JP5796583B2 - Cold rolled steel sheet and method for producing the same - Google Patents

Cold rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP5796583B2
JP5796583B2 JP2013011757A JP2013011757A JP5796583B2 JP 5796583 B2 JP5796583 B2 JP 5796583B2 JP 2013011757 A JP2013011757 A JP 2013011757A JP 2013011757 A JP2013011757 A JP 2013011757A JP 5796583 B2 JP5796583 B2 JP 5796583B2
Authority
JP
Japan
Prior art keywords
tic
steel sheet
less
rolled steel
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013011757A
Other languages
Japanese (ja)
Other versions
JP2014141717A (en
Inventor
克美 山田
克美 山田
典晃 ▲高▼坂
典晃 ▲高▼坂
田中 裕二
裕二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013011757A priority Critical patent/JP5796583B2/en
Publication of JP2014141717A publication Critical patent/JP2014141717A/en
Application granted granted Critical
Publication of JP5796583B2 publication Critical patent/JP5796583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の骨格部品などに好適な伸びなどの加工性に優れた高強度冷延鋼板、特に、引張強度(TS)590MPa以上の引張強度を有する安価な冷延鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a high-strength cold-rolled steel sheet having excellent workability such as elongation suitable for automobile frame parts and the like, in particular, an inexpensive cold-rolled steel sheet having a tensile strength (TS) of 590 MPa or more and a method for producing the same. .

近年、自動車車体の軽量化を図るために、自動車の骨格部品や足まわり部品には高強度鋼板が多用されつつある。また、鋼板の成分組成に関しては、原材料のグローバル調達性に対応し、希少な合金元素をできるだけ使用しないことが求められている。   In recent years, high-strength steel sheets are being frequently used for automobile frame parts and underbody parts in order to reduce the weight of automobile bodies. In addition, regarding the component composition of the steel sheet, it is required to use rare alloy elements as much as possible in response to the global procurement of raw materials.

ここで、熱延鋼板の高強度化には、フェライト相中にTi、Nb、Vなどの炭窒化物を形成させる析出強化法が積極活用されるようになってきた。特許文献1には、重量%で、C:0.02〜0.10%、Ti:0.3%以下、Nb:0.2%以下で、かつ、0.50<{(Ti−3.43N−1.5S)/4+Nb/7.75}/Cとなる量のTi及びNbの1種以上を含み、Feを主成分とし、アシキュラー・フェライト組織からなり、かつ、微細なTiC及び/又はNbCが析出している組織を有することを特徴とする伸びフランジ性に優れた高強度熱延鋼板が提案されている。また特許文献2には、質量%で、C<0.10%、Ti:0.03〜0.10%、Mo:0.05〜0.6%を含み、Feを主成分とし、フェライト単相組織のマトリックス中に粒径が10nm未満の微細析出物が分散析出している、TSが550MPa以上のプレス加工性に優れた薄鋼板が提案されている。さらに、特許文献3には質量%で、C:0.02〜0.08%、Ti:0.03〜0.06%を含有し、更に、Nb、Mo、Vの含有量の合計を0.01%以下に制限し、C量に対するTi量の比が、Ti/C:0.375〜1.6であり、結晶粒内のTiC析出物の平均直径が0.8〜3nmであり、平均個数密度が、1×1017[個/cm]以上であり、引張強度が540〜650MPaであることを特徴とする省合金型高強度熱延鋼板も提案されている。 Here, in order to increase the strength of hot-rolled steel sheets, precipitation strengthening methods for forming carbonitrides such as Ti, Nb, and V in the ferrite phase have been actively utilized. In Patent Document 1, in terms of% by weight, C: 0.02 to 0.10%, Ti: 0.3% or less, Nb: 0.2% or less, and 0.50 <{(Ti-3. 43N-1.5S) /4+Nb/7.75} / C in an amount of one or more of Ti and Nb, Fe as a main component, an acicular ferrite structure, and fine TiC and / or A high-strength hot-rolled steel sheet excellent in stretch flangeability characterized by having a structure in which NbC is precipitated has been proposed. Patent Document 2 includes, in mass%, C <0.10%, Ti: 0.03 to 0.10%, Mo: 0.05 to 0.6%, Fe as a main component, and ferrite single element. A thin steel sheet excellent in press workability with a TS of 550 MPa or more, in which fine precipitates having a particle size of less than 10 nm are dispersed and precipitated in a matrix of a phase structure, has been proposed. Further, Patent Document 3 contains C: 0.02 to 0.08% and Ti: 0.03 to 0.06% in mass%, and further, the total content of Nb, Mo and V is 0. 0.01% or less, the ratio of Ti amount to C amount is Ti / C: 0.375 to 1.6, and the average diameter of TiC precipitates in the crystal grains is 0.8 to 3 nm, An alloy-saving high-strength hot-rolled steel sheet having an average number density of 1 × 10 17 [pieces / cm 3 ] or more and a tensile strength of 540 to 650 MPa has been proposed.

特開平7−11382号公報JP-A-7-11382 特開2002−322539号公報JP 2002-322539 A 特開2011−26690号公報JP 2011-26690 A 特開2009−31269号公報JP 2009-31269 A

しかしながら、熱延鋼板においては、上記したように、TiC等の炭化物を微細に制御して、強度と延性のバランスに優れた鋼板を得る技術が開発されているものの、もっぱら板厚2mm程度までの鋼板を対象とするものである。これら熱延鋼板よりもさらに板厚の薄い薄鋼板、具体的には板厚1mm程度以下の薄鋼板の製造においては、熱間圧延後さらに冷間圧延を行い、再結晶焼鈍するプロセスが一般的に実施されており、再結晶焼鈍の際に炭化物の粗大化が起こるため、析出強化を活用したフェライトを主体とする組織では440MPaを超える強度を達成することは困難であった。このため、590MPa以上の引張強度を有する冷延鋼板を製造する場合、SiやMnといった固溶強化元素の添加が必要とされ、コスト高となるとともに、めっき性に劣るという問題があった。   However, in hot-rolled steel sheets, as described above, although techniques have been developed to finely control carbides such as TiC and obtain a steel sheet with an excellent balance between strength and ductility, the sheet thickness is only up to about 2 mm. It is intended for steel plates. In the manufacture of thin steel sheets having a thickness thinner than that of these hot-rolled steel sheets, specifically, a thin steel sheet having a thickness of about 1 mm or less, a process in which cold rolling is further performed after hot rolling and recrystallization annealing is generally performed. Since the carbide is coarsened during recrystallization annealing, it is difficult to achieve a strength exceeding 440 MPa in a structure mainly composed of ferrite utilizing precipitation strengthening. For this reason, when manufacturing a cold-rolled steel sheet having a tensile strength of 590 MPa or more, it is necessary to add a solid solution strengthening element such as Si or Mn, resulting in high costs and inferior plating properties.

そこで、本発明では、原料コストや、めっき性などの観点から、Si、Mn等の固溶強化によらず、微細炭化物の析出強化を活用して、590MPa以上の引張強度を有し、良好な伸びを有して加工性に優れる冷延鋼板およびその製造方法を提供することを目的とする。   Therefore, in the present invention, from the viewpoint of raw material costs, plating properties, etc., it has a tensile strength of 590 MPa or more by utilizing precipitation strengthening of fine carbides, regardless of solid solution strengthening of Si, Mn, etc. It aims at providing the cold-rolled steel plate which has elongation and is excellent in workability, and its manufacturing method.

本発明者等は、上記の目的を達成すべく鋭意検討したところ、鋼中のC量とTi量のバランスを適正化するとともに、P含有量の適正化により、冷延焼鈍板製造の前段階である熱延鋼板のフェライト相中に、特許文献2に開示されているようなTiとMoを含む炭化物の代わりに厚み1nm前後の板状のTi炭化物(TiC)を析出させて高強度化すること、このような熱延鋼板を素材として、適正な冷間圧延率で冷間圧延を行い、組織の回復と析出物の粗大化抑制を両立する焼鈍条件によって焼鈍することで、590MPa以上の引張強度を有するとともに加工性に優れる冷延鋼板を製造できることを見出した。
本発明は、上記した知見に基づきなされたもので、その要旨は下記のとおりである。
The inventors of the present invention have intensively studied to achieve the above-mentioned object. In the ferrite phase of a hot-rolled steel sheet, a plate-like Ti carbide (TiC) having a thickness of about 1 nm is deposited instead of the carbide containing Ti and Mo as disclosed in Patent Document 2 to increase the strength. Using such a hot-rolled steel sheet as a raw material, it is cold-rolled at an appropriate cold-rolling rate, and annealed under annealing conditions that achieve both the recovery of the structure and the suppression of the coarsening of precipitates, and a tensile strength of 590 MPa or more. It has been found that a cold-rolled steel sheet having strength and excellent workability can be produced.
The present invention has been made on the basis of the above-described findings, and the gist thereof is as follows.

