JP2011179071A - High-tensile cold-rolled steel sheet and method of producing the same - Google Patents

High-tensile cold-rolled steel sheet and method of producing the same Download PDF

Info

Publication number
JP2011179071A
JP2011179071A JP2010044454A JP2010044454A JP2011179071A JP 2011179071 A JP2011179071 A JP 2011179071A JP 2010044454 A JP2010044454 A JP 2010044454A JP 2010044454 A JP2010044454 A JP 2010044454A JP 2011179071 A JP2011179071 A JP 2011179071A
Authority
JP
Japan
Prior art keywords
temperature
cold
less
steel sheet
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044454A
Other languages
Japanese (ja)
Other versions
JP5434675B2 (en
Inventor
Genichi Shigesato
元一 重里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010044454A priority Critical patent/JP5434675B2/en
Publication of JP2011179071A publication Critical patent/JP2011179071A/en
Application granted granted Critical
Publication of JP5434675B2 publication Critical patent/JP5434675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-tensile cold-rolled steel sheet having &ge;500 MPa tensile strength and excellent in elongation, stretch-flangeability and balance between the strength, extension and stretch-flangeability. <P>SOLUTION: The high-tensile cold-rolled steel sheet is produced by subjecting a steel having composition at least containing, by mass, 0.03 to 0.20% C, 0.01 to 1.5% Si, &le;1.0% Mn, &le;0.08% P, &le;0.005% S, 0.01 to 0.08% Al, 0.001 to 0.005% N, one or more selected from Ti, Nb and V in an amount of 0.02 to 1.0% in total, and the balance Fe with inevitable impurities to an annealing treatment of a prescribed condition, after hot-rolling and cold-rolling in order. The produced high-tensile cold-rolled steel sheet has a composite structure composed of two ferritic phases with widely different strengths, wherein the soft ferritic phase with a lower strength has a grain diameter of &le;10 &mu;m, and &ge;60% crystal grains of the soft ferritic grains are not in contact with the crystal grains of the other soft ferritic phase. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、主として自動車の車体部品等の使途に好適な、500MPa以上の引張強さを有する高張力冷延鋼板に係り、特に伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力冷延鋼板およびその製造方法に関する。
なお、「伸びフランジ性に優れた」とは、穴拡げ率λが100%以上である場合をいい、「伸び特性に優れた」とは、伸びElが30%以上である場合をいい、「強度−伸び−伸びフランジ性バランスに優れた」とは、引張強さTS、全伸びEl、穴広げ率λの積TS×El×λが2000000MPa%2以上である場合をいうものとする。
The present invention relates to a high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more, which is suitable mainly for use in automobile body parts and the like, and in particular, high tension excellent in stretch flangeability and strength-stretch-stretch flangeability balance. The present invention relates to a cold-rolled steel sheet and a manufacturing method thereof.
“Excellent stretch flangeability” means a case where the hole expansion ratio λ is 100% or more, and “excellent stretch property” means a case where the elongation El is 30% or more. “Excellent strength-elongation-stretch flangeability balance” means that the product TS × El × λ of the tensile strength TS, total elongation El, and hole expansion ratio λ is 2000000 MPa% 2 or more.

近年、自動車からの炭酸ガスの排出量を抑えるために、高張力鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体にはTSが590〜780MPa程度の高張力鋼板が多く使用されるようになってきている。今後、さらに高強度化が進み、900MPa以上の強度の鋼板も多く使用されるようになると思われる。
しかしながら、鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、車体部品用として使用される高張力鋼板には、優れたプレス成形性を有することが要求される。そのため、鋼板の機械的特性として、高い強度TSを有しながら、高い伸びフランジ性(穴拡げ率λ)および高延性を有することが求められている。
In recent years, in order to suppress the discharge amount of carbon dioxide from automobiles, the weight reduction of automobile bodies has been promoted using high-tensile steel plates. Further, in order to ensure the safety of passengers, high-strength steel plates having a TS of about 590 to 780 MPa are often used for automobile bodies. In the future, it is expected that steel sheets with a strength of 900 MPa or more will be used more frequently as the strength further increases.
However, since many automotive body parts made of steel sheets are formed by press working, high-tensile steel sheets used for body parts are required to have excellent press formability. Therefore, the mechanical properties of the steel sheet are required to have high stretch flangeability (hole expansion ratio λ) and high ductility while having high strength TS.

高強度かつ高延性を有する鋼板として、母相をフェライト組織とし、該フェライト組織中にマルテンサイトが分散したフェライト・マルテンサイトの複合組織鋼板(Dual-Phase(DP)鋼板)が知られている(例えば特許文献1参照)。このDP鋼板は、硬質相であるマルテンサイトを含有することにより高強度を実現しつつ、軟質層であるフェライト相により高い伸びElを有している。
しかしながら、DP鋼板は、変形能の差が大きいマルテンサイト相とフェライト相が混在する結果、マルテンサイトとフェライトの界面でのボイド発生、亀裂進展が容易なため、伸びフランジ性(穴広げ性λ)が悪いという問題点がある。
As a steel sheet having high strength and high ductility, a ferrite-martensite composite structure steel sheet (Dual-Phase (DP) steel sheet) in which a parent phase is a ferrite structure and martensite is dispersed in the ferrite structure is known ( For example, see Patent Document 1). This DP steel sheet has a high elongation El due to the ferrite phase which is a soft layer while realizing high strength by containing martensite which is a hard phase.
However, DP steel sheet has a large difference in deformability. As a result of the mixture of martensite phase and ferrite phase, void formation and crack propagation at the interface between martensite and ferrite are easy. There is a problem that is bad.

そこで、DP鋼の伸びフランジ性を改善するため、DP鋼に焼戻し焼鈍を加えることでDP鋼中のマルテンサイトの硬度を低下させ、フェライトとマルテンサイトの硬度差を小さくした鋼板が開発されている(例えば特許文献2、3)。
しかしながら、焼き戻しを施してマルテンサイトの硬度を低下させた場合でも、マルテンサイトの変形能が大きく改善されるわけではなく、依然としてフェライト相との変形能の差が大きいため、DP鋼の伸びフランジ性は悪い。また、通常の工程に加えて焼き戻し焼鈍の工程が増えるため、コスト面でも不利である。
Therefore, in order to improve the stretch flangeability of DP steel, steel sheets have been developed in which the hardness of martensite in DP steel is reduced by adding temper annealing to DP steel, and the hardness difference between ferrite and martensite is reduced. (For example, Patent Documents 2 and 3).
However, even when tempering is performed to reduce the hardness of martensite, the deformability of martensite is not greatly improved, and the difference in deformability from the ferrite phase is still large. Sex is bad. Moreover, since the number of tempering annealing steps increases in addition to the normal steps, it is disadvantageous in terms of cost.

