JP5069267B2 - Variable focus lens - Google Patents

Variable focus lens Download PDF

Info

Publication number
JP5069267B2
JP5069267B2 JP2009068808A JP2009068808A JP5069267B2 JP 5069267 B2 JP5069267 B2 JP 5069267B2 JP 2009068808 A JP2009068808 A JP 2009068808A JP 2009068808 A JP2009068808 A JP 2009068808A JP 5069267 B2 JP5069267 B2 JP 5069267B2
Authority
JP
Japan
Prior art keywords
side electrode
surface side
electro
variable focus
focus lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009068808A
Other languages
Japanese (ja)
Other versions
JP2010224045A (en
Inventor
誠治 豊田
欽之 今井
純 宮津
生剛 八木
友紀 小宮
進 高橋
和夫 藤浦
研一郎 阿閉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2009068808A priority Critical patent/JP5069267B2/en
Publication of JP2010224045A publication Critical patent/JP2010224045A/en
Application granted granted Critical
Publication of JP5069267B2 publication Critical patent/JP5069267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)

Description

本発明は、可変焦点レンズに関し、より詳細には、電気光学効果を有する光学材料を用いて、焦点距離を変更可能とした可変焦点レンズに関する。   The present invention relates to a variable focus lens, and more particularly to a variable focus lens that can change a focal length using an optical material having an electro-optic effect.

従来、光学レンズ、プリズムなどの光学部品は、カメラ、顕微鏡、望遠鏡などの光学機器、プリンタ、コピー機など電子写真方式の記録装置、DVDなどの光記録装置、通信用、工業用の光デバイス等に用いられている。通常の光学レンズは、焦点距離が固定されているが、上述の機器、装置の中には、状況に応じて焦点距離を調整することのできるレンズ、いわゆる可変焦点レンズを用いる場合がある。従来の可変焦点レンズは、複数のレンズを組み合わせて、機械的に焦点距離を調整する。しかしながら、このような機械式の可変焦点レンズは、応答速度・製造コスト・小型化・消費電力などの点から、適用範囲を広げることには限界があった。   Conventionally, optical components such as optical lenses and prisms are optical devices such as cameras, microscopes, and telescopes, electrophotographic recording devices such as printers and copiers, optical recording devices such as DVDs, optical devices for communication, industrial use, etc. It is used for. A normal optical lens has a fixed focal length. However, a lens that can adjust the focal length according to the situation, a so-called variable focus lens may be used in the above-described devices and apparatuses. The conventional variable focus lens mechanically adjusts the focal length by combining a plurality of lenses. However, such a mechanical variable focus lens has a limit in extending the application range from the viewpoint of response speed, manufacturing cost, miniaturization, power consumption, and the like.

そこで、光学レンズを構成する透明媒質に、屈折率を可変できる物質を適用した可変焦点レンズ、光学レンズの位置を動かすのではなく、機械的に光学レンズの形状を変形させる可変焦点レンズなどが考え出された。前者の可変焦点レンズとして、光学レンズとして液晶を利用した可変焦点レンズが提案されている。この可変焦点レンズは、2枚のガラス板で液晶を挟み込むなどして、透明物質でできた容器に液晶を封じ込めている。この容器の内側を球面上に加工して、液晶をレンズ形状に成形すると、可変焦点レンズを構成することができる。この容器の内側には透明電極が設けられ、液晶に電界をかけることによって屈折率を制御し、焦点距離を可変制御する(例えば、特許文献1参照)。   Therefore, a variable focus lens in which a material capable of changing the refractive index is applied to the transparent medium constituting the optical lens, a variable focus lens that mechanically deforms the shape of the optical lens, instead of moving the position of the optical lens, etc. It was issued. As the former variable focus lens, a variable focus lens using liquid crystal as an optical lens has been proposed. This variable focus lens encloses the liquid crystal in a container made of a transparent material by sandwiching the liquid crystal between two glass plates. When the inside of the container is processed into a spherical surface and the liquid crystal is molded into a lens shape, a variable focus lens can be configured. A transparent electrode is provided inside the container, and the refractive index is controlled by applying an electric field to the liquid crystal, and the focal length is variably controlled (see, for example, Patent Document 1).

後者の可変焦点レンズとして、変形するレンズの材料は、液体が用いられることが多い。例えば、非特許文献1に記載された可変焦点レンズは、ガラス板に挟まれた空間に、シリコンオイルなどの液体を封入した構造を有している。ガラス板は、薄く加工されており、外部からチタン酸ジルコン酸鉛(PZT)ピエゾアクチュエータによって、ガラス板に圧力をかけることにより、オイルとガラス板全体で構成されるレンズを変形させ、焦点位置を制御する。この可変焦点レンズの動作原理は、眼球の水晶体と同じである。   As the latter variable focus lens, liquid is often used as the material of the deformable lens. For example, the variable focus lens described in Non-Patent Document 1 has a structure in which a liquid such as silicon oil is sealed in a space sandwiched between glass plates. The glass plate is thinly processed. By applying pressure to the glass plate with a lead zirconate titanate (PZT) piezo actuator from the outside, the lens composed of the oil and the entire glass plate is deformed, and the focal position is adjusted. Control. The operating principle of this variable focus lens is the same as that of the lens of the eyeball.

特開平11−64817号公報Japanese Patent Laid-Open No. 11-64817

金子卓他、「可変焦点レンズを用いた長焦点深度視覚機構」、デンソーテクニカルレビュー、Vol.3, No.1, p.52−58, 1998Takashi Kaneko et al., “Long focal depth visual mechanism using variable focus lens”, Denso Technical Review, Vol. 3, no. 1, p. 52-58, 1998

しかしながら、従来の可変焦点レンズは、機械的に焦点距離を調整する可変焦点レンズ、液晶に電界をかけて屈折率を制御する可変焦点レンズ、PZTピエゾアクチュエータによりレンズを変形させる可変焦点レンズのいずれも、焦点距離を変更するのに要する応答速度に限界があり、1ms以下の高速応答に適用することができないという問題があった。   However, the conventional variable focus lens includes a variable focus lens that mechanically adjusts the focal length, a variable focus lens that controls the refractive index by applying an electric field to the liquid crystal, and a variable focus lens that deforms the lens by a PZT piezo actuator. The response speed required to change the focal length is limited, and there is a problem that it cannot be applied to a high-speed response of 1 ms or less.

本発明の目的は、焦点距離の変更を高速に行うことができる可変焦点レンズを提供することにある。   An object of the present invention is to provide a variable focus lens capable of changing the focal length at high speed.