質量%で、
C:0.07〜0.12%、
Si+Al:0.05〜0.10%、
Mn:0.15〜0.45%、
P:0.01〜0.05%、
S:0.004%以下、
N:0.0045%以下、
Ti:0.09〜0.14%を含有し、
残部がFeおよび不可避的不純物からなり、下記の式(1)で規定されるTiが下記の式(2)を満足する組成を有し、体積率:90〜95%のフェライト相および体積率:5〜10%のセメンタイトを有し、前記フェライト相は再結晶率が15%以上30%以下の回復組織からなるとともに、該フェライト相中にはTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが10nm未満であり、Tiの析出率が85%以上である組織を有し、引張強度が590MPa以上であることを特徴とする冷延鋼板;
Ti=Ti−(3.43N+1.5S)・・・(1)
2.4≦4C/Ti≦4.5・・・(2)
ただし、式中のTi、N、S、Cは各元素の含有量(質量%)を表す。
また、Ti炭化物の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。
% By mass
C: 0.07 to 0.12%,
Si + Al: 0.05 to 0.10%,
Mn: 0.15 to 0.45%,
P: 0.01-0.05%
S: 0.004% or less,
N: 0.0045% or less,
Ti: 0.09 to 0.14% is contained,
The balance consists of Fe and inevitable impurities, Ti * defined by the following formula (1) has a composition satisfying the following formula (2), and volume ratio: 90 to 95% ferrite phase and volume ratio And having a cementite of 5 to 10%, the ferrite phase is composed of a recovery structure having a recrystallization rate of 15% to 30%, and Ti carbide (TiC) is precipitated in the ferrite phase. A cold-rolled steel sheet having a structure in which the average length is less than 10 nm, the precipitation rate of Ti is 85% or more, and the tensile strength is 590 MPa or more;
Ti * = Ti− (3.43N + 1.5S) (1)
2.4 ≦ 4C / Ti * ≦ 4.5 (2)
However, Ti, N, S, and C in the formula represent the content (mass%) of each element.
Further, the average length of Ti carbide is a value obtained by arithmetically averaging the length of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope.

本発明の冷延鋼板は、さらに、質量%で、B:0.0003〜0.0010%を含有することが好ましい。   The cold-rolled steel sheet of the present invention preferably further contains B: 0.0003 to 0.0010% by mass.

本発明の冷延鋼板は、上記の組成を有する鋼を、1150〜1250℃に加熱後、仕上げ圧延終了温度:880〜930℃で熱間圧延し、10℃/s以上の平均冷却速度で冷却して巻取温度:575〜650℃で巻取り、酸洗後、圧延率:45〜65%で冷間圧延し、昇温速度:30℃/s以下で800〜860℃に加熱後、60〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施す方法によって製造できる。   The cold-rolled steel sheet of the present invention is a steel having the above composition, heated to 1150 to 1250 ° C., hot-rolled at a finish rolling finish temperature of 880 to 930 ° C., and cooled at an average cooling rate of 10 ° C./s or more. Winding temperature: 575-650 ° C., pickling, cold rolling at a rolling rate: 45-65%, heating rate: 30 ° C./s or less, heating to 800-860 ° C., 60 It can be manufactured by a method in which annealing is performed for ˜180 s, followed by an overaging treatment for 280 ° C. or higher and 350 ° C. or lower and 240 s or longer.

本発明により、伸びなどの加工性に優れる板厚の薄い高強度冷延鋼板、たとえば板厚1mm以下で590MPa以上のTSを有する加工性の良好な冷延鋼板を安価で製造できるようになった。本発明の鋼板は、自動車の骨格部品などに好適である。   According to the present invention, a thin high-strength cold-rolled steel sheet having excellent workability such as elongation, for example, a cold-rolled steel sheet with good workability having a TS of 590 MPa or more with a thickness of 1 mm or less can be produced at low cost. . The steel sheet of the present invention is suitable for automobile frame parts and the like.

本発明では、回復フェライト相中に一辺が10nm未満の微細な板状TiCを、Tiの析出率を85%以上として多数析出させることで、伸び特性を劣化させることなく高強度化を図っている。特許文献2に開示されているようなTiとMoを含む炭化物の代わりに、TiCのみを用いているので高価なMoの使用は必要なく、また固溶強化元素として多用されるSi、Mnを低減することで、さらに合金コストを大幅に削減している。   In the present invention, a large amount of fine plate-like TiC having a side of less than 10 nm in the recovered ferrite phase is precipitated with a Ti precipitation rate of 85% or more, thereby achieving high strength without deteriorating elongation characteristics. . Instead of carbides containing Ti and Mo as disclosed in Patent Document 2, it is not necessary to use expensive Mo because only TiC is used, and Si and Mn frequently used as solid solution strengthening elements are reduced. By doing so, the alloy cost is greatly reduced.

本発明において焼鈍後の析出強化を維持する上で最も重要なポイントは、このような低合金の成分系で、熱延鋼板の段階での微細炭化物の粗大化をできるだけ抑制することである。本発明においては、C量とTi量のバランスを最適化し、かつ、Pの適正添加により、熱延鋼板の段階でのTiCを厚み1nm前後の板状形態に維持することに成功した。この初期微細析出形態の確保に加え、主として板厚を調整するための冷間圧延の後、冷間圧延により形成された加工組織を速やかに回復させる焼鈍を施すことにより、再結晶率が15%以上30%以下となる回復フェライト内に、一辺の長さが10nm未満の板状TiCを分散させ、590MPa以上のTSを確保する。なお、本発明の冷延鋼板は概ね20%以上の伸び特性を有しており、高強度と良好な加工性を両立するものである。   In the present invention, the most important point in maintaining precipitation strengthening after annealing is to suppress the coarsening of fine carbides at the stage of hot-rolled steel sheets as much as possible with such a low alloy component system. In the present invention, the balance between the C content and the Ti content was optimized, and by the proper addition of P, the TiC at the stage of the hot rolled steel sheet was successfully maintained in a plate-like form with a thickness of about 1 nm. In addition to ensuring the initial fine precipitation form, the recrystallization rate is 15% by applying annealing that quickly recovers the work structure formed by cold rolling, mainly after cold rolling for adjusting the plate thickness. A plate-like TiC having a side length of less than 10 nm is dispersed in the recovery ferrite that is 30% or less, and a TS of 590 MPa or more is secured. Note that the cold-rolled steel sheet of the present invention has an elongation characteristic of approximately 20% or more, and achieves both high strength and good workability.

熱延鋼板の段階で板状形態を有し微細に析出したTiCは母相フェライトとの間にBaker−Nuttingの方位関係(Baker−Nuttingの方位関係:体心立方構造(bcc)である母相Feに、NaCl型のMC炭化物が整合析出する際の典型的方位関係。(100)bcc//(100)MC ,[001]bcc//[011]MC)を有している。一般に冷間圧延後の焼鈍工程において、TiCがオストワルド成長することにより、TiCの析出強化能は急激に低下する。しかし、初期の析出物と母相の方位関係が維持される回復粒においては、焼鈍時の成長が抑制される。一方、再結晶が起こると、初期の析出物の方位関係は解消するため、TiCは速やかに球状形態に遷移し、急激に粗大化する。このため、本発明においてはフェライト組織の再結晶率を15%以上30%以下に抑制する。 TiC that has a plate-like form at the stage of hot-rolled steel sheet and finely precipitated TiC is in a Baker-Nutting orientation relationship with the parent phase ferrite (Baker-Nutting orientation relationship: a parent phase having a body-centered cubic structure (bcc)). A typical orientation relationship when NaCl-type MC carbide is coherently precipitated in Fe, (100) bcc // (100) MC , [001] bcc // [011] MC ). In general, in the annealing process after cold rolling, TiC is subjected to Ostwald growth, whereby the precipitation strengthening ability of TiC is drastically reduced. However, in the recovered grains in which the initial precipitate-matrix orientation relationship is maintained, growth during annealing is suppressed. On the other hand, when recrystallization occurs, the orientation relationship of the initial precipitates is canceled, so that TiC quickly transitions to a spherical form and rapidly becomes coarse. For this reason, in the present invention, the recrystallization rate of the ferrite structure is suppressed to 15% or more and 30% or less.