また、最近ではTRIP鋼板が注目されている。TRIP鋼板は、フェライト組織あるいはフェライト、ベイナイト、マルテンサイトの複相組織中に残留オーステナイトを生成させ、この残留オーステナイトが加工変形中に歪誘起変態することにより優れた延性を発揮するものである。例えば、特許文献4ではTS:108MPa、El:22%という優れた強度−伸びバランスを有するものが得られている。
しかしながら、このTRIP鋼板も、歪誘起変態により生成したマルテンサイトと母相組織の界面で破壊が進行しやすいため、伸びフランジ性に劣るという欠点を有しており(特許文献4の例では、TSが108MPaのとき、λ:20%)、適用用途が限られている。
Recently, TRIP steel sheets have attracted attention. The TRIP steel sheet exhibits excellent ductility by generating retained austenite in a ferrite structure or a multiphase structure of ferrite, bainite, and martensite, and this retained austenite undergoes strain-induced transformation during work deformation. For example, in Patent Document 4, a material having an excellent strength-elongation balance of TS: 108 MPa and El: 22% is obtained.
However, this TRIP steel sheet also has a defect that it is inferior in stretch flangeability because fracture tends to proceed at the interface between martensite and matrix structure generated by strain-induced transformation (in the example of Patent Document 4, TS When λ is 108 MPa, λ: 20%), application applications are limited.

そこで、残留オーステナイトによる優れた強度・伸びのバランスを維持しつつ、しかも伸びフランジ性等の成形性にも優れた鋼板を提供すべく、種々の検討がなされている。例えば特許文献5に記載されているように、焼戻マルテンサイト、焼戻ベイナイトを母相組織とし、残留オーステナイトを第2相組織とするTRIP鋼板が開示されている。しかしながら、これらの鋼でも穴広げ率λは50%程度であり、厳しい条件のプレス加工には不十分である。   In view of this, various studies have been made to provide a steel sheet having excellent formability such as stretch flangeability while maintaining an excellent balance between strength and elongation due to retained austenite. For example, as described in Patent Document 5, a TRIP steel sheet having tempered martensite and tempered bainite as a parent phase structure and retained austenite as a second phase structure is disclosed. However, even in these steels, the hole expansion ratio λ is about 50%, which is insufficient for pressing under severe conditions.

また、数百nmの大きさの微細な残留オーステナイト相を分散させることで、歪誘起変態で生成したマルテンサイトの大きさを小さいものとし、マルテンサイト近傍での破壊を抑制することを主旨とした鋼板が発明されている(特許文献6)。
しかしながら、このような微細分散した残留オーステナイト相を含む鋼を作製するために、(1)オーステナイト安定化元素としてCo、Ni、Ag、Ptなどの高価な元素を添加するため、コストが高くなることや、(2)1270℃5時間以上の溶体化処理やオーステナイト安定化元素を偏析させるための長時間焼鈍が必要であり、かつ焼鈍時間を厳密に制御する必要があり、工程が複雑過ぎて工業材料に適していないこと、(3)残留オーステナイトを確保するためにSiを添加する必要があり、めっき鋼板には適用できない、(4)残留オーステナイトが小さ過ぎて、歪誘起変態が起こりにくく、TRIP鋼の特徴である高い伸びが発現することが難しい、などの問題点がある。
In addition, by dispersing a fine residual austenite phase with a size of several hundreds of nanometers, the size of martensite generated by strain-induced transformation is reduced, and the main purpose is to suppress destruction in the vicinity of martensite. A steel plate has been invented (Patent Document 6).
However, in order to produce a steel containing such finely dispersed residual austenite phase, (1) since expensive elements such as Co, Ni, Ag, and Pt are added as austenite stabilizing elements, the cost increases. (2) Solution treatment at 1270 ° C. for 5 hours or longer and annealing for a long time to segregate the austenite stabilizing elements are necessary, and the annealing time needs to be strictly controlled, and the process is too complicated. (3) It is necessary to add Si in order to secure retained austenite and cannot be applied to the plated steel sheet. (4) Residual austenite is too small to cause strain-induced transformation. There are problems such as high elongation, which is a characteristic of steel, difficult to develop.

一方、高強度と高伸びフランジ性を有する鋼板として、特許文献7に記載されているように、ベイナイト鋼板(TS:755MPaのとき、λ:75%)がある。しかしながら、伸びフランジ性向上のためベイナイトの単一組織化を指向しているため、伸びの値が低く(TS:755MPaのとき、El:23%)、適用用途が限定されているのが実情である。   On the other hand, as described in Patent Document 7, as a steel sheet having high strength and high stretch flangeability, there is a bainite steel sheet (λ: 75% when TS: 755 MPa). However, since the bainite structure is oriented to improve the stretch flangeability, the elongation value is low (El: 23% when TS: 755 MPa), and the application is limited in reality. is there.

特開昭55−122821号公報JP 55-122821 特開平5−311244 号公報JP-A-5-311244 特開2004−52071 号公報JP 2004-52071 A 特開平9−104947号公報JP-A-9-104947 特開2002−309334号公報JP 2002-309334 A 特開2005−179703号公報JP 2005-179703 A 特開平3−180426号公報Japanese Patent Laid-Open No. 3-180426

本発明の目的は、主として自動車の車体部品等の使途に好適な500MPa以上の引張強さを有する高張力冷延鋼板で、伸び、伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力冷延鋼板およびその製造方法を提供することである。   An object of the present invention is a high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more which is suitable mainly for the use of automobile body parts and the like, and is excellent in elongation, stretch flangeability, strength-stretch-stretch flangeability balance It is to provide a tension cold-rolled steel sheet and a manufacturing method thereof.

本発明の主旨とするところは、以下の通りである。
(1)引張強さ500MPa以上を有する高張力冷延鋼板であって、質量%で、C:0.03〜0.20%、Si:0.01〜1.5%、Mn:1.0%以下、P:0.08%以下、S:0.005%以下、Al:0.01〜0.08%、N:0.001〜0.005%、Ti、Nb、Vのうちの1種または2種以上を合計で0.02〜1.0%、を少なくとも含み、残部がFeおよび不可避的不純物からなる組成と、強度の大きく異なる2種類のフェライト相からなる複合組織を有し、強度の低いフェライト相である軟質フェライト相の粒径が10μm以下であり、かつ軟質フェライト相の結晶粒の60%以上の結晶粒が、他の軟質フェライト相の結晶粒と接していないことを特徴とする高張力冷延鋼板。
(2)前記組成が、質量%で、Ca、REMのうちの1種または2種以上を合計で0.1% 以下をさらに含むものであることを特徴とする請求項1に記載の高張力冷延鋼板。
The gist of the present invention is as follows.
(1) High-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more, and in mass%, C: 0.03 to 0.20%, Si: 0.01 to 1.5%, Mn: 1.0 %: P: 0.08% or less, S: 0.005% or less, Al: 0.01-0.08%, N: 0.001-0.005%, Ti, Nb, V A composition comprising at least 0.02 to 1.0% of a total of two or more species, the balance being composed of Fe and unavoidable impurities, and a composite structure consisting of two types of ferrite phases that differ greatly in strength, The grain size of the soft ferrite phase, which is a low strength ferrite phase, is 10 μm or less, and 60% or more of the crystal grains of the soft ferrite phase are not in contact with other soft ferrite phase grains. High tensile cold-rolled steel sheet.
(2) The high-strength cold rolling according to claim 1, wherein the composition further includes 0.1% or less in total of one or more of Ca and REM in mass%. steel sheet.