本発明は、このような目的を達成するために、請求項1に記載の発明は、可変焦点レンズにおいて、反転対称性を有する電気光学材料1と、該電気光学材料1の光の入射面および出射面に垂直な向かい合った2つの平行の面の各々の面に形成された入射面側電極2a、2bと出射面側電極3a、3bとを備え、前記光を前記入射面から入射し、前記出射面から出射するように光軸が設定され、前記入射面側電極2aの辺のうち前記出射面側電極3aの辺と対向する辺10、20は互いに平行に配置され、前記入射面側電極2aの辺のうち前記出射面側電極3aの辺と対向する前記辺10,20と、前記電気光学材料1を挟んで対向する面上に形成された前記入射面側電極2bの辺のうち前記出射面側電極3bの辺と対向する辺30,40は、各々、平行に配置され、前記入射面側電極2a、2bと前記出射面側電極3a、3bとの間に形成された電界が、前記光軸を中心に前記光が透過する部分において変化させられ、前記入射面側電極2a、2bと前記出射面側電極3a、3bとの間の印加電圧を変えることにより、前記電気光学材料1を透過した光の焦点が可変であることを特徴とする。   In order to achieve the above object, the present invention provides an electro-optic material 1 having inversion symmetry, a light incident surface of the electro-optic material 1, and a variable focus lens. An incident surface side electrode 2a, 2b and an output surface side electrode 3a, 3b formed on each of two parallel surfaces facing each other perpendicular to the exit surface, and the light is incident from the entrance surface, An optical axis is set so as to emit from the exit surface, and sides 10 and 20 of the sides of the entrance surface side electrode 2a facing the exit surface side electrode 3a are arranged in parallel to each other, and the entrance surface side electrode Among the sides of 2a, the sides 10 and 20 facing the side of the exit surface side electrode 3a and the side of the entrance surface side electrode 2b formed on the surface facing the electro-optic material 1 in between Sides 30 and 40 facing the side of the emission surface side electrode 3b are: The electric field formed between the entrance surface side electrodes 2a, 2b and the exit surface side electrodes 3a, 3b is changed in a portion where the light is transmitted around the optical axis. The focus of the light transmitted through the electro-optic material 1 is variable by changing the applied voltage between the incident surface side electrodes 2a, 2b and the output surface side electrodes 3a, 3b.

前記電気光学材料1は、ペロブスカイト型単結晶材料が好適であり、前記電気光学材料1は、タンタル酸ニオブ酸カリウム(KTa1-xNbx3)を用いることができる。また、前記電気光学材料1は、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことができ、さらに、添加不純物としてカリウムを除く周期律表Ia族、またはIIa族の1または複数種を含むこともできる。 The electro-optic material 1 is preferably a perovskite single crystal material, and the electro-optic material 1 may be potassium tantalate niobate (KTa 1-x Nb x O 3 ). In the electro-optic material 1, the main component of the crystal is composed of a group Ia and a Va group in the periodic table, the group Ia is potassium, and the group Va includes at least one of niobium and tantalum. In addition, the additive impurities may include one or more of Group Ia or Group IIa of the periodic table excluding potassium.

前記電極は、前記電気光学材料1とショットキー接合が形成される材料であることが好ましい。また、前記入射面側電極2aの辺のうち前記出射面側電極3aの辺と対向する前記辺10,20と、前記電気光学材料1を挟んで対向する面上に形成された前記入射面側電極2bの辺のうち前記出射面側電極3bの辺と対向する前記辺30,40は、各々、前記光軸方向において一致した位置に配置されることができる。   The electrode is preferably a material that forms a Schottky junction with the electro-optic material 1. Further, the incident surface side formed on the sides 10 and 20 facing the side of the emission surface side electrode 3a among the sides of the incident surface side electrode 2a and the surface facing the electro-optic material 1 in between. Of the sides of the electrode 2b, the sides 30 and 40 facing the side of the emission surface side electrode 3b may be arranged at positions that coincide with each other in the optical axis direction.

また、前記入射面側電極2aと前記出射面側電極3aとの間に溝を形成し、前記電気光学材料1を挟んで対向する面上に形成された前記入射面側電極2bと前記出射面側電極3bとの間に溝を形成することができる。   In addition, a groove is formed between the incident surface side electrode 2a and the output surface side electrode 3a, and the incident surface side electrode 2b and the output surface formed on the surfaces facing each other with the electro-optic material 1 interposed therebetween. A groove can be formed between the side electrode 3b.

本発明によれば、電気光学材料の光の入射面および出射面に垂直な2つの向かい合った平行の面の各々の面に形成された入射面側電極と出射面側電極との間に形成された電界が、光軸を中心に光が透過する部分において変化させられ、電極間の印加電圧を変えることにより、電気光学材料を透過した光の焦点を変化させることができる。電気光学効果は高速な応答が可能であるため、この可変焦点レンズでは、1μsをきる高速応答が可能になる。   According to the present invention, the electro-optic material is formed between the entrance surface side electrode and the exit surface side electrode formed on each of two opposed parallel surfaces perpendicular to the light entrance surface and the exit surface. The electric field is changed in a portion where light is transmitted around the optical axis, and the focus of the light transmitted through the electro-optical material can be changed by changing the applied voltage between the electrodes. Since the electro-optic effect can respond at high speed, this variable focus lens can achieve a high-speed response of less than 1 μs.

本発明の一実施形態にかかる可変焦点レンズの構成を示す図である。It is a figure which shows the structure of the variable focus lens concerning one Embodiment of this invention. 実施形態にかかる可変焦点レンズの原理を説明するための図である。It is a figure for demonstrating the principle of the variable focus lens concerning embodiment. 可変焦点レンズの基板内部における電界成分と屈折率の分布とを示す図である。It is a figure which shows the electric field component and refractive index distribution in the board | substrate of a variable focus lens. 実施例1にかかる可変焦点レンズの構成を示す図である。1 is a diagram illustrating a configuration of a variable focus lens according to Example 1. FIG. 実施例2にかかる可変焦点レンズの構成を示す図である。6 is a diagram illustrating a configuration of a variable focus lens according to Example 2. FIG. 実施例3にかかる可変焦点レンズの構成を示す図である。FIG. 6 is a diagram illustrating a configuration of a variable focus lens according to Example 3;

以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態の可変焦点レンズは、電気光学材料と、これに取付けた電極から構成される。電気光学効果を利用することにより、従来の可変焦点レンズと比較して、はるかに高速な応答速度を得ることができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The variable focus lens of this embodiment is composed of an electro-optic material and an electrode attached thereto. By utilizing the electro-optic effect, a much faster response speed can be obtained as compared with a conventional variable focus lens.