以下に、本発明の詳細について説明する。なお、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. Note that “%” representing the content of each component element means “% by mass” unless otherwise specified.

1)成分組成
C:0.07〜0.12%
CはTiCとしてフェライト相中に微細に析出し、高強度化に寄与する重要な元素である。C量が0.07%未満だと熱延鋼板の段階で十分な強度が得られず、冷延焼鈍後に590MPa以上のTSが確保できない。一方、0.12%を超えるとベイナイト相やパーライトなどの硬質相が形成されやすくなり、伸び特性の低下を招き、さらに、伸びフランジ性の劣化も招く。したがって、C量は0.07〜0.12%とする。
1) Component composition C: 0.07 to 0.12%
C is an important element that precipitates finely in the ferrite phase as TiC and contributes to high strength. If the amount of C is less than 0.07%, sufficient strength cannot be obtained at the stage of hot-rolled steel sheets, and TS of 590 MPa or more cannot be secured after cold rolling annealing. On the other hand, if it exceeds 0.12%, a hard phase such as a bainite phase or pearlite is likely to be formed, resulting in a decrease in elongation characteristics and further a deterioration in stretch flangeability. Therefore, the C content is 0.07 to 0.12%.

Si+Al:0.05〜0.10%
SiやAlは、製鋼時の脱酸に必要な元素である。本鋼は同じく脱酸元素であるTiをTiCとして析出させるのに利用するため、Si、Alによる脱酸は必須であり、そのためにSiとAlの合計の含有量であるSi+Alを0.05%以上とすることが必要である。一方、AlもSiもA変態温度を上昇させる元素であり、その合計の含有量が0.10%を超えると、二相域圧延を回避するため熱間圧延の仕上げ温度を高くする必要があり、このため、スラブ加熱温度を高温化せざるを得ず、製造コスト高を招く。さらに、変態点上昇により、TiCを析出させるために高温巻取りとする必要が生じ、TiCの粗大化を招いてしまう。このため、Si量+Al量は0.10%以下とする。
なお、Si量は脱酸の効果を得る上では、0.03%以上とすることが好ましいが、一方、めっき性に悪影響を及ぼす元素のひとつであるため、0.08%以下とすることが好ましい。Al量は脱酸の効果を得る上では、0.02%以上とすることが好ましいが、過剰に添加しても脱酸効果は飽和し、いたずらに変態点が上昇するため、0.05%以下とすることが好ましい。
Si + Al: 0.05-0.10%
Si and Al are elements necessary for deoxidation during steel making. Since this steel is also used to precipitate Ti, which is a deoxidizing element, as TiC, deoxidation with Si and Al is indispensable. For that purpose, the total content of Si and Al is 0.05%. This is necessary. On the other hand, Al also Si is also an element that increases the A 3 transformation temperature, the content of the sum exceeds 0.10%, is necessary to increase the finishing temperature of hot rolling to avoid a two-phase region rolling For this reason, the slab heating temperature must be increased, resulting in high manufacturing costs. Furthermore, due to the rise in transformation point, it is necessary to perform high-temperature winding in order to precipitate TiC, leading to coarsening of TiC. Therefore, the Si amount + Al amount is set to 0.10% or less.
The Si amount is preferably 0.03% or more in order to obtain the effect of deoxidation. On the other hand, since it is one of the elements that adversely affects the plating properties, the Si amount should be 0.08% or less. preferable. In order to obtain the deoxidation effect, the Al amount is preferably 0.02% or more. However, even if added in excess, the deoxidation effect is saturated and the transformation point is unnecessarily increased. The following is preferable.

Mn:0.15〜0.45%
Mnは、固溶強化能の高い元素であるため鋼の強度レベルの調整に、また、鋼の変態温度を低下させるため熱間圧延前の加熱温度低下に効果的であり、このような効果を得るため、Mn量は0.15%以上とする。一方で、過剰な添加は高コストとなる上、偏析によりバンド状組織が形成されやすく、伸びの低下を招き、さらに伸びフランジ性の低下も招くため、Mn量は0.45%以下とする。
Mn: 0.15 to 0.45%
Mn is an element with a high solid solution strengthening ability, so it is effective for adjusting the strength level of steel, and for reducing the transformation temperature of the steel, so it is effective for lowering the heating temperature before hot rolling. Therefore, the Mn content is 0.15% or more. On the other hand, excessive addition increases the cost and tends to form a band-like structure due to segregation, leading to a decrease in elongation and further a decrease in stretch flangeability, so the Mn amount is set to 0.45% or less.

P:0.01〜0.05%
上述したように、PはTiCの微細化を促進し、高強度化に有効な元素である。こうした効果を得るには、P量を0.01%以上にする必要がある。一方、P量が0.05%を超えるとFe−Ti−P等を形成し、TiCとして析出するために有効となるTi量の低下を招くため、P量は0.01〜0.05%とする。
P: 0.01-0.05%
As described above, P is an element that promotes the refinement of TiC and is effective for increasing the strength. In order to obtain such an effect, the P amount needs to be 0.01% or more. On the other hand, if the amount of P exceeds 0.05%, Fe—Ti—P or the like is formed and the amount of Ti that is effective for precipitation as TiC is reduced, so the amount of P is 0.01 to 0.05%. And

S:0.004%以下
本発明においては、Sは主にTiSとして固定され、前記の式(1)で規定するTi(有効Ti量)の低下につながるため、Sは低いほど好ましいが、0.004%程度までは許容できるため、S量の上限を0.004%とする。
S: 0.004% or less In the present invention, S is mainly fixed as TiS and leads to a decrease in Ti * (effective Ti amount) defined by the above formula (1). Since up to about 0.004% is acceptable, the upper limit of the amount of S is made 0.004%.

N:0.0045%以下
N量が0.0045%を超えると粗大なTiNが形成され、後述する有効Ti量の低下を招き、TiCによる析出強化が十分に発揮できないうえ、伸びが低下し、さらに伸びフランジ性も低下する。このため、N量は0.0045%以下とする。一方、N量を0.0020%未満に制御するには製鋼工程で特別の処理が必要となり製造コスト高を招くため、N量の下限は0.0020%程度とすることが好ましい。
N: 0.0045% or less When the N amount exceeds 0.0045%, coarse TiN is formed, resulting in a decrease in the effective Ti amount described later, precipitation strengthening due to TiC cannot be sufficiently exhibited, and elongation is reduced. Furthermore, stretch flangeability is also reduced. Therefore, the N amount is set to 0.0045% or less. On the other hand, in order to control the amount of N to less than 0.0020%, a special process is required in the steel making process, resulting in an increase in production cost. Therefore, the lower limit of the amount of N is preferably about 0.0020%.

Ti:0.09〜0.14%
本発明では、TiはTiCを析出させる元素であり、析出強化に用いる最も重要な元素である。本発明においては、熱延鋼板の段階で十分な析出強化量を確保するためにTi量の下限を0.09%とする。一方、Tiを過剰に添加した場合、固溶Tiにより焼鈍時の組織回復が遅延するため、高温焼鈍が必要となり、TiCの粗大化によって目標強度が到達できなくなるため、上限を0.14%とする。
Ti: 0.09 to 0.14%
In the present invention, Ti is an element that precipitates TiC and is the most important element used for precipitation strengthening. In the present invention, in order to secure a sufficient precipitation strengthening amount at the stage of hot-rolled steel sheet, the lower limit of the Ti amount is 0.09%. On the other hand, when Ti is added excessively, the structure recovery during annealing is delayed by solid solution Ti, so high temperature annealing is required, and the target strength cannot be reached due to the coarsening of TiC, so the upper limit is 0.14% To do.

2.4≦4C/Ti≦4.5(ただし式中のTi、Cは各元素の含有量)
本発明において、TiCとしての析出量は、含有するTi量のうち、TiNとして固定される量、およびTiSとして固定される量を考慮した有効Ti量、すなわちTiに支配される。なお、ここで有効Ti量(Ti)は前記の式(1)で定義され、Ti=Ti−(3.43N+1.5S)(ただし式中のTi、N、Sは各元素の含有量)である。
2.4 ≦ 4C / Ti * ≦ 4.5 (where Ti and C are the contents of each element)
In the present invention, the amount of precipitation as TiC is governed by the effective amount of Ti in consideration of the amount fixed as TiN and the amount fixed as TiS among the amount of Ti contained, that is, Ti * . Here, the effective Ti amount (Ti * ) is defined by the above formula (1), and Ti * = Ti− (3.43N + 1.5S) (where Ti, N, and S are the contents of each element) ).

