JP2016000850A - Cold rolled steel sheet and manufacturing method therefor - Google Patents

Cold rolled steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2016000850A
JP2016000850A JP2014121182A JP2014121182A JP2016000850A JP 2016000850 A JP2016000850 A JP 2016000850A JP 2014121182 A JP2014121182 A JP 2014121182A JP 2014121182 A JP2014121182 A JP 2014121182A JP 2016000850 A JP2016000850 A JP 2016000850A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
tic
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121182A
Other languages
Japanese (ja)
Other versions
JP6156260B2 (en
Inventor
克美 山田
Katsumi Yamada
克美 山田
典晃 ▲高▼坂
典晃 ▲高▼坂
Noriaki Takasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014121182A priority Critical patent/JP6156260B2/en
Publication of JP2016000850A publication Critical patent/JP2016000850A/en
Application granted granted Critical
Publication of JP6156260B2 publication Critical patent/JP6156260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet having a tensile strength of 590 MPa or more and excellent in processability with good elongation by using precipitation strengthening of a fine carbide and a manufacturing method therefor.SOLUTION: There is provided a cold rolled steel sheet containing, by mass%, C:0.04 to 0.06%, Si+Al:0.05 to 0.10%, Mn:0.15 to 0.45%, P:less than 0.01%, Ti:0.12 to 0.16% with Tidefined by the following (1) formula having a composition satisfying the following (2) formula, volume fraction of a ferrite phase:90% or more, volume fraction of a cementite:less than 5%, recrystallization fraction of the ferrite phase:70% or more, Ti carbide (TiC) depositing in the ferrite phase with a structure having an average length of less than 15 nm and Ti deposition fraction of 90% or more and tensile strength of 590 MPa or more. Ti=Ti-(3.43N+1.5S) (1)1.2≤4C/Ti≤2.4(2)

Description

本発明は、自動車の骨格部品などに好適な、伸びなどの加工性に優れた高強度冷延鋼板、特に、引張強度(TS)590MPa以上の引張強度を有する冷延鋼板およびその製造方法に関する。   The present invention relates to a high-strength cold-rolled steel sheet excellent in workability such as elongation, suitable for automobile frame parts and the like, in particular, a cold-rolled steel sheet having a tensile strength (TS) of 590 MPa or more and a method for producing the same.

近年、自動車車体の軽量化を図るために、自動車の骨格部品や足まわり部品には高強度鋼板が多用されつつある。また、鋼板の成分組成に関しては、原材料のグローバル調達性に対応し、希少な合金元素をできるだけ使用しないことが求められている。   In recent years, high-strength steel sheets are being frequently used for automobile frame parts and underbody parts in order to reduce the weight of automobile bodies. In addition, regarding the component composition of the steel sheet, it is required to use rare alloy elements as much as possible in response to the global procurement of raw materials.

ここで、熱延鋼板の高強度化には、フェライト相中にTi、Nb、Vなどの炭窒化物を形成させる析出強化法が積極活用されるようになってきた。例えば、特許文献1には、重量%で、C:0.02〜0.10%、Ti:0.3%以下、Nb:0.2%以下で、かつ、0.50<{(Ti−3.43N−1.5S)/4+Nb/7.75}/Cとなる量のTi及びNbの1種以上を含み、Feを主成分とし、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を有することを特徴とする伸びフランジ性に優れた高強度熱延鋼板が提案されている。また特許文献2には、質量%で、C<0.10%、Ti:0.03〜0.10%、Mo:0.05〜0.6%を含み、Feを主成分とし、フェライト単相組織のマトリックス中に粒径が10nm未満の微細析出物が分散析出している、TSが550MPa以上のプレス加工性に優れた薄鋼板が提案されている。さらに、特許文献3には質量%で、C:0.02〜0.08%、Ti:0.03〜0.06%を含有し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、C量に対するTi量の比が、Ti/C:0.375〜1.6であり、結晶粒内のTiC析出物の平均直径が0.8〜3nmであり、平均個数密度が、1×1017[個/cm]以上であり、引張強度が540〜650MPaであることを特徴とする省合金型高強度熱延鋼板も提案されている。 Here, in order to increase the strength of hot-rolled steel sheets, precipitation strengthening methods for forming carbonitrides such as Ti, Nb, and V in the ferrite phase have been actively utilized. For example, Patent Document 1 discloses that, by weight, C: 0.02 to 0.10%, Ti: 0.3% or less, Nb: 0.2% or less, and 0.50 <{(Ti− 3.43N-1.5S) /4+Nb/7.75} / C in an amount of at least one of Ti and Nb, Fe as a main component, an acicular ferrite structure, and fine TiC and A high-strength hot-rolled steel sheet excellent in stretch flangeability characterized by having a structure in which NbC is precipitated has been proposed. Patent Document 2 includes, in mass%, C <0.10%, Ti: 0.03 to 0.10%, Mo: 0.05 to 0.6%, Fe as a main component, and ferrite single element. A thin steel sheet excellent in press workability with a TS of 550 MPa or more, in which fine precipitates having a particle size of less than 10 nm are dispersed and precipitated in a matrix of a phase structure, has been proposed. Further, Patent Document 3 contains C: 0.02 to 0.08% and Ti: 0.03 to 0.06% in mass%, and further, the total content of Nb, Mo and V is 0. 0.01% or less, the ratio of Ti amount to C amount is Ti / C: 0.375 to 1.6, and the average diameter of TiC precipitates in the crystal grains is 0.8 to 3 nm, An alloy-saving high-strength hot-rolled steel sheet having an average number density of 1 × 10 17 [pieces / cm 3 ] or more and a tensile strength of 540 to 650 MPa has been proposed.

特開平7−11382号公報JP-A-7-11382 特開2002−322539号公報JP 2002-322539 A 特開2011−26690号公報JP 2011-26690 A 特開2009−31269号公報JP 2009-31269 A

しかしながら、熱延鋼板においては、上記したように、TiC等の炭化物を微細に制御して、強度と延性のバランスに優れた鋼板を得る技術が開発されているものの、もっぱら板厚2mm程度までの鋼板を対象とするものである。これら熱延鋼板よりもさらに板厚の薄い薄鋼板の製造においては、熱間圧延後さらに冷間圧延を行い、再結晶焼鈍するプロセスが一般的に実施されており、再結晶焼鈍の際に炭化物の粗大化が起こるため、析出強化を活用したフェライトを主体とする組織では440MPaを超える強度を達成することは困難であった。このため、590MPa以上の引張強度を有する冷延鋼板を製造する場合、SiやMnといった固溶強化元素の添加が必要とされ、コスト高となるとともに、めっき性に劣るという問題があった。   However, in hot-rolled steel sheets, as described above, although techniques have been developed to finely control carbides such as TiC and obtain a steel sheet with an excellent balance between strength and ductility, the sheet thickness is only up to about 2 mm. It is intended for steel plates. In the manufacture of thin steel sheets that are thinner than these hot-rolled steel sheets, a process of further cold rolling after hot rolling and recrystallization annealing is generally carried out, and carbides are used during recrystallization annealing. Therefore, it is difficult to achieve a strength exceeding 440 MPa in a structure mainly composed of ferrite utilizing precipitation strengthening. For this reason, when manufacturing a cold-rolled steel sheet having a tensile strength of 590 MPa or more, it is necessary to add a solid solution strengthening element such as Si or Mn, resulting in high costs and inferior plating properties.

そこで、本発明では、原料コストや、めっき性などの観点から、Si、Mn等の固溶強化によらず、微細炭化物の析出強化を活用して、590MPa以上の引張強度を有し、良好な伸びを有して加工性に優れる冷延鋼板およびその製造方法を提供することを目的とする。   Therefore, in the present invention, from the viewpoint of raw material costs, plating properties, etc., it has a tensile strength of 590 MPa or more by utilizing precipitation strengthening of fine carbides, regardless of solid solution strengthening of Si, Mn, etc. It aims at providing the cold-rolled steel plate which has elongation and is excellent in workability, and its manufacturing method.

本発明者らは、上記課題の下、微細炭化物としてTi炭化物(TiC)を用いて、析出強化を活用することについて、種々検討した。   Under the above problems, the present inventors have made various studies on utilizing precipitation strengthening using Ti carbide (TiC) as fine carbide.