図1は、本発明の一実施形態にかかる可変焦点レンズの構成を示す。図1(a)は、本発明の一実施形態にかかる可変焦点レンズの正面図、図1(b)は、本発明の一実施形態にかかる可変焦点レンズの立体図を示す。図1(a)を参照すると、電気光学材料を板状に加工した基板1の上面(光の入射面)および下面(光の出射面)に垂直な側面に、入射面側電極2aと出射面側電極3aが形成されている。入射面側電極2aと出射面側電極3aが形成された側面と対向する側面に、入射面側電極2bと出射面側電極3bが形成されている。以下、図を参照して、入射面側電極2aと出射面側電極3aが形成された側面を左側面、入射面側電極2bと出射面側電極3bが形成された側面を右側面と呼ぶ。ここで、左側面と右側面は、互いに平行である。入射面側電極2aと入射面側電極2bは等しい電位とし、出射面側電極3aと出射面側電極3bも等しい電位とする。光は、同電位の電極対の間を通過するように、y軸方向に光軸を設定する。入射面側電極2aの辺のうち出射面側電極3aの辺と対向する辺10,20は互いにz軸に平行となるように形成されている。ここで、電極の辺とは、電極の周囲を囲う辺を示すものとする。図1(b)を参照すると、入射面側電極2bと出射面側電極3bも同じ構成であり、その対向する辺30,40の位置は、y軸方向において入射面側電極2aの辺のうち出射面側電極3aの辺と対向する辺10,20と一致、すなわち、基板1を挟んで一致している。電圧を入射面側電極2aから出射面側電極3aへ、またはその逆に印加することができる。同様に、電圧を入射面側電極2bから出射面側電極3bへ、またはその逆に印加することができる。   FIG. 1 shows a configuration of a variable focus lens according to an embodiment of the present invention. FIG. 1A is a front view of a variable focus lens according to an embodiment of the present invention, and FIG. 1B is a three-dimensional view of the variable focus lens according to an embodiment of the present invention. Referring to FIG. 1A, an incident surface side electrode 2a and an output surface are formed on side surfaces perpendicular to an upper surface (light incident surface) and a lower surface (light output surface) of a substrate 1 obtained by processing an electro-optic material into a plate shape. A side electrode 3a is formed. The incident surface side electrode 2b and the output surface side electrode 3b are formed on the side surface opposite to the side surface on which the incident surface side electrode 2a and the output surface side electrode 3a are formed. Hereinafter, with reference to the drawings, a side surface on which the incident surface side electrode 2a and the emission surface side electrode 3a are formed is referred to as a left side surface, and a side surface on which the incident surface side electrode 2b and the emission surface side electrode 3b are formed is referred to as a right side surface. Here, the left side surface and the right side surface are parallel to each other. The incident surface side electrode 2a and the incident surface side electrode 2b are set to the same potential, and the output surface side electrode 3a and the output surface side electrode 3b are set to the same potential. The optical axis is set in the y-axis direction so that light passes between electrode pairs having the same potential. Of the sides of the incident surface side electrode 2a, the sides 10 and 20 facing the side of the output surface side electrode 3a are formed so as to be parallel to the z axis. Here, the side of the electrode indicates a side surrounding the electrode. Referring to FIG. 1 (b), the entrance surface side electrode 2b and the exit surface side electrode 3b have the same configuration, and the positions of the opposing sides 30 and 40 are the sides of the entrance surface side electrode 2a in the y-axis direction. It coincides with the sides 10 and 20 facing the side of the emission surface side electrode 3a, that is, it coincides with the substrate 1 in between. A voltage can be applied from the entrance surface side electrode 2a to the exit surface side electrode 3a or vice versa. Similarly, a voltage can be applied from the entrance surface side electrode 2b to the exit surface side electrode 3b or vice versa.

電気光学材料は、反転対称性を有する酸化物単結晶材料が好適である。反転対称性については、詳しくは後述する。電極についても詳しくは後述する。   The electro-optic material is preferably an oxide single crystal material having inversion symmetry. The inversion symmetry will be described later in detail. Details of the electrodes will be described later.

図2を参照して、本実施形態にかかる可変焦点レンズの原理を説明する。図1に示した可変焦点レンズにおいて、入射面側電極2aと入射面側電極2bに正の電圧、出射面側電極3aと出射面側電極3bに負の電圧をかける。このとき、電界は、入射面側電極2aから出射面側電極3aへ向かうように生じる。また、電界は、入射面側電極2bから出射面側電極3bへ向かうように生じる。電界は、入射面側電極2aと出射面側電極3aとの間及び入射面側電極2bと出射面側電極3bとの間だけでなく、その周囲にも発生し、光が透過する部分にも発生する。図2に示す矢印は、電気力線の一例である。光が透過する部分において電界は空間依存性を有するため、電気光学材料である基板1には、電気光学効果が発生し、光が透過する部分の屈折率が変調される。   The principle of the variable focus lens according to the present embodiment will be described with reference to FIG. In the variable focus lens shown in FIG. 1, a positive voltage is applied to the incident surface side electrode 2a and the incident surface side electrode 2b, and a negative voltage is applied to the output surface side electrode 3a and the output surface side electrode 3b. At this time, an electric field is generated from the incident surface side electrode 2a toward the output surface side electrode 3a. In addition, the electric field is generated from the incident surface side electrode 2b toward the output surface side electrode 3b. The electric field is generated not only between the entrance surface side electrode 2a and the exit surface side electrode 3a and between the entrance surface side electrode 2b and the exit surface side electrode 3b, but also around the light transmitting portion. appear. The arrows shown in FIG. 2 are examples of electric lines of force. Since the electric field has a spatial dependence in the portion where light is transmitted, an electro-optic effect is generated in the substrate 1 which is an electro-optic material, and the refractive index of the portion where the light is transmitted is modulated.

