a result, the curvature of the parabola becomes larger than the conventional one, and a greater lens effect is exhibited.

図5は、焦点距離と電極間距離との相関を比較した図である。図2に示した従来の可変焦点レンズにおいて、単結晶基板1の厚さh(z軸方向)は4.0mm、長さL(y軸方向)は6.6mm、幅(y軸方向)も6.6mmである。第1および第2の電極対2,3のそれぞれの電極の大きさは、入射面または出射面からx軸方向に0.8mm、y軸方向に6.6mmである。従って、電極間距離dは2.4mmとなる。このような構造において、x軸方向の単結晶基板1の長さを変化させ、それに伴って電極間距離が変化したときの焦点距離を示す。   FIG. 5 is a diagram comparing the correlation between the focal length and the interelectrode distance. In the conventional variable focus lens shown in FIG. 2, the thickness h (z-axis direction) of the single crystal substrate 1 is 4.0 mm, the length L (y-axis direction) is 6.6 mm, and the width (y-axis direction) is also It is 6.6 mm. The size of each of the first and second electrode pairs 2 and 3 is 0.8 mm in the x-axis direction and 6.6 mm in the y-axis direction from the entrance surface or the exit surface. Accordingly, the inter-electrode distance d is 2.4 mm. In such a structure, the focal length when the length of the single crystal substrate 1 in the x-axis direction is changed and the distance between the electrodes is changed accordingly is shown.

一方、図4に示した本実施形態の可変焦点レンズにおいて、単結晶基板11の厚さh(z軸方向)は4.0mm、長さL(y軸方向)は6.6mm、幅(y軸方向)も6.6mmである。第1および第2の電極対12,13のそれぞれの電極の大きさは、x軸およびy軸に平行な対向する2面において、入射面または出射面からx軸方向に0.8mm、y軸方向に6.6mmである。従って、電極間距離dは2.4mmとなる。光の入射面および出射面においては、電極面からz軸方向に0.5mm、y軸方向に6.6mmである。このような構造において、x軸方向の単結晶基板1の長さを変化させ、それに伴って電極間距離が変化したときの焦点距離を示す。   On the other hand, in the variable focus lens of this embodiment shown in FIG. 4, the thickness h (z-axis direction) of the single crystal substrate 11 is 4.0 mm, the length L (y-axis direction) is 6.6 mm, and the width (y (Axial direction) is also 6.6 mm. The size of each of the first and second electrode pairs 12 and 13 is 0.8 mm in the x-axis direction from the entrance surface or the exit surface on two opposing surfaces parallel to the x-axis and the y-axis, and the y-axis. 6.6 mm in the direction. Accordingly, the inter-electrode distance d is 2.4 mm. On the light incident surface and light exit surface, the distance from the electrode surface is 0.5 mm in the z-axis direction and 6.6 mm in the y-axis direction. In such a structure, the focal length when the length of the single crystal substrate 1 in the x-axis direction is changed and the distance between the electrodes is changed accordingly is shown.

このとき、いずれも第1および第2の電極対に印加する電圧は1kV、比誘電率は20,000として、数値計算により焦点距離をプロットした。入射光の偏光は直線で、振動電界の方向はz軸方向である。図5から明らかなように、どの電極間距離においても、従来の可変焦点レンズと比較して、本実施形態の可変焦点レンズは、焦点距離が約1/2以下になっていることがわかる。   At this time, the focal length was plotted by numerical calculation assuming that the voltage applied to the first and second electrode pairs was 1 kV and the relative dielectric constant was 20,000. The polarization of the incident light is a straight line, and the direction of the oscillating electric field is the z-axis direction. As can be seen from FIG. 5, at any inter-electrode distance, the variable focal length lens of the present embodiment has a focal length of about ½ or less compared to the conventional variable focal length lens.