(3)引張強さ500MPa以上を有する高張力冷延鋼板の製造方法であって、質量% で、C:0.03〜0.20%、Si:0.01〜1.5%、Mn:1.0%以下、P:0.08%以下、S:0.005%以下、Al:0.01〜0.08%、N:0.001〜0.005%、Ti、Nb、Vのうちの1種または2種以上を合計で0.02〜1.0%、を少なくとも含み、残部がFeおよび不可避的不純物からなる組成の鋼スラブを、加熱温度:1100℃以上に加熱したのち、粗圧延してシートバーとし、該シートバーに仕上げ圧延出側温度:900℃以上とする仕上圧延を施し、巻取温度:750℃ 以下で巻き取り熱延板とする熱間圧延工程と、前記熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、前記冷延板に(Ac3変態点温度)〜(Ac3変態点温度+50℃)の温度範囲の焼鈍温度に加熱し10〜120s保持する焼鈍処理を施した後、該焼鈍温度から(Ar3変態点温度−150℃)〜(Ar3変態点温度−30℃)の温度範囲の所定温度までの平均冷却速度が20℃/s以上となる冷却を施し、該所定温度で500〜1000s保持し、その後該焼鈍温度から(Ar3変態点温度−250℃)〜(Ar3変態点温度−150℃)の温度範囲の所定温度までの平均冷却速度が20℃/s以上となる冷却を施し、該所定温度で10〜1000s保持する焼鈍工程とを順次施すことを特徴とする高張力冷延鋼板の製造方法。
(4)前記鋼スラブが、質量%で、Ca、REMのうちの1種または2種以上を合計で0.1%以下をさらに含む組成であることを特徴とする請求項3に記載の高張力冷延鋼板の製造方法。
(3) A method for producing a high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more, wherein C: 0.03 to 0.20%, Si: 0.01 to 1.5%, Mn: 1.0% or less, P: 0.08% or less, S: 0.005% or less, Al: 0.01 to 0.08%, N: 0.001 to 0.005%, Ti, Nb, V A steel slab having a composition containing at least 0.02 to 1.0% of one or more of them in total, the balance being Fe and inevitable impurities, after heating to a heating temperature of 1100 ° C. or higher, A hot rolling step of rough rolling into a sheet bar, subjecting the sheet bar to a finish rolling exit temperature: 900 ° C. or higher, and a coiling temperature: 750 ° C. or lower to be a wound hot rolled sheet, A cold rolling step of pickling and cold rolling the hot rolled sheet to form a cold rolled sheet, and the cold rolled sheet After heating to an annealing temperature in the temperature range of (Ac3 transformation point temperature) to (Ac3 transformation point temperature + 50 ° C.) and holding for 10 to 120 s, from the annealing temperature (Ar3 transformation point temperature −150 ° C.) to Cooling is performed so that the average cooling rate up to a predetermined temperature in the temperature range of (Ar3 transformation point temperature −30 ° C.) is 20 ° C./s or more, and the predetermined temperature is maintained for 500 to 1000 s. Thereafter, from the annealing temperature (Ar3 transformation) An annealing process in which cooling is performed so that an average cooling rate to a predetermined temperature in a temperature range of (point temperature −250 ° C.) to (Ar 3 transformation point temperature −150 ° C.) is 20 ° C./s or more, and held at the predetermined temperature for 10 to 1000 seconds The manufacturing method of the high tension cold-rolled steel sheet characterized by performing these.
(4) The high steel according to claim 3, wherein the steel slab has a composition that further includes 0.1% or less in total of one or more of Ca and REM in mass%. A method for producing a tension cold-rolled steel sheet.

本発明によれば、500MPa以上の引張強さを有する高張力冷延鋼板で、伸び、伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力冷延鋼板を製造することができる。   According to the present invention, a high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more and a high-tensile cold-rolled steel sheet excellent in elongation, stretch flangeability, and strength-stretch-stretch flangeability balance can be produced.

本発明者らは、高強度鋼板における伸び及び伸びフランジ性を更に高める実験検討を続けた結果、「従来のDP鋼板やTRIP鋼板が、延性(伸び)は良好であるのに伸びフランジ性(穴広げ性:λ)に劣る理由は、これら鋼板に含まれる軟質相(主としてフェライト相)と硬質相(元々含まれるマルテンサイト、および残留オーステナイトが歪誘起変態して生成したマルテンサイト)の変形能の違いにより、軟質相と硬質相の界面近傍に応力集中がおこり、該界面近傍の軟質相中にボイドや亀裂が発生し、該界面近傍の軟質相中を亀裂が容易に進展し、鋼板が早期に破壊するからである」ということを見出した。
その考えに基づき、軟質相の結晶粒が粗大でなく、しかも、それらの結晶粒が繋がっていないで孤立した状態であれば、伸びフランジ性を顕著に改善できることを見出した。さらには、硬質相の変形能が大きければ、伸びフランジ性を顕著に改善できることを見出した。
As a result of continuing the experimental study to further increase the elongation and stretch flangeability of the high-strength steel sheet, the present inventors have found that the conventional DP steel sheet and TRIP steel sheet have good ductility (elongation) but stretch flangeability (hole The reason why the spreadability is inferior to λ) is that the deformability of the soft phase (mainly ferrite phase) and the hard phase (martensite originally contained, and martensite generated by strain-induced transformation of retained austenite) contained in these steel sheets. Due to the difference, stress concentration occurs in the vicinity of the interface between the soft phase and the hard phase, voids and cracks are generated in the soft phase near the interface, cracks easily propagate in the soft phase near the interface, and the steel sheet becomes early. It is because it destroys. "
Based on this idea, it has been found that the stretch flangeability can be remarkably improved if the crystal grains of the soft phase are not coarse and are not connected and isolated. Furthermore, it has been found that if the deformability of the hard phase is large, the stretch flangeability can be remarkably improved.

以下、そのようにしてなされた本発明の高強度鋼板について詳述する。
まず、本発明の高強度鋼板の組織について説明する。
良好な延性(伸び)を得るためには変形能の大きい軟質相が必要である。一方で、500MPa以上の高強度を得るためには、硬質相が必要である。さらには、良好な伸びフランジ性を得るためには、硬質相にもある程度の変形能が必要である。
本発明では、硬質層及び軟質相として、強度の大きく異なる2種類のフェライト相(以下、それらをそれぞれ軟質フェライト相と硬質フェライト相という場合もある。)を用い、組織をそれらのフェライト層からなる複合組織とする。
軟質フェライト相としては、析出物密度の低いフェライト相を用い、硬質フェライト相としては、高密度の析出物を含む析出強化フェライトを利用することとした。析出強化フェライトは、高密度に分散した析出物により高強度となっており、かつ、転位密度が低いため、マルテンサイトなどの高密度に転位を含む組織に比べて変形能も大きい。
Hereinafter, the high-strength steel sheet of the present invention thus made will be described in detail.
First, the structure of the high-strength steel sheet of the present invention will be described.
In order to obtain good ductility (elongation), a soft phase having a large deformability is required. On the other hand, in order to obtain a high strength of 500 MPa or more, a hard phase is necessary. Furthermore, in order to obtain good stretch flangeability, the hard phase also needs a certain degree of deformability.
In the present invention, two types of ferrite phases (hereinafter sometimes referred to as a soft ferrite phase and a hard ferrite phase, respectively) having greatly different strengths are used as the hard layer and the soft phase, and the structure is composed of these ferrite layers. A complex organization is assumed.
As the soft ferrite phase, a ferrite phase having a low precipitate density was used, and as the hard ferrite phase, precipitation strengthened ferrite containing a high density precipitate was used. Precipitation strengthened ferrite has high strength due to precipitates dispersed at a high density and has a low dislocation density, and therefore has a greater deformability than a structure containing dislocations at a high density such as martensite.