本発明では、TiCのサイズおよび量の最適化のため、2.4≦4C/Ti≦4.5の関係を満足する必要がある。ここで、4C/Tiは、Cと有効Tiの原子濃度比を表しており、本発明では、鋼中のCを全てTiCとして形成する場合に必要最小限となる4C/Ti=1よりも炭素過剰である2.4≦4C/Tiとする。これは、固溶炭素によるγ→α変態の遅延を利用するためであり、結果的にTiCの析出温度域を低下し、熱延鋼板中にTiCを析出微細化させるためである。一方、4C/Tiが4.5を超える炭素過剰側では、熱間圧延後の冷却過程でパーライト変態が優先し、TiCの析出が著しく抑制されるため、4C/Ti≦4.5とする必要がある。 In the present invention, it is necessary to satisfy the relationship of 2.4 ≦ 4C / Ti * ≦ 4.5 in order to optimize the size and amount of TiC. Here, 4C / Ti * represents the atomic concentration ratio of C and effective Ti. In the present invention, 4C / Ti * = 1, which is the minimum necessary when all the C in the steel is formed as TiC. Also, 2.4 ≦ 4C / Ti * , which is an excess of carbon. This is to utilize the delay of the γ → α transformation caused by solute carbon, and as a result, to lower the TiC precipitation temperature range and to precipitate and refine TiC in the hot-rolled steel sheet. On the other hand, on the carbon excess side where 4C / Ti * exceeds 4.5, pearlite transformation is prioritized in the cooling process after hot rolling, and precipitation of TiC is remarkably suppressed, so that 4C / Ti * ≦ 4.5 There is a need to.

残部はFeおよび不可避的不純物であるが、以下の理由でB:0.0003〜0.0010%を含有させることが好ましい。   The balance is Fe and inevitable impurities, but it is preferable to contain B: 0.0003 to 0.0010% for the following reason.

B:0.0003〜0.0010%
Bは、本発明において、CやPと同様、熱延鋼板の段階での初期TiC析出を微細にする効果のある元素であり、この効果を得る上では、0.0003%以上含有させることが必要となる。一方、B量が0.0010%を超えると、効果が飽和するばかりでなく、熱間圧延時の荷重増大につながるため、B量は0.0010%以下とする必要がある。
B: 0.0003 to 0.0010%
In the present invention, B is an element having an effect of refining initial TiC precipitation at the stage of a hot-rolled steel sheet as in C and P. In order to obtain this effect, B is contained in an amount of 0.0003% or more. Necessary. On the other hand, if the amount of B exceeds 0.0010%, not only will the effect be saturated, but also the load during hot rolling will increase, so the amount of B needs to be 0.0010% or less.

2)ミクロ組織
本発明の鋼板は、体積率:90%〜95%のフェライト相および体積率:5%〜10%のセメンタイトを有し、前記フェライト相は再結晶率が15%以上30%以下の回復組織からなるとともに、該フェライト相中にはTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが10nm未満であり、Tiの析出率が85%以上である組織を有する。
2) Microstructure The steel sheet according to the present invention has a ferrite phase with a volume ratio of 90% to 95% and a cementite with a volume ratio of 5% to 10%, and the recrystallization rate of the ferrite phase is 15% to 30%. In the ferrite phase, Ti carbide (TiC) is precipitated, the average length of the Ti carbide is less than 10 nm, and the Ti precipitation rate is 85% or more.

再結晶率が15%以上30%以下の回復組織からなるフェライト相の体積率:90%〜95%
本発明の鋼板の焼鈍時に、完全再結晶組織を得るために高温焼鈍を施すと、製造上コスト高になるばかりでなく、上記したように、熱延鋼板の段階で板状形態を有し微細に析出していたTiCが急激に粗大化して強度低下を招き、また再結晶組織が微細であるため高伸び特性を得ることが難しくなる。このため、本発明においては、再結晶率が15%以上30%以下である回復組織からなるフェライト組織を主相とする。フェライト相の再結晶率が30%を超えると、上記のように、所望の強度を得ることが困難となるため、再結晶率は30%以下とする。一方、再結晶率が15%未満になると、伸びが低下し加工性に悪影響を与えるため、再結晶率は15%以上とする。また、フェライト相の体積率が90%未満では、良好な伸び特性を得ることが困難であり、一方、95%を超えると、後述するセメンタイトの体積率を確保することができない。このため、前記フェライト相の体積率は90%〜95%とする。
Volume ratio of ferrite phase composed of a recovery structure having a recrystallization rate of 15% or more and 30% or less: 90% to 95%
When annealing the steel sheet of the present invention, if high-temperature annealing is performed to obtain a complete recrystallized structure, not only the manufacturing cost increases, but also as described above, it has a plate-like form at the stage of the hot-rolled steel sheet and is fine. TiC that has precipitated on the surface rapidly increases in size and causes a decrease in strength, and since the recrystallized structure is fine, it is difficult to obtain high elongation characteristics. Therefore, in the present invention, the main phase is a ferrite structure composed of a recovery structure having a recrystallization rate of 15% or more and 30% or less. If the recrystallization rate of the ferrite phase exceeds 30%, it becomes difficult to obtain a desired strength as described above, so the recrystallization rate is set to 30% or less. On the other hand, when the recrystallization rate is less than 15%, the elongation decreases and adversely affects the workability. Therefore, the recrystallization rate is set to 15% or more. Further, when the volume fraction of the ferrite phase is less than 90%, it is difficult to obtain good elongation characteristics. On the other hand, when the volume fraction exceeds 95%, the volume fraction of cementite described later cannot be ensured. For this reason, the volume fraction of the ferrite phase is 90% to 95%.

ここで、再結晶率は、焼鈍後の冷延鋼板について、圧延方向に沿った断面組織(L断面組織)を走査透過電子顕微鏡(STEM)により観察して得られた、観察視野における全フェライトの面積に対する再結晶フェライトの面積の比率(面積率)を求め、これを再結晶率とした。   Here, the recrystallization rate was obtained by observing the cross-sectional structure (L cross-sectional structure) along the rolling direction with a scanning transmission electron microscope (STEM) for the cold-rolled steel sheet after annealing. The area ratio (area ratio) of the recrystallized ferrite with respect to the area was determined, and this was defined as the recrystallization ratio.

セメンタイトの体積率:5〜10%
本発明の鋼板の成分組成では、前述のように4C/Tiを所定範囲として、Cと有効Tiの原子濃度の比を1よりも大きくしているため、セメンタイトが熱延鋼板組織中の粒界に析出する。粒界セメンタイトが組織形成に及ぼす影響は必ずしも明らかではないが、熱間圧延後の冷間圧延時に歪が集中し、焼鈍時の再結晶を促進すると考えられる。この熱延鋼板の段階で析出しているセメンタイトの多くは、焼鈍後は一旦固溶するが、後述する過時効処理によって固溶炭素を固着し、伸び特性確保に有用となる。このような効果を得るため、本発明の鋼板中のセメンタイトの体積率は5%以上とする。一方、セメンタイトの体積率が大きくなりすぎると、TiCの析出を抑制することとなり、また、所望のフェライト量を確保することができなくなるため、セメンタイトの体積率は10%以下とする。
Cementite volume ratio: 5-10%
In the component composition of the steel sheet of the present invention, as described above, 4C / Ti * is in a predetermined range, and the ratio of atomic concentration of C and effective Ti is larger than 1, so that cementite is a grain in the hot rolled steel sheet structure. Precipitates at the boundary. The effect of grain boundary cementite on the formation of the structure is not necessarily clear, but it is thought that strain concentrates during cold rolling after hot rolling and promotes recrystallization during annealing. Most of the cementite precipitated at the stage of the hot-rolled steel sheet is once dissolved after the annealing, but the solid solution carbon is fixed by an overaging treatment to be described later, which is useful for securing elongation characteristics. In order to obtain such an effect, the volume fraction of cementite in the steel sheet of the present invention is 5% or more. On the other hand, if the volume fraction of cementite becomes too large, precipitation of TiC will be suppressed, and the desired ferrite content cannot be ensured, so the volume fraction of cementite is made 10% or less.