図6に、本実施形態の可変焦点レンズの焦点距離と電極間距離との相関を示す。図4に示した本実施形態の可変焦点レンズにおいて、単結晶基板11の厚さh(z軸方向)は4.0mm、長さL(y軸方向)は6.6mm、幅(x軸方向)も6.6mmである。第1および第2の電極対12,13のそれぞれの電極の大きさは、x軸およびy軸に平行な対向する2面において、入射面または出射面からx軸方向に0.8mm、y軸方向に6.6mmである。従って、電極間距離dは2.4mmとなる。光の入射面および出射面においては、電極面からz軸方向に0.5mm、y軸方向に6.6mmである。このような構造において、第1および第2の電極対12,13のそれぞれの電極の大きさを、x軸方向に0.8mm〜2.8mmに変化させることにより、電極間距離dを1mm〜5mmに変化させた場合の焦点距離を示す。   FIG. 6 shows the correlation between the focal length of the variable focus lens of the present embodiment and the interelectrode distance. In the variable focus lens of the present embodiment shown in FIG. 4, the thickness h (z-axis direction) of the single crystal substrate 11 is 4.0 mm, the length L (y-axis direction) is 6.6 mm, and the width (x-axis direction). ) Is also 6.6 mm. The size of each of the first and second electrode pairs 12 and 13 is 0.8 mm in the x-axis direction from the entrance surface or the exit surface on two opposing surfaces parallel to the x-axis and the y-axis, and the y-axis. 6.6 mm in the direction. Accordingly, the inter-electrode distance d is 2.4 mm. On the light incident surface and light exit surface, the distance from the electrode surface is 0.5 mm in the z-axis direction and 6.6 mm in the y-axis direction. In such a structure, by changing the size of each of the first and second electrode pairs 12 and 13 from 0.8 mm to 2.8 mm in the x-axis direction, the interelectrode distance d is set to 1 mm to The focal length when changed to 5 mm is shown.

このとき、第1および第2の電極対12,13に印加する電圧は1kV、比誘電率は20,000として、数値計算により焦点距離をプロットした。入射光の偏光は直線で、振動電界の方向はz軸方向である。図6から明らかなように、電極間距離の減少に伴って焦点距離が小さくなることがわかる。   At this time, the voltage applied to the first and second electrode pairs 12 and 13 was 1 kV, the relative dielectric constant was 20,000, and the focal length was plotted by numerical calculation. The polarization of the incident light is a straight line, and the direction of the oscillating electric field is the z-axis direction. As can be seen from FIG. 6, the focal length decreases as the interelectrode distance decreases.

図7に、本実施形態の可変焦点レンズの波面収差と電極間距離との相関を示す。図6に示した焦点距離の計算と同じ条件で、電極間距離と波面収差の相関を数値計算によりプロットした。入射光の偏光は直線で、振動電界の方向はz軸方向である。レンズの結像における、ぼけを示す波面収差は、電極間距離2.5mm〜3.5mmとしたときに極小値をとることがわかる。これを、x軸方向の電極幅X(光軸方向の電極の幅、単位mm)と、z軸方向の電極幅Z(光軸に垂直で光の振動電界に平行な方向の幅、単位mm)とを用いて一般化する。図4に示した電極間距離d(mm)は、図7に示した計算結果から、2.5<d<3.5の間で波面収差が極小となる。単結晶基板11の、x軸方向の幅が6.6mmであることから、x軸方向の電極幅を(6.6−3.5)/2<X<(6.6−2.5)/2の間で設定した場合、やはり波面収差は極小値となる。すべての辺を、図7を計算した際のz方向の電極幅Z=0.5mmで割ると、(6.6−3.5)/2/0.5<(X/Z)<(6.6−2.5)/2/0.5において、波面収差が極小値となる。小数点以下を四捨五入すると、電極幅XとZとの比は、
3<(X/Z)<4
の場合に、波面収差が極小値をとる。
FIG. 7 shows the correlation between the wavefront aberration of the variable focus lens of this embodiment and the interelectrode distance. The correlation between the interelectrode distance and the wavefront aberration was plotted by numerical calculation under the same conditions as the calculation of the focal length shown in FIG. The polarization of the incident light is a straight line, and the direction of the oscillating electric field is the z-axis direction. It can be seen that the wavefront aberration indicating blur in the image formation of the lens takes a minimum value when the distance between the electrodes is 2.5 mm to 3.5 mm. The electrode width X in the x-axis direction (electrode width in the optical axis direction, unit mm) and the electrode width Z in the z-axis direction (width in the direction perpendicular to the optical axis and parallel to the oscillating electric field of light, unit mm) ) And generalize. The inter-electrode distance d (mm) shown in FIG. 4 has a minimum wavefront aberration between 2.5 <d <3.5 from the calculation result shown in FIG. Since the width of the single crystal substrate 11 in the x-axis direction is 6.6 mm, the electrode width in the x-axis direction is (6.6-3.5) / 2 <X <(6.6-2.5). When setting between / 2, the wavefront aberration becomes the minimum value. When all the sides are divided by the electrode width Z in the z direction when FIG. 7 is calculated = 0.5 mm, (6.6-3.5) /2/0.5 <(X / Z) <(6 .6-2.5) /2/0.5, the wavefront aberration is minimal. Rounding off the decimals, the ratio of electrode width X and Z is
3 <(X / Z) <4
In this case, the wavefront aberration takes a minimum value.