軟質フェライト相の粒径は10μm以下が望ましい。鋼板を伸びフランジ変形させると、軟質相と硬質相の界面近傍で発生した亀裂が軟質相の中を容易に進展する。すなわち、発生初期の亀裂(初期亀裂)の大きさは軟質相粒径に依存する。変形が進むにつれて、初期亀裂が成長し、最終的に破壊に至るが、初期亀裂の大きさが10μm以下だと、容易には破壊に至らない。逆に初期亀裂の大きさが10μm以上だと、その初期亀裂は容易に進展し、破壊に至る。
したがって、軟質フェライト相の粒径は10μm以下が望ましい。なお、容易に進展を開始する亀裂の大きさは、鋼板の強度レベルによっても違う。本発明の範囲では、10μmが臨界の大きさである。
The particle diameter of the soft ferrite phase is desirably 10 μm or less. When the steel sheet is stretched and deformed by flange, a crack generated near the interface between the soft phase and the hard phase easily propagates in the soft phase. That is, the size of the initial crack (initial crack) depends on the soft phase particle size. As the deformation progresses, the initial crack grows and eventually breaks. However, if the initial crack size is 10 μm or less, the crack is not easily broken. On the contrary, if the size of the initial crack is 10 μm or more, the initial crack easily develops and breaks.
Therefore, the particle diameter of the soft ferrite phase is desirably 10 μm or less. Note that the size of the crack that easily starts to grow also depends on the strength level of the steel sheet. Within the scope of the present invention, 10 μm is the critical size.

軟質フェライト相の結晶粒のうち60%以上の粒が他の軟質フェライト相の結晶粒と接していないことが望ましい。フェライト粒同士が隣接していると、硬質相との界面近傍で発生した亀裂が軟質フェライト粒の続く範囲で進展できるため、亀裂が大きくなり、早期に破壊に至り、伸びフランジ性が悪くなる。
軟質フェライト粒が硬質相中に孤立していれば、硬質相との界面近傍で発生した亀裂は一つのフェライト粒の範囲内でしか容易に成長できないので、亀裂は大きくならず、破壊が遅れ、良好な伸びフランジ性が得られる。全軟質フェライト粒のうち60%以上のフェライト粒が孤立した状態にあれば、所望の伸びフランジ性が得られる。
従来のDP鋼やTRIP鋼では、軟質相が母相であり、軟質相が非常に広い領域に繋がっている(鋼板全体に繋がっていることもある)。そのため、亀裂が容易に大きくなり、早期破壊に至り、伸びフランジ性が悪くなる。
It is desirable that 60% or more of the soft ferrite phase crystal grains are not in contact with other soft ferrite phase crystal grains. If the ferrite grains are adjacent to each other, cracks generated in the vicinity of the interface with the hard phase can propagate in the range in which the soft ferrite grains continue, so that the cracks become large, leading to early breakage and poor stretch flangeability.
If soft ferrite grains are isolated in the hard phase, cracks that occur near the interface with the hard phase can only grow easily within the range of one ferrite grain, so the crack does not become large, and the fracture is delayed, Good stretch flangeability can be obtained. If 60% or more of all soft ferrite grains are in an isolated state, desired stretch flangeability can be obtained.
In conventional DP steel and TRIP steel, the soft phase is the parent phase, and the soft phase is connected to a very wide region (may be connected to the entire steel plate). For this reason, cracks are easily increased, leading to early breakage, and stretch flangeability is deteriorated.

次に、本発明鋼の化学組成について説明する。以下、化学成分の単位はすべて質量%である。
C:0.03〜0.20%
CはTiやNb、Vなどの合金元素と結合して、微細炭化物を析出するために必須である。鋼板強度として500MPa以上を達成するためには、最低でも0.03%必要である。一方、C が過剰になると、鋳造段階で中心偏析による欠陥が生じ易くなるうえ、溶接性も悪くなる。従って上限を0.20%とした。
Si:0.01〜1.5%
Siは軟質フェライト相の固溶強化元素として有用な元素である。軟質フェライト相の強度が高くなると、硬質相との強度差が小さくなるため、応力集中が緩和され、伸びフランジ性を向上させる。従って、好ましくは1.0% 以上必要である。しかしながら、めっき鋼板としてめっきを施す場合、Si添加はめっき性を著しく劣化させるため、Siは少ない方が良い。0.01%程度だとめっき性に大きく影響しないため、めっき性を考慮する必要がある場合の下限値は0.01%とする。一方、1.5%を超えて添加すると、Siの効果が飽和するだけでなく、加工性が劣化するため、上限を1.5%とした。
Next, the chemical composition of the steel of the present invention will be described. Hereinafter, all the units of chemical components are mass%.
C: 0.03-0.20%
C is essential for bonding with alloy elements such as Ti, Nb, and V to precipitate fine carbides. In order to achieve a steel plate strength of 500 MPa or more, at least 0.03% is necessary. On the other hand, if C is excessive, defects due to center segregation are likely to occur at the casting stage, and weldability also deteriorates. Therefore, the upper limit was made 0.20%.
Si: 0.01 to 1.5%
Si is an element useful as a solid solution strengthening element of the soft ferrite phase. When the strength of the soft ferrite phase is increased, the strength difference from the hard phase is reduced, so that stress concentration is relaxed and stretch flangeability is improved. Therefore, 1.0% or more is necessary. However, when plating is performed as a plated steel sheet, the addition of Si significantly deteriorates the plating properties, so that it is preferable that the amount of Si is small. If it is about 0.01%, the plating property is not greatly affected. Therefore, when the plating property needs to be considered, the lower limit is set to 0.01%. On the other hand, if added over 1.5%, not only the effect of Si is saturated but also the workability deteriorates, so the upper limit was made 1.5%.

Mn:1.0%以下
Mnは、Siと同様に固溶強化元素として有用である。しかしながら、微細炭化物の析出を抑制する効果が強いため、本発明では大量添加することはできない。1.0% を超えて添加すると微細炭化物の析出による強化量が著しく小さくなるため、上限値を1.0%とした。
P:0.08%以下
Pは熱延時の加工性を劣化させるため、低い方が望ましい。0.08%以下だと影響が小さいため、0.08%を上限とした。より好ましくは0.03%以下が望ましい。
Mn: 1.0% or less Mn is useful as a solid solution strengthening element like Si. However, since the effect of suppressing the precipitation of fine carbides is strong, it cannot be added in a large amount in the present invention. If added over 1.0%, the amount of strengthening due to the precipitation of fine carbides becomes remarkably small, so the upper limit was made 1.0%.
P: 0.08% or less Since P deteriorates the workability at the time of hot rolling, the lower one is desirable. Since 0.08% or less has little influence, 0.08% was made the upper limit. More preferably, it is 0.03% or less.

S:0.005%以下
SはMn硫化物を形成し、Mn硫化物が破壊起点となり伸びフランジ性を劣化させる。従って、Sは低い方が望ましい。後述するように、CaやREMを添加するとMn硫化物の生成が抑制されるため、CaやREMを適量添加した場合は、Sは最大0.005%まで添加しても伸びフランジ性に顕著な影響は出ない。従って、Sの上限を0.005%とした。望ましくは0.002%以下、さらに望ましくは0.001%以下とする。
Al:0.01〜0.08%
Alは、脱酸のために0.01%以上を添加するが、添加量が増加するとアルミナ等の介在物が増加し、伸びフランジ性が劣化するため0.08%を上限とする。
S: 0.005% or less S forms Mn sulfide, which becomes a starting point of fracture and deteriorates stretch flangeability. Therefore, it is desirable that S is low. As will be described later, when Ca or REM is added, the formation of Mn sulfide is suppressed. Therefore, when an appropriate amount of Ca or REM is added, S is remarkable in stretch flangeability even if it is added to a maximum of 0.005%. There is no impact. Therefore, the upper limit of S is set to 0.005%. Desirably, it is 0.002% or less, and more desirably 0.001% or less.
Al: 0.01 to 0.08%
Al is added in an amount of 0.01% or more for deoxidation, but when the addition amount increases, inclusions such as alumina increase and stretch flangeability deteriorates, so 0.08% is made the upper limit.