まず、冷延焼鈍板製造の前段階である熱延鋼板のフェライト相中に、Ti炭化物を微細に析出させて、熱延鋼板を出来るだけ高強度化し、このような熱延鋼板を素材として、焼鈍することにより、冷延鋼板を高強度化することを考えた。この場合、熱延鋼板の段階において存在する極めて微細な炭化物が、後の再結晶を著しく遅延させる。このため、冷間圧延の圧下率(圧延率ともいう)を大きくすることによる再結晶促進を検討した。その結果、予想に反し、圧延率を増大させても再結晶が著しく遅延することがわかった。更に、冷間圧延の際、熱延鋼板中に析出しているTiCが、冷間圧延率増大に伴い再固溶もしくは微細化する現象を見出した。そこで、さらに検討を進めた結果、熱延鋼板時点での強度をそれほど重視せず、冷間圧延し、焼鈍して冷延鋼板とした際に、所望の強度が得られる程度の最低限の強度を確保するようにすることで、冷間圧延後の再結晶が速やかに進み、590MPa以上の引張強度を有し、加工性に優れる冷延鋼板を有利に製造できることを見出した。   First, in the ferrite phase of the hot-rolled steel sheet, which is the pre-stage of cold-rolled annealed steel plate, Ti carbide is finely precipitated to increase the strength of the hot-rolled steel sheet as much as possible. We considered increasing the strength of the cold-rolled steel sheet by annealing. In this case, the very fine carbides present at the stage of the hot-rolled steel sheet significantly delay the subsequent recrystallization. For this reason, promotion of recrystallization by increasing the rolling reduction (also called rolling rate) of cold rolling was examined. As a result, contrary to expectation, it was found that recrystallization was significantly delayed even when the rolling rate was increased. Furthermore, it has been found that during cold rolling, TiC precipitated in the hot-rolled steel sheet is re-dissolved or refined as the cold rolling rate increases. Therefore, as a result of further investigation, the strength at the time of hot-rolled steel sheet is not so important, and the minimum strength that can achieve the desired strength when cold-rolled and annealed to make a cold-rolled steel sheet By ensuring the above, it has been found that recrystallization after cold rolling proceeds rapidly, and a cold-rolled steel sheet having a tensile strength of 590 MPa or more and excellent workability can be produced advantageously.

本発明は、上記した知見に基づきなされたもので、その要旨は下記のとおりである。   The present invention has been made on the basis of the above-described findings, and the gist thereof is as follows.

[1]質量%で、C:0.04〜0.06%、Si+Al:0.05〜0.10%、Mn:0.15〜0.45%、P:0.01%未満、S:0.004%以下、N:0.0045%以下、Ti:0.12〜0.16%を含有し、残部がFeおよび不可避的不純物からなり、下記の(1)式で規定されるTiが下記の(2)式を満足する組成を有し、フェライト相の体積率:90%以上、セメンタイトの体積率:5%未満、前記フェライト相の再結晶率:70%以上であり、前記フェライト相中にTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが15nm未満、Tiの析出率が90%以上である組織を有し、引張強度が590MPa以上であることを特徴とする冷延鋼板;
Ti=Ti−(3.43N+1.5S)・・・(1)
1.2≦4C/Ti≦2.4・・・(2)
ただし、式中のTi、N、S、Cは各元素の含有量(質量%)を表す。
また、Ti炭化物の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。
[1] By mass%, C: 0.04 to 0.06%, Si + Al: 0.05 to 0.10%, Mn: 0.15 to 0.45%, P: less than 0.01%, S: Ti * containing 0.004% or less, N: 0.0045% or less, Ti: 0.12 to 0.16%, the balance consisting of Fe and inevitable impurities, and defined by the following formula (1) Having a composition satisfying the following formula (2): volume fraction of ferrite phase: 90% or more, volume fraction of cementite: less than 5%, recrystallization rate of the ferrite phase: 70% or more, and the ferrite Ti carbide (TiC) is precipitated in the phase, the Ti carbide has an average length of less than 15 nm, a Ti precipitation rate of 90% or more, and a tensile strength of 590 MPa or more. Cold-rolled steel sheet;
Ti * = Ti− (3.43N + 1.5S) (1)
1.2 ≦ 4C / Ti * ≦ 2.4 (2)
However, Ti, N, S, and C in the formula represent the content (mass%) of each element.
Moreover, the average length of Ti carbide is a value obtained by arithmetically averaging the lengths of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope.

[2]さらに、質量%で、B:0.0003〜0.0010%を含有することを特徴とする前記[1]に記載の冷延鋼板。   [2] The cold-rolled steel sheet according to [1], further containing B: 0.0003 to 0.0010% by mass.

[3]前記[1]または[2]に記載の組成を有する鋼を、1150℃〜1250℃に加熱後、仕上げ圧延終了温度:880〜930℃で熱間圧延し、平均冷却速度:10℃/s以上30℃/s未満で冷却して、巻取温度:655〜685℃で巻取り、酸洗後、圧下率:50%以上で冷間圧延し、昇温速度:10℃/s以下で750℃〜800℃に加熱後、90〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施すことを特徴とする冷延鋼板の製造方法。   [3] The steel having the composition described in [1] or [2] is heated to 1150 ° C. to 1250 ° C. and then hot-rolled at a finish rolling end temperature: 880 to 930 ° C., and an average cooling rate: 10 ° C. Cooling at / s or more and less than 30 ° C / s, winding at winding temperature: 655 to 685 ° C, pickling, cold rolling at a reduction ratio of 50% or more, and heating rate: 10 ° C / s or less A method for producing a cold-rolled steel sheet, comprising: annealing at 90 to 180 s after heating to 750 to 800 ° C., and subsequently performing an overaging treatment at 280 to 350 ° C. for 240 s or more.

本発明により、伸びなどの加工性に優れる板厚の薄い高強度冷延鋼板、たとえば板厚1.5mm以下で590MPa以上のTSを有する加工性の良好な冷延鋼板を、安価に製造できるようになった。本発明の鋼板は、自動車の骨格部品などに好適である。   According to the present invention, a thin high-strength cold-rolled steel sheet having excellent workability such as elongation, for example, a cold-rolled steel sheet having good workability having a TS of 1.5 mm or less and a TS of 590 MPa or more can be manufactured at low cost. Became. The steel sheet of the present invention is suitable for automobile frame parts and the like.

本発明では、回復・再結晶フェライト相中に一辺が15nm未満の微細な板状TiCを、Tiの析出率を90%以上として多数析出させることで、伸び特性を劣化させることなく高強度化を図っている。特許文献2に開示されているようなTiとMoを含む炭化物の代わりに、TiCのみを用いているので高価なMoの使用は必要なく、また固溶強化元素として多用されるSi、Mnを低減することで、さらに合金コストを大幅に削減している。   In the present invention, a large number of fine plate-like TiC having a side of less than 15 nm in the recovered / recrystallized ferrite phase is precipitated with a Ti precipitation rate of 90% or more, thereby increasing the strength without deteriorating the elongation characteristics. I am trying. Instead of carbides containing Ti and Mo as disclosed in Patent Document 2, it is not necessary to use expensive Mo because only TiC is used, and Si and Mn frequently used as solid solution strengthening elements are reduced. By doing so, the alloy cost is greatly reduced.

本発明において焼鈍後の強度・伸びバランスを維持する上で最も重要なポイントは、熱延鋼板の段階で、炭化物析出を十分に進行させることである。本発明においては、C量とTi量のバランスを最適化し、巻取温度を所定の範囲とすることにより、熱延鋼板の段階でのTiCを厚み5nm前後の板状形態にそろえることに成功した。この初期析出形態の確保は、主として板厚を調整するための50%以下の冷間圧延の後、冷間圧延により形成された加工組織が、焼鈍によって速やかに回復・再結晶する重要なポイントである。最終的には再結晶率が70%以上となる回復・再結晶フェライト内に、一辺の長さが15nm前後の板状TiCを分散させ、590MPa以上のTSと、概ね20%以上の伸び特性を実現し、高強度と良好な加工性を両立する鋼板が得られる。   In the present invention, the most important point in maintaining the strength / elongation balance after annealing is to sufficiently advance carbide precipitation at the stage of the hot-rolled steel sheet. In the present invention, by optimizing the balance between the amount of C and the amount of Ti and setting the coiling temperature within a predetermined range, TiC at the stage of the hot-rolled steel sheet was successfully aligned in a plate-like form with a thickness of about 5 nm. . Ensuring this initial precipitation form is an important point that the work structure formed by cold rolling is rapidly recovered and recrystallized by annealing after cold rolling of 50% or less mainly for adjusting the plate thickness. is there. Finally, plate-like TiC with a side length of around 15 nm is dispersed in the recovered / recrystallized ferrite with a recrystallization rate of 70% or more, and a TS of 590 MPa or more and an elongation characteristic of about 20% or more are obtained. This realizes a steel sheet that achieves both high strength and good workability.