(実施例)
図4に示したように、電気光学効果を有する単結晶から、直方体に加工した基板を切り出す。単結晶基板11は、KTN単結晶からブロックを切り出し、光の入射面および出射面の寸法をy軸方向に6.6mm、z軸方向に4.0mmにする。x−y平面に平行な2つの面はx軸方向に6.6mm、y軸方向に6.6mmにする。x−z平面に平行な2つの面の寸法はz軸方向に4.0mm、x軸方向に6.6mm、x−y平面に平行な2つの面はy軸方向に6.6mm、x軸方向に6.6mmとする。
(Example)
As shown in FIG. 4, a substrate processed into a rectangular parallelepiped is cut out from a single crystal having an electro-optic effect. The single crystal substrate 11 cuts out a block from the KTN single crystal and sets the dimensions of the light incident surface and light exit surface to 6.6 mm in the y-axis direction and 4.0 mm in the z-axis direction. The two planes parallel to the xy plane are 6.6 mm in the x-axis direction and 6.6 mm in the y-axis direction. The dimensions of the two surfaces parallel to the xz plane are 4.0 mm in the z-axis direction, 6.6 mm in the x-axis direction, and the two surfaces parallel to the xy plane are 6.6 mm in the y-axis direction, the x-axis The direction is 6.6 mm.

第1および第2の電極対12,13のそれぞれの電極の大きさは、x軸およびy軸に平行な対向する2面において、入射面または出射面からx軸方向に1.8mm、y軸方向に6.6mmである。従って、電極間距離dは3.0mmとなる。光の入射面および出射面においては、電極面からz軸方向に0.5mm、y軸方向に6.6mmである。   The size of each of the first and second electrode pairs 12 and 13 is 1.8 mm in the x-axis direction from the entrance surface or the exit surface on the two opposing surfaces parallel to the x-axis and the y-axis, and the y-axis 6.6 mm in the direction. Accordingly, the inter-electrode distance d is 3.0 mm. On the light incident surface and light exit surface, the distance from the electrode surface is 0.5 mm in the z-axis direction and 6.6 mm in the y-axis direction.

単結晶基板11の全ての面は、光学研磨されており、基板の面はすべて(100)面に平行である。KTN単結晶は、相転移温度が35℃であったので、これを少し上回る40℃で使用する。この温度での比誘電率は20,000である。   All the surfaces of the single crystal substrate 11 are optically polished, and all the surfaces of the substrate are parallel to the (100) plane. Since the KTN single crystal has a phase transition temperature of 35 ° C., it is used at 40 ° C., which is slightly higher than this. The relative dielectric constant at this temperature is 20,000.

この可変焦点レンズを、40℃で温度制御した状態で、z軸方向に3mmにコリメートした波長633nmのレーザー光を、単結晶基板11の入射面に入射させる。光の偏光は直線で、振動電界の方向はz軸方向である。第1および第2の電極対12,13のそれぞれに1kVの電圧を印加すると、単結晶基板11から出射される光は、集光されてシリンドリカル凸レンズとして機能する。焦点距離は51cmである。   With this variable focus lens temperature controlled at 40 ° C., laser light having a wavelength of 633 nm collimated to 3 mm in the z-axis direction is incident on the incident surface of the single crystal substrate 11. The polarization of light is a straight line, and the direction of the oscillating electric field is the z-axis direction. When a voltage of 1 kV is applied to each of the first and second electrode pairs 12 and 13, the light emitted from the single crystal substrate 11 is collected and functions as a cylindrical convex lens. The focal length is 51 cm.