N:0.001〜0.005%
Nは、Tiと結合しTiNとして析出するため、析出強化に利用できる有効なTi量が減少するうえ、粗大なTiNが存在すると、破壊起点となり伸びフランジ性を劣化させる。0.005%を越えると伸びフランジ性が著しく劣化してくるので、0.005%を上限とする。また、極低化は経済的に不利なため下限を、0.0001%とする。
Ti、Nb、V:1種または2種以上を合計で0.02〜1.0%
Ti、Nb、Vは、炭化物析出によるフェライト相の強化の目的で、0.02%以上の添加が必要である。ただし、添加量が増加すると、粗大なTiN等の介在物が増加し、伸びフランジ性が劣化するため1.0%を上限とする。
N: 0.001 to 0.005%
Since N combines with Ti and precipitates as TiN, the effective amount of Ti that can be used for precipitation strengthening decreases, and if coarse TiN is present, it becomes a fracture starting point and deteriorates stretch flangeability. If it exceeds 0.005%, the stretch flangeability deteriorates remarkably, so 0.005% is made the upper limit. Moreover, since extremely low is economically disadvantageous, the lower limit is made 0.0001%.
Ti, Nb, V: 0.02 to 1.0% in total of 1 type or 2 types or more
Ti, Nb, and V need to be added in an amount of 0.02% or more for the purpose of strengthening the ferrite phase by carbide precipitation. However, when the addition amount increases, coarse inclusions such as TiN increase and stretch flangeability deteriorates, so 1.0% is made the upper limit.

本発明は、少なくとも以上の元素含む鋼を基本とするが、さらに以下の元素を添加できる。
Ca、REM:1種または2種以上を合計で0.1%以下
Ca、REMを添加すると、Mn硫化物の生成が抑制され、伸びフランジ性を改善できる。特にS量が多い場合に有効である。ただし、多量に添加すると、Ca酸化物等の介在物を生成し、破壊起点となるため、伸びフランジ性に悪影響を及ぼす。そのため、上限を合計で0.1%とした。
Although the present invention is based on steel containing at least the above elements, the following elements can be further added.
Ca, REM: 1 type or 2 types or more in total 0.1% or less When Ca and REM are added, the production | generation of Mn sulfide is suppressed and stretch flangeability can be improved. This is particularly effective when the amount of S is large. However, if it is added in a large amount, inclusions such as Ca oxide are generated and serve as a starting point for fracture, which adversely affects stretch flangeability. Therefore, the upper limit is made 0.1% in total.

次に本発明鋼の製造方法について説明する。
本発明鋼の製造において最も重要な留意すべきことは、軟質および硬質の2種類のフェライト相を生成すること、および軟質フェライト相の結晶粒が出来るだけ孤立している状態とすることである。そのために、製造方法として重要な点は、冷延後の焼鈍〜冷却の工程である。スラブから冷延板を得るまでの工程は、通常の冷延板製造工程と同様である。
以下に、各工程について説明する。
Next, a method for producing the steel of the present invention will be described.
The most important points to be noted in the production of the steel of the present invention are to produce two types of ferrite phases, soft and hard, and to keep the crystal grains of the soft ferrite phase as isolated as possible. Therefore, an important point as a manufacturing method is a process from annealing to cooling after cold rolling. The process from obtaining a cold-rolled sheet from a slab is the same as a normal cold-rolled sheet manufacturing process.
Below, each process is demonstrated.

熱延工程:
規定の組成の鋼スラブを、加熱温度1100℃以上に加熱したのち、粗圧延してシートバーとする。この時の加熱温度が1100℃未満だと、熱延終了時の温度が900℃未満となり、熱延終了時の組織に圧延方向に伸びた未再結晶粒が含まれ、機械特性、特に穴広げ特性に異方性が生じ、結果的に特性が劣化する。従って、熱延時の加熱温度は1100℃以上である必要がある。
また、上記理由により、仕上圧延出側温度は900℃以上とする必要がある。さらには、巻取温度が750℃超だと熱延コイルが室温まで冷却されるのに要する時間が長くなり過ぎるため、経済的に不利である。従って、熱延板の巻き取り温度は750℃以下とする。
Hot rolling process:
A steel slab having a specified composition is heated to a heating temperature of 1100 ° C. or higher and then roughly rolled to form a sheet bar. If the heating temperature at this time is less than 1100 ° C., the temperature at the end of hot rolling is less than 900 ° C., and the structure at the end of hot rolling includes unrecrystallized grains extending in the rolling direction, and mechanical characteristics, particularly hole expansion. Anisotropy occurs in the characteristics, and as a result, the characteristics deteriorate. Therefore, the heating temperature at the time of hot rolling needs to be 1100 ° C. or higher.
For the above reasons, the finish rolling outlet temperature needs to be 900 ° C. or higher. Furthermore, if the coiling temperature exceeds 750 ° C., the time required for the hot rolled coil to cool to room temperature becomes too long, which is economically disadvantageous. Therefore, the winding temperature of the hot-rolled sheet is set to 750 ° C. or lower.

冷延工程:
通常の冷延工程と同様であり、用途に応じて必要な圧下率の冷延を行なう。
冷延後焼鈍工程:
鋼の組織をオーステナイト単相とするため、冷延工程で得られた冷延板を(Ac3変態点温度)〜(Ac3変態点温度+50℃)の温度範囲の焼鈍温度T1に加熱し10〜120s保持する。
焼鈍温度T1は、Ac3変態点温度以下だとオーステナイト単相組織とならないため、その下限温度はAc3変態点温度とする。焼鈍温度T1が高過ぎると、オーステナイト結晶粒が粗大となり、冷却後のマルテンサイト組織が粗大になり、伸びフランジ性が悪化する。そのため、焼鈍温度T1の上限は(Ac3変態点温度+50℃)とした。該焼鈍温度での保持時間t1が10s未満だと、オーステナイト変態が完了しない可能性がある。逆に120s超保持することは、オーステナイト変態は完了し、オーステナイト結晶粒が粗大化するだけなので、経済的に無駄である。従って120s以下とした。
Cold rolling process:
It is the same as a normal cold rolling process, and cold rolling is performed at a required reduction rate according to the application.
Annealing process after cold rolling:
In order to make the steel structure an austenite single phase, the cold-rolled sheet obtained in the cold-rolling step is heated to an annealing temperature T1 in a temperature range of (Ac3 transformation point temperature) to (Ac3 transformation point temperature + 50 ° C.) for 10 to 120 s. Hold.
If the annealing temperature T1 is equal to or lower than the Ac3 transformation point temperature, an austenite single-phase structure is not formed, so the lower limit temperature is the Ac3 transformation point temperature. When the annealing temperature T1 is too high, austenite crystal grains become coarse, the martensite structure after cooling becomes coarse, and stretch flangeability deteriorates. Therefore, the upper limit of the annealing temperature T1 is set to (Ac3 transformation point temperature + 50 ° C.). If the holding time t1 at the annealing temperature is less than 10 s, the austenite transformation may not be completed. Conversely, holding for more than 120 s is economically wasteful because the austenite transformation is completed and the austenite crystal grains only become coarse. Therefore, it was set to 120 s or less.