熱延鋼板の段階で板状形態を有し析出したTiCは母相フェライトとの間にBaker−Nuttingの方位関係(Baker−Nuttingの方位関係:体心立方構造(bcc)である母相Feに、NaCl型のMC炭化物が整合析出する際の典型的方位関係、(100)bcc//(100)MC ,[001]bcc//[011]MC)を有している。一般に冷間圧延後の焼鈍工程において、TiCがオストワルド成長することにより、TiCの析出強化能は急激に低下する。このため、当初は前記したように、焼鈍時の強度低下をあらかじめ見越して、熱延鋼板段階でのTiCの析出を過剰なまでに微細とし、熱延鋼板の強度を出来る限り高強度化することが、冷延鋼板を高強度化する上で有効と考えた。そこで、微細析出物による再結晶の遅延を改善するため、冷間圧延率増大による再結晶促進を狙った圧延率の最適化の検討をおこなった。その結果、熱延鋼板中に析出しているTiCが、冷間圧延率増大に伴い再固溶もしくは微細化する現象を見出し、熱延鋼板に微細析出したTiCは、冷間圧延によって、機械的に更に微細化し、回復・再結晶を著しく遅延させることがわかった。この知見に基づき、発明者らがさらに検討した結果、熱延鋼板において、TiCを安定して存在できる安定サイズまで成長させて、冷間圧延でのTiCの微細化を抑制し、低温域での回復・再結晶を可能とすることで、得られる冷延鋼板の強度が初期強度(熱延鋼板の強度)から大きく低下しないようにすることが、590MPa以上の引張強度を有し、良好な伸びを有して加工性に優れる冷延鋼板を得る上で有効であるとの結論を得て、本発明の完成にいたった。   TiC that has a plate-like form at the stage of the hot-rolled steel sheet and the parent phase ferrite has a Baker-Nutting orientation relationship (Baker-Nutting orientation relationship: the parent phase Fe having a body-centered cubic structure (bcc)). , (100) bcc // (100) MC, [001] bcc // [011] MC), which is a typical orientation relationship when NaCl type MC carbide precipitates in a coherent manner. In general, in the annealing process after cold rolling, TiC is subjected to Ostwald growth, whereby the precipitation strengthening ability of TiC is drastically reduced. For this reason, as mentioned above, in anticipation of a decrease in strength at the time of annealing in advance, the precipitation of TiC at the hot-rolled steel plate stage should be made fine enough to increase the strength of the hot-rolled steel plate as much as possible. However, it was considered effective in increasing the strength of the cold-rolled steel sheet. Therefore, in order to improve the delay of recrystallization due to fine precipitates, optimization of the rolling rate aimed at promoting recrystallization by increasing the cold rolling rate was investigated. As a result, the phenomenon that TiC precipitated in the hot-rolled steel sheet is re-dissolved or refined as the cold rolling rate increases, and TiC finely precipitated in the hot-rolled steel sheet is mechanically cooled by cold rolling. It was found that the material was further refined and the recovery and recrystallization were significantly delayed. As a result of further investigation by the inventors based on this knowledge, in the hot-rolled steel sheet, TiC is grown to a stable size where it can exist stably, suppressing the refinement of TiC in cold rolling, By making recovery and recrystallization possible, the strength of the resulting cold-rolled steel sheet is not greatly reduced from the initial strength (strength of the hot-rolled steel sheet), and has a tensile strength of 590 MPa or more and good elongation. The conclusion that the present invention is effective in obtaining a cold-rolled steel sheet having excellent workability and has completed the present invention.

以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.

1)成分組成
C:0.04〜0.06%
CはTiCとしてフェライト相中に微細に析出し、高強度化に寄与する重要な元素である。C量が0.04%未満だと熱延鋼板の段階で十分な強度が得られず、冷延焼鈍後に590MPa以上のTSが確保できない。一方、0.06%を超えると、熱延鋼板中で微細なTiCが多量に析出し、熱延鋼板の強度が高くなりすぎ、冷間圧延後の焼鈍において、再結晶が著しく遅延するとともに、セメンタイトもしくはベイナイト等の変態組織が増えて加工性の低下を招く。したがって、C量は0.04〜0.06%とする。
1) Component composition C: 0.04 to 0.06%
C is an important element that precipitates finely in the ferrite phase as TiC and contributes to high strength. If the amount of C is less than 0.04%, sufficient strength cannot be obtained at the stage of hot-rolled steel sheets, and TS of 590 MPa or more cannot be secured after cold rolling annealing. On the other hand, if it exceeds 0.06%, a large amount of fine TiC precipitates in the hot-rolled steel sheet, the strength of the hot-rolled steel sheet becomes too high, and recrystallization is significantly delayed in the annealing after cold rolling, The transformation structure such as cementite or bainite increases and the workability is lowered. Therefore, the C content is 0.04 to 0.06%.

Si+Al:0.05〜0.10%
SiやAlは、製鋼時の脱酸に必要な元素(脱酸元素)である。本鋼は同じく脱酸元素であるTiをTiCとして析出させるのに利用するため、Si、Alによる脱酸が必須である。このため、SiとAlの合計の含有量であるSi+Alを0.05%以上とすることが必要である。一方、AlもSiもA3変態温度を上昇させる元素であり、その合計の含有量が0.10%を超えると、二相域圧延を回避するため熱間圧延の仕上げ温度を高くする必要があり、このため、熱間圧延前のスラブ加熱温度を高温化せざるを得ず、製造コスト高を招く。さらに、変態点が上昇することにより、TiCを析出させるために巻取温度を高温化する必要が生じ、TiCの粗大化を招いてしまう。このため、Si量+Al量は0.10%以下とする。
なお、Si量は脱酸の効果を得る上では、0.03%以上とすることが好ましいが、一方、めっき性に悪影響を及ぼす元素のひとつであるため、0.08%以下とすることが好ましい。Al量は脱酸の効果を得る上では、0.02%以上とすることが好ましいが、過剰に添加しても脱酸効果は飽和し、いたずらに変態点が上昇するため、0.05%以下とすることが好ましい。
Si + Al: 0.05-0.10%
Si and Al are elements (deoxidation elements) necessary for deoxidation during steelmaking. Since this steel is used to precipitate Ti, which is also a deoxidizing element, as TiC, deoxidation with Si and Al is essential. For this reason, it is necessary to make Si + Al which is the total content of Si and Al 0.05% or more. On the other hand, both Al and Si are elements that raise the A3 transformation temperature. If the total content exceeds 0.10%, it is necessary to increase the hot rolling finishing temperature in order to avoid two-phase region rolling. For this reason, the slab heating temperature before hot rolling must be increased, resulting in high manufacturing costs. Furthermore, when the transformation point rises, it is necessary to increase the coiling temperature in order to deposit TiC, leading to coarsening of TiC. Therefore, the Si amount + Al amount is set to 0.10% or less.
The Si amount is preferably 0.03% or more in order to obtain the effect of deoxidation. On the other hand, since it is one of the elements that adversely affects the plating properties, the Si amount should be 0.08% or less. preferable. In order to obtain the deoxidation effect, the Al amount is preferably 0.02% or more. However, even if added in excess, the deoxidation effect is saturated and the transformation point is unnecessarily increased. The following is preferable.

Mn:0.15〜0.45%
Mnは、固溶強化能の高い元素であるため鋼の強度レベルの調整に、また、鋼の変態温度を低下させるため熱間圧延前の加熱温度低下に効果的であり、このような効果を得るため、Mn量は0.15%以上とする。一方で、過剰な添加は高コストとなる上、偏析によりバンド状組織が形成されやすく、伸びの低下を招き、さらに伸びフランジ性の低下も招くため、Mn量は0.45%以下とする。
Mn: 0.15 to 0.45%
Mn is an element with a high solid solution strengthening ability, so it is effective for adjusting the strength level of steel, and for reducing the transformation temperature of the steel, so it is effective for lowering the heating temperature before hot rolling. Therefore, the Mn content is 0.15% or more. On the other hand, excessive addition increases the cost and tends to form a band-like structure due to segregation, leading to a decrease in elongation and further a decrease in stretch flangeability, so the Mn amount is set to 0.45% or less.

P:0.01%未満
Pは、鋼板を高強度化する上で、固溶強化元素として多用される有効な元素である。その一方で、結晶粒界にしばしば偏析して加工時の脆化現象を招く。また、亜鉛めっき鋼板においては、合金化を著しく遅延させる。しかしながら、P量は、0.01%未満であれば、これらの加工性やめっき性への悪影響がない。本発明では、冷延鋼板の強度は、TiCの析出により達成し、加工性を重視するため、P量は、めっき性、加工性に影響の無い0.01%未満とする。
P: Less than 0.01% P is an effective element frequently used as a solid solution strengthening element in increasing the strength of a steel sheet. On the other hand, it often segregates at the grain boundaries, leading to embrittlement during processing. Moreover, in galvanized steel sheets, alloying is significantly delayed. However, if the amount of P is less than 0.01%, these workability and plating properties are not adversely affected. In the present invention, the strength of the cold-rolled steel sheet is achieved by precipitation of TiC, and workability is emphasized. Therefore, the P content is less than 0.01%, which does not affect the plateability and workability.

S:0.004%以下
本発明においては、Sは主にTiSとして固定され、(1)式で規定するTi(有効Ti量)の低下につながるため、Sは低いほど好ましいが、0.004%程度までは許容できる。このため、S量の上限を0.004%とする。
S: 0.004% or less In the present invention, S is mainly fixed as TiS and leads to a decrease in Ti * (effective Ti amount) defined by the formula (1). Up to about 004% is acceptable. For this reason, the upper limit of the amount of S is made 0.004%.