フェライト相中のTi炭化物(TiC)の平均の長さが10nm未満、Tiの析出率が85%以上
前記フェライト中に析出させるTi炭化物の平均の長さが10nm以上となると、TiCの析出強化能が小さくなり、590MPa以上の強度を得ることが困難となる。また、Tiの析出率が85%未満では、析出物の量が少なくなりすぎ、590MPa以上の強度を得ることが困難となる。このため、本発明の鋼板では、フェライト中に微細なTi炭化物(TiC)を多数析出させ、該Ti炭化物(TiC)の平均の長さを10nm未満とし、かつ、Tiの析出率を85%以上とする。
When the average length of Ti carbide (TiC) in the ferrite phase is less than 10 nm, the precipitation rate of Ti is 85% or more, and the average length of Ti carbide precipitated in the ferrite is 10 nm or more, the precipitation strengthening ability of TiC Becomes smaller, and it becomes difficult to obtain a strength of 590 MPa or more. On the other hand, if the precipitation rate of Ti is less than 85%, the amount of precipitates becomes too small, and it becomes difficult to obtain a strength of 590 MPa or more. Therefore, in the steel sheet of the present invention, a large number of fine Ti carbides (TiC) are precipitated in ferrite, the average length of the Ti carbides (TiC) is less than 10 nm, and the Ti precipitation rate is 85% or more. And

なおTi炭化物(TiC)の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。ここで、本発明では前記したように、焼鈍時のフェライトの再結晶を制御することで、冷延鋼板において、熱延鋼板の段階で母相フェライトとの間にBaker−Nuttingの方位関係を有して析出させたTiCの板状形態をほぼ維持させている。このため、冷延鋼板について、透過電子顕微鏡によりフェライト相の[001]方位において観察されるTiCは、熱延鋼板で析出させた正方板状の板状形態を有するTiCの辺長(一辺の長さ)を長さとし、その厚みを幅とする略長方形形状(棒状の形状)として観察される。そこで、本発明ではこの略長方形形状に観察されるTiCの長さを測定することで、冷延鋼板中のTi炭化物の一辺の長さを測定している。   The average length of Ti carbide (TiC) is a value obtained by arithmetically averaging the lengths of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope. . Here, in the present invention, as described above, by controlling the recrystallization of ferrite during annealing, a cold-rolled steel sheet has a Baker-Nutting orientation relationship with the parent phase ferrite at the stage of the hot-rolled steel sheet. Thus, the plate-like form of TiC deposited is maintained substantially. For this reason, the TiC observed in the [001] orientation of the ferrite phase with a transmission electron microscope in the cold-rolled steel sheet is a TiC side length (one side length) having a square plate-like form deposited on the hot-rolled steel sheet. ) Is the length, and the thickness is the width, and is observed as a substantially rectangular shape (rod-like shape). Therefore, in the present invention, the length of one side of Ti carbide in the cold-rolled steel sheet is measured by measuring the length of TiC observed in this substantially rectangular shape.

また、Tiの析出率は、下記手法によって求めた。
まず、Tiの析出量を、特許文献4に記載の方法にしたがって求めた。すなわち、対象析出物が非常に微細であるため、抽出した析出物を直接定量する一般的な析出物量の求め方では精度が出ないので、ここでは試料を非水溶媒系電解液中で所定量だけ電解した後、金属試料の残部を電解液から取り除き、次いでこの電解液の一部を採取し分析溶液とし、ICP質量分析法を用いてTiおよび比較元素としてFeの液中濃度を測定した。得られた濃度を基に、Feに対するTiの濃度比を算出し、さらに、試料中のFe量(質量%)を乗じることで、固溶Ti量(質量%)を求めた。試料中のFe量(質量%)は、Fe以外の組成値の合計を100質量%から減算することで求めることができる。このようにして求めた固溶Ti量を、鋼のTi含有量から差し引くことにより、Tiの析出量とした。そして、Tiの析出率は、Tiの析出率=(Tiの析出量)/(鋼のTi含有量)として求めた。
The Ti precipitation rate was determined by the following method.
First, the amount of Ti deposited was determined according to the method described in Patent Document 4. In other words, since the target precipitate is very fine, accuracy is not obtained in the general method for determining the amount of precipitate directly quantifying the extracted precipitate. After only electrolysis, the remainder of the metal sample was removed from the electrolytic solution, and then a part of this electrolytic solution was collected and used as an analytical solution, and the concentration of Ti as a comparative element and Fe in the liquid was measured using ICP mass spectrometry. Based on the obtained concentration, the concentration ratio of Ti to Fe was calculated, and further, the amount of solid solution Ti (% by mass) was obtained by multiplying by the amount of Fe (% by mass) in the sample. The amount (% by mass) of Fe in the sample can be obtained by subtracting the total of composition values other than Fe from 100% by mass. The amount of precipitated Ti was determined by subtracting the solute Ti amount thus determined from the Ti content of the steel. And the precipitation rate of Ti was calculated | required as Ti precipitation rate = (Ti precipitation amount) / (Ti content of steel).

なお、上記で規定した以外の残部組織に関しては、不可避的に生成するその他の組織を、合計の体積率(面積率)で5%以下程度であれば本発明の効果を損ねるものではないため、含有してもかまわない。   In addition, with respect to the remaining structure other than those specified above, other structures that are inevitably generated, because the total volume ratio (area ratio) of about 5% or less does not impair the effect of the present invention, It may be contained.

3)製造条件
熱間圧延前の加熱温度:1150〜1250℃
熱間圧延後に微細なTiCをフェライト相中に析出させて高強度化を図るには、鋼中に析出している粗大なTiCを熱間圧延前に加熱して溶解させる必要がある。本発明では1150℃以上の加熱で熱間圧延前の鋼中に析出しているTiCを十分に溶解することが可能である。したがって、熱間圧延前の加熱温度は1150℃以上とする。なお、製造コストを低減する観点からは、1250℃以下の温度で加熱する必要があり、加熱温度は1150℃〜1250℃とする。より好ましい加熱温度範囲は1150℃〜1220℃の範囲である。
3) Manufacturing conditions Heating temperature before hot rolling: 1150 to 1250 ° C
In order to increase the strength by precipitating fine TiC in the ferrite phase after hot rolling, it is necessary to heat and dissolve coarse TiC precipitated in the steel before hot rolling. In the present invention, TiC precipitated in the steel before hot rolling can be sufficiently dissolved by heating at 1150 ° C. or higher. Therefore, the heating temperature before hot rolling is 1150 ° C. or higher. In addition, it is necessary to heat at the temperature of 1250 degrees C or less from a viewpoint of reducing manufacturing cost, and heating temperature shall be 1150 to 1250 degreeC. A more preferable heating temperature range is 1150 ° C to 1220 ° C.

熱間圧延の仕上げ圧延終了温度:880〜930℃
仕上げ圧延終了温度が880℃未満となると、圧延組織が残留し、伸びが劣化し、また、伸びフランジ性も劣化する。したがって、仕上げ圧延終了温度は880℃以上とする。一方、仕上げ圧延終了温度が930℃を超えると十分に再結晶したオーステナイト組織からの変態になるのでフェライト組織が粗大化し、母相組織であるフェライト相の強度が顕著に低下するため、仕上げ圧延終了温度は930℃以下とする。
Finishing rolling finish temperature of hot rolling: 880-930 ° C
When the finish rolling finish temperature is less than 880 ° C., the rolled structure remains, the elongation deteriorates, and the stretch flangeability also deteriorates. Accordingly, the finish rolling end temperature is set to 880 ° C. or higher. On the other hand, when the finish rolling finish temperature exceeds 930 ° C., the transformation from the sufficiently recrystallized austenite structure becomes coarse, so the ferrite structure becomes coarse and the strength of the ferrite phase as the parent phase structure is significantly reduced. The temperature is 930 ° C. or lower.

本発明では、連続鋳造後の鋼をそのまま熱間圧延する直送圧延の技術も適用することができる。このとき、880℃以上の仕上げ圧延終了温度を確保するために、熱間圧延前に補助的な加熱を行うこともできる。   In the present invention, direct feed rolling technology in which the steel after continuous casting is hot-rolled as it is can also be applied. At this time, in order to secure a finish rolling finish temperature of 880 ° C. or higher, auxiliary heating can be performed before hot rolling.