光が透過する部分の電界分布と屈折率変調について説明する。電気光学材料は、一般的に比誘電率が1より十分に大きい。このため、基板1の内部の電界の電気力線は、表面付近では、基板表面に対して平行に近くなる。入射面側電極2aから右方向に進む電気力線は、基板1の上面にほぼ平行に進む。入射面側電極2bから左方向に進む電気力線も、基板1の上面にほぼ平行に進む。この2つの電気力線は、左側面と右側面との中央でぶつかるので、そこから大きく向きを変え、y軸方向に進む。そして、この2つの電気力線は、その後、下面に達し、大きく向きを変えて、互いに反対方向に進み、それぞれ出射面側電極3a,3bまで進む。このように、基板1の内部で、表面付近を進む電気力線は、同電位の電極対の間の空隙において急激に屈曲するので、この屈曲部分では電界が大きく変化する。すなわち、光軸を中心に、光が透過する部分で電界が変化して、屈折率が変調される。   The electric field distribution and refractive index modulation of the portion through which light is transmitted will be described. The electro-optic material generally has a relative dielectric constant sufficiently larger than 1. For this reason, the electric field lines of the electric field inside the substrate 1 are close to being parallel to the substrate surface near the surface. The lines of electric force traveling rightward from the incident surface side electrode 2a travel almost parallel to the upper surface of the substrate 1. The lines of electric force traveling in the left direction from the incident surface side electrode 2b also travel substantially parallel to the upper surface of the substrate 1. Since these two lines of electric force collide at the center between the left side surface and the right side surface, the direction of the electric force changes greatly from there and proceeds in the y-axis direction. Then, these two lines of electric force reach the lower surface, change their directions greatly, proceed in opposite directions to each other, and proceed to the emission surface side electrodes 3a and 3b, respectively. As described above, the electric lines of force traveling near the surface inside the substrate 1 are bent sharply in the gap between the pair of electrodes having the same potential, so that the electric field greatly changes in the bent portion. That is, the refractive index is modulated by changing the electric field around the optical axis where light is transmitted.

図3は、基板内部における電界成分と屈折率の分布とを示す。図3(a)は、図2に示した位置y=y0における電界成分Exのx軸方向の分布を示す。横軸は、同電位の電極対の間にある光が透過する部分のx軸方向の位置を表している。左側面と右側面との中央部を境に、左側と右側とでは電気力線の向きが180度異なるため、このような分布となる。図3(b)は、同じく位置y=y0における電界成分Eyのx軸方向の分布を示す。電界成分Eyは、符号は変わらないが、その絶対値は中央部で小さく、電極に近づくほど大きくなる。このような電界分布により、x軸方向に、屈折率が変調される。 FIG. 3 shows the electric field component and the refractive index distribution inside the substrate. 3 (a) shows an x-axis direction of the distribution of the electric field component E x in the position y = y 0 shown in FIG. The horizontal axis represents the position in the x-axis direction of the portion where light between the pair of electrodes having the same potential is transmitted. Since the direction of the lines of electric force differs 180 degrees between the left side and the right side, with the central portion between the left side and the right side as such, this distribution is obtained. FIG. 3B shows the distribution in the x-axis direction of the electric field component E y at the same position y = y 0 . The electric field component E y has the same sign, but its absolute value is small at the center and increases as it approaches the electrode. Such an electric field distribution modulates the refractive index in the x-axis direction.

図3(c)は、電気光学材料としてタンタル酸ニオブ酸カリウム(KTa1-xNbx3、以下、KTNという)を用いて、光電界の向きがz方向の光を入射したときの屈折率変調を示す。基板1の中央部付近、すなわち光軸付近は、中央部からx軸方向に離れて、電極対に近い部分よりも屈折率が低いため、光は高速で進行し、中央部から電極対に近い部分ほど、光の速度は遅くなる。このため、基板1を透過した光の波面は、中央部付近よりも電極対に近い部分で遅れた形となり、凹レンズとして機能する。光が透過する部分をレンズとして考えると、集光または発散の効果の強いレンズを実現することができる。図1および図2の構成では、x軸方向にのみ集光または発散が起こり、z方向での集散は起こらないので、一般的な球面レンズではなく、いわゆるシリンドリカルレンズとして機能する。 FIG. 3 (c), potassium tantalate niobate electro-optic material (KTa 1-x Nb x O 3, hereinafter referred to as KTN) using a refraction when the direction of the optical electric field incident light in the z-direction Indicates rate modulation. Near the central portion of the substrate 1, that is, near the optical axis, the refractive index is lower than the portion near the electrode pair away from the central portion in the x-axis direction. The faster the part, the slower the speed of light. For this reason, the wavefront of the light transmitted through the substrate 1 is delayed in a portion closer to the electrode pair than in the vicinity of the central portion, and functions as a concave lens. Considering the portion through which light is transmitted as a lens, it is possible to realize a lens having a strong condensing or diverging effect. In the configuration of FIGS. 1 and 2, light condensing or diverging occurs only in the x-axis direction, and no diverging occurs in the z direction, so that it functions as a so-called cylindrical lens instead of a general spherical lens.

図1および図2の構成の可変焦点レンズをもう一組用意し、光が透過する部分の光軸を一致させて配置する。光軸に関して一方の可変焦点レンズが他方の可変焦点レンズに対して90度回転するように2つの可変焦点レンズを配置して、2方向で集光または発散を行うことにより、球面レンズと等価な機能を実現することができる。   Another set of variable focus lenses having the configuration shown in FIG. 1 and FIG. 2 is prepared, and the optical axes of the portions through which light is transmitted are aligned with each other. Two variable focus lenses are arranged so that one variable focus lens rotates 90 degrees with respect to the other variable focus lens with respect to the optical axis, and condensing or diverging in two directions is equivalent to a spherical lens. Function can be realized.

(電気光学材料)
電気光学効果には、いくつかの次数の異なる電気光学効果が含まれるが、一般的には、1次の電気光学効果(以下、ポッケルス効果という)と2次の電気光学効果(以下、カー効果という)が利用されている。しかし、電気光学効果の中でも、電界の自乗に比例した屈折率変調が起こる、2次の電気光学効果(カー効果)を有する材料が好適である。カー効果の場合は、図3に示したように、屈折率分布Δnは電界成分Exの符号に依存しないので、レンズとして好適な左右対称形になるからである。一方、ポッケルス効果の場合は、屈折率変調は電界の1乗に比例し、電界成分Exによる屈折率変化は左右対称とならないため、レンズとしてうまく機能しない。
(Electro-optic material)
The electro-optic effect includes several different-order electro-optic effects, but in general, the first-order electro-optic effect (hereinafter referred to as Pockels effect) and the second-order electro-optic effect (hereinafter referred to as Kerr effect). Is used). However, among the electro-optic effects, a material having a secondary electro-optic effect (Kerr effect) in which refractive index modulation proportional to the square of the electric field occurs is preferable. For Kerr effect, as shown in FIG. 3, the refractive index distribution Δn is because it does not depend on the sign of the electric field component E x, become suitable symmetrical shape as a lens. On the other hand, in the case of the Pockels effect, refractive index modulation is proportional to the first power of the electric field, the refractive index change due to the electric field component E x is not symmetrical, it does not work well as a lens.