冷却工程:
(1)硬質フェライト生成工程:
強度を確保するため、一定分率の硬質フェライト相を生成させる必要がある。前記焼鈍温度T1での保持が終了後、該焼鈍温度から(Ar3変態点温度−150℃)〜(Ar3変態点温度−30℃)の温度範囲の所定温度(以下、硬質フェライト生成処理温度T2)まで冷却し、その温度で500〜1000s(t2)保持することで、硬質フェライトを生成させることができる。
鋼をAr3変態点温度未満の温度で保持すると、オーステナイト相からフェライト相への変態が開始するが、(Ar3変態点温度−150℃)〜(Ar3変態点温度−30℃)の温度域でフェライト変態させると、フェライト変態とほぼ同時に、生成したフェライト相とオーステナイト母相との界面近傍で、Ti、Nb、Vなどの炭化物が析出する、いわゆる相界面析出が起こる。そして、フェライト変態が進行しフェライト―オーステナイト界面が移動するとともに析出を繰り返し、その結果、生成したフェライト相の内部に微細な炭化物が高密度に分布することになり、硬質なフェライト相が得られる。
Cooling process:
(1) Hard ferrite production process:
In order to ensure strength, it is necessary to generate a hard ferrite phase with a certain fraction. After the holding at the annealing temperature T1 is completed, a predetermined temperature (hereinafter, hard ferrite generation processing temperature T2) in a temperature range from the annealing temperature to (Ar3 transformation point temperature −150 ° C.) to (Ar3 transformation point temperature −30 ° C.). By cooling to 500 ° C. and holding at that temperature for 500 to 1000 s (t2), hard ferrite can be generated.
When the steel is held at a temperature lower than the Ar3 transformation point temperature, transformation from the austenite phase to the ferrite phase starts, but ferrite is produced in the temperature range of (Ar3 transformation point temperature -150 ° C) to (Ar3 transformation point temperature-30 ° C). When transformation is performed, so-called phase interface precipitation occurs in which carbides such as Ti, Nb, and V are precipitated in the vicinity of the interface between the formed ferrite phase and austenite matrix almost simultaneously with the ferrite transformation. Then, the ferrite transformation progresses and the ferrite-austenite interface moves and repeats the precipitation. As a result, fine carbides are distributed in a high density inside the formed ferrite phase, and a hard ferrite phase is obtained.

相界面析出は界面の移動速度と析出速度が上手くバランスした場合に起こるため、ある温度範囲内でしか起こらない。フェライト変態温度が(Ar3変態点温度−150℃)より低くても、あるいは(Ar3変態点温度−30℃)より高くても、相界面析出は起こらない。従って、硬質フェライト生成処理温度T2は、(Ar3変態点温度−150℃)〜(Ar3変態点温度−30℃)の温度範囲としなければならない。
硬質フェライト生成処理温度T2が低いほど、またその温度での保持時間t2が長いほど硬質フェライト分率は高くなる傾向にある。
保持時間t2は、硬質フェライト生成処理温度T2に依って設定する必要があるが、500s未満だと硬質フェライト分率が低過ぎて、500MPa以上の鋼板強度が達成できない可能性が高いうえ、軟質フェライトが孤立せずに連結する可能性が高い。逆に1000s超保持すると、硬質フェライト分率が高過ぎ、伸びや伸びフランジ性が悪くなるうえ、プロセス時間が長くなり経済的に不利である。従って、保持時間t2は500〜1000sが望ましい。
前記焼鈍温度T1から硬質フェライト生成処理温度T2までの冷却速度は、平均で20℃/s以上とする。冷却速度が遅いと冷却中にフェライト変態が開始し、相界面析出が起こらないため、所定の組織を得ることができない。
Phase interface precipitation occurs only when the interfacial transfer rate and precipitation rate are well balanced, and therefore occurs only within a certain temperature range. Even when the ferrite transformation temperature is lower than (Ar3 transformation point temperature−150 ° C.) or higher than (Ar3 transformation point temperature−30 ° C.), phase interface precipitation does not occur. Accordingly, the hard ferrite generation treatment temperature T2 must be in the temperature range of (Ar3 transformation point temperature−150 ° C.) to (Ar3 transformation point temperature−30 ° C.).
As the hard ferrite generation treatment temperature T2 is lower and the holding time t2 at that temperature is longer, the hard ferrite fraction tends to be higher.
The holding time t2 needs to be set depending on the hard ferrite generation processing temperature T2, but if it is less than 500 s, the hard ferrite fraction is too low and it is highly possible that a steel plate strength of 500 MPa or more cannot be achieved. Are likely to connect without isolation. On the other hand, if it is held for more than 1000 s, the hard ferrite fraction is too high, the elongation and stretch flangeability deteriorate, and the process time becomes longer, which is economically disadvantageous. Accordingly, the holding time t2 is desirably 500 to 1000 s.
The cooling rate from the annealing temperature T1 to the hard ferrite generation treatment temperature T2 is 20 ° C./s or more on average. When the cooling rate is slow, ferrite transformation starts during cooling and phase interface precipitation does not occur, so that a predetermined structure cannot be obtained.

(2)軟質フェライト生成工程:
硬質フェライト生成処理温度T2で所定時間t2保持することにより硬質フェライトを生成後、軟質フェライトを生成するための所定温度(以下、軟質フェライト生成処理温度T3)まで急冷し、残部を軟質フェライトとする。軟質なフェライト相は、フェライト中に含まれる炭化物析出物および転位を低密度にすることにより、得ることができる。炭化物の析出を抑制することは、フェライト変態温度を低くし、Ti、Nb、Vの拡散が起こりにくい状態にすることで実現できる。逆に、フェライト変態温度が低過ぎると、フェライト中に転位が導入され、フェライトが硬くなる。本発明の鋼の組成範囲では、フェライト変態温度が(Ar3変態点温度−150℃)より高いと、フェライト中に炭化物が析出し、(Ar3変態点温度−250℃)より低いと転位密度が高くなる。従って、軟質フェライト生成処理温度は、(Ar3変態点温度−250℃)〜(Ar3変態点温度−150℃)とする。
(2) Soft ferrite production process:
After generating hard ferrite by holding at a hard ferrite generation processing temperature T2 for a predetermined time t2, it is rapidly cooled to a predetermined temperature for generating soft ferrite (hereinafter referred to as soft ferrite generation processing temperature T3), and the remainder is made soft ferrite. A soft ferrite phase can be obtained by reducing the density of carbide precipitates and dislocations contained in the ferrite. Suppression of carbide precipitation can be realized by lowering the ferrite transformation temperature and making Ti, Nb, and V difficult to diffuse. Conversely, if the ferrite transformation temperature is too low, dislocations are introduced into the ferrite and the ferrite becomes hard. In the composition range of the steel of the present invention, if the ferrite transformation temperature is higher than (Ar3 transformation point temperature -150 ° C), carbide precipitates in the ferrite, and if it is lower than (Ar3 transformation point temperature -250 ° C), the dislocation density is high. Become. Therefore, the soft ferrite generation treatment temperature is set to (Ar3 transformation point temperature−250 ° C.) to (Ar3 transformation point temperature−150 ° C.).