熱間圧延後の平均冷却速度:10℃/s以上
熱間圧延後巻取りまでの平均冷却速度が10℃/s未満だと、冷却中にパーライト変態が起こりやすく、また、粒界セメンタイトの形成が優先し、析出強化因子である微細TiCの核生成が不十分となって、熱延鋼板における強度が十分に確保できない。本発明では、熱間圧延後に引き続き実施される冷間圧延後の焼鈍過程で、TiCが成長して大きくなり強度低下することを想定し、熱延鋼板において冷延鋼板よりも高い強度を確保するようにしている。本発明では、初期熱延鋼板における十分な核生成密度の確保のため、熱間圧延後の平均冷却速度は10℃/s以上とする。
Average cooling rate after hot rolling: 10 ° C./s or more If the average cooling rate from hot rolling to winding is less than 10 ° C./s, pearlite transformation is likely to occur during cooling, and formation of grain boundary cementite Is prioritized, and the nucleation of fine TiC, which is a precipitation strengthening factor, becomes insufficient, and the strength of the hot-rolled steel sheet cannot be sufficiently secured. In the present invention, it is assumed that TiC grows and becomes larger and lowers strength in the annealing process after cold rolling, which is subsequently performed after hot rolling, and secures higher strength in the hot rolled steel plate than in the cold rolled steel plate. I am doing so. In this invention, in order to ensure sufficient nucleation density in the initial hot-rolled steel sheet, the average cooling rate after hot rolling is set to 10 ° C./s or more.

巻取温度:575〜650℃
本発明では、熱延鋼板での強度を十分に確保することが重要であり、熱間圧延後の巻取の段階でTiCを鋼中に析出させるため、巻取温度は高精度に制御する必要がある。TiCの析出にはγ→α変態の影響が大きく、特に変態点を低温化するMnの含有量に応じて巻取り温度を制御することが重要である。本発明では、上記したように、Mn量を0.15〜0.45%と少なくしており、この場合、TiCを十分に析出させるためには、巻取温度を575℃以上とする必要がある。一方、巻取り温度が650℃を超えると、フェライト組織回復とTiCの粗大化が促進し、熱延鋼板における強度が低下するため、巻取温度の上限は650℃とする。
Winding temperature: 575-650 ° C
In the present invention, it is important to ensure sufficient strength in the hot-rolled steel sheet, and TiC is precipitated in the steel at the stage of winding after hot rolling, so the winding temperature needs to be controlled with high accuracy. There is. The precipitation of TiC is greatly affected by the γ → α transformation, and it is particularly important to control the coiling temperature in accordance with the Mn content that lowers the transformation point. In the present invention, as described above, the amount of Mn is reduced to 0.15 to 0.45%. In this case, in order to sufficiently precipitate TiC, the coiling temperature needs to be 575 ° C. or higher. is there. On the other hand, when the coiling temperature exceeds 650 ° C., the recovery of the ferrite structure and the coarsening of TiC are promoted, and the strength of the hot-rolled steel sheet is lowered. Therefore, the upper limit of the coiling temperature is 650 ° C.

巻取り後の鋼板には、常法に従い酸洗を施す。酸洗の条件については、特に制限は無く、塩酸での酸洗など、従来公知の方法に従って行えばよい。   The steel sheet after winding is pickled according to a conventional method. The conditions for pickling are not particularly limited, and may be performed according to a conventionally known method such as pickling with hydrochloric acid.

冷間圧延の圧延率:45〜65%
酸洗後の熱延鋼板には、板厚を薄くして所望の板厚の薄鋼板(冷延鋼板)を得るために、冷間圧延を施す。例えば、板厚1mm以下の薄鋼板を製造するにあたり、酸洗後の熱延鋼板の板厚が2mmとすれば、冷間圧延の圧延率(冷間圧延率)は50%以上が必要となる。また、冷間圧延の圧延率(圧下率ともいう)は、冷間圧延後に施す焼鈍の際の再結晶を促進するパラメータでもある。すなわち、冷間圧延率が低い場合は、導入歪を駆動力とする再結晶が起こらず、焼鈍による回復が進むだけとなる。一方、冷間圧延率が高すぎると、結晶粒ごとの導入歪量が不均一になり、再結晶開始温度が低下するものの、再結晶自体も不均一になりやすい。冷間圧延率は最終的な目標板厚によって変動するものの、本発明では冷間圧延後の未再結晶組織を積極活用するため、冷間圧延率は45%以上とする。また、上記した再結晶の不均一を招かないようにするため冷間圧延率は65%以下とする。
Cold rolling ratio: 45-65%
The hot-rolled steel sheet after pickling is subjected to cold rolling in order to reduce the sheet thickness and obtain a thin steel sheet (cold-rolled steel sheet) having a desired thickness. For example, in manufacturing a thin steel sheet having a thickness of 1 mm or less, if the thickness of the hot-rolled steel sheet after pickling is 2 mm, the cold rolling reduction ratio (cold rolling reduction ratio) needs to be 50% or more. . Further, the rolling rate of cold rolling (also referred to as the reduction rate) is also a parameter that promotes recrystallization during annealing performed after cold rolling. That is, when the cold rolling rate is low, recrystallization using the introduced strain as a driving force does not occur, and only recovery by annealing proceeds. On the other hand, if the cold rolling rate is too high, the amount of strain introduced for each crystal grain becomes non-uniform and the recrystallization start temperature decreases, but the recrystallization itself tends to be non-uniform. Although the cold rolling rate varies depending on the final target plate thickness, in the present invention, since the non-recrystallized structure after the cold rolling is actively used, the cold rolling rate is set to 45% or more. Further, the cold rolling rate is set to 65% or less so as not to cause the above-mentioned non-uniform recrystallization.

上記冷間圧延後の鋼板は、昇温速度:30℃/s以下で800℃〜860℃に加熱後、60〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施す。   The steel sheet after the cold rolling is heated to 800 ° C. to 860 ° C. at a rate of temperature increase of 30 ° C./s or less, and then annealed for 60 to 180 s, and subsequently kept at 280 ° C. or more and 350 ° C. or less for 240 s or more. Apply aging treatment.

昇温速度:30℃/s以下で800〜860℃に加熱後60〜180s保持
本発明において、適正な条件での焼鈍は強度と伸び特性を両立する上で極めて重要である。冷間圧延によって所望の板厚に調整された鋼板は高い強度を有するものの、加工性が低下しており、連続焼鈍プロセスなどによって適切な焼鈍処理を施すことが必要である。焼鈍処理は加工組織を回復させるために施されるものであり、これらの組織変化は、冷間圧延率はもちろんのこと、焼鈍温度に大きく支配される。
Heating rate: 30 ° C./s or less and holding at 800 to 860 ° C. after heating for 60 to 180 s In the present invention, annealing under appropriate conditions is extremely important for achieving both strength and elongation characteristics. Although the steel plate adjusted to the desired plate thickness by cold rolling has high strength, the workability is lowered, and it is necessary to perform an appropriate annealing treatment by a continuous annealing process or the like. The annealing treatment is performed to recover the processed structure, and these changes in the structure are largely controlled by the annealing temperature as well as the cold rolling rate.

本発明では、焼鈍温度は800〜860℃とし、該焼鈍温度に加熱する。この焼鈍温度範囲は、前述のような冷間圧延率の範囲での冷間圧延を施した後、所望の組織を得る上での適正焼鈍温度である。焼鈍温度が800℃未満では、回復が進行せず強度が高くなりすぎ、伸びが小さくなる。一方、焼鈍温度が860℃を超えると、析出強化因子であるTiCの粗大化が進み、急激に強度が低下し、TS≧590MPaの確保が困難となる。   In this invention, an annealing temperature shall be 800-860 degreeC, and it heats to this annealing temperature. This annealing temperature range is an appropriate annealing temperature for obtaining a desired structure after cold rolling in the range of the cold rolling rate as described above. When the annealing temperature is less than 800 ° C., the recovery does not proceed, the strength becomes too high, and the elongation becomes small. On the other hand, if the annealing temperature exceeds 860 ° C., the coarsening of TiC, which is a precipitation strengthening factor, progresses rapidly, and the strength rapidly decreases, making it difficult to ensure TS ≧ 590 MPa.