また、反転対称性を有する単結晶とは、原子の配列を、ある原点を中心としてx,y,z座標系で反転したとき、元の原子の配列と完全に同じ配列となる結晶をいう。なお、自発分極を有する材料を、座標軸上で反転すると、自発分極の向きが反転するので、このような結晶材料は反転対称性を有していない。一方、反転対称性を有する単結晶は、ポッケルス効果を有さず、カー効果が最低次の電気光学効果となる。従って、電気光学効果を有する結晶材料の中でも、反転対称性を有する単結晶が望ましい。   A single crystal having inversion symmetry refers to a crystal that has the same arrangement as the original arrangement of atoms when the arrangement of atoms is reversed in the x, y, z coordinate system around a certain origin. Note that when a material having spontaneous polarization is inverted on the coordinate axis, the direction of spontaneous polarization is inverted, and thus such a crystal material does not have inversion symmetry. On the other hand, a single crystal having inversion symmetry has no Pockels effect, and the Kerr effect is the lowest order electro-optic effect. Therefore, among crystal materials having an electro-optic effect, a single crystal having inversion symmetry is desirable.

結晶内部の電界の大きさは、電極に印加する電圧に比例する。また、屈折率変調は電界の自乗に比例するため、結局、屈折率変調の大きさは電圧の自乗に比例する。これにより、凹レンズの焦点距離は電圧によって制御できる。また、ここでは凹レンズとして機能すると説明したが、電気光学係数の符号は材料や光偏光によって異なるので、凸レンズを実現することもできる。   The magnitude of the electric field inside the crystal is proportional to the voltage applied to the electrode. Also, since the refractive index modulation is proportional to the square of the electric field, the magnitude of the refractive index modulation is proportional to the square of the voltage. Thereby, the focal length of the concave lens can be controlled by the voltage. Although it has been described here that it functions as a concave lens, the sign of the electro-optic coefficient differs depending on the material and light polarization, so that a convex lens can also be realized.

電気光学材料は、ペロブスカイト型の結晶構造を有する単結晶材料が好適である。ペロブスカイト型単結晶材料は、使用温度を適切に選択すれば、使用状態において反転対称性を有する立方晶相となり、この立方晶相にてポッケルス効果を有さないためである。例えば、最もよく知られたチタン酸バリウム(BaTiO3、以下BTという)でも、120℃付近において正方晶相から立方晶相へ相転移する温度(以下、相転移温度という)を超えた温度であれば、立方晶相となり、カー効果を発現する。 The electro-optic material is preferably a single crystal material having a perovskite crystal structure. This is because the perovskite single crystal material has a cubic phase having reversal symmetry in the use state if the use temperature is appropriately selected, and does not have the Pockels effect in this cubic phase. For example, even the most well-known barium titanate (BaTiO 3 , hereinafter referred to as BT) may exceed the temperature at which the phase transition from the tetragonal phase to the cubic phase (hereinafter referred to as the phase transition temperature) occurs at around 120 ° C. For example, it becomes a cubic phase and exhibits the Kerr effect.

さらに、KTNを主成分とする単結晶材料は、より好適な特徴を有する。BTは相転移温度が決まっているのに対し、KTNは、タンタルとニオブの組成比により、相転移温度を選択することができる。これにより、室温付近に相転移温度を設定することができる。KTNは、相転移温度よりも高い温度であれば立方晶相となり、反転対称性を有し、大きなカー効果を有する。同じ立方晶相にあっても、より相転移温度に近い方が、カー効果が圧倒的に大きくなる。このため、室温付近に相転移温度を設定することは、大きなカー効果を簡便に実現する上で、非常に重要である。   Furthermore, the single crystal material mainly composed of KTN has more preferable characteristics. BT has a predetermined phase transition temperature, whereas KTN can select a phase transition temperature depending on the composition ratio of tantalum and niobium. Thereby, the phase transition temperature can be set near room temperature. KTN has a cubic phase at a temperature higher than the phase transition temperature, has inversion symmetry, and has a large Kerr effect. Even in the same cubic phase, the Kerr effect becomes overwhelmingly closer to the phase transition temperature. For this reason, setting the phase transition temperature around room temperature is very important for easily realizing a large Kerr effect.

反転対称性を有する単結晶材料として、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含む材料を用いることができる。さらに、反転対称性を有する単結晶材料は、添加不純物としてカリウムを除く周期律表Ia族、またはIIa族の1または複数種を含むこともできる。例えば、大きなカー効果を有する立方晶相のKLTN(K1-yLiyTa1-xNbx3、0<x<1、0<y<1)結晶を用いることもできる。 As a single crystal material having reversal symmetry, the main component of the crystal is composed of groups Ia and Va in the periodic table, group Ia is potassium, and group Va contains at least one of niobium and tantalum. Can be used. Further, the single crystal material having inversion symmetry may include one or more members of Group Ia or Group IIa of the periodic table excluding potassium as an additive impurity. For example, a cubic phase KLTN (K 1-y Li y Ta 1-x Nb x O 3 , 0 <x <1, 0 <y <1) crystal having a large Kerr effect may be used.

KTNにおいて、使用温度を相転移温度に近づけると、誘電率が急激に高くなるため、電気光学効果が大きくなる。例えば、KTNの比誘電率が10,000を超え、KTN基板に印加する電圧が500Vを超えると、焦点距離が1m以下となり、実用上有効な特性が得られる。   In KTN, when the operating temperature is brought close to the phase transition temperature, the dielectric constant increases rapidly, and the electro-optic effect increases. For example, when the relative dielectric constant of KTN exceeds 10,000 and the voltage applied to the KTN substrate exceeds 500 V, the focal length becomes 1 m or less, and practically effective characteristics can be obtained.

なお、KTNは、他の電気光学結晶と同様に、印加電界の向きと光電界の向きとの関係により、屈折率変調が変わる。図2の構成において、偏光は、光電界の向きがx軸方向の場合と、z軸方向の場合の2種類がある。それぞれの場合に、光が感じる屈折率変調ΔnxとΔnzとは、 Note that the refractive index modulation of KTN varies depending on the relationship between the direction of the applied electric field and the direction of the optical electric field, as in other electro-optic crystals. In the configuration of FIG. 2, there are two types of polarized light, when the direction of the optical electric field is the x-axis direction and when the direction is the z-axis direction. In each case, the refractive index modulation [Delta] n x and [Delta] n z where light feel,

Figure 0005069267
Figure 0005069267

となって異なる。ここで、n0は変調前の屈折率である。 It becomes different. Here, n 0 is the refractive index before modulation.