N:0.0045%以下
N量が0.0045%を超えると粗大なTiNが形成され、後述する有効Ti量の低下を招き、TiCによる析出強化が十分に発揮できないうえ、伸びが低下し、さらに伸びフランジ性も低下する。このため、N量は0.0045%以下とする。一方、N量を0.0020%未満に制御するには製鋼工程で特別の処理が必要となり製造コスト高を招くため、N量の下限は0.0020%程度とすることが好ましい。
N: 0.0045% or less When the N amount exceeds 0.0045%, coarse TiN is formed, resulting in a decrease in the effective Ti amount, which will be described later, and precipitation strengthening due to TiC cannot be sufficiently exhibited, and the elongation decreases. Furthermore, stretch flangeability is also reduced. Therefore, the N amount is set to 0.0045% or less. On the other hand, in order to control the amount of N to less than 0.0020%, a special process is required in the steel making process, resulting in an increase in production cost. Therefore, the lower limit of the amount of N is preferably about 0.0020%.

Ti:0.12〜0.16%
本発明では、TiはTiCを析出させる元素であり、析出強化に用いる最も重要な元素である。本発明においては、熱延鋼板の段階で十分な析出強化量を確保するためにTi量の下限を0.12%とする。一方、Tiを過剰に添加した場合、固溶Tiや多量のTiCにより焼鈍時の組織回復、再結晶が遅延するため、高温焼鈍が必要となり、TiCの粗大化によって目標強度が到達できなくなるため、上限を0.16%とする。
Ti: 0.12-0.16%
In the present invention, Ti is an element that precipitates TiC and is the most important element used for precipitation strengthening. In the present invention, the lower limit of the Ti amount is set to 0.12% in order to ensure a sufficient precipitation strengthening amount at the stage of the hot-rolled steel sheet. On the other hand, when Ti is added excessively, the structure recovery at the time of annealing due to solute Ti and a large amount of TiC, recrystallization is delayed, so high temperature annealing is required, and the target strength cannot be reached by TiC coarsening, The upper limit is 0.16%.

1.2≦4C/Ti≦2.4(ただし式中のTi、Cは各元素の含有量)
本発明において、TiCとしての析出量は、含有するTi量のうち、TiNとして固定される量、およびTiSとして固定される量を考慮した有効Ti量、すなわちTiに支配される。なお、ここで有効Ti量(Ti)は前記した(1)式で定義され、Ti=Ti−(3.43N+1.5S)(ただし式中のTi、N、Sは各元素の含有量)である。
本発明では、TiCのサイズ最適化のため、1.2≦4C/Ti≦2.4の関係を満足する必要がある。ここで、4C/Tiは、Cと有効Tiの原子濃度比を表しており、本発明では、鋼中のCを全てTiCとして形成する場合に必要最小限となる4C/Ti=1よりも炭素過剰である1.2≦4C/Tiとする。これは、固溶炭素によるγ→α変態の遅延を利用するためであり、結果的にTiCの析出温度域を低下し、熱延鋼板中にTiCを析出微細化させるためである。一方、4C/Tiが2.4を超える炭素過剰側では、さらにTiCの析出微細化が進み、熱延鋼板の強度が高くなりすぎるため、4C/Ti≦2.4とする必要がある。
1.2 ≦ 4C / Ti * ≦ 2.4 (where Ti and C are the contents of each element)
In the present invention, the amount of precipitation as TiC is governed by the effective amount of Ti in consideration of the amount fixed as TiN and the amount fixed as TiS among the amount of Ti contained, that is, Ti * . Here, the effective Ti amount (Ti * ) is defined by the above formula (1), and Ti * = Ti− (3.43N + 1.5S) (where Ti, N, and S are the contents of each element) ).
In the present invention, in order to optimize the size of TiC, it is necessary to satisfy the relationship of 1.2 ≦ 4C / Ti * ≦ 2.4. Here, 4C / Ti * represents the atomic concentration ratio of C and effective Ti. In the present invention, 4C / Ti * = 1, which is the minimum necessary when all the C in the steel is formed as TiC. Also, 1.2 ≦ 4C / Ti * , which is an excess of carbon. This is to utilize the delay of the γ → α transformation caused by solute carbon, and as a result, to lower the TiC precipitation temperature range and to precipitate and refine TiC in the hot-rolled steel sheet. On the other hand, on the carbon excess side where 4C / Ti * exceeds 2.4, precipitation and refinement of TiC further progresses, and the strength of the hot-rolled steel sheet becomes too high, so 4C / Ti * ≦ 2.4 needs to be satisfied. .

残部はFeおよび不可避的不純物であるが、以下の理由でB:0.0003〜0.0010%を含有させることが好ましい。   The balance is Fe and inevitable impurities, but it is preferable to contain B: 0.0003 to 0.0010% for the following reason.

B:0.0003〜0.0010%
Bは、本発明において、熱延鋼板の段階での初期TiC析出を微細にするのに効果のある元素である。この効果を得る上では、B量は0.0003%以上とすることが必要となる。一方、B量が0.0010%を超えると、効果が飽和するばかりでなく、熱間圧延時の荷重増大につながるため、B量は0.0010%以下とする。なお、本発明において、B:0.0003%未満(B<0.0003%)の場合、Bは不可避的不純物である。
B: 0.0003 to 0.0010%
B is an element effective in making the initial TiC precipitation fine in the stage of a hot-rolled steel sheet in the present invention. In order to obtain this effect, the B content needs to be 0.0003% or more. On the other hand, if the amount of B exceeds 0.0010%, not only will the effect be saturated, but also the load during hot rolling will increase, so the amount of B is made 0.0010% or less. In the present invention, when B is less than 0.0003% (B <0.0003%), B is an inevitable impurity.

2)ミクロ組織
本発明の冷延鋼板は、フェライト相の体積率:90%以上、セメンタイトの体積率:5%未満、前記フェライト相の再結晶率:70%以上であり、前記フェライト相中にTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが15nm未満、Tiの析出率が90%以上である組織を有する。
2) Microstructure The cold rolled steel sheet of the present invention has a ferrite phase volume ratio of 90% or more, a cementite volume ratio of less than 5%, and a recrystallization rate of the ferrite phase of 70% or more. Ti carbide (TiC) is precipitated, and the average length of the Ti carbide is less than 15 nm, and the Ti precipitation rate is 90% or more.

フェライト相の体積率:90%以上、該フェライト相の再結晶率:70%以上
本発明では、フェライト相中にTiCを析出させ、TiCによる析出強化を活用することにより、所望の鋼板特性を得る。良好な加工性を確保するためには、フェライト相の再結晶率を70%以上とする必要がある。フェライト相の再結晶率が70%未満では、良好な伸び特性が得られないばかりでなく、自動車部材にしばしば求められる伸びフランジ特性も劣化する。また、再結晶率が70%以上であるフェライト相の体積率が90%未満では、フェライト相以外の相の影響が大きくなり、良好な伸び特性を得ることができず、加工性に優れた冷延鋼板を得ることができない。このため、フェライト相の体積率:90%以上、該フェライト相の再結晶率:70%以上とする。
Volume ratio of ferrite phase: 90% or more, recrystallization rate of ferrite phase: 70% or more In the present invention, TiC is precipitated in the ferrite phase, and desired steel sheet characteristics are obtained by utilizing precipitation strengthening by TiC. . In order to ensure good workability, the recrystallization rate of the ferrite phase needs to be 70% or more. When the recrystallization rate of the ferrite phase is less than 70%, not only good elongation characteristics cannot be obtained, but also the elongation flange characteristics often required for automobile members deteriorate. On the other hand, when the volume fraction of the ferrite phase having a recrystallization ratio of 70% or more is less than 90%, the influence of the phases other than the ferrite phase is increased, and good elongation characteristics cannot be obtained, and the workability is excellent. A rolled steel sheet cannot be obtained. For this reason, the volume ratio of the ferrite phase is 90% or more, and the recrystallization ratio of the ferrite phase is 70% or more.

ここで、再結晶率は、焼鈍後の冷延鋼板について、圧延方向に沿った断面組織(L断面組織)を走査透過電子顕微鏡(STEM)により観察し、観察視野における全フェライトの面積に対する等軸化した再結晶フェライトの面積の比率(面積率)を求め、これを再結晶率としたものである。   Here, the recrystallization rate is determined by observing a cross-sectional structure (L cross-sectional structure) along the rolling direction with a scanning transmission electron microscope (STEM) for the cold-rolled steel sheet after annealing, and equiaxial with respect to the area of all ferrite in the observation field. The ratio of the area of the recrystallized ferrite (area ratio) was obtained, and this was used as the recrystallization ratio.

セメンタイトの体積率:5%未満
体積率で5%未満のセメンタイトは不可避的に出現するものであり、この程度(5%未満)の量であれば、材質に特に大きく影響することはない。熱延鋼板中に存在するセメンタイトは、冷間圧延後に施す焼鈍によって一旦固溶するが、後述する過時効処理によって固溶炭素を固着し、伸び特性確保に有用である。一方、セメンタイトの体積率が大きくなりすぎると、TiCの析出を抑制することとなり、また、所望のフェライト量を確保することができなくなるため、セメンタイトの体積率は5%未満とする。なお、セメンタイトの体積率は0%であってもよい。
Cementite volume fraction: less than 5% Cementite having a volume fraction of less than 5% appears unavoidably, and if this amount (less than 5%) is used, the material is not particularly affected. The cementite present in the hot-rolled steel sheet is once solid-dissolved by annealing after cold rolling, but solid-solution carbon is fixed by an overaging treatment described later, which is useful for securing elongation characteristics. On the other hand, if the volume fraction of cementite becomes too large, the precipitation of TiC will be suppressed, and the desired ferrite content cannot be secured, so the cementite volume fraction is set to less than 5%. The volume fraction of cementite may be 0%.