また、焼鈍温度での保持時間(焼鈍時間)は、前記焼鈍温度範囲で十分に回復を進行させて伸び特性を確保するため、60s以上とする。一方、焼鈍時間が長すぎると生産性が低下するため、焼鈍時間は180s以下とする。   In addition, the holding time (annealing time) at the annealing temperature is set to 60 s or more in order to sufficiently recover in the annealing temperature range and ensure the elongation characteristics. On the other hand, if the annealing time is too long, the productivity is lowered, so the annealing time is 180 s or less.

上記した焼鈍温度に加熱する際の昇温速度は、昇温中に組織回復を促進するため30℃/s以下とする。昇温速度が30℃/sを超えると、再結晶が促進されて、伸び特性に不利な微細組織になってしまうばかりでなく、炭化物が急激に粗大化し強度の低下を招く。なお、昇温速度の下限は特に規定しないが、生産性確保の観点および初期熱延板中の微細TiCの成長を回避する観点から、10℃/s以上とすることが好ましい。   The heating rate at the time of heating to the above-described annealing temperature is set to 30 ° C./s or less in order to promote the tissue recovery during the heating. When the rate of temperature rise exceeds 30 ° C./s, recrystallization is promoted and not only becomes a fine structure unfavorable for the elongation characteristics, but also the carbides rapidly become coarse and the strength is lowered. In addition, although the minimum of a temperature increase rate is not prescribed | regulated in particular, it is preferable to set it as 10 degreeC / s or more from a viewpoint of ensuring productivity, and avoiding the growth of the fine TiC in an initial stage hot-rolled sheet.

280℃以上350℃以下で240s以上保持の過時効処理
本発明においては、2.4≦4C/Tiと明らかに炭素過剰の設計としているため、熱延鋼板の段階で析出していたセメンタイトは、上記の冷間圧延後の焼鈍過程で一部固溶する。鋼板中に固溶炭素が存在すると、加工性に影響するだけでなく、加工後の時効が問題になる。このため、固溶した炭素をセメンタイトに固着させるために焼鈍後過時効処理を施す。過時効温度が280℃未満では、固溶炭素の固着に長時間を要するため、生産性が低下する。一方、過時効温度が350℃を超えると、温度が高すぎるため、炭素を十分に固着することが困難となる。このため、過時効温度は280℃以上350℃以下とする。また、固溶炭素を十分に固着させるため、過時効における保持時間は240s以上とする。なお、過剰に長い時間保持を行っても効果が飽和し、生産性が低下するだけとなるため、保持時間は600s以下とすることが好ましい。
なお、上記した焼鈍および過時効処理は、生産性の観点から連続焼鈍ラインにて連続して行うことが好ましい。
Overaging treatment of 280 ° C. or higher and 350 ° C. or lower and holding for 240 s or longer In the present invention, 2.4 ≦ 4C / Ti * is clearly designed to be excessive in carbon, so that cementite precipitated at the stage of hot-rolled steel sheet is Partly dissolves in the annealing process after the cold rolling. When solute carbon is present in the steel sheet, not only the workability is affected, but also aging after processing becomes a problem. For this reason, in order to fix the solid solution carbon to cementite, an overaging treatment is performed after annealing. When the overaging temperature is less than 280 ° C., it takes a long time to fix the solid solution carbon, and thus the productivity is lowered. On the other hand, if the overaging temperature exceeds 350 ° C., the temperature is too high, and it becomes difficult to sufficiently fix the carbon. For this reason, overaging temperature shall be 280 degreeC or more and 350 degrees C or less. Further, in order to sufficiently fix the solute carbon, the holding time in overaging is set to 240 s or more. Note that even if the holding time is excessively long, the effect is saturated and the productivity is lowered, so the holding time is preferably 600 s or less.
In addition, it is preferable to perform the above-described annealing and overaging treatment continuously in a continuous annealing line from the viewpoint of productivity.

表1に示す成分組成の鋼を50kg真空溶解炉で溶製し、スラブとした後、表2に示す条件で熱間圧延し、熱延鋼板を得た。次いでこの熱延鋼板を、塩酸酸洗し、表2に示す条件で冷間圧延して表2に示す板厚とした後、表2に示す条件で焼鈍処理を施し、引き続き350℃で300sの過時効処理を行い冷延鋼板とした。   Steel having the component composition shown in Table 1 was melted in a 50 kg vacuum melting furnace to form a slab, and then hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet. Next, the hot-rolled steel sheet was pickled with hydrochloric acid and cold-rolled under the conditions shown in Table 2 to obtain the plate thickness shown in Table 2, and then subjected to annealing treatment under the conditions shown in Table 2, followed by 350 ° C. for 300 s. Overaging treatment was performed to obtain a cold-rolled steel sheet.

これらの得られた冷延鋼板から試験片を採取し、下記のような調査を行った。得られた結果を表3に示す。   Test pieces were sampled from the obtained cold-rolled steel sheets and investigated as follows. The obtained results are shown in Table 3.

フェライト相、セメンタイトの体積率
圧延方向に沿った断面組織(L断面組織)を走査型電子顕微鏡により3000倍で3視野観察して、フェライト相および、セメンタイトの面積率を求め、求めた面積率を体積率とした。
The ferrite phase and cementite volume ratio The cross-sectional structure (L cross-sectional structure) along the rolling direction is observed with a scanning electron microscope at 3000 magnifications in three fields to determine the area ratio of the ferrite phase and cementite. The volume ratio was used.

フェライト相の再結晶率
板厚中央部から採取した試料を用いて、透過電子顕微鏡用の薄膜試料を作製し、透過電子顕微鏡付属の透過走査電子顕微鏡(Scanning Transmission Electron Microscopy,STEM)の暗視野法により5000倍で5視野以上観察して、観察視野における全フェライトの面積に対する再結晶フェライトの面積の比率(面積率)を求め、これをフェライト相の再結晶率とした。なおここで、再結晶フェライトはSTEM像で転位の少ない等軸結晶として認識される。
A thin film sample for a transmission electron microscope is prepared using a sample collected from the central portion of the ferrite phase recrystallization rate, and a dark field method of a transmission scanning electron microscope (STEM) attached to the transmission electron microscope. And observing 5 or more fields at a magnification of 5000, the ratio (area ratio) of the recrystallized ferrite area to the total ferrite area in the observation field was determined, and this was defined as the recrystallization ratio of the ferrite phase. Here, the recrystallized ferrite is recognized as an equiaxed crystal with few dislocations in the STEM image.

Ti炭化物の平均の長さ
上記のSTEM観察に用いた試料を用い、透過電子顕微鏡法により、30万倍で厚み約100nmの領域を5視野以上観察し、TiCの長さを測定した。この時、評価対象としたTiCは、母相であるフェライト相の[001]方位において観察される厚み1〜2nmの板状形態TiCであり、略長方形形状に観察される個々のTiCの長さを測定して、200個以上の観察結果の平均値として求めた。
Average length of Ti carbide Using the sample used for the STEM observation described above, a transmission electron microscope was used to observe a region of 300,000 times and a thickness of about 100 nm over 5 fields of view and measure the length of TiC. At this time, the TiC to be evaluated is a plate-like form TiC having a thickness of 1 to 2 nm observed in the [001] direction of the ferrite phase as a parent phase, and the length of each TiC observed in a substantially rectangular shape. Was measured and obtained as an average value of 200 or more observation results.

引張特性
圧延方向に平行にJIS5号引張試験片を採取し、JISZ2241に準拠して、クロスヘッド速度10mm/minで引張試験を行い、降伏強度(YS)、引張強度(TS)および全伸び(El)を求めた。
Tensile properties Parallel to the rolling direction, JIS No. 5 tensile test specimens were collected and subjected to a tensile test at a crosshead speed of 10 mm / min in accordance with JISZ2241, yield strength (YS), tensile strength (TS) and total elongation (El) )

表3に示したように、本発明例では、TS≧590MPaが得られるとともに、El≧20%であり、伸び特性が良好であり、優れた加工性を有することがわかる。   As shown in Table 3, in the example of the present invention, TS ≧ 590 MPa is obtained, El ≧ 20%, the elongation property is good, and it has excellent workability.