軟質フェライト生成処理温度T3での保持時間t3は、残部がすべてフェライトとなるようにしなければならない。未変態のオーステナイトが残存していると、該工程の後、室温まで冷却した際にマルテンサイトが生成する。マルテンサイトは硬質で変形能に乏しいため、伸びフランジ変形を施したときに、フェライトとの界面近傍でクラックが発生し、容易に破壊に至る。
該保持時間t3は、所望の強度や、鋼の組成、前記硬質フェライト生成処理温度T2、軟質フェライト生成処理温度T3によって調整すべきであるが、10s以下だとオーステナイトが残存する可能性が高いうえ、保持時間t3を正確に制御することが難しい。逆に1000s以上保持することは、プロセス時間が長くなり経済的に不利である。従って、軟質フェライト生成処理温度T3での保持時間t3は10〜1000sとする。
前記焼鈍温度T2から軟質フェライト生成処理温度T3までの冷却速度は、平均で20℃/s以上とする。冷却速度が遅いと冷却中に硬質フェライトが生成し、硬質フェライト分率が高くなり過ぎて、延性が劣化する場合がある。
The holding time t3 at the soft ferrite generation processing temperature T3 must be such that the remainder becomes ferrite. If untransformed austenite remains, martensite is generated after cooling to room temperature after the step. Since martensite is hard and has poor deformability, when stretched flange deformation is applied, cracks are generated near the interface with the ferrite and easily break.
The holding time t3 should be adjusted according to the desired strength, steel composition, hard ferrite generation temperature T2, and soft ferrite generation temperature T3, but if it is 10 s or less, there is a high possibility that austenite remains. It is difficult to accurately control the holding time t3. On the other hand, holding for 1000 seconds or more is disadvantageous economically because the process time becomes long. Accordingly, the holding time t3 at the soft ferrite generation processing temperature T3 is set to 10 to 1000 s.
The cooling rate from the annealing temperature T2 to the soft ferrite generation treatment temperature T3 is 20 ° C./s or more on average. If the cooling rate is slow, hard ferrite is generated during cooling, the hard ferrite fraction becomes too high, and ductility may deteriorate.

以下、実施例により、本発明の実施可能性及び効果についてさらに説明する。   The following examples further illustrate the feasibility and effects of the present invention.

表1に示すような組成の鋼板を、1100〜1250℃に加熱し、900〜950℃で熱延を完了し、500〜700℃まで冷却し巻き取って、酸洗後、冷延して1.2mm厚とした。その後、各鋼の成分(質量%)から下記式にしたがってAc3、Ar3変態温度を計算により求めた。
Ac3=910−203×(C%)0.5−15.2×Ni%+44.7×Si%+104×V%+31.5×Mo%−30×Mn%−11×Cr%−20×Cu%+700×P%+400×Al%+400×Ti%
Ar3=910 −273 ×(C%)+25×Si%−74×Mn%−56×Ni%−16×Cr%−9×Mo% −5×Cu%
A steel plate having a composition as shown in Table 1 is heated to 1100 to 1250 ° C., and hot-rolling is completed at 900 to 950 ° C., cooled to 500 to 700 ° C., wound up, pickled, and then cold-rolled to 1 .2 mm thickness. Then, Ac3 and Ar3 transformation temperature was calculated | required by calculation from the component (mass%) of each steel according to the following formula.
Ac3 = 910−203 × (C%) 0.5 −15.2 × Ni% + 44.7 × Si% + 104 × V% + 31.5 × Mo% −30 × Mn% −11 × Cr% −20 × Cu% + 700 × P% + 400 × Al% + 400 × Ti%
Ar3 = 910−273 × (C%) + 25 × Si% −74 × Mn% −56 × Ni% −16 × Cr% −9 × Mo% −5 × Cu%

これらの鋼板に、表2に示す条件で焼鈍処理を施した。焼鈍処理はすべてAr雰囲気の下で実施した。これらの鋼板からJIS5号引張り試験片を採取して、機械的性質を測定した。さらに、鉄鋼連盟規格に準拠して穴拡げ試験を行い、穴拡げ率を求めた。
軟質フェライトと硬質フェライトの識別は、マイクロビッカース試験機を用いて硬度測定をおこない、200Hv以上の粒を硬質フェライトとした。また、硬質フェライトおよび軟質フェライトの粒径測定、および孤立した軟質フェライトの割合を測定するため、光学顕微鏡による観察を実施した。光学顕微鏡観察には、鏡面研磨後、ナイタール溶液(硝酸5%+エタノール95%)でエッチングした鋼試料を用いた。
These steel plates were annealed under the conditions shown in Table 2. All annealing treatments were performed under an Ar atmosphere. JIS No. 5 tensile test specimens were collected from these steel plates and measured for mechanical properties. In addition, a hole expansion test was performed in accordance with the Steel Federation standard, and the hole expansion rate was obtained.
To distinguish between soft ferrite and hard ferrite, hardness was measured using a micro Vickers tester, and grains having a particle size of 200 Hv or more were regarded as hard ferrite. Moreover, in order to measure the particle diameter of hard ferrite and soft ferrite and to measure the ratio of isolated soft ferrite, observation with an optical microscope was performed. For observation with an optical microscope, a steel sample etched with a nital solution (nitric acid 5% + ethanol 95%) after mirror polishing was used.

これらの鋼の機械特性および組織観察結果を表3に示す。
本発明鋼は、すべて500MPa以上の引張り強度を有し、伸びフランジ性に優れ(穴拡げ率λが100% 以上)、強度−伸び−伸びフランジ性バランスにも優れることがわかる。また、本発明の請求項の範囲で製造した鋼板は、光学顕微鏡で観察した組織も上述した組織になっている。一方、本発明の範囲を満たさない比較例は、強度が500MPaに満たないか、あるいは、強度−伸び−伸びフランジ性バランスに劣る。
Table 3 shows the mechanical properties and structural observation results of these steels.
It can be seen that all the steels of the present invention have a tensile strength of 500 MPa or more, excellent stretch flangeability (hole expansion ratio λ is 100% or more), and excellent strength-stretch-stretch flangeability balance. Moreover, the steel plate manufactured in the scope of the claims of the present invention has the above-described structure as observed with an optical microscope. On the other hand, the comparative example which does not satisfy the scope of the present invention has a strength of less than 500 MPa, or is inferior in strength-elongation-stretch flangeability balance.