また、電圧を印加しない場合は、集光効果は無く、焦点距離は無限大である。従って、1ms以下の高速応答が可能な印加電圧において、焦点距離は51cmである。図5に示したように、従来の可変焦点レンズの焦点距離100cmから約半分にまで短くすることができる。また、波面収差は150nmであり、従来の可変焦点レンズの波面収差300nmから約半分に改善することができる。   When no voltage is applied, there is no light collection effect and the focal length is infinite. Accordingly, the focal length is 51 cm at an applied voltage capable of a high-speed response of 1 ms or less. As shown in FIG. 5, the focal length of the conventional variable focus lens can be reduced from 100 cm to about half. The wavefront aberration is 150 nm, which can be improved to about half from the 300 nm wavefront aberration of the conventional variable focus lens.

1,11 単結晶基板
2,12 第1の電極対
3,13 第2の電極対
4,12 光
1,11 Single crystal substrate 2,12 First electrode pair 3,13 Second electrode pair 4,12 Light

Claims (4)

電気光学効果を有する単結晶基板と、
該単結晶基板に光が入射する面、前記光が入射する面と直交する第1の面、および該第1の面に対向する第2の面とに形成された第1の電極対であって、第1の陽極は、前記第1の面と前記光が入射する面とが接する辺をまたいで前記第1の面と前記光が入射する面とに形成され、第1の陰極は、前記第2の面と前記光が入射する面とが接する辺をまたいで前記第2の面と前記光が入射する面とに形成された第1の電極対と、
前記単結晶基板から光が出射する面、前記光が出射する面と直交する前記第1の面および前記第2の面とに形成された第2の電極対であって、第2の陽極は、前記第2の面と前記光が出射する面とが接する辺をまたいで前記第2の面と前記光が出射する面とに形成され、第2の陰極は、前記第1の面と前記光が出射する面とが接する辺をまたいで前記第1の面と前記光が出射する面とに形成された第2の電極対とを備え、
前記第1および第2の電極対の間の印加電圧を変えることにより、前記単結晶基板を透過する光の焦点を可変することを特徴とする可変焦点レンズ。
A single crystal substrate having an electro-optic effect;
A first electrode pair formed on a surface on which light is incident on the single crystal substrate, a first surface orthogonal to the surface on which the light is incident, and a second surface opposite to the first surface. The first anode is formed on the first surface and the surface on which the light is incident across a side where the first surface and the surface on which the light is incident is in contact, and the first cathode is A first electrode pair formed on the second surface and the light incident surface across a side where the second surface and the light incident surface are in contact with each other;
A second electrode pair formed on a surface from which light is emitted from the single crystal substrate, the first surface and the second surface orthogonal to the surface from which the light is emitted, and the second anode is The second surface and the surface from which the light exits are formed across the side where the second surface and the surface from which the light exits are in contact, and the second cathode is formed from the first surface and the surface from which the light exits. A second electrode pair formed on the first surface and the surface from which the light exits across a side in contact with the surface from which the light exits;
A variable focus lens, wherein a focus of light transmitted through the single crystal substrate is varied by changing an applied voltage between the first and second electrode pairs.
前記第1および第2の電極対のそれぞれの陽極および陰極の前記第1および第2の面上における光軸方向の電極の幅Xとし、前記光が入射する面および前記光が出射する面における前記光軸方向に垂直で前記光の振動電界に平行な方向の幅Zとすると、
3<(X/Z)<4
の関係を満たすことを特徴とする請求項1に記載の可変焦点レンズ。
The width X of the electrode in the optical axis direction on the first and second surfaces of the anode and cathode of the first and second electrode pairs, respectively, on the surface on which the light is incident and the surface on which the light is emitted When the width Z is perpendicular to the optical axis direction and parallel to the oscillating electric field of the light,
3 <(X / Z) <4
The variable focus lens according to claim 1, wherein the relationship is satisfied.
前記単結晶基板は、ぺロブスカイト構造を有する単結晶材料であり、タンタル酸ニオブ酸カリウム(KTN:KTa1−xNb、0<x<1)からなることを特徴とする請求項1または2に記載の可変焦点レンズ。 The single crystal substrate is a single crystal material having a perovskite structure, and is made of potassium tantalate niobate (KTN: KTa 1-x Nb x O 3 , 0 <x <1). Or the variable focus lens of 2. 前記単結晶基板は、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことができ、さらに、添加不純物としてカリウムを除く周期律表Ia族、例えばリチウムまたはIIa族の1または複数種を含む単結晶材料からなることを特徴とする請求項3に記載の可変焦点レンズ。   In the single crystal substrate, the main component of the crystal is composed of groups Ia and Va of the periodic table, group Ia is potassium, group Va can include at least one of niobium and tantalum, 4. The variable focus lens according to claim 3, wherein the variable focus lens is made of a single crystal material containing one or plural kinds of Group Ia of the periodic table excluding potassium as an additive impurity, for example, lithium or Group IIa.
JP2014121863A 2014-06-12 2014-06-12 Variable focus lens Active JP6259360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121863A JP6259360B2 (en) 2014-06-12 2014-06-12 Variable focus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121863A JP6259360B2 (en) 2014-06-12 2014-06-12 Variable focus lens