また、s11とs12は電気光学係数であるが、s11は正なのに対し、s12は負の値を持ち、絶対値はs11の方が大きい。この特徴のため、光電界の向きがx方向の場合は凸レンズ、z方向の場合は凹レンズと、入射光の偏光状態によって機能が全く変わる。 Further, s 11 and s 12 are electro-optic coefficients, but s 11 is positive, whereas s 12 has a negative value, and the absolute value is larger in s 11 . Because of this feature, the function changes completely depending on the polarization state of the incident light, a convex lens when the direction of the optical electric field is the x direction, and a concave lens when the direction of the optical field is the z direction.

レンズの特性は、基板1を透過することによって光が受ける光路長変調によって表される。光路長変調Δsとは、電気光学材料を透過する間の経路にわたって、屈折率変調Δnを積分したものである。屈折率変調はxとyとの関数であるため、これをΔn(x,y)とする。屈折率変調Δnはzには依存しない。本実施形態にかかる可変焦点レンズは、y軸方向に光が伝搬するので、光路長変調Δsは、   The characteristic of the lens is expressed by optical path length modulation that the light receives by passing through the substrate 1. The optical path length modulation Δs is obtained by integrating the refractive index modulation Δn over the path through the electro-optic material. Since the refractive index modulation is a function of x and y, this is assumed to be Δn (x, y). The refractive index modulation Δn does not depend on z. Since the variable focus lens according to the present embodiment propagates light in the y-axis direction, the optical path length modulation Δs is

Figure 0005069267
Figure 0005069267

となり、yには依存せずxのみの関数となる。すなわち、光を集散させるx軸方向でのみ変化し、z軸方向には変化しない。 Thus, it is a function of only x without depending on y. That is, it changes only in the x-axis direction where light is condensed, and does not change in the z-axis direction.

(電極材料)
電気光学材料に高い電圧を印加すると、電極から電荷が注入され、結晶内に空間電荷が発生しうる。この空間電荷により電圧の印加方向に電界の傾斜が生じるために、屈折率の変調にも傾斜が生じる。
(Electrode material)
When a high voltage is applied to the electro-optic material, charges are injected from the electrodes, and space charges can be generated in the crystal. This space charge causes an electric field to be tilted in the direction of voltage application, so that the refractive index is also tilted.

従って、電気光学材料をレンズとして機能させるための所望の屈折率分布が得られなかったり、電気光学材料を透過する光が偏向しないようにするためには、基板1に電圧を印加した際に、基板1の内部に空間電荷が形成されない方がよい。空間電荷の量は、キャリアの注入効率に依存する量であるため、電極から注入されるキャリアの注入効率は小さい方がよい。電極材料の仕事関数が大きくなるにつれて、電極と基板との間はショットキー接合に近づき、キャリアの注入効率は減少する。電気光学結晶において電気伝導に寄与するキャリアが電子の場合には、電極材料の仕事関数は、5.0eV以上であることが好ましい。例えば、仕事関数が5.0eV以上の電極材料として、Co(5.0)、Ge(5.0)、Au(5.1)、Pd(5.12)、Ni(5.15)、Ir(5.27)、Pt(5.65)、Se(5.9)を用いることができる。()内は仕事関数(eV)を示す。   Therefore, in order to prevent a desired refractive index distribution for causing the electro-optic material to function as a lens or to prevent light transmitted through the electro-optic material from being deflected, when a voltage is applied to the substrate 1, It is better that no space charge is formed inside the substrate 1. Since the amount of space charge depends on the carrier injection efficiency, the carrier injection efficiency injected from the electrode should be small. As the work function of the electrode material increases, the Schottky junction approaches between the electrode and the substrate, and the carrier injection efficiency decreases. When the carrier that contributes to electric conduction in the electro-optic crystal is an electron, the work function of the electrode material is preferably 5.0 eV or more. For example, as an electrode material having a work function of 5.0 eV or more, Co (5.0), Ge (5.0), Au (5.1), Pd (5.12), Ni (5.15), Ir (5.27), Pt (5.65), Se (5.9) can be used. Figures in parentheses indicate work functions (eV).

一方、電気光学結晶において電気伝導に寄与するキャリアが正孔の場合には、正孔の注入を抑えるために、電極材料の仕事関数は、5.0eV未満であることが好ましい。例えば、仕事関数が5.0eV以上の電極材料として、Ti(3.84)等を用いることができる。なお、Tiの単層電極は酸化して高抵抗になるので、一般的には、Ti/Pt/Auを積層した電極を用いて、Tiの層と電気光学結晶とを接合させる。さらに、ITO(Indium Tin Oxide)、ZnOなどの透明電極を用いることもできる。   On the other hand, when the carriers contributing to electrical conduction in the electro-optic crystal are holes, the work function of the electrode material is preferably less than 5.0 eV in order to suppress the injection of holes. For example, Ti (3.84) or the like can be used as an electrode material having a work function of 5.0 eV or more. Since the Ti single-layer electrode is oxidized and becomes high resistance, generally, the Ti layer and the electro-optic crystal are bonded using an electrode in which Ti / Pt / Au is laminated. Further, a transparent electrode such as ITO (Indium Tin Oxide) or ZnO can be used.

(実施例1)
図4は、実施例1にかかる可変焦点レンズの構成を示す。図4(a)は正面図、図4(b)は立体図である。基板1は、KTN単結晶から、ブロックを切り出し、6mm×6mm×6mmの形状に成形した。基板1の6面とも、結晶の(100)面に平行とし、光学研磨を行っている。図4の電気光学材料の基板1の左側面に、入射面側電極2aと出射面側電極3aが形成されている。同様に右側面に、入射面側電極2bと出射面側電極3bが形成されている。このKTN単結晶は、相転移温度35℃であったので、これを少し上回る40℃で使用することとした。この温度での比誘電率は20,000である。
Example 1
FIG. 4 illustrates a configuration of the variable focus lens according to the first example. 4A is a front view, and FIG. 4B is a three-dimensional view. The substrate 1 was cut out from a KTN single crystal and formed into a shape of 6 mm × 6 mm × 6 mm. All six surfaces of the substrate 1 are parallel to the (100) plane of the crystal and optical polishing is performed. An entrance surface side electrode 2a and an exit surface side electrode 3a are formed on the left side surface of the substrate 1 of the electro-optic material shown in FIG. Similarly, an entrance surface side electrode 2b and an exit surface side electrode 3b are formed on the right side surface. Since this KTN single crystal had a phase transition temperature of 35 ° C., it was decided to use it at 40 ° C., which is slightly higher than this. The relative dielectric constant at this temperature is 20,000.