フェライト相中のTi炭化物の平均の長さが15nm未満、Tiの析出率が90%以上
前記フェライト中に析出させるTi炭化物の平均の長さが15nm以上となると、TiCの析出強化能が小さくなり、590MPa以上の強度を得ることが困難となる。また、Tiの析出率が90%未満では、析出物の量が不足し、590MPa以上の強度を得ることが困難となる。本発明の鋼板では、フェライト中に微細なTi炭化物(TiC)を多数析出させて590MPa以上の強度を得るため、Ti炭化物(TiC)の平均の長さを15nm未満とし、かつ、Tiの析出率を90%以上とする。
When the average length of Ti carbides in the ferrite phase is less than 15 nm and the precipitation rate of Ti is 90% or more When the average length of Ti carbides precipitated in the ferrite is 15 nm or more, the precipitation strengthening ability of TiC decreases. It becomes difficult to obtain a strength of 590 MPa or more. Moreover, if the precipitation rate of Ti is less than 90%, the amount of precipitates is insufficient, and it becomes difficult to obtain a strength of 590 MPa or more. In the steel sheet of the present invention, in order to obtain a strength of 590 MPa or more by precipitating many fine Ti carbides (TiC) in ferrite, the average length of Ti carbides (TiC) is less than 15 nm, and the Ti precipitation rate Is 90% or more.

なおTi炭化物(TiC)の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。なお、本発明では、熱延鋼板の段階で母相フェライトとの間にBaker−Nuttingの方位関係を有して析出させたTiCの板状形態が冷延鋼板においてもほぼ維持される。このため、冷延鋼板について、透過電子顕微鏡によりフェライト相の[001]方位において観察されるTiCは、熱延鋼板で析出させた正方板状の板状形態を有するTiCの辺長(一辺の長さ)を長さとし、その厚みを幅とする略長方形形状(棒状の形状)として観察される。本発明ではこの略長方形形状に観察されるTiCの長さを測定することで、冷延鋼板中のTi炭化物の一辺の長さを測定している。   The average length of Ti carbide (TiC) is a value obtained by arithmetically averaging the lengths of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope. . In the present invention, the TiC plate-like form deposited in a Baker-Nutting orientation relationship with the parent phase ferrite at the stage of the hot-rolled steel sheet is substantially maintained even in the cold-rolled steel sheet. For this reason, the TiC observed in the [001] orientation of the ferrite phase with a transmission electron microscope in the cold-rolled steel sheet is a TiC side length (one side length) having a square plate-like form deposited on the hot-rolled steel sheet. ) Is the length, and the thickness is the width, and is observed as a substantially rectangular shape (rod-like shape). In the present invention, the length of one side of Ti carbide in the cold-rolled steel sheet is measured by measuring the length of TiC observed in this substantially rectangular shape.

また、Tiの析出率は、下記手法によって求めた。
まず、Tiの析出量を、特許文献4に記載の方法にしたがって求めた。すなわち、対象析出物が非常に微細であるため、抽出した析出物を直接定量する一般的な析出物量の求め方では精度が出ないので、ここでは試料を非水溶媒系電解液中で所定量だけ電解した後、金属試料の残部を電解液から取り除き、次いでこの電解液の一部を採取し分析溶液とし、ICP質量分析法を用いてTiおよび比較元素としてFeの液中濃度を測定した。得られた濃度を基に、Feに対するTiの濃度比を算出し、さらに、試料中のFe量(質量%)を乗じることで、固溶Ti量(質量%)を求めた。試料中のFe量(質量%)は、Fe以外の組成値の合計を100質量%から減算することで求めることができる。このようにして求めた固溶Ti量を、鋼のTi含有量から差し引くことにより、Tiの析出量を求めた。そして、Tiの析出率は、Tiの析出率=(Tiの析出量)/(鋼のTi含有量)として求めた。
The Ti precipitation rate was determined by the following method.
First, the amount of Ti deposited was determined according to the method described in Patent Document 4. In other words, since the target precipitate is very fine, accuracy is not obtained in the general method for determining the amount of precipitate directly quantifying the extracted precipitate. After only electrolysis, the remainder of the metal sample was removed from the electrolytic solution, and then a part of this electrolytic solution was collected and used as an analytical solution, and the concentration of Ti as a comparative element and Fe in the liquid was measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of Ti to Fe was calculated, and further, the amount of solid solution Ti (% by mass) was obtained by multiplying by the amount of Fe (% by mass) in the sample. The amount (% by mass) of Fe in the sample can be obtained by subtracting the total of composition values other than Fe from 100% by mass. The precipitation amount of Ti was calculated | required by subtracting the amount of solid solution Ti calculated | required in this way from Ti content of steel. And the precipitation rate of Ti was calculated | required as Ti precipitation rate = (Ti precipitation amount) / (Ti content of steel).

なお、上記で規定した以外の残部組織は、ベイナイトやマルテンサイトや残留オーステナイト等の変態組織であるが、このような残部組織に関しては、体積率で10%以下であれば本発明の効果を損ねるものではないため、含有してもかまわない。   The remaining structure other than those specified above is a transformation structure such as bainite, martensite, and retained austenite. However, with respect to such a remaining structure, if the volume ratio is 10% or less, the effect of the present invention is impaired. Since it is not a thing, you may contain.

3)製造条件
本発明の冷延鋼板の製造方法について説明する。本発明では、上記した成分組成を有する鋼を、1150℃〜1250℃に加熱後、仕上げ圧延終了温度:880〜930℃で熱間圧延し、平均冷却速度:10℃/s以上30℃/s未満で冷却して、巻取温度:655〜685℃で巻取り、酸洗後、圧下率:50%以上で冷間圧延し、昇温速度:10℃/s以下で750℃〜800℃に加熱後、90〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施す。
3) Manufacturing conditions The manufacturing method of the cold rolled steel sheet of this invention is demonstrated. In the present invention, the steel having the above-described composition is heated to 1150 ° C. to 1250 ° C., and then hot-rolled at a finish rolling finish temperature of 880 to 930 ° C., and an average cooling rate of 10 ° C./s to 30 ° C./s. After cooling at a temperature below 655 to 685 ° C., pickling, cold rolling at a reduction rate of 50% or more, and a temperature increase rate of 10 ° C./s or less to 750 to 800 ° C. After heating, annealing is performed for 90 to 180 s, followed by over-aging treatment for 280 to 350 ° C. for 240 s or more.

熱間圧延前の加熱温度:1150℃〜1250℃
熱間圧延後に微細なTiCをフェライト相中に析出させて高強度化を図るには、熱間圧延に用いる鋼スラブ等の鋼素材において、鋼中に析出している粗大なTiCを熱間圧延前に加熱して溶解させる必要がある。本発明では1150℃以上の加熱で熱間圧延前の鋼中に析出しているTiCを十分に溶解することが可能である。したがって、熱間圧延前の加熱温度は1150℃以上とする。なお、製造コストを低減する観点からは、1250℃以下の温度で加熱する必要がある。よって、加熱温度は1150℃〜1250℃とする。より好ましい加熱温度範囲は1150℃〜1200℃の範囲である。
Heating temperature before hot rolling: 1150 ° C to 1250 ° C
In order to increase the strength by precipitating fine TiC in the ferrite phase after hot rolling, hot rolling the coarse TiC precipitated in the steel in steel materials such as steel slabs used for hot rolling. It must be heated and dissolved before. In the present invention, TiC precipitated in the steel before hot rolling can be sufficiently dissolved by heating at 1150 ° C. or higher. Therefore, the heating temperature before hot rolling is 1150 ° C. or higher. In addition, it is necessary to heat at the temperature of 1250 degrees C or less from a viewpoint of reducing manufacturing cost. Therefore, heating temperature shall be 1150 degreeC-1250 degreeC. A more preferable heating temperature range is 1150 ° C to 1200 ° C.

熱間圧延の仕上げ圧延終了温度:880℃〜930℃
仕上げ圧延終了温度が880℃未満となると、圧延組織が残留し、伸びが劣化し、また、伸びフランジ性も劣化する。したがって、仕上げ圧延終了温度は880℃以上とする。一方、仕上げ圧延終了温度が930℃を超えると十分に再結晶したオーステナイト組織からの変態になるのでフェライト組織が粗大化し、母相組織であるフェライト相の強度が顕著に低下する。このため、仕上げ圧延終了温度は930℃以下とする。
Finishing rolling finish temperature of hot rolling: 880 ° C to 930 ° C
When the finish rolling finish temperature is less than 880 ° C., the rolled structure remains, the elongation deteriorates, and the stretch flangeability also deteriorates. Accordingly, the finish rolling end temperature is set to 880 ° C. or higher. On the other hand, when the finish rolling finish temperature exceeds 930 ° C., the transformation is from a sufficiently recrystallized austenite structure, so that the ferrite structure becomes coarse and the strength of the ferrite phase as the matrix structure is significantly reduced. For this reason, finish rolling completion temperature shall be 930 degrees C or less.