Figure 2011179071
Figure 2011179071

Figure 2011179071
Figure 2011179071

Figure 2011179071
Figure 2011179071

Claims (4)

引張強さ500MPa以上を有する高張力冷延鋼板であって、質量%で、
C:0.03〜0.20%、
Si:0.01〜1.5%、
Mn:1.0%以下、
P:0.08%以下、
S:0.005%以下、
Al:0.01〜0.08%、
N:0.001〜0.005%、
Ti、Nb、Vのうちの1種または2種以上を合計で0.02〜1.0%、
を少なくとも含み、残部がFeおよび不可避的不純物からなる組成と、強度の大きく異なる2種類のフェライト相からなる複合組織を有し、
強度の低いフェライト相である軟質フェライト相の粒径が10μm以下であり、かつ軟質フェライト相の結晶粒の60%以上の結晶粒が、他の軟質フェライト相の結晶粒と接していないことを特徴とする高張力冷延鋼板。
A high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more, in mass%,
C: 0.03 to 0.20%
Si: 0.01 to 1.5%,
Mn: 1.0% or less,
P: 0.08% or less,
S: 0.005% or less,
Al: 0.01 to 0.08%,
N: 0.001 to 0.005%,
0.02 to 1.0% in total of one or more of Ti, Nb, and V,
And having a composite structure consisting of two types of ferrite phases, the composition of which the balance is composed of Fe and inevitable impurities, and the strength is greatly different,
The grain size of the soft ferrite phase, which is a low strength ferrite phase, is 10 μm or less, and 60% or more of the crystal grains of the soft ferrite phase are not in contact with other soft ferrite phase grains. High tensile cold-rolled steel sheet.
前記組成が、質量%で、Ca、REMのうちの1種または2種以上を合計で0.1%以下をさらに含むものであることを特徴とする請求項1に記載の高張力冷延鋼板。   2. The high-tensile cold-rolled steel sheet according to claim 1, wherein the composition further includes 0.1% or less in total of one or more of Ca and REM in mass%. 引張強さ500MPa以上を有する高張力冷延鋼板の製造方法であって、質量%で、
C:0.03〜0.20%、
Si:0.01〜1.5%、
Mn:1.0%以下、P:0.08%以下、
S:0.005%以下、
Al:0.01〜0.08%、
N:0.001〜0.005%、
Ti、Nb、Vのうちの1種または2種以上を合計で0.02〜1.0%、
を少なくとも含み、残部がFeおよび不可避的不純物からなる組成の鋼スラブを、加熱温度:1100℃以上に加熱したのち、粗圧延してシートバーとし、該シートバーに仕上げ圧延出側温度:900℃以上とする仕上圧延を施し、巻取温度:750℃ 以下で巻き取り熱延板とする熱間圧延工程と、
前記熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、
前記冷延板に(Ac3変態点温度)〜(Ac3変態点温度+50℃)の温度範囲の焼鈍温度に加熱し10〜120s保持する焼鈍処理を施した後、該焼鈍温度から(Ar3 変態点温度−150℃)〜(Ar3変態点温度−30℃)の温度範囲の所定温度までの平均冷却速度が20℃/s以上となる冷却を施し、該所定温度で500〜1000s保持し、その後該焼鈍温度から(Ar3変態点温度−250℃)〜(Ar3変態点温度−150℃)の温度範囲の所定温度までの平均冷却速度が20℃/s以上となる冷却を施し、該所定温度で10〜1000s保持する焼鈍工程と、
を順次施すことを特徴とする高張力冷延鋼板の製造方法。
A method for producing a high-tensile cold-rolled steel sheet having a tensile strength of 500 MPa or more, in mass%,
C: 0.03 to 0.20%
Si: 0.01 to 1.5%,
Mn: 1.0% or less, P: 0.08% or less,
S: 0.005% or less,
Al: 0.01 to 0.08%,
N: 0.001 to 0.005%,
0.02 to 1.0% in total of one or more of Ti, Nb, and V,
The steel slab having a composition consisting of at least Fe and the inevitable impurities is heated to a heating temperature of 1100 ° C. or higher, and then roughly rolled into a sheet bar. The finish rolling exit temperature of the sheet bar is 900 ° C. A hot rolling process in which finish rolling is performed as described above, and a coiling temperature is 750 ° C. or less to be a coiled hot rolled sheet,
A cold rolling step of pickling and cold rolling the hot rolled sheet to form a cold rolled sheet; and
The cold-rolled sheet is subjected to an annealing treatment in which it is heated to an annealing temperature in a temperature range of (Ac3 transformation point temperature) to (Ac3 transformation point temperature + 50 ° C.) and held for 10 to 120 seconds, and then from the annealing temperature (Ar3 transformation point temperature) −150 ° C.) to (Ar 3 transformation point temperature −30 ° C.), cooling is performed so that the average cooling rate to a predetermined temperature is 20 ° C./s or more, and the predetermined temperature is maintained for 500 to 1000 s, and then the annealing is performed. The cooling is performed so that the average cooling rate from the temperature to the predetermined temperature in the temperature range of (Ar3 transformation point temperature−250 ° C.) to (Ar3 transformation point temperature−150 ° C.) is 20 ° C./s or more. An annealing step for holding 1000 s;
The manufacturing method of the high-tensile cold-rolled steel sheet characterized by performing sequentially.
前記鋼スラブが、質量%で、Ca、REMのうちの1種または2種以上を合計で0.1%以下をさらに含む組成であることを特徴とする請求項3に記載の高張力冷延鋼板の製造方法。   The high-strength cold rolling according to claim 3, wherein the steel slab has a composition that further includes 0.1% or less in total of one or more of Ca and REM in mass%. A method of manufacturing a steel sheet.
JP2010044454A 2010-03-01 2010-03-01 High tensile cold-rolled steel sheet and method for producing the same Active JP5434675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044454A JP5434675B2 (en) 2010-03-01 2010-03-01 High tensile cold-rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044454A JP5434675B2 (en) 2010-03-01 2010-03-01 High tensile cold-rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011179071A true JP2011179071A (en) 2011-09-15
JP5434675B2 JP5434675B2 (en) 2014-03-05

Family

ID=44690893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044454A Active JP5434675B2 (en) 2010-03-01 2010-03-01 High tensile cold-rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5434675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000850A (en) * 2014-06-12 2016-01-07 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor
JP2017066454A (en) * 2015-09-29 2017-04-06 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154813A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk Compound structure steel plate having excellent bore expandability
JP2005213640A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in ductility and stretch-flanging property and manufacturing method for the same
JP2007247046A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength steel sheet having excellent balance in strength and ductility
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2010255016A (en) * 2009-04-21 2010-11-11 Jfe Steel Corp Carbide dispersed steel
JP2011038121A (en) * 2009-08-06 2011-02-24 Nippon Steel Corp High tensile cold-rolled steel sheet and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154813A (en) * 2003-11-21 2005-06-16 Jfe Steel Kk Compound structure steel plate having excellent bore expandability
JP2005213640A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in ductility and stretch-flanging property and manufacturing method for the same
JP2007247046A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength steel sheet having excellent balance in strength and ductility
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2010255016A (en) * 2009-04-21 2010-11-11 Jfe Steel Corp Carbide dispersed steel
JP2011038121A (en) * 2009-08-06 2011-02-24 Nippon Steel Corp High tensile cold-rolled steel sheet and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016000850A (en) * 2014-06-12 2016-01-07 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor
JP2017066454A (en) * 2015-09-29 2017-04-06 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP5434675B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
EP2246456B9 (en) High-strength steel sheet and process for production thereof
JP4977879B2 (en) Super high strength cold-rolled steel sheet with excellent bendability
JP5018934B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5018935B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5251208B2 (en) High-strength steel sheet and its manufacturing method
JP4772497B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP4235247B1 (en) High-strength steel sheet for can manufacturing and its manufacturing method
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP2008202115A (en) High-strength steel sheet having excellent ductility, and method for producing the same
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP2008285748A (en) High-strength hot rolled steel sheet, and method for producing the same
JP2013060657A (en) High-strength cold rolled steel sheet excellent in elongation and stretch-flange formability, and method for producing the same
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP5257289B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5434675B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2005171319A (en) Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange
JP5668633B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP4396243B2 (en) Manufacturing method of high workability ultra-high strength cold-rolled steel sheet with excellent delayed fracture resistance after forming
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5434675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350