入射面側電極2a、出射面側電極3a、入射面側電極2b、出射面側電極3bのそれぞれは、0.6mm×5mmの方形で、白金(Pt)を蒸着して厚さ約2000Åで形成されている。そして、入射面側電極2aと出射面側電極3aの間隔は4mmである。同様に、入射面側電極2bと出射面側電極3bの間隔は4mmである。   Each of the entrance surface side electrode 2a, the exit surface side electrode 3a, the entrance surface side electrode 2b, and the exit surface side electrode 3b is a 0.6 mm × 5 mm square, and is formed by depositing platinum (Pt) to a thickness of about 2000 mm. Has been. The distance between the entrance surface side electrode 2a and the exit surface side electrode 3a is 4 mm. Similarly, the interval between the entrance surface side electrode 2b and the exit surface side electrode 3b is 4 mm.

実施例1の可変焦点レンズを、40℃で温度制御した状態で、コリメートしたレーザ光を、上面より入射する。光の偏光は直線で、振動電界の方向はz軸方向である。入射面側電極2aと出射面側電極3aとの間に500Vの電圧を印加し、同様に、入射面側電極2bと出射面側電極3bとの間に500Vの電圧を印加すると、下面から出射する光は、x軸方向に広がり、シリンドリカル凹レンズとして機能する。焦点距離は25cmである。ここで、印加電圧を250Vにすると、広がりは小さくなり、焦点距離は約1mになる。すなわち、印加電圧により、焦点距離を変化させることができる。焦点距離の変更は、印加電圧を変更するだけなので、応答時間は1μs以下であり、従来の可変焦点レンズの応答時間と比較して、3桁以上改善されている。   The collimated laser light is incident from the upper surface in a state where the temperature of the variable focus lens of Example 1 is controlled at 40 ° C. The polarization of light is a straight line, and the direction of the oscillating electric field is the z-axis direction. When a voltage of 500 V is applied between the incident surface side electrode 2a and the output surface side electrode 3a, and similarly, a voltage of 500 V is applied between the incident surface side electrode 2b and the output surface side electrode 3b, the light is emitted from the lower surface. The spreading light spreads in the x-axis direction and functions as a cylindrical concave lens. The focal length is 25 cm. Here, when the applied voltage is 250 V, the spread becomes small and the focal length becomes about 1 m. That is, the focal length can be changed by the applied voltage. Since changing the focal length only changes the applied voltage, the response time is 1 μs or less, which is an improvement of three orders of magnitude or more compared to the response time of the conventional variable focus lens.

また、光の進行方向はそのままに、偏光を90度回転させて測定を行う。つまり、光の振動電界の方向をx軸方向とする。この場合は、凸レンズとして機能する。印加電圧が500Vのとき、焦点距離は19cmであり、印加電圧によって焦点距離を変化させることができる。   Further, the measurement is performed by rotating the polarized light by 90 degrees while keeping the traveling direction of the light. That is, the direction of the oscillating electric field of light is the x-axis direction. In this case, it functions as a convex lens. When the applied voltage is 500 V, the focal length is 19 cm, and the focal length can be changed by the applied voltage.

上記実施例1においては、入射面側電極2aの辺のうち出射面側電極3aの辺に対向する辺10,20と、入射面側電極2bの辺のうち出射面側電極3bの辺に対向する辺30,40は、基板1を挟んでy軸方向において一致しているが、完全に一致している必要はなく、互いに平行であればよい。   In the first embodiment, the sides 10 and 20 that face the side of the exit surface side electrode 3a among the sides of the entrance surface side electrode 2a, and the side that faces the exit surface side electrode 3b among the sides of the entrance surface side electrode 2b. The sides 30 and 40 that coincide with each other in the y-axis direction with the substrate 1 interposed therebetween need not be completely coincident with each other, and may be parallel to each other.

(実施例2)
図5は、実施例2にかかる可変焦点レンズの構成を示す。実施例1と同様の構成で左側面および右側面の電極間に溝を形成した。溝の形状としては深さ0.5mm、幅1mm〜2mm、長さ5mmとした。溝を形成することで、電界分布が変化し、レンズ性能が改善した。
(Example 2)
FIG. 5 illustrates a configuration of a variable focus lens according to the second embodiment. Grooves were formed between the electrodes on the left side surface and the right side surface in the same configuration as in Example 1. The groove shape was 0.5 mm in depth, 1 mm to 2 mm in width, and 5 mm in length. By forming the groove, the electric field distribution changed and the lens performance improved.

(実施例3)
図6は、実施例3にかかる可変焦点レンズの構成を示す。この実施例では、実施例1の構成の可変焦点レンズをもう一組用意し、光が透過する部分の光軸を一致させて配置する。光軸に関して一方の可変焦点レンズが他方の可変焦点レンズに対して90度回転するように2つの可変焦点レンズを配置する。実施例1と同様に、コリメートしたレーザ光を、上面より入射する。2方向で集光または発散を行うことにより、球面レンズと等価な機能を実現することができる。
(Example 3)
FIG. 6 illustrates a configuration of the variable focus lens according to the third example. In this embodiment, another set of variable focus lenses having the configuration of the first embodiment is prepared and arranged so that the optical axes of the portions through which light is transmitted coincide with each other. Two variable focus lenses are arranged such that one variable focus lens rotates 90 degrees with respect to the other variable focus lens with respect to the optical axis. Similar to the first embodiment, collimated laser light is incident from the upper surface. By condensing or diverging in two directions, a function equivalent to a spherical lens can be realized.

1 基板
2a 入射面側電極
2b 入射面側電極
3a 出射面側電極
3b 出射面側電極
10 出射面側電極3aと対向する辺
20 入射面側電極2aと対向する辺
30 出射面側電極3bと対向する辺
40 入射面側電極2bと対向する辺
DESCRIPTION OF SYMBOLS 1 Substrate 2a Incident surface side electrode 2b Incident surface side electrode 3a Outgoing surface side electrode 3b Outgoing surface side electrode 10 Side facing the emitting surface side electrode 3a 20 Side facing the incident surface side electrode 2a 30 Opposing to the emitting surface side electrode 3b Side 40 The side facing the incident surface side electrode 2b

Claims (8)