一方、比較例である鋼板No.1−2、鋼板No.13−1およびNo.3−1は、焼鈍時の条件が適切でないため組織回復が進行せず、強度が高めであるが伸び特性が不十分となっている。なお、鋼板No.1−2、鋼板No.13−1には、フェライト、セメンタイト以外の組織として、残留オーステナイトが認められた。鋼板No.4−2およびNo.12−2は、焼鈍温度が高く、再結晶が進行するためTiCの粗大化が抑制できず、強度低下を招いている。鋼板No.5−1、鋼板No.6−1は表1に示したとおり、いずれも4C/Tiが過小もしくは過剰となっており、Ti炭化物による析出強化が適正に制御できず、鋼板No.5−1ではTiCが粗大化し、鋼板No.6−1ではTiの析出率が低くなり、強度と伸びのバランスが最適化できていない。また鋼板No.7−1も、Mnが低いため適正温度下限以下で巻き取っても析出粗大化を抑制できず強度が低下した。鋼板No.10−2は、熱間圧延後の巻取までの冷却速度が十分でないため、パーライト変態が促進し、微細TiCの析出が不十分となり、強度確保が困難となっている。鋼板No.11−1は、TiC形成のためのTi添加量が低く、十分な析出強化量が得られていない。一方、No.15−1はSi+Al量が高く、優れた伸び特性を確保するものの、TiCが粗大化し強度低下する。鋼板No.14−1はTi過剰のため、未固溶のTiCが増大し、微細TiCが不足し、強度が不足した。 On the other hand, steel plate No. which is a comparative example. 1-2, steel plate no. 13-1 and no. As for 3-1, since the conditions at the time of annealing are not appropriate, the structure recovery does not proceed and the strength is high, but the elongation property is insufficient. In addition, steel plate No. 1-2, steel plate no. In 13-1, residual austenite was recognized as a structure other than ferrite and cementite. Steel plate No. 4-2 and no. No. 12-2 has a high annealing temperature and recrystallization proceeds, so that the coarsening of TiC cannot be suppressed, resulting in a decrease in strength. Steel plate No. 5-1, steel plate no. As shown in Table 1, 6-1 has an excessively small or excessive 4C / Ti * , and precipitation strengthening due to Ti carbide cannot be properly controlled. In 5-1, TiC coarsened and the steel plate No. In 6-1, the Ti precipitation rate is low, and the balance between strength and elongation cannot be optimized. Steel plate No. Since 7-1 also had a low Mn, precipitation coarsening could not be suppressed even when it was wound below the lower limit of the appropriate temperature, resulting in a decrease in strength. Steel plate No. In No. 10-2, since the cooling rate until winding after hot rolling is not sufficient, pearlite transformation is promoted, precipitation of fine TiC becomes insufficient, and it is difficult to ensure strength. Steel plate No. 11-1 has a low Ti addition amount for forming TiC, and a sufficient precipitation strengthening amount is not obtained. On the other hand, no. 15-1 has a high amount of Si + Al and ensures excellent elongation characteristics, but TiC becomes coarse and the strength decreases. Steel plate No. Since 14-1 had an excess of Ti, undissolved TiC increased, fine TiC was insufficient, and strength was insufficient.

Figure 0005796583
Figure 0005796583

Figure 0005796583
Figure 0005796583

Figure 0005796583
Figure 0005796583

Claims (3)

質量%で、
C:0.07〜0.12%、
Si+Al:0.05〜0.10%、
Mn:0.15〜0.45%、
P:0.01〜0.05%、
S:0.004%以下、
N:0.0045%以下、
Ti:0.09〜0.14%を含有し、
残部がFeおよび不可避的不純物からなり、下記の式(1)で規定されるTiが下記の式(2)を満足する組成を有し、体積率:90〜95%のフェライト相および体積率:5〜10%のセメンタイトを有し、前記フェライト相は再結晶率が15%以上30%以下の回復組織からなるとともに、該フェライト相中にはTi炭化物(TiC)が析出し、該Ti炭化物の平均の長さが10nm未満であり、Tiの析出率が85%以上である組織を有し、引張強度が590MPa以上であることを特徴とする冷延鋼板;
Ti=Ti−(3.43N+1.5S)・・・(1)
2.4≦4C/Ti≦4.5・・・(2)
ただし、式中のTi、N、S、Cは各元素の含有量(質量%)を表す。
また、Ti炭化物の平均の長さとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位において観察されるTiCの長さを200個以上に対して求め、算術平均した値である。
% By mass
C: 0.07 to 0.12%,
Si + Al: 0.05 to 0.10%,
Mn: 0.15 to 0.45%,
P: 0.01-0.05%
S: 0.004% or less,
N: 0.0045% or less,
Ti: 0.09 to 0.14% is contained,
The balance consists of Fe and inevitable impurities, Ti * defined by the following formula (1) has a composition satisfying the following formula (2), and volume ratio: 90 to 95% ferrite phase and volume ratio And having a cementite of 5 to 10%, the ferrite phase is composed of a recovery structure having a recrystallization rate of 15% to 30%, and Ti carbide (TiC) is precipitated in the ferrite phase. A cold-rolled steel sheet having a structure in which the average length is less than 10 nm, the precipitation rate of Ti is 85% or more, and the tensile strength is 590 MPa or more;
Ti * = Ti− (3.43N + 1.5S) (1)
2.4 ≦ 4C / Ti * ≦ 4.5 (2)
However, Ti, N, S, and C in the formula represent the content (mass%) of each element.
Further, the average length of Ti carbide is a value obtained by arithmetically averaging the length of TiC observed in the [001] orientation of the ferrite phase as a matrix with respect to 200 or more by a transmission electron microscope.
さらに、質量%で、B:0.0003〜0.0010%を含有することを特徴とする請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising, by mass%, B: 0.0003 to 0.0010%. 請求項1または2に記載の組成を有する鋼を、1150〜1250℃に加熱後、仕上げ圧延終了温度:880〜930℃で熱間圧延し、10℃/s以上の平均冷却速度で冷却して巻取温度:575〜650℃で巻取り、酸洗後、圧延率:45〜65%で冷間圧延し、昇温速度:30℃/s以下で800〜860℃に加熱後、60〜180s保持の焼鈍を行い、引き続き280℃以上350℃以下で240s以上保持の過時効処理を施すことを特徴とする冷延鋼板の製造方法。   The steel having the composition according to claim 1 or 2 is heated to 1150 to 1250 ° C, hot rolled at a finish rolling finish temperature of 880 to 930 ° C, and cooled at an average cooling rate of 10 ° C / s or more. Winding temperature: Winding at 575-650 ° C., pickling, cold rolling at rolling rate: 45-65%, heating rate: 30 ° C./s or less, heating to 800-860 ° C., 60-180 s A method for producing a cold-rolled steel sheet, comprising performing annealing of holding and subsequently performing an overaging treatment of holding at 280 ° C. to 350 ° C. for 240 s or longer.
JP2013011757A 2013-01-25 2013-01-25 Cold rolled steel sheet and method for producing the same Active JP5796583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013011757A JP5796583B2 (en) 2013-01-25 2013-01-25 Cold rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013011757A JP5796583B2 (en) 2013-01-25 2013-01-25 Cold rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014141717A JP2014141717A (en) 2014-08-07
JP5796583B2 true JP5796583B2 (en) 2015-10-21

Family

ID=51423253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013011757A Active JP5796583B2 (en) 2013-01-25 2013-01-25 Cold rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5796583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975225A (en) * 2015-07-14 2015-10-14 山东众冠钢板有限公司 High-strength and corrosion-resistance SPHC steel plate and preparing method thereof
US20220389531A1 (en) * 2020-01-08 2022-12-08 Nippon Steel Corporation Steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP2014141717A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5594344B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP5549238B2 (en) Cold rolled steel sheet and method for producing the same
JP5672421B1 (en) High strength hot rolled steel sheet and method for producing the same
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP2011017060A (en) High-strength steel sheet and manufacturing method therefor
JP2016211073A (en) High strength hot rolled steel sheet and production method therefor
JP2008106351A (en) High strength cold rolled steel sheet excellent in workability and its production method
JP5329979B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
CN110832095B (en) Hot-rolled steel sheet and method for producing same
WO2016024371A1 (en) Method for manufacturing high-strength steel sheet
JP5309528B2 (en) High strength steel plate and manufacturing method thereof
TWI515309B (en) High strength hot-rolled steel sheet and method for producing the same
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP6060914B2 (en) Cold rolled steel sheet and method for producing the same
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5796583B2 (en) Cold rolled steel sheet and method for producing the same
JP5453973B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6086080B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
TWI506147B (en) A high strength hot rolled steel sheet and method for manufacturing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR20120099144A (en) Cold-rolled steel plate and method for producing same
JP6156260B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250