なお、本発明では、連続鋳造後の鋼(鋼素材)をそのまま熱間圧延する直送圧延の技術も適用することができる。このとき、880℃以上の仕上げ圧延終了温度を確保するために、熱間圧延前に補助的な加熱を行うこともできる。   In addition, in this invention, the technique of the direct feed rolling which hot-rolls the steel (steel raw material) after continuous casting as it is can also be applied. At this time, in order to secure a finish rolling finish temperature of 880 ° C. or higher, auxiliary heating can be performed before hot rolling.

熱間圧延後の平均冷却速度:10℃/s以上30℃/s未満
熱間圧延後巻取りまでの平均冷却速度が10℃/s未満だと、冷却中にパーライト変態が起こりやすく、また、粒界セメンタイトの形成が優先し、析出強化因子であるTiCの形成が不十分となり、熱延鋼板における必要強度が確保できず、ひいては、冷延鋼板において所望の強度が確保できない。本発明では、熱間圧延後に引き続き実施される冷間圧延時にTiCが安定して存在し、なおかつ焼鈍時に急激な成長をしないよう、TiCの適切な初期核生成を確保するため、熱間圧延後の平均冷却速度は10℃/s以上、30℃/s未満とする。
Average cooling rate after hot rolling: 10 ° C./s or more and less than 30 ° C./s If the average cooling rate until winding after hot rolling is less than 10 ° C./s, pearlite transformation is likely to occur during cooling, The formation of grain boundary cementite is prioritized, and the formation of TiC, which is a precipitation strengthening factor, is insufficient, so that the required strength in the hot-rolled steel sheet cannot be ensured, and consequently the desired strength cannot be ensured in the cold-rolled steel sheet. In the present invention, in order to ensure proper initial nucleation of TiC so that TiC is stably present during cold rolling that is subsequently performed after hot rolling and does not grow rapidly during annealing, The average cooling rate is 10 ° C./s or more and less than 30 ° C./s.

巻取温度:655〜685℃
本発明では、熱延鋼板の段階で過剰に高強度化させないことが重要であり、熱間圧延後の巻取りの段階で最適な量とサイズのTiCを鋼中に析出させる。このため、巻取温度は高精度に制御する必要がある。TiCの析出にはγ→α変態の影響が大きく、特に変態点を低温化するMnの含有量に応じて巻取温度を制御することが重要である。本発明では、上記したように、Mn量を0.15〜0.45%と少なくしており、TiC析出には、巻取温度を600℃以上とする必要があるが、さらに、適切な量のTiCを安定して鋼中に析出させて、熱延鋼板の強度を確保する、具体的には、熱延鋼板の強度650MPa以上を確保するために、巻取温度下限を655℃とする。一方、巻取温度が685℃を超えると、フェライト組織回復とTiCの粗大化が促進し、熱延鋼板の強度が低下するため、引続き行われる冷間圧延、焼鈍後の強度を確保することが出来なくなる。よって、巻取温度は、655〜685℃とする。
Winding temperature: 655-685 ° C
In the present invention, it is important not to increase the strength excessively at the stage of the hot-rolled steel sheet, and the optimum amount and size of TiC is precipitated in the steel at the stage of winding after hot rolling. For this reason, it is necessary to control the coiling temperature with high accuracy. The precipitation of TiC is greatly affected by the γ → α transformation, and it is particularly important to control the coiling temperature in accordance with the Mn content that lowers the transformation point. In the present invention, as described above, the amount of Mn is reduced to 0.15 to 0.45%, and it is necessary to set the coiling temperature to 600 ° C. or higher for TiC precipitation. In order to stably precipitate TiC in steel and ensure the strength of the hot-rolled steel sheet, specifically, to ensure the strength of the hot-rolled steel sheet of 650 MPa or more, the lower limit of the coiling temperature is 655 ° C. On the other hand, when the coiling temperature exceeds 685 ° C., the recovery of the ferrite structure and the coarsening of TiC are promoted, and the strength of the hot-rolled steel sheet is lowered. Therefore, it is possible to ensure the strength after the subsequent cold rolling and annealing. It becomes impossible. Therefore, the winding temperature is 655 to 685 ° C.

巻取り後の鋼板には、常法に従い酸洗を施す。酸洗の条件については、特に制限は無く、塩酸での酸洗など、従来公知の方法に従って行えばよい。   The steel sheet after winding is pickled according to a conventional method. The conditions for pickling are not particularly limited, and may be performed according to a conventionally known method such as pickling with hydrochloric acid.

冷間圧延の圧下率:50%以上
酸洗後の熱延鋼板には、板厚を薄くして所望の板厚の薄鋼板(冷延鋼板)を得るために、冷間圧延を施す。例えば、板厚1mm以下の薄鋼板を製造するにあたり、酸洗後の熱延鋼板の板厚が2.0mmとすれば、冷間圧延率(冷間圧延の圧下率)は50%以上が必要となる。一般に、数nm未満のTiCによって過剰に析出強化された鋼板では、冷間圧延後の再結晶が著しく遅延するため、高温焼鈍が必須となり、結果的に最終強度が低下する懸念が大きい。本発明の熱延鋼板ではTiCの平均析出サイズが10nm程度に制御されており、圧延によってこれらの初期析出形態が大きく変化することがない。このため、圧延での歪み蓄積による再結晶促進を促すことが肝要であり、焼鈍温度低減のため冷間圧延の圧下率の下限を50%とする。
Cold rolling reduction: 50% or more The hot-rolled steel sheet after pickling is subjected to cold rolling in order to reduce the thickness and obtain a thin steel sheet (cold-rolled steel sheet) having a desired thickness. For example, in producing a thin steel sheet having a thickness of 1 mm or less, if the thickness of the hot-rolled steel sheet after pickling is 2.0 mm, the cold rolling rate (cold rolling reduction) needs to be 50% or more. It becomes. In general, in a steel sheet excessively precipitation strengthened by TiC less than several nanometers, recrystallization after cold rolling is significantly delayed, so that high temperature annealing is essential, and as a result, there is a great concern that the final strength is lowered. In the hot-rolled steel sheet of the present invention, the average precipitation size of TiC is controlled to about 10 nm, and these initial precipitation forms are not greatly changed by rolling. For this reason, it is important to promote recrystallization by strain accumulation during rolling, and the lower limit of the cold rolling reduction is set to 50% in order to reduce the annealing temperature.

上記冷間圧延後の鋼板は、昇温速度:10℃/s以下で750℃〜800℃に加熱後、90〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施す。本発明において、適正な条件での焼鈍は強度と伸び特性を両立する上で極めて重要である。冷間圧延によって所望の板厚に調整された鋼板は高い強度を有するものの、加工性が低下しており、連続焼鈍プロセスなどによって適切な焼鈍処理を施すことが必要である。焼鈍処理は加工組織を回復させるために施されるものであり、これらの組織変化は、冷間圧延率はもちろんのこと、焼鈍条件に大きく支配される。   The steel sheet after the cold rolling is heated to 750 ° C. to 800 ° C. at a rate of temperature increase of 10 ° C./s or less, and then annealed for 90 to 180 s, and subsequently maintained at 280 ° C. to 350 ° C. for 240 s or more. Apply aging treatment. In the present invention, annealing under appropriate conditions is extremely important for achieving both strength and elongation characteristics. Although the steel plate adjusted to the desired plate thickness by cold rolling has high strength, the workability is lowered, and it is necessary to perform an appropriate annealing treatment by a continuous annealing process or the like. The annealing treatment is performed to recover the processed structure, and these changes in structure are largely controlled by the annealing conditions as well as the cold rolling rate.