反転対称性を有する電気光学材料と、該電気光学材料の光の入射面および出射面に垂直な向かい合った2つの平行の面の各々の面に形成された入射面側電極と出射面側電極とを備え、
前記光を前記入射面から入射し、前記出射面から出射するように光軸が設定され、
前記入射面側電極の辺のうち前記出射面側電極の辺と対向する辺は互いに平行に配置され、
前記入射面側電極の辺のうち前記出射面側電極の辺と対向する前記辺と、前記電気光学材料を挟んで対向する面上に形成された前記入射面側電極の辺のうち前記出射面側電極の辺と対向する辺は、各々、平行に配置され、
前記入射面側電極と前記出射面側電極との間に形成された電界が、前記光軸を中心に前記光が透過する部分において変化させられ、
前記入射面側電極と前記出射面側電極との間の印加電圧を変えることにより、前記電気光学材料を透過した光の焦点が可変であることを特徴とする可変焦点レンズ。
An electro-optic material having inversion symmetry, and an entrance surface-side electrode and an exit surface-side electrode formed on each of two parallel surfaces facing each other perpendicular to the light entrance surface and the exit surface of the electro-optic material With
The optical axis is set so that the light enters from the incident surface and exits from the exit surface,
Of the sides of the incident surface side electrode, sides facing the side of the output surface side electrode are arranged in parallel to each other,
Of the sides of the entrance surface side electrode, the exit surface of the sides of the entrance surface side electrode formed on the surface facing the side of the exit surface side electrode and the surface facing the electro-optic material The sides facing the sides of the side electrodes are each arranged in parallel,
An electric field formed between the incident surface side electrode and the output surface side electrode is changed in a portion where the light is transmitted around the optical axis,
A variable focus lens, wherein a focal point of light transmitted through the electro-optic material is variable by changing an applied voltage between the entrance surface side electrode and the exit surface side electrode.
前記電気光学材料は、ペロブスカイト型単結晶材料であることを特徴とする請求項1に記載の可変焦点レンズ。   The variable focus lens according to claim 1, wherein the electro-optic material is a perovskite single crystal material. 前記電気光学材料は、タンタル酸ニオブ酸カリウム(KTa1−xNb)であることを特徴とする請求項2に記載の可変焦点レンズ。 The electro-optical material, a variable focus lens according to claim 2, characterized in that the potassium tantalate niobate (KTa 1-x Nb x O 3). 前記電気光学材料は、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことを特徴とする請求項2に記載の可変焦点レンズ。   The electro-optic material is characterized in that the main component of the crystal is composed of groups Ia and Va in the periodic table, group Ia is potassium, and group Va includes at least one of niobium and tantalum. The variable focus lens according to claim 2. 前記電気光学材料は、さらに、添加不純物としてカリウムを除く周期律表Ia族、またはIIa族の1または複数種を含むことを特徴とする請求項4に記載の可変焦点レンズ。   5. The variable focus lens according to claim 4, wherein the electro-optic material further includes one or more of Group Ia or Group IIa of the periodic table excluding potassium as an additive impurity. 前記電極は、前記電気光学材料とショットキー接合が形成される材料であることを特徴とする請求項1ないし5のいずれかに記載の可変焦点レンズ。   6. The variable focus lens according to claim 1, wherein the electrode is a material that forms a Schottky junction with the electro-optic material. 前記入射面側電極の辺のうち前記出射面側電極の辺と対向する前記辺と、前記電気光学材料を挟んで対向する面上に形成された前記入射面側電極の辺のうち前記出射面側電極の辺と対向する前記辺は、各々、前記光軸方向において一致した位置に配置されていることを特徴とする請求項6に記載の可変焦点レンズ。   Of the sides of the entrance surface side electrode, the exit surface of the sides of the entrance surface side electrode formed on the surface facing the side of the exit surface side electrode and the surface facing the electro-optic material The variable focus lens according to claim 6, wherein the sides facing the sides of the side electrode are respectively arranged at positions that coincide with each other in the optical axis direction. 前記入射面側電極と前記出射面側電極との間に溝を形成し、前記電気光学材料を挟んで対向する面上に形成された前記入射面側電極と前記出射面側電極との間に溝を形成したことを特徴とする請求項6又は請求項7に記載の可変焦点レンズ。   A groove is formed between the entrance surface side electrode and the exit surface side electrode, and between the entrance surface side electrode and the exit surface side electrode formed on a surface facing each other with the electro-optic material interposed therebetween. The variable focus lens according to claim 6 or 7, wherein a groove is formed.
JP2009068808A 2009-03-19 2009-03-19 Variable focus lens Active JP5069267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068808A JP5069267B2 (en) 2009-03-19 2009-03-19 Variable focus lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068808A JP5069267B2 (en) 2009-03-19 2009-03-19 Variable focus lens

Publications (2)

Publication Number Publication Date
JP2010224045A JP2010224045A (en) 2010-10-07
JP5069267B2 true JP5069267B2 (en) 2012-11-07

Family

ID=43041334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068808A Active JP5069267B2 (en) 2009-03-19 2009-03-19 Variable focus lens

Country Status (1)

Country Link
JP (1) JP5069267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161156B2 (en) * 2009-06-12 2013-03-13 日本電信電話株式会社 Variable focus lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392825A (en) * 1989-09-06 1991-04-18 Ricoh Co Ltd Electrooptic lens device
JP2840402B2 (en) * 1990-07-19 1998-12-24 株式会社リコー Electro-optic lens
JPH08132676A (en) * 1994-11-10 1996-05-28 Konica Corp Image recorder
JP4729698B2 (en) * 2000-11-29 2011-07-20 独立行政法人物質・材料研究機構 Lithium tantalate single crystal and its optical functional device
JP2003270597A (en) * 2002-03-19 2003-09-25 Kyocera Corp Optical variable attenuating device
JP4403793B2 (en) * 2003-12-17 2010-01-27 株式会社村田製作所 Laminated electro-optic lens and optical device
WO2006137408A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Electro-optical element
JP2009012011A (en) * 2007-06-29 2009-01-22 Sunx Ltd Laser beam machining apparatus

Also Published As

Publication number Publication date
JP2010224045A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5406046B2 (en) Variable focus lens
JP5426500B2 (en) Polarization-independent variable focus lens
JP2010026079A (en) Optical device
JP5406292B2 (en) Variable focus lens and microscope
JP5411089B2 (en) Variable focus lens
JP2014202786A (en) Varifocal lens
JP5432044B2 (en) Variable focus lens
JP2014026229A (en) Variable focus lens
JP5069267B2 (en) Variable focus lens
JP2014098790A (en) Optical tweezers apparatus
US9291874B2 (en) Optical deflection element and optical deflection device
JP5161156B2 (en) Variable focus lens
JP6611052B2 (en) Variable focus lens
US10788728B2 (en) Light beam steering using electro-optical and conductive materials
JP5069266B2 (en) Variable focus lens
JP2015018095A (en) Variable focus mirror
JP6346572B2 (en) Variable focus lens
JP6259360B2 (en) Variable focus lens
JP6335111B2 (en) Variable focus lens
JP2018101109A (en) Variable focal length lens
JP2015215581A (en) Optical attenuator and multi-channel optical attenuator
JP2011221396A (en) Frequency independent optical deflector

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5069267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115