Publications (2)

Publication Number Publication Date
JP2016001288A true JP2016001288A (en) 2016-01-07
JP6259360B2 JP6259360B2 (en) 2018-01-10

Family

ID=55076898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121863A Active JP6259360B2 (en) 2014-06-12 2014-06-12 Variable focus lens

Country Status (1)

Country Link
JP (1) JP6259360B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
US20080204858A1 (en) * 2007-02-28 2008-08-28 Samsung Electronics Co., Ltd. One dimensional spatial light modulator and image output device employing the same
US20090231677A1 (en) * 2008-03-13 2009-09-17 Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Variable Focal Point Optical Assembly Using Zone Plate and Electro-Optic Material
JP2012042900A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Polarization independent variable focus lens
JP2014026229A (en) * 2012-07-30 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Variable focus lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
US20080204858A1 (en) * 2007-02-28 2008-08-28 Samsung Electronics Co., Ltd. One dimensional spatial light modulator and image output device employing the same
US20090231677A1 (en) * 2008-03-13 2009-09-17 Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Variable Focal Point Optical Assembly Using Zone Plate and Electro-Optic Material
JP2012042900A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Polarization independent variable focus lens
JP2014026229A (en) * 2012-07-30 2014-02-06 Nippon Telegr & Teleph Corp <Ntt> Variable focus lens

Also Published As

Publication number Publication date
JP6259360B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5406046B2 (en) Variable focus lens
JP5426500B2 (en) Polarization-independent variable focus lens
KR101332355B1 (en) Variable focusing lens and microscope
JP2017203847A (en) Light deflector
JP2011008227A (en) Electro-optical device
JP5411089B2 (en) Variable focus lens
JP2014026229A (en) Variable focus lens
JP2014202786A (en) Varifocal lens
JP6259360B2 (en) Variable focus lens
JP5432044B2 (en) Variable focus lens
JP6346572B2 (en) Variable focus lens
JP6335111B2 (en) Variable focus lens
JP6611052B2 (en) Variable focus lens
JP5161156B2 (en) Variable focus lens
JP5069267B2 (en) Variable focus lens
JP5457952B2 (en) Tunable laser light source
JP2015018095A (en) Variable focus mirror
JP5883764B2 (en) Optical device
JP2018101109A (en) Variable focal length lens
JP4792309B2 (en) Electro-optic element
JP2014206582A (en) Polarization independent optical deflector
JP2015215581A (en) Optical attenuator and multi-channel optical attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171208

R150 Certificate of patent or registration of utility model

Ref document number: 6259360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150