焼鈍条件:昇温速度:10℃/s以下で750℃〜800℃に加熱後、90〜180s保持
本発明では、焼鈍温度は750℃〜800℃とし、該焼鈍温度に加熱する。この焼鈍温度範囲は、50%以上の冷間圧延を施した後、70%以上の再結晶率を有するフェライト組織を得る上での適正焼鈍温度である。焼鈍温度が750℃未満では、再結晶が進行せず強度が高くなりすぎ、伸びが小さくなる。一方、焼鈍温度が800℃を超えると、フェライト粒の粗大化、析出強化因子であるTiCの粗大化が進み、急激に強度が低下し、TS≧590MPaの確保が困難となる。
また、焼鈍温度での保持時間(焼鈍時間)は、前記焼鈍温度範囲で十分に回復を進行させて伸び特性を確保するため、90s(90秒)以上とする。一方、焼鈍時間が長すぎると生産性が低下するため、焼鈍時間は180s以下とする。
上記した焼鈍温度に加熱する際の昇温速度は、昇温中に組織回復を促進するため10℃/s以下とする。昇温速度が10℃/sを超えると、一部ではγへの逆変態が促進されて、焼入れ組織を含むようになり伸び低下を招く。なお、昇温速度の下限は特に規定しないが、生産性確保の観点および初期熱延鋼板中の微細TiCの成長を回避する観点から、5℃/s以上とすることが好ましい。
Annealing conditions: heating rate: 10 ° C./s or less, heated to 750 ° C. to 800 ° C., and maintained for 90 to 180 s In the present invention, the annealing temperature is set to 750 ° C. to 800 ° C., and is heated to the annealing temperature. This annealing temperature range is an appropriate annealing temperature for obtaining a ferrite structure having a recrystallization rate of 70% or more after cold rolling of 50% or more. When the annealing temperature is less than 750 ° C., recrystallization does not proceed, the strength becomes too high, and the elongation becomes small. On the other hand, if the annealing temperature exceeds 800 ° C., the coarsening of ferrite grains and the coarsening of TiC, which is a precipitation strengthening factor, progress rapidly, and the strength suddenly decreases, making it difficult to ensure TS ≧ 590 MPa.
Further, the holding time at the annealing temperature (annealing time) is set to 90 s (90 seconds) or longer in order to sufficiently recover in the annealing temperature range and secure the elongation characteristics. On the other hand, if the annealing time is too long, the productivity is lowered, so the annealing time is 180 s or less.
The heating rate at the time of heating to the above-described annealing temperature is set to 10 ° C./s or less in order to promote the tissue recovery during the heating. When the rate of temperature rise exceeds 10 ° C./s, the reverse transformation to γ is partially promoted, and a hardened structure is included, leading to a decrease in elongation. In addition, although the minimum of a temperature increase rate is not prescribed | regulated in particular, it is preferable to set it as 5 degrees C / s or more from a viewpoint of ensuring productivity, and avoiding the growth of the fine TiC in an initial stage hot-rolled steel plate.

過時効処理:280℃以上350℃以下で240s以上保持
本発明においては、1.2≦4C/Ti≦2.4と炭素過剰の設計としており、熱延鋼板の段階でわずかに析出していたセメンタイトは、上記の冷間圧延後の焼鈍過程で一部固溶する。鋼板中に固溶炭素が存在すると、加工性に影響するだけでなく、加工後の時効が問題になる。このため、固溶した炭素をセメンタイトに固着させるために焼鈍後過時効処理を施す。過時効処理の温度が280℃未満では、固溶炭素の固着に長時間を要するため、生産性が低下する。一方、過時効処理の温度が350℃を超えると、温度が高すぎるため、炭素を十分に固着することが困難となる。このため、過時効処理の温度は280℃以上350℃以下とする。また、固溶炭素を十分に固着させるため、過時効における保持時間は240s以上とする。なお、過剰に長い時間保持を行っても効果が飽和し、生産性が低下するだけとなるため、保持時間は600s以下とすることが好ましい。なお、上記した焼鈍および過時効処理は、生産性の観点から連続焼鈍ラインにて連続して行うことが好ましい。
Overaging treatment: 280 ° C. or higher and 350 ° C. or lower and holding for 240 s or longer In the present invention, 1.2 ≦ 4C / Ti * ≦ 2.4 is designed to be excessive in carbon and slightly precipitated at the stage of hot-rolled steel sheet. The cementite partially dissolves in the annealing process after the cold rolling. When solute carbon is present in the steel sheet, not only the workability is affected, but also aging after processing becomes a problem. For this reason, in order to fix the solid solution carbon to cementite, an overaging treatment is performed after annealing. When the temperature of the overaging treatment is less than 280 ° C., it takes a long time to fix the solid solution carbon, and thus the productivity is lowered. On the other hand, when the temperature of the overaging treatment exceeds 350 ° C., the temperature is too high, and it becomes difficult to sufficiently fix the carbon. For this reason, the temperature of an overaging process shall be 280 degreeC or more and 350 degrees C or less. Further, in order to sufficiently fix the solute carbon, the holding time in overaging is set to 240 s or more. Note that even if the holding time is excessively long, the effect is saturated and the productivity is lowered, so the holding time is preferably 600 s or less. In addition, it is preferable to perform the above-described annealing and overaging treatment continuously in a continuous annealing line from the viewpoint of productivity.

表1に示す成分組成の鋼を50kg真空溶解炉で溶製し、鋼スラブとした後、表2に示す条件で熱間圧延し、熱延鋼板を得た。次いでこの熱延鋼板を、塩酸酸洗して、板厚2.5mmの鋼板を得た。これを表2に示す条件で冷間圧延した後、表2に示す昇温速度で、表2に示す焼鈍温度に加熱して90〜180s保持する条件で焼鈍処理を施し、引き続き350℃で300sの過時効処理を行い冷延鋼板とした。これらの得られた冷延鋼板から試験片を採取し、下記のような調査を行った。得られた結果を表3に示す。   Steel having the component composition shown in Table 1 was melted in a 50 kg vacuum melting furnace to form a steel slab, and then hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet. Next, this hot-rolled steel sheet was pickled with hydrochloric acid to obtain a steel sheet having a thickness of 2.5 mm. After this was cold-rolled under the conditions shown in Table 2, it was heated to the annealing temperature shown in Table 2 at the rate of temperature rise shown in Table 2, and subjected to annealing treatment for 90 to 180 s, followed by 300 s at 350 ° C. Was over-aged to obtain a cold-rolled steel sheet. Test pieces were sampled from the obtained cold-rolled steel sheets and investigated as follows. The obtained results are shown in Table 3.

フェライト相、セメンタイトの体積率
圧延方向に沿った断面組織(L断面組織)を走査型電子顕微鏡により3000倍で3視野観察して、フェライト相および、セメンタイトの面積率を求め、体積率とした。
Volume ratio of ferrite phase and cementite The cross-sectional structure (L cross-sectional structure) along the rolling direction was observed with a scanning electron microscope at 3000 magnifications in three fields of view, and the area ratio of the ferrite phase and cementite was obtained to obtain the volume ratio.

フェライト相の再結晶率
板厚中央部から採取した試料を用いて、透過電子顕微鏡用の薄膜試料を作製し、透過電子顕微鏡付属の走査透過電子顕微鏡(Scanning Transmission Electron Microscopy,STEM)の暗視野法により5000倍で5視野観察して、観察視野における全フェライトの面積に対する再結晶フェライトの面積の比率(面積率)を求め、これをフェライト相の再結晶率とした。なおここで、再結晶フェライトはSTEM像で転位の少ない等軸結晶として認識される。
Recrystallization rate of ferrite phase Using a sample collected from the central part of the plate thickness, a thin film sample for a transmission electron microscope was prepared, and a dark field method of a scanning transmission electron microscope (STEM) attached to the transmission electron microscope By observing 5 fields at a magnification of 5000, the ratio (area ratio) of the recrystallized ferrite area to the total ferrite area in the observed field was determined, and this was defined as the recrystallization ratio of the ferrite phase. Here, the recrystallized ferrite is recognized as an equiaxed crystal with few dislocations in the STEM image.

Ti炭化物の平均の長さ
上記のSTEM観察に用いた試料を用い、透過電子顕微鏡法により、30万倍で厚み約100nmの領域を5視野観察し、TiCの長さを測定した。この時、評価対象としたTiCは、母相であるフェライト相の[001]方位において観察される厚み1〜2nmの板状形態TiCであり、略長方形形状に観察される個々のTiCの長さを測定して、200個以上の観察結果の平均値として求めた。
Average length of Ti carbide Using the sample used for the STEM observation described above, a transmission electron microscope was used to observe five fields of a region of 300,000 times and a thickness of about 100 nm to measure the length of TiC. At this time, the TiC to be evaluated is a plate-like form TiC having a thickness of 1 to 2 nm observed in the [001] direction of the ferrite phase as a parent phase, and the length of each TiC observed in a substantially rectangular shape. Was measured and obtained as an average value of 200 or more observation results.

引張特性
上記のようにして製造した冷延鋼板から、圧延方向に平行にJIS5号引張試験片を採取し、JISZ2241に準拠して、クロスヘッド速度10mm/minで引張試験を行い、降伏強度(YS)、引張強度(TS)および全伸び(El)を求めた。また、熱延鋼板についても、同様に引張試験を行い、引張強度(TS)を求めた。
Tensile properties JIS No. 5 tensile test specimens were taken from the cold-rolled steel sheet produced as described above in parallel with the rolling direction, and subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with JISZ2241, yield strength (YS ), Tensile strength (TS) and total elongation (El). Moreover, the tensile test was similarly performed about the hot-rolled steel plate, and the tensile strength (TS) was calculated | required.

表3に示す結果から、成分組成、製造条件が本発明の範囲内にある本発明例は、引張強度が590MPa以上、全伸びが20%以上であり、高い強度と良好な加工性が両立した冷延鋼板となっていることがわかる。なお、冷延鋼板の組織は、表3に示すフェライト、セメンタイト以外は、ベイナイトであった。   From the results shown in Table 3, the present invention example in which the component composition and production conditions are within the scope of the present invention has a tensile strength of 590 MPa or more and a total elongation of 20% or more, and both high strength and good workability are compatible. It turns out that it is a cold-rolled steel plate. In addition, the structure of the cold-rolled steel sheet was bainite except for the ferrite and cementite shown in Table 3.

一方、鋼板No.A1はC量が少なくTiCの析出率も小さく、TiCの絶対析出量が不足しているため、引張強度が590MPaに満たない。鋼板No.B1はC量が多いため熱延鋼板の強度が過剰となり、焼鈍板の再結晶率が低下し、高伸びが得られない。鋼板No.F1、No.G1およびNo.J1は、Ti量やMn量が適切でないため、再結晶促進が十分でなく、全伸びが20%未満であり加工性に劣る。鋼No.H1およびNo.I1は、変態点が高く、熱延鋼板でのTiCの成長が抑制できず、焼鈍後の冷延鋼板中のTiCサイズも粗大化し、強度が低下してしまう。鋼No.C2、D2およびE2は、熱延条件が外れており、析出と組織の最適化が図られていない。鋼No.E3は焼鈍温度が高く、強度不足を招いている。また鋼No.K2は、焼鈍温度が低く、再結晶促進が十分でなく、加工性に劣る。   On the other hand, steel plate No. A1 has a small amount of C and a small precipitation rate of TiC, and an absolute precipitation amount of TiC is insufficient, so that the tensile strength is less than 590 MPa. Steel plate No. Since B1 has a large amount of C, the strength of the hot-rolled steel sheet becomes excessive, the recrystallization rate of the annealed sheet decreases, and high elongation cannot be obtained. Steel plate No. F1, No. G1 and No. J1 is inadequate in workability because the amount of Ti and the amount of Mn are not appropriate, so that the recrystallization is not sufficiently promoted and the total elongation is less than 20%. Steel No. H1 and No. I1 has a high transformation point, and TiC growth in the hot-rolled steel sheet cannot be suppressed, and the TiC size in the cold-rolled steel sheet after annealing becomes coarse and the strength decreases. Steel No. C2, D2 and E2 are out of hot rolling conditions, and precipitation and structure optimization are not achieved. Steel No. E3 has a high annealing temperature, leading to insufficient strength. Steel no. K2 has a low annealing temperature, insufficient recrystallization promotion, and is inferior in workability.

Figure 2016000850
Figure 2016000850

Figure 2016000850
Figure 2016000850

Figure 2016000850
Figure 2016000850

Claims (3)

質量%で、
C:0.04〜0.06%、
Si+Al:0.05〜0.10%、
Mn:0.15〜0.45%、
P:0.01%未満、
S:0.004%以下、
N:0.0045%以下、
Ti:0.12〜0.16%を含有し、
残部がFeおよび不可避的不純物からなり、下記の(1)式で規定されるTiが下記の(2)式を満足する組成を有し、フェライト相の体積率:90%以上、セメンタイトの体積率:5%未満、前記フェライト相の再結晶率:70%以上であり、前記フェライト相中にTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが15nm未満、Tiの析出率が90%以上である組織を有し、引張強度が590MPa以上であることを特徴とする冷延鋼板;
Ti=Ti−(3.43N+1.5S)・・・(1)
1.2≦4C/Ti≦2.4・・・(2)
ただし、式中のTi、N、S、Cは各元素の含有量(質量%)を表す。
また、Ti炭化物の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。
% By mass
C: 0.04 to 0.06%,
Si + Al: 0.05 to 0.10%,
Mn: 0.15 to 0.45%,
P: less than 0.01%,
S: 0.004% or less,
N: 0.0045% or less,
Ti: 0.12 to 0.16% is contained,
The balance is composed of Fe and inevitable impurities, and Ti * defined by the following formula (1) has a composition satisfying the following formula (2), the volume fraction of the ferrite phase: 90% or more, the volume of cementite Rate: less than 5%, recrystallization rate of the ferrite phase: 70% or more, Ti carbide (TiC) is precipitated in the ferrite phase, the average length of the Ti carbide is less than 15 nm, the precipitation rate of Ti A cold-rolled steel sheet having a structure of 90% or more and a tensile strength of 590 MPa or more;
Ti * = Ti− (3.43N + 1.5S) (1)
1.2 ≦ 4C / Ti * ≦ 2.4 (2)
However, Ti, N, S, and C in the formula represent the content (mass%) of each element.
Further, the average length of Ti carbide is a value obtained by arithmetically averaging the length of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope.
さらに、質量%で、B:0.0003〜0.0010%を含有することを特徴とする請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising, by mass%, B: 0.0003 to 0.0010%. 請求項1または2に記載の組成を有する鋼を、1150℃〜1250℃に加熱後、仕上げ圧延終了温度:880〜930℃で熱間圧延し、平均冷却速度:10℃/s以上30℃/s未満で冷却して、巻取温度:655〜685℃で巻取り、酸洗後、圧下率:50%以上で冷間圧延し、昇温速度:10℃/s以下で750℃〜800℃に加熱後、90〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施すことを特徴とする冷延鋼板の製造方法。   The steel having the composition according to claim 1 or 2 is heated to 1150 ° C to 1250 ° C, and then hot-rolled at a finish rolling finish temperature of 880 to 930 ° C, and an average cooling rate of 10 ° C / s to 30 ° C / s. Cooling at less than s, winding at winding temperature: 655-685 ° C., pickling, cold rolling at a reduction rate of 50% or more, heating rate: 750 ° C.-800 ° C. at 10 ° C./s or less The method of manufacturing a cold-rolled steel sheet is characterized by performing annealing for 90 to 180 s after heating and subsequently performing an overaging treatment for holding for 240 s or more at 280 ° C. or more and 350 ° C. or less.
JP2014121182A 2014-06-12 2014-06-12 Cold rolled steel sheet and method for producing the same Active JP6156260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121182A JP6156260B2 (en) 2014-06-12 2014-06-12 Cold rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121182A JP6156260B2 (en) 2014-06-12 2014-06-12 Cold rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016000850A true JP2016000850A (en) 2016-01-07
JP6156260B2 JP6156260B2 (en) 2017-07-05

Family

ID=55076584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121182A Active JP6156260B2 (en) 2014-06-12 2014-06-12 Cold rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6156260B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363693A (en) * 2001-06-05 2002-12-18 Nippon Steel Corp High stretch-flange property steel sheet having excellent shape freezability and manufacturing method therefor
JP2011179071A (en) * 2010-03-01 2011-09-15 Nippon Steel Corp High-tensile cold-rolled steel sheet and method of producing the same
CN102676927A (en) * 2012-06-12 2012-09-19 钢铁研究总院 High-Ti micro-alloyed medium thickness steel plate and preparation method thereof
WO2013088692A1 (en) * 2011-12-12 2013-06-20 Jfeスチール株式会社 Steel sheet with excellent aging resistance, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363693A (en) * 2001-06-05 2002-12-18 Nippon Steel Corp High stretch-flange property steel sheet having excellent shape freezability and manufacturing method therefor
JP2011179071A (en) * 2010-03-01 2011-09-15 Nippon Steel Corp High-tensile cold-rolled steel sheet and method of producing the same
WO2013088692A1 (en) * 2011-12-12 2013-06-20 Jfeスチール株式会社 Steel sheet with excellent aging resistance, and method for producing same
CN102676927A (en) * 2012-06-12 2012-09-19 钢铁研究总院 High-Ti micro-alloyed medium thickness steel plate and preparation method thereof

Also Published As

Publication number Publication date
JP6156260B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP5423191B2 (en) High strength steel plate and manufacturing method thereof
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP5347738B2 (en) Method for producing precipitation strengthened cold rolled steel sheet
EP3559299A1 (en) High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
CN102918173A (en) High-strength hot-rolled steel plate exhibiting excellent stretch flangeability and fatigue resistance properties, and production method therefor
JPWO2011093319A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2010285657A (en) Precipitation strengthening type dual phase cold rolled steel sheet, and method for producing the same
JPWO2012026419A1 (en) Cold rolled steel sheet and method for producing the same
TWI518187B (en) High strength hot-rolled steel sheet and method for producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
WO2016024371A1 (en) Method for manufacturing high-strength steel sheet
CN110832095B (en) Hot-rolled steel sheet and method for producing same
TWI515309B (en) High strength hot-rolled steel sheet and method for producing the same
JP6103160B1 (en) High strength thin steel sheet and method for producing the same
CN115087756B (en) Hot rolled steel sheet
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
WO2015118864A1 (en) High-strength hot-rolled steel sheet and production method therefor
JP2009127089A (en) High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP6060914B2 (en) Cold rolled steel sheet and method for producing the same
TWI506147B (en) A high strength hot rolled steel sheet and method for manufacturing the same
JP5796583B2 (en) Cold rolled steel sheet and method for producing the same
JP6156260B2 (en) Cold rolled steel sheet and method for producing the same
KR20120094125A (en) Cold-rolled steel plate having excellent post-aging moldability and shape retention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250